Стратегические игры. Доступный учебник по теории игр Диксит Авинаш
0,145y = 0,10,
y = 0,690.
Обратите внимание, что сумма x и y не равна 1, поскольку каждая из этих величин представляет собой выигрыш соответствующего игрока при условии, что он делает предложение первым. Таким образом, когда первое предложение делает игрок А, он получает 0,345, а игрок Б 0,655; когда первое предложение делает Б, он получает 0,69, а игрок А 0,31. Опять же, каждый игрок получает более высокий результат, когда именно он делает первое предложение, и снова разница незначительна.
Исход варианта игры с разными уровнями нетерпения существенно отличается от исхода предыдущей игры с одинаковыми уровнями нетерпения. При разных уровнях нетерпения более нетерпеливый игрок А получает намного меньше, чем игрок Б, даже тогда, когда у него есть возможность сделать первое предложение. Мы предполагали, что игрок, соглашающийся на меньшую сумму, чтобы получить ее быстрее, получит в итоге меньше, но разница действительно впечатляющая. Соотношение долей игрока А и Б составляет почти 1 к 2.
Как обычно, теперь на основании этих примеров запишем обобщенные выводы в алгебраическом виде. Допустим, игрок А рассматривает 1 доллар сейчас как эквивалент (1 + r) долларов, полученных на одно предложение позже, или, что то же самое, 1/(1 + r) долларов сейчас как эквивалент 1 доллара на одно предложение позже. Для краткости будем использовать в расчетах a вместо 1/(1 + r). Аналогичным образом предположим, что игрок Б рассматривает 1 доллар сейчас как эквивалент (1 + s) долларов, полученных на одно предложение позже; будем использовать в расчетах b вместо 1/(1 + s). Если значение r высокое (или, что то же самое, а низкое), значит, игрок А весьма нетерпелив. Точно так же, игрок Б нетерпелив, если значение s высокое (или b низкое).
Мы анализируем переговоры, проходящие в виде чередующихся раундов, с общей суммой 1 доллар, которую нужно разделить между двумя игроками с нулевыми значениями BATNA. (Как только вы поймете этот случай, то без труда сможете проанализировать и более общий случай.) Каким будет равновесие обратных рассуждений в этой игре?
Мы можем найти выигрыши в таком равновесии, расширив представленное выше простое доказательство. Допустим, выигрыш игрока А в равновесии обратных рассуждений равен x, если он делает предложение первым, а игрока Б — y, когда первое предложение вносит он. Мы найдем пару уравнений, связывающих значения x и y, а затем решим их, чтобы определить равновесные выигрыши[310].
Когда игрок А делает предложение, он знает, что должен выделить игроку Б сумму, которую тот считает эквивалентной y в следующем периоде. Эта сумма составляет by = y/(1 + s). После предложения игроку Б игрок А может получить только то, что осталось: x = 1 — by.
Точно так же, когда игрок Б делает предложение, он должен выделить игроку А эквивалент x в следующем периоде, а именно ax. Значит, y = 1 — ax. Теперь решить эти уравнения легче. Мы имеем x = 1 — b(1 — ax), или (1 — ab)x = 1 — b. Если выразить это уравнение через r и s, оно будет выглядеть так:
Аналогичным образом y = 1 — a(1 — by), или (1 — ab)y = 1 — a. Тогда уравнение примет такой вид:
Хотя это быстрое решение может показаться ловким трюком, оно получено в соответствии с теми же действиями, что и используемые ранее; кроме того, немного ниже мы приведем другую аргументацию, дающую точно такой же ответ. Но сначала проанализируем некоторые свойства этого ответа.
Прежде всего обратите внимание, что, как и в примере с разными уровнями терпения, сумма величин x и y больше 1:
Помните, что x — это то, что получает игрок А, когда он вправе сделать первое предложение, а y — то, что в аналогичном случае получает игрок Б. Когда игрок А делает предложение первым, игрок Б получает (1 — x), что меньше y; это подтверждает преимущество игрока А в случае, если он делает первое предложение. Точно так же, когда игрок Б делает предложение первым, он получает y, а игрок А (1 — y), что меньше x.
Однако r и s — как правило, небольшие числа. Когда предложения могут быть сделаны с короткими промежутками, скажем, через неделю, или один день, или один час, процент, который может быть начислен на ваши деньги за период между ними, или вероятность того, что игра закончится именно на протяжении следующего промежутка, достаточно мала. Например, если r равно 1 % (0,01), а s — 2 % (0,02), то формулы дают x = 0,668 и y = 0,337, а значит, преимущество от права сделать первое предложение составляет всего 0,005. (Игрок А получает 0,668, когда он сам делает первое предложение, но 1–0,337 = 0,663, когда его делает игрок Б; разница — 0,005.) Строго говоря, когда r и s — небольшие числа по сравнению с 1, то их произведение rs на самом деле очень мало; следовательно, мы можем исключить rs из формулы приближенного решения задачи разделения, не зависящей от того, какой игрок делает первое предложение:
Теперь x + y примерно равно 1.
Важно то, что в приближенном решении x и y — это доли излишка, которые достаются двум игрокам, а y/x = r/s; другими словами, доли игроков обратно пропорциональны их степени нетерпения, выраженной в виде r и s. Если игрок Б в два раза нетерпеливее игрока А, то игрок А получит в два раза больше, чем игрок Б; значит, их доли составляют 1/3 и 2/3, или 0,333 и 0,667 соответственно. Таким образом, мы видим, что терпение — важное преимущество в переговорах. Наш формальный анализ подтверждает интуитивный вывод о том, что, если вы очень нетерпеливы, другой игрок может предложить вам быструю, но невыгодную сделку, зная, что вы на нее согласитесь.
Эффект нетерпения вредит США, нашим органам власти и дипломатам на многих переговорах с другими странами. Американский политический процесс придает большое значение скорости. Средства массовой информации, заинтересованные группы и конкурирующие политики требуют немедленных результатов и охотно критикуют администрацию или дипломатов за любое промедление. При таком давлении переговорщики всегда испытывают искушение вернуться хотя бы с каким-то решением. Но зачастую эти результаты оставляют желать лучшего в долгосрочной перспективе; уступки других стран содержат различные уловки, а их обещания далеко не достоверны. Правительство США преподносит такие сделки как большую победу, но через несколько лет они, как правило, расторгаются. Финансовый кризис 2008 года — еще один весьма драматичный пример. Когда произошел крах рынка недвижимости, ряд крупных финансовых учреждений, активы которых были обеспечены ипотечными кредитами, очутились на грани банкротства. Это привело к сокращению размера кредитования, что, в свою очередь, поставило экономику США под угрозу глубокого спада. Кризис разразился в сентябре, в разгар президентской кампании. Министерство финансов, Федеральная резервная система и политические лидеры в Конгрессе стремились действовать быстро. Это нетерпение привело к предложению многим финансовым учреждениям гораздо более щедрых условий спасения, тогда как более медленный процесс обеспечил бы налогоплательщикам менее болезненный результат и открыл бы перед ними гораздо более приемлемые перспективы участия в будущих прибылях на спасенные активы.
Когда люди, потерпевшие убытки, ведут со страховой компанией переговоры о страховом покрытии, их позиция намного слабее. Часто компании предлагают тем, кто понес серьезный ущерб, заниженную сумму страхового возмещения, зная, что им необходимо немедленно начать все сначала, а значит, у них высокая степень нетерпения.
На концептуальном уровне формула y/x = r/s связывает подход к переговорам, основанный на некооперативной игре, с кооперативным подходом решения Нэша, о котором говорилось в разделе 1. Выведенная в этом разделе формула для определения долей имеющегося излишка при нулевых значениях BATNA принимает вид y/x = k/h. При кооперативном подходе соотношение между долями двух игроков было таким же, как и соотношение между силой их переговорных позиций, однако предполагалось, что показатели этой силы каким-то образом получены извне. Теперь мы можем объяснить силу переговорных позиций с точки зрения базовых характеристик игроков: значения h и k обратно пропорциональны уровням нетерпения игроков r и s. Иными словами, кооперативному решению Нэша можно дать альтернативную и, возможно, более приемлемую интерпретацию как равновесию обратных рассуждений в некооперативной игре с взаимными предложениями, если мы представим абстрактные показатели силы переговорных позиций в кооперативном решении в виде присущих игрокам характеристик, таких как нетерпение.
И наконец, обратите внимание, что в данном случае соглашение снова может быть достигнуто немедленно, так как самое первое предложение принимается. Как всегда, полный анализ методом обратных рассуждений носит дисциплинирующий характер, поскольку игрок, делающий предложение первым, осознает достоверность того, что другой игрок отклонит менее приемлемый вариант.
В заключение раздела предлагаем альтернативный способ получения той же (точной) формулы равновесных предложений, которую мы вывели ранее. Допустим, игра состоит из 100 раундов; игрок А делает первое предложение, а игрок Б — последнее. Начнем процесс обратных рассуждений с раунда 100: игрок Б оставит себе весь доллар. Следовательно, в раунде 99 игрок А должен предложить игроку Б эквивалент 1 доллара в раунде 100, а именно b; игроку А останется (1 — b). Далее будем выполнять такой же анализ в обратном порядке.
В раунде 98 игрок Б предлагает игроку А a(1 — b) и оставляет себе
1 — a(1 — b) = 1 — a + ab.
В раунде 97 игрок А предлагает игроку Б b(1 — a + ab) и оставляет себе
1 — b(1 — a + ab) = 1 — b + ab — ab2.
В раунде 96 игрок Б предлагает игроку А a(1 — b + ab — ab2) и оставляет себе
1 — a + ab — a2b + a2b2.
В раунде 95 игрок А предлагает игроку Б b(1 — a + ab — a2b + a2b2) и оставляет себе
1 — b + ab — ab2 + a2b2 + a2b3.
Продолжив анализ по такой схеме, мы увидим, что в раунде 1 игрок А оставит себе долю
1 — b + ab — ab2 + a2b2 — a2b3 + … + a49b49 — a49b50 = (1 — b)[1 + ab + (ab)2 + … + (ab)49].
Последствия увеличения количества раундов очевидны. Мы просто будем получать все больше членов этого ряда, возрастающих в геометрической прогрессии в ab раз на каждых два предложения. Для того чтобы определить выигрыш игрока А в случае, когда он делает первое предложение в бесконечно большой последовательности взаимных предложений, необходимо найти предел бесконечной геометрической прогрессии. В приложении к главе 10 показано, как находить сумму таких рядов. Воспользовавшись представленной там формулой, имеем
Это и есть то же решение для x, что и полученное выше. Путем аналогичных рассуждений вы сможете определить выигрыш игрока Б, когда он делает первое предложение, что позволит вам улучшить понимание материала и навыки вычислений.
6. Манипулирование информацией в процессе переговоров
Мы видели, что результат переговоров в значительной мере зависит от различных характеристик сторон, самые важные из которых — показатели BATNA и уровни нетерпения переговорщиков. До сих пор мы исходили из предположения, что игроки знают характеристики друг друга так же хорошо, как свои собственные. На самом деле мы полагали, что каждый игрок знает то, что известно другому, и т. д.; иначе говоря, что характеристики игроков — это их общее знание. В действительности мы часто ведем переговоры, не зная BATNA или уровня нетерпения другой стороны, а иногда мы не знаем точного значения даже собственного BATNA.
Как мы видели в главе 8, игра с подобной неопределенностью или информационной асимметричностью сопровождается использованием стратегий сигнализирования и скрининга в целях манипулирования информацией. Переговоры изобилуют такими стратегиями. Игрок с хорошим показателем BATNA или высоким уровнем терпения стремится сигнализировать об этом другому игроку. Однако в связи с тем, что игроки часто пытаются имитировать столь выигрышные характеристики, другая сторона скептически отнесется к подобным сигналам и будет тщательно их проверять на предмет достоверности. Кроме того, каждая сторона попытается применить скрининг, воспользовавшись стратегиями, побуждающими другую сторону предпринять действия, раскрывающие ее истинные характеристики.
В данном разделе мы проанализируем некоторые стратегии, применяемые покупателями и продавцами на рынке недвижимости. Большинство американцев проявляют активность на рынке жилья несколько раз в жизни, но у профессиональных агентов или брокеров по операциям с недвижимостью гораздо более обширный опыт в данной области. Более того, рынок недвижимости — один из немногих в США, на котором приемлем и даже приветствуется торг и переговоры по поводу цены, поэтому в нашем распоряжении немалый опыт стратегий в этой сфере. Мы будем опираться на него во многих примерах и интерпретируем в свете концепций и выводов теории игр[311].
Когда вы задумываетесь о покупке дома в новом районе, вам вряд ли известен общий диапазон цен на дома интересующего вас типа. Поэтому для начала вы должны выяснить этот диапазон и определить свой показатель BATNA. Это вовсе не означает, что вы должны ознакомиться с объявлениями в газетах или со списками выставленных на продажу домов, составленными агентствами по недвижимости. В местных газетах и на некоторых сайтах публикуется информация о последних реальных операциях с недвижимостью и фактические цены; вам нужно сравнить их с ценами, запрашиваемыми продавцами этих домов, что позволит составить представление о состоянии рынка и возможном диапазоне торга.
Далее следует определить (посредством скрининга) BATNA и уровень нетерпения другой стороны. Если вы покупатель, вам необходимо выяснить, почему дом продается и как давно он выставлен на продажу. Если дом пустует, то почему и какой период? Если владельцы дома разводятся или переехали в другое место и оплачивают новое жилье за счет промежуточного кредита, скорее всего, у них низкий показатель BATNA или высокий уровень нетерпения.
Кроме того, вы должны выяснить соответствующие аспекты предпочтений другой стороны, даже если эти предпочтения покажутся вам иррациональными. Например, некоторые люди считают предложение гораздо ниже запрашиваемой цены оскорблением, поэтому ни на каких условиях не станут продавать дом тому, кто предложит такую цену. Подобные нормы отличаются в разных регионах и в разное время. Имеет смысл выяснить, какова общепринятая практика в этой области.
Важно то, что принятие предложения раскрывает более точную информацию об истинной готовности игрока платить, чем любые другие методы, а значит, другой игрок может использовать это свойство с выгодой для себя. Один наш друг, блестящий специалист по теории игр, попытался применить такую уловку. Он торговался по поводу цены торшера. Продавец запросил 100 долларов, и переговоры дошли до того момента, когда наш друг предложил купить торшер за 60 долларов. Продавец согласился, и тут наш друг подумал: «Этот парень готов продать торшер за 60 долларов, значит, его истинная минимальная цена еще ниже. Попробую-ка я выяснить, так ли это». И наш друг сказал: «А как насчет 55 долларов?» Продавец очень расстроился, отказался продавать торшер по любой цене и попросил нашего друга покинуть магазин и больше никогда не возвращаться.
Поведение продавца подтвердило тот факт, что в переговорах совершенно неприемлемо отказываться от предложения после того, как оно было принято. Такая норма имеет смысл в контексте всех переговорных игр, которые ведутся в обществе. Если другой игрок не может по доброй воле принять обсуждаемое предложение без опасений повторения ситуации, как произошедшая с нашим другом, то каждый переговорщик будет ждать, когда другой примет предложение, и весь процесс переговоров застопорится. Стало быть, такое поведение должно быть неприемлемым. Общество может этого добиться, сделав надлежащее поведение социальной нормой, которой люди придерживаются на подсознательном уровне, как это сделал продавец в нашем примере.
В предложении может быть точно указано, что оно открыто на протяжении некоего ограниченного периода; эта оговорка может быть частью самого предложения. В предложениях о работе обычно указывается крайний срок, к которому необходимо дать ответ; магазины объявляют распродажу на ограниченный период. Однако в этом случае предложение должно представлять собой настоящий пакет таких условий, как цена и сроки, и нарушение любого из них провоцирует закономерный подсознательный гнев. Например, покупатели очень недовольны, когда, придя в магазин в период распродажи, не находят заявленного в рекламе товара. Магазин должен предложить купон на отсутствующий товар, чтобы клиент мог его купить со скидкой, когда он появится в продаже по обычной цене. Но даже такое предложение создает для покупателей определенные неудобства, поэтому магазин рискует потерять их расположение. В рекламном объявлении о распродаже магазин должен четко указать: «количество товаров ограниченно, купоны на скидки не предоставляются», но даже в этом случае многие покупатели выказывают недовольство, если товар заканчивается.
Следующий пункт в нашем списке стратегий, которые целесообразно использовать в переговорах один на один (как на рынке недвижимости), — сигнализирование о высоком показателе BATNA или высоком уровне терпения. Лучший способ подать сигнал о терпении — быть терпеливым. Не делайте встречных предложений слишком быстро, «пусть продавцы думают, что они вас потеряли». Такой сигнал достоверен, поскольку для человека, которому терпение не свойственно, имитация неторопливого подхода слишком обременительна. Кроме того, вы можете также подать сигнал о высоком показателе BATNA, делая вид, что уходите, — распространенная тактика на базарах в других странах, а также на блошиных рынках и гаражных распродажах в Соединенных Штатах.
Даже если у вас низкий BATNA, вы можете взять на себя обязательство не принимать предложение ниже определенного уровня. Такое ограничение действует так же, как и высокий показатель BATNA, поскольку другая сторона не может рассчитывать на то, что вы согласитесь на предложение ниже этого уровня. В контексте операций с недвижимостью вы можете заявить, что у вас нет возможности платить более высокую цену, сославшись на (вымышленного) прижимистого отца, который оплачивает первый взнос, или на жену, которой на самом деле дом не нравится, поэтому она не позволит вам заплатить за него ни на цент больше. Продавцы могут применить аналогичную тактику. В переговорах о повышении заработной платы в качестве такого метода выступает мандат. Проводится профсоюзное собрание, на котором принимается резолюция (мандат), наделяющая руководителей профсоюза полномочиями представлять интересы работников на переговорах, но с оговоркой, что переговорщики не должны принимать предложение ниже определенного уровня, указанного в резолюции. Тогда на встрече с руководством компании профсоюзные лидеры могут сказать, что у них связаны руки и нет времени возвращаться к членам профсоюза за разрешением на любое более низкое предложение.
Большинство этих стратегий сопряжены с определенным риском. В то время как вы подаете сигнал о своем терпении посредством ожидания, продавец дома может найти другого заинтересованного покупателя. Пока работодатель и профсоюз ждут уступок с каждой стороны, напряженность может повыситься до такого уровня, что забастовка, которая дорого обойдется обеим сторонам, станет неизбежной. Другими словами, многие стратегии манипулирования информацией — примеры балансирования на грани. В главе 14 мы видели, как в таких играх может наступить неблагоприятный для обеих сторон исход. То же самое можно сказать и о переговорах. Угрозы о прекращении переговоров или начале забастовки — это стратегические ходы, нацеленные на более быстрое достижение соглашения или заключение более выгодной сделки для игрока, делающего такой ход. В то же время фактический срыв переговоров или начало забастовки — это пример угрозы, которая «пошла не так». Игрок, выдвигающий угрозу (инициирующий балансирование на грани), должен оценить риск и потенциальную выгоду, прежде чем принимать решение о том, становиться ли он на этот путь и насколько далеко можно по нему зайти.
7. Переговоры с участием многих сторон и переговоры по многим вопросам
До сих пор наше обсуждение ограничивалось классической ситуацией, в которой две стороны договариваются о распределении определенного общего излишка. Однако в реальной жизни многие переговоры включают в себя несколько сторон или несколько вопросов одновременно. Хотя такие игры становятся более сложными, зачастую увеличение количества переговорщиков или рассматриваемых тем облегчает процесс достижения взаимовыгодного соглашения. В данном разделе мы кратко рассмотрим эти вопросы[312].
В каком-то смысле мы уже рассматривали такие переговоры. Переговоры о цене между продавцом и покупателем всегда включают в себя два пункта: 1) объект, который предлагается на продажу или рассматривается на предмет покупки; 2) деньги. Возможность получения взаимной выгоды появляется в случае, когда ценность такого объекта для покупателя выше, чем для продавца, то есть когда покупатель готов отдать за данный объект больше денег, чем продавец готов принять. В таком случае соглашение, достигнутое в ходе переговоров, выгодно обеим сторонам.
Этот принцип применим и в более общем случае. Международная торговля — классический пример. Рассмотрим две гипотетические страны, Фридонию и Илирию. Если Фридония может производить вместо 1 буханки хлеба 2 бутылки вина (используя меньше ресурсов, таких как труд и земля, в процессе выпечки хлеба и направив их на производство большего количества вина), а Илирия может выпускать вместо 1 бутылки вина 1 буханку хлеба (перераспределяя ресурсы в обратном направлении), то вместе они могут произвести больше продукции «из ничего». Предположим, Фридония может выпустить на 200 бутылок вина больше, если выпечет на 100 буханок хлеба меньше, а Илирия может выпечь на 150 буханок хлеба больше, если выпустит на 150 бутылок вина меньше. Такое перераспределение ресурсов позволит этим странам произвести на 50 буханок хлеба и 50 бутылок вина больше, чем они выпускали изначально. Эти хлеб и вино и есть тот «излишек», который обе страны могут создать, если договорятся о том, как его разделить между собой. Допустим, Фридония отдаст Илирии 175 бутылок вина и получит взамен 125 буханок хлеба. Тогда у каждой страны будет на 25 буханок хлеба и 25 бутылок вина больше, чем раньше. Но существует целый диапазон вариантов обмена, соответствующих разным способам разделения выгоды. Один крайний вариант состоит в том, что Фридония может отдать все 200 дополнительных бутылок вина в обмен на 101 буханку хлеба от Илирии; в итоге почти вся выгода от сделки достанется Илирии. С другой стороны, Фридония может отдать только 151 бутылку вина в обмен на 150 буханок хлеба Илирии, и тогда Фридония получит почти всю выгоду от сделки[313]. Между этими двумя крайними вариантами находится область, в рамках которой обе страны могут вести переговоры о разделении выгоды от обмена продукцией.
Общий принцип понятен. Когда во время переговоров одновременно обсуждаются два или более вопроса и две стороны готовы обменять большее количество чего-то одного на меньшее количество другого в разных пропорциях, то они могут заключить взаимовыгодную сделку. Взаимная выгода может обеспечиваться посредством обмена в соотношении, находящемся примерно посредине между разными уровнями готовности двух сторон к обмену. Разделение выгоды зависит от выбора соотношения, в котором будет осуществляться обмен. Чем оно ближе к уровню готовности одной стороны к обмену, тем меньшую выгоду она получит от данной сделки.
Теперь вы видите, как можно расширить возможности для заключения взаимовыгодной сделки путем одновременного рассмотрения большего количества вопросов. При этом повышается вероятность обнаружить расхождения между соотношениями оценок двух сторон, а значит, появляется больше перспектив для взаимной выгоды. Например, в ситуации с домом многие приборы и предметы мебели могут не пригодиться продавцу в новом доме, но зато могут устраивать покупателя и соответствовать его вкусу, а значит, представлять для него ценность. В таком случае, если продавца не удастся уговорить снизить цену, он может хотя бы согласиться включить эти предметы в исходную цену ради заключения сделки.
Тем не менее увеличение количества обсуждаемых вопросов имеет свои минусы. Если для вас что-то представляет большую ценность, вы можете побояться выносить этот вопрос за стол переговоров. Вас может беспокоить, что другая сторона добьется от вас значительных уступок, зная о вашем желании защитить столь ценный для вас предмет переговоров. В худшем случае новая тема обсуждения в ходе переговоров может обеспечить одной стороне возможность применить угрозу, которая снизит BATNA другой стороны. Например, страна, ведущая дипломатические переговоры, может оказаться в уязвимом положении в результате введения экономического эмбарго, поэтому она предпочла бы рассматривать политические и экономические вопросы по отдельности.
Переговоры с одновременным участием нескольких сторон также могут способствовать достижению соглашения, поскольку вместо заключения двусторонних сделок переговорщики могут найти круг взаимных уступок. В этой ситуации международная торговля — самый показательный пример. Предположим, Соединенные Штаты эффективно выращивают пшеницу, но менее продуктивны в производстве автомобилей; у Японии высококачественные автомобили, но нет нефти, а у Саудовской Аравии много нефти, но нет возможности выращивать пшеницу. Ведя переговоры попарно, эти страны достигли бы гораздо меньшего, а вместе могут заключить взаимовыгодную сделку.
Как и переговоры по многим вопросам, переговоры с участием нескольких сторон несут определенные риски. Скажем, в нашем примере сделка сводилась бы к следующему: США отправляют оговоренное количество пшеницы в Саудовскую Аравию, та предоставляет оговоренный объем нефти Японии, та, в свою очередь, отправляет соответствующее количество автомобилей Соединенным Штатам. Но представим, что Япония не выполнит свою часть договора. Саудовская Аравия не может принять мер против Соединенных Штатов, поскольку она не предлагает им ничего, что могла бы не предоставлять. Единственное, что может сделать Саудовская Аравия, — это нарушить условия сделки и не отправлять нефть в Японию. Следовательно, гарантировать выполнение многостороннего соглашения весьма проблематично. Генеральное соглашение по тарифам и торговле в период с 1946 по 1994 год, а в дальнейшем Всемирная торговая организация действительно столкнулись с большими трудностями в отношении выполнения соглашений и наложения взысканий на страны, нарушающие установленные правила.
Резюме
Переговоры сводятся к попыткам разделить их сторонами излишек (избыточную стоимость), который они могут получить при условии достижения соглашения. Переговоры можно представить как кооперативную игру, в которой стороны совместно находят и реализуют решение, либо как (структурированную) некооперативную игру, в которой стороны выбирают стратегии по отдельности и пытаются достичь равновесия.
Кооперативное решение Нэша основано на трех принципах: инвариантность исходов к линейным изменениям размера выигрышей, эффективность и инвариантность к исключению посторонних альтернатив. Это решение представляет собой правило, определяющее соотношение разделения излишка, превышающего уровни страховочных выигрышей каждой стороны (обозначаемые также термином лучшая альтернатива обсуждаемому соглашению, BATNA), в соответствии с силой переговорных позиций сторон. Стратегические манипуляции со страховочными выигрышами могут использоваться для повышения выигрыша одной из сторон.
В некооперативной среде с чередующимися и встречными предложениями для поиска равновесия используется анализ методом обратных рассуждений, как правило, приводящих к принятию предложения, сделанного в первом раунде. Если стоимость излишка с каждым отказом убывает, сумма (гипотетических) его долей, потерянных из-за отказов одного игрока, представляет собой выигрыш другого игрока в случае равновесия. Если отсрочка соглашения сопряжена с большими издержками из-за нетерпения, равновесное предложение подразумевает разделение излишка обратно пропорционально уровням нетерпения сторон. Экспериментальные данные свидетельствуют, что для достижения соглашения в таких играх их участники часто предлагают больше, чем необходимо; считается, что подобное поведение связано с анонимностью игроков и их представлениями о справедливости.
В переговорных играх с асимметричной информацией большую роль играют сигнализирование и скрининг. Одни стороны стремятся сообщить о высоком уровне BATNA или величайшем терпении, другим необходимо применить скрининг для получения правдивой информации о наличии этих характеристик. В переговорах по многим вопросам или со многими участниками порой легче достичь соглашения, но при этом они сопряжены с более высоким уровнем риска или трудностями с обеспечением выполнения условий соглашений.
Ключевые термины
Излишек
Кооперативное решение Нэша
Лучшая альтернатива соглашению, BATNA
Нетерпение
Переговоры с переменной угрозой
Убывание излишка
Ультимативная игра
Чередующиеся предложения
Эффективная граница
Эффективный исход
Упражнения с решениями
S1. Рассмотрим ситуацию с переговорами между Compaq Computer Corporation и калифорнийским бизнесменом, которому принадлежал домен www.altavista.com[314]. Компания Compaq, недавно поглотившая Digital Equipment Corporation, хотела использовать веб-адрес этого бизнесмена для поисковой системы Digital, у которой был тогда адрес www.altavista.digital.com. Судя по всему, летом 1998 года между Compaq и бизнесменом велись долгие и трудные переговоры о цене продажи этого домена.
Хотя бизнесмен был «более мелким» участником игры, окончательное соглашение подразумевало продажу домена по цене 3,35 миллиона долларов. В августе компания Compaq подтвердила его покупку, а в сентябре начала его использовать, но отказалась сообщать финансовые подробности сделки. С учетом этой информации выскажите свое мнение о возможных значениях BATNA двух игроков, силе их переговорных позиций и уровне нетерпения, и был ли достигнут кооперативный исход в этой игре.
S2. Али и Баба делят общую сумму, которая стартует с сотни долларов. Али делает первое предложение, в котором оговорено, как будут разделены 100 долларов. Если Баба его примет, игра завершится. Если отклонит, общая сумма сократится на 1 доллар и составит 99 долларов. И дальше Баба делает предложение. Так они поочередно делают предложения, и каждый раз, когда предложение отклоняется, из общей суммы вычитается один доллар. BATNA Али составляет 2,25 доллара, а BATNA Бабы — 3,50 доллара. Найдите равновесие обратных рассуждений в этой игре.
S3. Две гипотетические страны Эуфория и Милишия ведут переговоры об урегулировании конфликта. Их представители встречаются раз в месяц, начиная с января, и по очереди делают предложения. Допустим, общая сумма выигрыша от достижения соглашения составляет 100 баллов. В ноябре правительству Эуфории предстоят перевыборы. Если на октябрьской встрече оно не добьется заключения договора, то проиграет выборы, что для него так же плохо, как и получить от соглашения ноль баллов. Правительство Милишии абсолютно не интересует исход соглашения; оно может продолжить переговоры или даже начать воевать, поскольку его устроит любой выигрыш, даже намного меньше 100 баллов.
a) Каким будет исход переговоров? Как он зависит от того, кто сделает первый ход?
b) С учетом ответа, полученного в пункте а, объясните, почему реальные переговоры часто ведутся вплоть до крайнего срока.
Упражнения без решений
U1. Вспомните вариант игры в установление цены на пиццу из пункта b упражнения U2 в главе 10, в котором один ресторан (ресторан Донны Deep Dish) был гораздо больше другого (ресторан Пирса Pizza Pies). Таблица выигрышей этой игры выглядит так:
Некооперативное равновесие в доминирующих стратегиях («высокая цена» / «низкая цена») обеспечивает прибыль 132 пиццерии Донны и 70 пиццерии Пирса, что в сумме равно 202. Если бы владельцы обоих ресторанов могли достичь равновесия («высокая цена» /«высокая цена»), их общая прибыль составила бы 156 + 60 = 216, но Пирс не согласился бы на такую цену.
Предположим, рестораны могут достичь поддающегося принудительному выполнению соглашения, по условиям которого оба назначают высокую цену и Донна выплачивает Пирсу определенную сумму. Альтернатива такому соглашению — некооперативное равновесие в доминирующих стратегиях. Владельцы ресторанов ведут переговоры о заключении соглашения, причем переговорная позиция Донны в 2,5 раза сильнее, чем Пирса. Какую сумму выплатит Донна Пирсу по условиям соглашения, достигнутого в результате переговоров?
U2. Рассмотрим двух игроков, договаривающихся по поводу излишка, изначально равного целой величине V, посредством чередующихся предложений. Другими словами, игрок 1 делает предложение в первом раунде; если игрок 2 отклоняет его, он делает предложение во втором раунде; если игрок 1 отклоняет его, он делает предложение в третьем раунде и т. д. Предположим, на протяжении каждого периода имеющийся излишек уменьшается на постоянную величину c = 1. Например, если игроки достигают соглашения во втором раунде, они делят излишек V — 1, если в пятом раунде, то V — 4. Это означает, что игра закончится после V раундов, поскольку больше будет не о чем договариваться. (Для сравнения вспомните пример с билетом на футбол, в котором его стоимость для болельщика начиналась со 100 долларов и снижалась на 25 долларов за одну четверть в течение четырех четвертей матча.) В этой задаче сперва необходимо найти равновесие обратных рассуждений, а затем равновесие обобщенной версии этой игры, в которой два игрока могут иметь BATNA.
a) Начнем с простой версии. Найдите равновесие обратных рассуждений при V = 4. В каком периоде игроки достигнут соглашения? Какой выигрыш x получит игрок 1 и какой выигрыш достанется игроку 2?
b) Найдите равновесие обратных рассуждений при V = 5.
c) Найдите равновесие обратных рассуждений при V = 10.
d) Найдите равновесие обратных рассуждений при V = 11.
e) Теперь подготовьтесь обобщить результат. Каким будет равновесие обратных рассуждений при любом целом значении V? (Подсказка: вам нужно проанализировать четные и нечетные значения V по отдельности.)
Теперь рассмотрите BATNA. Представим, что к концу раунда V соглашение не достигнуто, игрок А получает выигрыш a, а игрок Б — выигрыш b. Предположим также, что a и b — целые числа, удовлетворяющие неравенству a + b < V, а значит, достигнув соглашения, игроки могут получить более высокие выигрыши, чем в противном случае.
f) Допустим, V = 4. Каким будет равновесие обратных рассуждений при любых возможных значениях a и b? (Подсказка: вам может понадобиться вывести более чем одну формулу, точно так же как в пункте e. Если вы не справитесь с этой задачей, попытайтесь сперва решить ее при конкретных значениях a и b, а затем измените их и посмотрите, что произойдет. Для того чтобы выполнить анализ методом обратных рассуждений, вам необходимо определить, на каком шаге значение V уменьшается до такого уровня, что соглашение больше не будет обеспечивать прибыль двум сторонам переговоров.)
g) Предположим, V = 5. Каким будет равновесие обратных рассуждений при любых возможных значениях a и b?
h) Каким будет равновесие обратных рассуждений при любых возможных значениях a, b и V?
i) Смягчите условие о том, что a, b и V — целые числа: пусть они будут неотрицательными, удовлетворяющими неравенству a + b < V. Также измените предположение, что значение V уменьшается на 1 каждый период: пусть оно уменьшается за каждый период на постоянную величину c > 0. Найдите равновесие обратных рассуждений в этой обобщенной задаче.
U3. Пусть x — сумма, которую просит игрок А, а y — сумма, которую просит игрок Б при первом предложении в переговорной игре с чередующимися предложениями при наличии нетерпения. Степень их нетерпения составляет r и s соответственно.
a) Если мы используем приближенные формулы x = s / (r + s) для x и y = r / (r + s) для y, а также если игрок Б в два раза нетерпеливее игрока А, то А получит две трети излишка, а Б — одну треть. Проверьте правильность этого результата.
b) Пусть r = 0,01, а s = 0,02. Сравните значения x и y, найденные с помощью метода аппроксимации, с более точными решениями для x и y, найденными посредством формул x = (s + rs)/(r + s+ rs) и y = (r + rs)/(r + s+ rs), выведенных в данной главе.
Глоссарий
В данном глоссарии представлены ключевые термины, встречающиеся в тексте. Мы старались дать им словесные, логически точные определения, а не подробные математические, как в более сложных учебниках.
BATNA — см. Лучшая альтернатива обсуждаемому соглашению.
Агент (agent) — более информированный игрок в игре с асимметричной информацией «принципал — агент». Принципал (менее информированный игрок) в таких играх пытается разработать механизм, позволяющий ему привести стимулы агента в соответствие со своими стимулами.
Анализ наилучших ответов (best-response analysis) — поиск в игре равновесий Нэша посредством вычисления функций или построения кривых наилучших ответов каждого игрока и их одновременное решение для стратегий всех игроков.
Английский аукцион (English auction) — то же, что и аукцион на повышение.
Асимметричная информация (asymmetric information) — информация в игре считается асимметричной, если некоторые аспекты проведения игры (правила относительно разрешенных действий, порядок выполнения ходов при их наличии, выигрыш как функция стратегий игроков, последствия случайного выбора «природы», а также сведения о предыдущих действиях фактических участников игры) известны одним игрокам, но не являются общим знанием всех остальных игроков.
Аукцион «платят все» (all-pay auction) — аукцион, в котором каждый участник, подающий заявку, должен выплатить в его конце максимальную заявленную сумму, даже если она не выиграет аукцион.
Аукцион Викри (Vickrey auction) — то же, что и закрытый аукцион.
Аукцион второй цены (second-price auction) — аукцион, в котором побеждает участник, предложивший самую высокую цену, но выплачивает сумму, равную величине второй самой высокой цены. Обозначается также термином аукцион Викри.
Аукцион на повышение (ascending auction) — открытый аукцион, в ходе которого аукционист принимает предложения о повышении цены, а побеждает самая высокая ставка. Второе название — английский аукцион.
Аукцион на понижение (descending auction) — открытый аукцион, в ходе которого аукционист объявляет возможные цены в порядке убывания. Первый человек, который примет объявленную цену, делает предложение о покупке и выигрывает аукцион. Обозначается также термином голландский аукцион.
Аукцион первой цены (first-price auction) — аукцион, в котором побеждает участник, предложивший самую высокую цену, и выплачивает ее.
Аукцион янки (Yankee auction) — аукцион, в ходе которого на продажу выставляется множество единиц определенного товара; участники торгов могут подавать заявку на покупку одной или более единиц одновременно.
Байесовское равновесие Нэша (Bayesian Nash equilibrium) — равновесие Нэша в игре с ассиметричной информацией, в которой игроки используют теорему Байеса, чтобы сделать правильные выводы из своих наблюдений за действиями других игроков.
Балансирование на грани (brinkmanship) — угроза, которая создает риск, но не неизбежность исхода игры, неблагоприятного для обоих участников, если другой игрок игнорирует пожелание в отношении своих действий и постепенно повышает риск до тех пор, пока один из игроков не уступит или пока не наступит неблагоприятный исход игры.
Безбилетник (free rider) — участник коллективной игры, который стремится извлечь выгоду из положительного внешнего эффекта, полученного усилиями других игроков, не прилагая к этому своих усилий.
Бесконечный интервал (infinite horizon) — повторяющиеся решения или игровые ситуации, не имеющие определенного завершения в фиксированный конечный промежуток времени.
Бинарный метод (binary method) — категория методов голосования, в соответствии с которыми его участники выбирают одну из двух альтернатив за один раз.
Битва полов (battle of the sexes) — игра, в которой у каждого участника есть две стратегии — например, «жесткая» и «мягкая», при этом 1) стратегии «жесткая»/«мягкая» и «мягкая»/«жесткая» — равновесия Нэша; 2) из этих двух равновесий Нэша каждый игрок предпочитает такое сочетание стратегий, при котором он придерживается жесткой стратегии, а соперник мягкой; 3) оба игрока предпочитают эти равновесия Нэша двум другим сочетаниям стратегий — «жесткая»/«жесткая» и «мягкая»/«мягкая».
Вероятностная угроза (probabilistic threat) — стратегический ход, носящий характер угрозы, но с оговоркой, что при наступлении события, порождающего угрозу (действия соперника в случае сдерживания или бездействие в случае принуждения), приводится в действие механизм случайного выбора и, если того потребует полученный результат, угроза реализуется. Характер этого механизма и вероятность его запуска должны выражаться в виде взятых ранее обязательств.
Вероятность (probability) — вероятность случайного события — это количественная мера возможности его наступления. В случае событий, наблюдаемых в ходе повторных испытаний, это частота их наступления за длительный период. Для уникальных событий и других ситуаций, в которых неопределенность может быть заложена в мышлении человека, используются другие показатели, такие как субъективная вероятность.
Ветвь (branch) — каждая ветвь, исходящая из узла в дереве игры, соответствует одному действию, которое можно предпринять в этом узле.
Взаимодействие со многими партнерами (playing the field) — эволюционная игра со множеством участников, в которой все члены группы играют одновременно, а не разбиты попарно для ведения игр с двумя участниками.
Взыскание (penalty) — мы обозначаем этим термином разовые расходы (такие как штрафы), которые вводятся в игру, чтобы стимулировать игроков предпринимать действия, отвечающие их общим интересам.
Внешний эффект (external effect) — эффект, возникающий, когда действия одного человека приводят к изменению выигрыша другого человека или группы людей. Внешний эффект положителен, если действия человека повышают выигрыши других людей (например, сетевой эффект), и отрицателен, если приводит к уменьшению выигрышей (как загрязнение окружающей среды или дорожные заторы). Обозначается также термином экстерналия и сопутствующий эффект.
Внешняя неопределенность (external uncertainty) — неуверенность игрока во внешних обстоятельствах, таких как погодные условия или качество продукта.
Вторжение мутантов (invasion by a mutant) — появление небольшой доли мутантов в популяции.
Вторичный критерий (secondary criterion) — сравнение приспособленности мутанта с приспособленностью члена доминирующей популяции, когда каждый играет против мутанта.
Выигрыш (payoff) — показатель (как правило, количественный), который участник игры стремится максимально увеличить.
Генотип (genotype) — ген или совокупность генов, которая создает фенотип и может передавать признаки от одного поколения к другому. (В социальных или экономических играх процесс размножения можно интерпретировать в более широком смысле как процесс обучения или познания.)
Гистограмма (histogram) — диаграмма, в которой данные отображаются в виде столбиков определенной высоты (или длины).
Голландский аукцион (Dutch auction) — то же, что и аукцион на понижение.
Голосование в несколько туров (rounds) — процедура голосования, согласно которой оно проводится в несколько этапов. Обозначается также термином многоэтапная процедура голосования.
Голосование методом ранжирования (rank-choice voting) — то же, что и система единого передаваемого голоса.
Дерево игры (game tree) — представление игры в виде дерева, состоящего из узлов, ветвей, концевых узлов и связанных с ними выигрышей.
Дерево решений (decision tree) — представление задачи последовательного принятия решений, стоящей перед одним человеком, в виде дерева, состоящего из узлов, ветвей, концевых узлов и связанных с ними выигрышей.
Дилемма заключенных (prisoners’ dilemma) — игра, в которой у каждого игрока есть две стратегии, например «сотрудничество» и «отказ от сотрудничества»; при этом 1) для каждого игрока стратегия «отказ от сотрудничества» доминирует над стратегией «сотрудничество»; 2) комбинация стратегий «отказ от сотрудничества» / «отказ от сотрудничества» для обоих игроков хуже комбинации стратегий «сотрудничество»/«сотрудничество».
Дискретное распределение (discrete distribution) — распределение вероятностей, в котором случайные переменные могут иметь только дискретное множество значений, например целые числа.
Диффузия ответственности (diffusion of responsibility) — ситуация, когда действия одного или нескольких членов большой группы достаточно, чтобы обеспечить желаемый результат, но каждый член группы считает, что ответственность за совершение этого действия лежит на ком-то другом.
Доминируемая стратегия (dominated strategy) — стратегия Х является для игрока доминируемой при наличии такой другой стратегии Y, которая при каждой возможной конфигурации стратегий других игроков обеспечивает ему более высокий выигрыш, чем стратегия Х.
Доминирующая стратегия (dominant strategy) — стратегия Х является для игрока доминирующей, если при каждой возможной конфигурации стратегий других игроков она обеспечивает ему более высокий выигрыш, чем его другие стратегии. (Иными словами, функция наилучших ответов этого игрока постоянна и равна Х.)
Достоверность (credibility) — стратегия достоверна, если ее продолжение во всех узлах, будь то в рамках равновесного пути или за его пределами, оптимально для подыгры, начинающейся в данном узле.
Закидывание удочки (shilling) — практика, к которой прибегают продавцы на аукционе, сводящаяся к подаче фальшивых заявок на покупку выставленного на продажу объекта.
Закрытые торги (sealed bid) — метод проведения аукциона, при котором заявки подаются конфиденциально до наступления указанного срока, зачастую в запечатанных конвертах.
Замыкание (locked in) — ситуация, когда игроки продолжают поддерживать неблагоприятное для всех равновесие Нэша по сравнению с другим равновесием Нэша.
Игра (game) — ситуация действия, в которой есть два или более взаимно осведомленных игрока, а исход игры для каждого из них зависит от действий всех игроков.
Игра в доверие (assurance game) — игра, в которой каждый игрок имеет две стратегии, например «сотрудничать» и «не сотрудничать»; при этом наилучшим ответом каждого игрока является стратегия «сотрудничать», если другой игрок идет на сотрудничество, и стратегия «не сотрудничать», если другой игрок отказывается от сотрудничества, а исход «сотрудничать» / «сотрудничать» для обоих игроков лучше исхода «не сотрудничать» / «не сотрудничать».
Игра в труса (chicken) — игра, в которой у каждого игрока есть две стратегии, например «мачо» и «тюфяк», причем 1) исходы «мачо» / «тюфяк» и «тюфяк» / «мачо» — равновесия Нэша; 2) из этих двух равновесий Нэша каждый игрок предпочитает исход, где он играет роль мачо, а соперник — тюфяка; 3) исход «мачо» / «мачо» — самый неблагоприятный для обоих.
Игра в труса в реальном времени (chicken in real time) — игра в труса, при которой решение «свернуть» принимается не с самого начала, а в каждый текущий момент, и если ни один из игроков не принимает его, с течением времени риск столкновения постепенно повышается.
Игра с нулевой суммой (zero-sum game) — игра, в которой сумма выигрышей всех игроков равна нулю по каждой конфигурации их стратегий. (Это частный случай игры с постоянной суммой, но на практике они ничем не отличаются, поскольку прибавление постоянной величины ко всем выигрышам любого игрока не оказывает никакого влияния на его выбор.)
Игра с постоянной суммой (constant-sum game) — игра, в которой сумма выигрышей всех игроков представляет собой одну и ту же величину при любой комбинации стратегий. Поэтому между игроками существует жесткий конфликт интересов: более высокий выигрыш одного игрока означает снижение выигрыша всех остальных игроков. Когда размеры выигрышей подобраны таким образом, чтобы постоянная сумма равнялась нулю, это игра с нулевой суммой.
Игра «ястреб — голубь» (hawk — dove game) — эволюционная игра, в которой члены одного вида или популяции могут размножаться, чтобы следовать одной из стратегий — «ястреб» или «голубь»; в зависимости от выигрышей игра между парой произвольно выбранных членов популяции может быть либо дилеммой заключенных, либо игрой в труса.
Излишек (surplus) — излишек участника переговорной игры — это превышение его выигрыша над BATNA.
Индекс Коупленда (Copeland index) — индекс, отражающий результат альтернативы в процессе парного сравнения, когда победы, ничьи и поражения получают разное количество баллов.
Инструменты скрининга (screening devices) — методы, используемые для осуществления скрининга.
Информационное множество (information set) — совокупность узлов (на дереве игры), между которыми игрок не может провести различия при выполнении того или иного действия. Следовательно, его стратегии ограничены условием, что он должен выбирать одно и то же действие во всех точках информационного множества. При этом важно, чтобы во всех его узлах, из которых исходит одинаковое количество ветвей с одинаковыми обозначениями, действовал один и тот же игрок.
Искреннее голосование (sincere voting) — голосование, в ходе которого избиратель отдает голос за альтернативу, которую считает на данный момент лучшей, независимо от конечного результата.
Итеративное исключение доминируемых стратегий (iterated elimination of dominated strategies) — многократно повторяющийся процесс последовательного анализа стратегий игроков с поочередным исключением всех доминируемых стратегий до тех пор, пока такое исключение не станет невозможным.
Квантильное равновесие (quantal-response equilibrium, QRE) — концепция решения, допускающая возможность совершения ошибок игроками; при этом вероятность определенной ошибки меньше в случае более дорогостоящих ошибок.
Кондорсе метод (Condorcet method) — метод голосования, при котором побеждает альтернатива, превосходящая любую другую альтернативу при парном сравнении по принципу большинства.
Кондорсе парадокс (Condorcet paradox) — даже если ранжирование индивидуальных предпочтений избирателей транзитивно, нет никаких гарантий, что ранжирование социальных предпочтений, сформированное посредством голосования по методу Кондорсе, также будет транзитивным.
Кондорсе элементы (Condorcet terms) — совокупность бюллетеней, которая создает парадокс Кондорсе и должна логически обеспечивать равное распределение голосов между тремя возможными альтернативами. В выборах с участием трех кандидатов А, Б и В элементы парадокса Кондорсе — это три бюллетеня, в которых отображены такие предпочтения: кандидат A предпочитается кандидату Б, а кандидат Б — кандидату В; кандидат Б предпочитается кандидату В, а кандидат В — кандидату А; кандидат В предпочитается кандидату А, а кандидат А — кандидату Б.
Контракт (contract) — в контексте теории игр способ обеспечения доверия к стратегическому ходу посредством взятия на себя правовых обязательств по выполнению действия, в отношении которого были высказаны намерения, угрозы или обещания, при наступлении оговоренного события.
Концевой узел (terminal node) — узел, представляющий конечную точку дерева игры, в которой правила игры не допускают дальнейших ходов, а игроки получают свои выигрыши.
Кооперативная игра (cooperative game) — игра, в которой игроки совместно выбирают и реализуют стратегии или в которой выполнение соглашений о совместных действиях обеспечивается непосредственно общими усилиями всех игроков.
Кооперативное решение Нэша (Nash cooperative solution) — исход игры, при котором излишек, имеющийся в распоряжении участников переговоров, делится пропорционально силе их переговорных позиций.
Координационная игра (coordination game) — игра с несколькими равновесиями Нэша, в которой игроки единодушны в отношении их преимуществ и предпочитают любое равновесие вариантам с его отсутствием. Для достижения предпочтительного равновесия в качестве исхода игры игроки должны так или иначе координировать свои действия.
Корень (root) — то же, что и начальный узел дерева игры.
Коэффициент дисконтирования (discount factor) — показатель в повторяющейся игре, на который умножаются выигрыши следующего периода, чтобы сделать их сопоставимыми с выигрышами текущего периода.
Кривая наилучших ответов (best-response curve) — график, отражающий лучшую стратегию одного игрока как функцию от стратегий другого игрока (игроков) по всему диапазону этих стратегий.
Лидерство (leadership) — ситуация в дилемме заключенных с асимметричными игроками, в которой крупный игрок решает сотрудничать, даже зная, что более мелкие игроки могут его обмануть.
Личная ценность (private value) — аукцион называется аукционом с личной ценностью, если выставленный на продажу объект имеет индивидуальную ценность для участников торгов. Обозначается также термином субъективная ценность.
Лучшая альтернатива обсуждаемому соглашению (best alternative to a negotiated agreement, BATNA) — выигрыш в переговорной игре, который игрок получил бы за счет других возможностей, если бы не удалось достичь соглашения относительно предмета переговоров.
Матрица игры (game matrix) — таблица, размерность которой равна количеству участников игры; стратегии каждого игрока расположены по одной из размерностей (строка, столбец, страница, …), а в каждой ячейке отображаются выигрыши всех игроков в заданном порядке, который соответствует конфигурации стратегий, обеспечивающих результат данной ячейки. Обозначается также терминами таблица игры и таблица выигрышей.
Машина судного дня (doomsday device) — устройство, которое при определенных обстоятельствах генерирует крайне неблагоприятный для всех игроков результат. Используется для придания достоверности серьезной угрозе.
Медианный избиратель (median voter) — избиратель, который находится в середине (50-м перцентиле) распределения.
Метод относительного антибольшинства (antiplurality method) — метод позиционного голосования, при котором избирателям предлагается голосовать против одного пункта в списке (или за все пункты, кроме одного).
Многоэтапная процедура голосования (multistage procedure) — процедура, состоящая из нескольких раундов голосования. Обозначается также термином голосование в несколько раундов.
Множественный метод (plurative method) — любой метод голосования, позволяющий избирателям рассматривать список из трех или более альтернатив одновременно.
Мономорфизм (monomorphism) — все члены данного вида или популяции демонстрируют одну и ту же модель поведения.
Моральный риск (moral hazard) — ситуация с асимметричностью информации, в которой действия одного игрока не поддаются непосредственному наблюдению другими игроками.
Мутация (mutation) — появление нового генотипа.
Наблюдаемое действие (observable action) — действие игрока, о котором известно другим игрокам еще до выполнения ответных действий. В сочетании с необратимостью действия это важное условие игры с последовательными ходами.
Наилучший ответ (best response) — стратегия, оптимальная для одного игрока с учетом стратегий, фактически использованных другими игроками, или убеждение этого игрока в отношении выбора стратегий другими игроками.
Наказание (punishment) — мы обозначаем этим термином расходы, которые могут быть возложены на игрока в контексте повторяющихся отношений (что зачастую приводит к их разрыву), чтобы побудить его совершить действия, отвечающие общим интересам всех игроков.
Намеренное снижение цены (shading) — стратегия, в соответствии с которой цена, предлагаемая участниками торгов за выставленный на продажу объект, чуть ниже его подлинной оценочной стоимости.
Начальный узел (initial node) — отправная точка в игре с последовательными ходами. (Обозначается также как корень дерева.)
Не расположенный к риску (risk-averse) — лицо, принимающее решение (или участник игры), считается не склонным к риску, если оно предпочитает заменить розыгрыш денежных сумм в лотерее ожидаемой денежной стоимостью той же лотереи, которую непременно получит.
Неблагоприятный отбор (adverse selection) — разновидность асимметричности информации, при которой определенный тип игрока (см. Тип) имеет личную информацию (доступные стратегии, выигрыши…), неизвестную другим игрокам в явном виде.
Независимые события (independent events) — события Y и Z считаются независимыми, если фактическое наступление одного не приводит к изменению вероятности наступления другого. Иными словами, условная вероятность наступления события Y в случае наступления события Z имеет то же значение, что и безусловная вероятность наступления события Y.
Неисключаемые блага (nonexcludable benefits) — блага, которые доступны каждому члену общества независимо от того, внес ли он свой вклад в их создание.
Нейтральная эволюционно устойчивая стратегия (neutral ESS) — эволюционно устойчивая стратегия, которая продолжает действовать в популяции, но может сосуществовать с небольшим количеством мутантов, имеющих такую же приспособленность, как и доминирующий тип.
Нейтральный к риску (risk-neutral) — лицо, принимающее решение (или участник игры), считается нейтральным к риску, если для него не имеет значения, что выбрать: розыгрыш денежных сумм в лотерее или ожидаемую денежную стоимость той же лотереи, которую оно непременно получит.
Неконкурентные блага (nonrival benefits) — блага, использование которых одним человеком не мешает другому человеку тоже ими пользоваться.
Некооперативная игра (noncooperative game) — игра, в которой каждый игрок выбирает и осуществляет свои действия в индивидуальном порядке, без каких-либо соглашений о совместных действиях, выполнение которых непосредственно обеспечивается другими игроками.
Необратимое действие (irreversible action) — действие, которое не может быть отменено более поздним действием. В сочетании с наблюдаемостью действия это важное условие игры с последовательными ходами.
Непересекающиеся события (disjoint) — события считаются непересекающимися, если они не могут происходить одновременно.
Непрерывная стратегия (continuous strategy) — выбор из непрерывного диапазона вещественных значений, имеющихся в распоряжении игрока.
Непрерывное распределение (continuous distribution) — распределение вероятностей, при котором случайные переменные могут иметь непрерывный диапазон значений.
Неравновесная подыгра (off-equilibrium subgame) — подыгра, начинающаяся в узле, который не лежит на равновесном пути игры.
Неравновесный путь игры (off-equilibrium path) — путь игры, который не является результатом выбора игроками стратегий, обеспечивающих совершенное равновесие подыгры.
Несовершенная информация (imperfect information) — игра с совершенной информацией происходит в случае, если каждый игрок в каждой точке, в которой наступает его очередь ходить, знает всю историю игры вплоть до этой точки, в том числе результаты любых действий, предпринятых «природой», или предыдущие действия других игроков, включая чистые стратегии и фактические результаты любых смешанных стратегий, которые они могут использовать в игре. В противном случае мы говорим об игре с несовершенной информацией.
Нетерпение (impatience) — стремление получить выигрыш как можно быстрее. Количественно измеряется с помощью коэффициента дисконтирования.