Стратегические игры. Доступный учебник по теории игр Диксит Авинаш
a) Поначалу компания L’picerie управляет магазинами La Boulangerie и La Fromagerie так, будто это две отдельные компании с независимыми управляющими, каждый из которых пытается максимизировать прибыль своего магазина. Определите количество, цену и прибыль этих двух подразделений L’picerie в соответствии с равновесием Нэша с учетом новых уравнений количества продаваемого хлеба и сыра.
b) Владельцы L’picerie считают, что могут получить более высокую общую прибыль посредством координации стратегий ценообразования в подразделениях своей компании в Яппи-Тауне. Какова цена хлеба и сыра, максимизирующая общую прибыль, при условии такого сговора? Какое количество каждого продукта продают магазины La Boulangerie и La Fromagerie, и какую прибыль получает каждый из них в отдельности?
c) Почему компании порой продают часть своей продукции по цене ниже себестоимости? Дайте логическое обоснование продажи продукции с убытком, воспользовавшись своим ответом из пункта b в качестве иллюстрации.
U4. Тележки для торговли кокосовым молоком из упражнения S7 снова установили на следующий день. Почти все условия прежние: тележки находятся в тех же местах; количество и распределение отдыхающих такое же; спрос тоже не изменился — одна порция кокосового молока. Единственное отличие — это неимоверно жаркий день, поэтому каждый отдыхающий несет более высокие транспортные издержки в размере 0,6 d2. Как и прежде, тележка 0 продает кокосовое молоко всем отдыхающим, находящимся между точками 0 и , а тележка 1 — всем отдыхающим между точками x и 1, где x — это местоположение отдыхающего, который платит одну и ту же общую цену, куда бы он ни отправился — к тележке 0 или 1. Однако теперь местоположение точки x определяется выражением
p0 + 0,6x2 = p1 + 0,6(1 — x)2.
Каждая тележка продолжает нести издержки в размере 0,25 доллара на один проданный кокос.
a) Для каждой тележки выведите формулу, описывающую количество обслуженных покупателей как функцию от p0 и p1. (Не забывайте, что тележка 0 обслуживает покупателей, находящихся между точками 0 и x, то есть просто x, а тележка 1 — между точками x и 1, или 1 — x. Иными словами, тележка 0 продает кокосовое молоко x покупателям, а тележка 1 — (1 — x) покупателям, где x и (1 — х) исчисляются в тысячах.)
b) Запишите функции прибыли для двух тележек и определите для них правила наилучших ответов.
c) Вычислите соответствующий равновесию Нэша уровень цен на кокосовое молоко, продающееся на пляже. Как эта цена отличается от цены, рассчитанной в упражнении S7? Почему?
U5. В игре, представленной на рис. 5.4, есть единственное равновесие Нэша в чистых стратегиях. Найдите его и покажите, что оно будет также рационализируемым исходом данной игры.
U6. Найдите рационализируемые стратегии игры «чет или нечет» из упражнения S12 в главе 4.
U7. В игре с рыболовными лодками в разделе 3.Б мы показали, как может сложиться ситуация, когда единственный рационализируемый исход в непрерывных стратегиях представляет собой также и равновесие Нэша. Тем не менее так бывает не всегда: может существовать множество рационализируемых стратегий, и не все из них обязательно будут частью равновесия Нэша.
Вернувшись к игре в политическую рекламу из упражнения S1, найдите совокупность рационализируемых стратегий для партии Л. (Учитывая симметричные выигрыши двух партий, совокупность рационализируемых стратегий будет такой же и для партии П.)
U8. Компании Intel и AMD, основные производители центральных процессоров, конкурируют друг с другом в категории микросхем (чипов) средней производительности (среди прочих категорий). Предположим, что мировой спрос на такие чипы зависит от их количества, выпускаемого двумя компаниями, а значит цена (в долларах) микросхем средней производительности определяется по формуле P = 210 — Q, где Q = qIntel + qAMD — количество микросхем, исчисляемое в миллионах. Производство каждого чипа обходится Intel в 60 долларов. В AMD процесс производства организован лучше, поэтому ей производство каждой микросхемы обходится в 48 долларов.
a) Запишите функцию прибыли каждой компании, выраженную через qIntel и qAMD. Определите правило наилучших ответов каждой компании.
b) Вычислите цену, количество и прибыль каждой компании в соответствии с равновесием Нэша.
c) (дополнительное упражнение). Предположим, Intel приобрела AMD и теперь имеет два подразделения с разными производственными затратами. Компания, образовавшаяся в результате поглощения, стремится максимизировать общую прибыль двух подразделений. Сколько микросхем должно производить каждое подразделение? (Подсказка: возможно, вам придется хорошенько поразмышлять над этой задачей, а не слепо применять математические методы.) Какова рыночная цена и совокупная прибыль компании?
U9. Вернемся к игре с триополией на рынке танкеров класса VLCC из упражнения S9. В действительности у этих стран не одинаковые издержки производства. Китай постепенно, в течение нескольких лет, выходит на этот рынок, и из-за отсутствия опыта его издержки производства с самого начала были достаточно высокими.
a) Определите количество, рыночную цену и прибыль участников триополии в случае, когда затраты на один танкер составляют 20 миллионов долларов в Корее, 40 миллионов долларов в Японии и 60 миллионов долларов в Китае (cКорея = 20, cЯпония = 40, cКитай = 60).
После того как Китай накопит больше опыта и увеличит производственные мощности, его издержки производства существенно сократятся. Поскольку в Китае рабочая сила еще дешевле, чем в Корее, в конечном счете затраты на строительство одного танкера станут в Китае даже меньше, чем в Корее.
b) Выполните то же задание, что и в пункте а, но с условием, что затраты Китая на один танкер составляют 16 миллионов долларов (cКорея = 20, cЯпония = 40, cКитай = 16).
U10. Вернемся к истории Моники и Нэнси из упражнения S10. После дополнительной профессиональной подготовки Моника более эффективно выполняет работу, поэтому теперь общая прибыль их компании рассчитывается по формуле 5m + 4n + mn в десятках тысяч долларов. Как и прежде, m — количество усилий, вкладываемых в бизнес Моникой, а n — Нэнси; затраты обеих составляют m2 и n2 соответственно (в тысячах долларов).
Условия партнерства по-прежнему требуют разделения прибыли поровну, несмотря на то, что Моника более продуктивна. Предположим, Моника и Нэнси принимают решения о вложении усилий одновременно.
a) Каким должен быть наилучший ответ Моники в случае, если, по ее оценкам, Нэнси будет вкладывать усилия в размере n = 4/3?
b) Найдите равновесие Нэша в этой игре.
c) По сравнению с равновесием Нэша, найденным в пункте c упражнения S10, Моника вкладывает больше, меньше или столько же усилий? Что можно сказать о Нэнси?
d) Каковы итоговые выигрыши Моники и Нэнси в новом равновесии Нэша (после разделения общей прибыли с учетом затрат на вложенные усилия)? Как они отличаются от выигрышей обеих при прежнем равновесии Нэша? Кто в конечном счете получает большую выгоду от дополнительной подготовки Моники?
U11. Профессор предлагает Эльзе и ее 49 однокурсникам сыграть в новую игру. Как и прежде, все студенты одновременно и втайне друг от друга записывают на листках бумаги число от 0 до 100, после чего профессор вычисляет среднее выбранных чисел и обозначает его символом X. На этот раз студент, число которого окажется наиболее близким к 2/3 (X + 9), получит 50 долларов. Если такое число выберут несколько студентов, они разделят приз поровну.
a) Найдите симметричное равновесие Нэша в этой игре. То есть какое число станет наилучшим ответом на выбор всеми остальными игроками одного и того же числа?
b) Докажите, что выбор числа 5 — это доминируемая стратегия. (Подсказка: каким должно быть среднее значение X для всей группы, чтобы ожидаемое число было равно 5?)
c) Докажите, что выбор числа 90 — это доминируемая стратегия.
d) Определите все доминируемые стратегии.
e) Предположим, Эльза убеждена, что никто из ее однокурсников не выберет доминируемые стратегии, найденные в пункте d. Учитывая эти убеждения, какие стратегии не могут быть наилучшими ответами для Эльзы?
f) Какие стратегии в этой игре рационализируемые? Объясните логику ваших рассуждений.
U12 (дополнительное упражнение, требующее вычислений). Вспомните игру с политической рекламной кампанией партий Л и П из раздела 1.В. В ней, когда партия Л тратит на рекламу x миллионов долларов, а партия R— y миллионов долларов, Л получает долю голосов x / (x + y), а П — y / (x + y). Мы также упоминали, что в такой модели может возникнуть два типа асимметрий между партиями. У одной партии (скажем, П) может быть возможность размещать рекламу по более низкой цене, или рекламный бюджет партии П может оказаться более эффективным с точки зрения привлечения голосов избирателей по сравнению с бюджетом партии Л. Для того чтобы учесть обе возможности, мы можем записать функции выигрышей двух партий следующим образом:
Эти функции выигрышей показывают, что у партии П есть преимущество в плане относительной эффективности ее рекламы при высоком значении k и при низком значении c.
a) Используйте эти функции выигрышей для получения функций наилучших ответов для партии П (которая выбирает y) и Л (которая выбирает x).
b) С помощью калькулятора или компьютера постройте график этих функций наилучших ответов при k = 1 и c = 1. Какой результат обеспечивает преимущество в отношении затрат на рекламу?
c) Сравните график из пункта b при k = 1 и c = 1 с графиком при k = 2 и c = 1. Какой результат обеспечивает преимущество в плане эффективности рекламного бюджета?
d) Найдите решения по функциям наилучших ответов, которые вы определили в пункте а, для x и y, чтобы показать, что расходы на рекламные кампании в случае равновесия Нэша составляют
e) Пусть k = 1 в равновесных уравнениях уровней расходов. Покажите, как эти два равновесных уровня расходов меняются в зависимости от значения c (то есть объясните знаки dx / dc и dy / dc). Тогда пусть c = 1; покажите, как эти два равновесных уровня расходов меняются в зависимости от значения k (то есть объясните знаки dx / dk и dy / dk). Подтверждают ли ваши ответы результаты, полученные вами в пунктах b и c данного упражнения?
Приложение. Поиск значения, максимизирующего функцию
В данном приложении представлен простой метод выбора переменной X для получения максимального значения переменной, которое является ее функцией, скажем Y = F(X). В наших примерах практического применения теории игр эта функция в большинстве случаев будет квадратичной, а именно Y = A + BX + CX2. Для таких функций мы выведем формулу X = B / (2C), используемую в данной главе. Мы сформулируем общую идею с помощью дифференциального исчисления, а затем предложим альтернативный подход, в котором это исчисление не применяется и который опирается исключительно на квадратичную функцию[84].
Метод дифференциального исчисления проверяет значение X на оптимальность посредством анализа того, что произойдет со значением функции в случае других значений по любую сторону от X. Если на самом деле X не максимизирует Y = F(X), то результатом увеличения или уменьшения X должно быть уменьшение значения Y. Исчисление предоставляет нам возможность быстро выполнить такую проверку.
Рисунок 5П.1 иллюстрирует основную идею. На нем представлен график функции Y = F(X), для которого мы использовали функцию, подходящую для наших примеров практического применения теории игр, хотя сама идея носит абсолютно универсальный характер. Начнем с любой точки P с координатами (X, Y) на этом графике. Рассмотрим несколько отличающееся значение X, скажем (X + h). Пусть k — это итоговое изменение Y = F(X), то есть точка Q с координатами (X + h, Y + k) также находится на графике. Наклон хорды, соединяющей точки P и Q, — коэффициент k / h. Если значение этого коэффициента положительное, то h и k имеют одинаковый знак: при увеличении X увеличивается и Y. Если значение коэффициента отрицательное, то h и k имеют противоположные знаки, и в случае увеличения X значение Y уменьшается.
Рис. 5П.1. Иллюстрация к производной функции
Если теперь мы проанализируем все меньшие изменения h значения X и все меньшие изменения k значения Y, хорда PQ будет приближаться к касательной к данному графику в точке P. Наклон этой касательной — и есть предельное значение k/h, называемое производной функцией Y = F(X) в точке X. Символически эта производная записывается как F(X) или dY / dX.
Для нашей квадратичной функции имеем
Y = A + BX + CX2 и Y + k = A + B(X + h) — C(X + h)2.
Мы можем найти формулу для k следующим образом:
k = [A + B(X + h) — C(X + h)2] — (A + BX–CX2) =
Bh — C[(X + h)2 — X2] =
Bh — C(X2 + 2Xh + h2 — X2) =
(B — 2CX)h — Ch2.
Тогда k / h = (B — 2CX) — Ch. В пределе, когда значение h стремится к нулю, k/h = (B — 2CX). Последнее выражение и есть производная нашей функции.
Теперь используем эту производную для проверки на оптимальность. На рис. 5П.2 проиллюстрирована эта идея. Точка M дает самое высокое значение Y = F(X). Функция возрастает по мере приближения к точке M слева (точка L) и убывает после удаления от точки M направо (точка R). Следовательно, производная F(X) должна быть положительной при значениях X меньше M и отрицательной при значениях X больше M. По условию непрерывности производная в точке M должна равняться нулю. На обычном языке это означает, что график функции должен быть плоским в точке максимума, точнее, касательная в этой точке должна быть горизонтальной.
Рис. 5П.2. Оптимум функции
В нашем примере с квадратичной функцией производная равна F(X) = B — 2CX. Проверка оптимальности подразумевает, что функция имеет оптимум в точке, значение производной в которой равно 0, то есть в точке X = B/2C. Это и есть та формула, которая приведена в данной главе.
Необходимо выполнить еще одну дополнительную проверку. Если перевернуть график функции, то точка M станет минимальным значением перевернутой функции и в этой самой нижней точке график также будет плоским. Таким образом, для общей функции F(X) установление значения F(X) равным 0 позволяет получить значение X, которое обеспечивает как минимум, так и максимум. Как же провести различие между этими двумя возможностями?
В точке максимума функция возрастает слева и убывает справа. Следовательно, производная будет положительной при значениях X меньше предполагаемого максимума и отрицательной при значениях X больше предполагаемого максимума. Иными словами, производная, которая рассматривается как функция от X, убывает в этой точке. Убывающаяфункция имеет отрицательную производную. Стало быть, производная производной, которая называется второй производной исходной функции и записывается как F(X) или d2Y / dX2, должна иметь отрицательное значение в точке максимума. Согласно той же логике вторая производная должна иметь положительное значение в точке минимума — именно это и отличает два случая.
Что касается производной F(X) = B — 2CX в нашем примере с квадратичной функцией, то применение той же процедуры с h, k по отношению к F(X), что и в случае F(X), показывает, что F(X) = — 2C. Значение этой производной будет отрицательным при положительном значении C; именно из такого предположения мы исходили, формулируя задачу в данной главе. Проверка F(X) = 0 называется условием максимизации первого порядка функции F(X), а F(X) < 0 — условием второго порядка.
Для того чтобы закрепить эту идею, применим ее в конкретном примере с наилучшим ответом Xavier’s, который мы рассматривали в данной главе. У нас была такая формула:
Пx = — 8(44 + Py) + (16 + 44 + Py) Px — 2(Px)2.
Это квадратичная функция от Px (при неизменном значении цены другого ресторана Py). Наш метод позволяет получить ее производную:
Условие первого порядка для Px для максимизации Пx состоит в том, что эта производная должна быть равной нулю. Установив такое значение производной и определив ее значение относительно Px, получим то же уравнение, что и в разделе 1.П. (Условие второго порядка: d2Пx / dPx2 < 0, и оно удовлетворено, поскольку вторая производная равна 4.)
Мы надеемся, что метод с применением дифференциального исчисления покажется вам достаточно простым и вы сможете использовать его в нескольких местах книги, например в главе 11, посвященной коллективному действию. Однако если вы находите его слишком сложным, предлагаем альтернативный метод без исчисления, который работает в случае квадратичных функций. Перегруппируем члены уравнения, описывающего эту функцию, таким образом:
Y = A + BX–CX2 =
В окончательном варианте формулы X присутствует только в последнем члене, где содержащий это значение квадрат вычитается (помните, что C > 0). Все выражение максимизируется в случае, если его вычитаемый член становится минимальным, что и происходит, если X = B / 2C. Что и требовалось доказать!
Такой метод дополнения до полного квадрата работает для квадратичных функций, поэтому применим к большинству примеров, рассматриваемых в книге. Однако мы должны признать, что в нем присутствует некий элемент магии. Метод с использованием дифференциального исчисления носит более общий методологический характер, так что изучение основ дифференциального исчисления окупится сторицей.
Глава 6. Сочетание последовательных и одновременных ходов
* * *
В главе 3 мы рассматривали игры исключительно с последовательными ходами, а глава 4 и глава 5 посвящены играм только с одновременными ходами. Мы сформулировали концепции и методы анализа, применимые к чистым типам игр, такие как дерево игры и равновесие обратных рассуждений для игр с последовательными ходами, и таблицы выигрышей и равновесие Нэша в играх с одновременными ходами. Однако в реальной жизни многие стратегические ситуации содержат элементы взаимодействия обоих типов игр. Кроме того, хотя мы использовали дерево игры (экстенсивную форму) в качестве единственного метода иллюстрации игр с последовательными ходами и таблицу игры (стратегическую форму) как единственный метод иллюстрации игр с одновременными ходами, каждая из этих форм представления применима к играм любого типа.
В данной главе мы проанализируем многие из этих возможностей. Сначала покажем, как игры, сочетающие последовательные и одновременные ходы, решаются с помощью комбинации деревьев игр и таблицы выигрышей, а также подходящего объединения анализа равновесия обратных рассуждений и равновесия Нэша, затем рассмотрим последствия изменения характера взаимодействия в конкретной игре. В частности, проанализируем результат изменения правил игры в целях преобразования игры с последовательными ходами в игру с одновременными ходами и наоборот и изменения порядка ходов в игре с последовательными ходами. Эта тема позволяет сравнить равновесия, найденные посредством концепции обратных рассуждений в игре с последовательными ходами, с равновесиями, найденными с помощью концепции равновесия Нэша в одновременной версии той же игры. На основании такого сравнения мы расширим концепцию равновесий Нэша на игры с последовательными ходами. Оказывается, равновесие обратных рассуждений — частный случай равновесия Нэша, обычно называемый уточнением.
1. Игры с одновременными и последовательными ходами
Как уже неоднократно отмечалось ранее, большинство реальных игр, с которыми вы столкнетесь, будут состоять из множества более мелких компонентов, причем каждый может подразумевать игру либо с одновременными, либо с последовательными ходами, поэтому игра в целом потребует от вас знания обоих типов. Самый очевидный пример стратегического взаимодействия, содержащего как последовательную, так и одновременную составляющую, — это игры между двумя (или более) игроками, продолжающиеся на протяжении длительного периода. За год совместного проживания в комнате вы можете сыграть с соседом в ряд разных игр с одновременными ходами: ваши действия в любой из них зависят от истории вашего общения до нынешнего момента и ваших ожиданий в отношении дальнейших коммуникаций. Кроме того, любые спортивные соревнования, взаимодействие между конкурирующими компаниями в отрасли и политические отношения — все это последовательно связанные серии игр с одновременными ходами. Анализ таких игр подразумевает использование набора инструментов, представленных в главе 3 (дерево игры и равновесие обратных рассуждений), главе 4 и главе 5 (таблица выигрышей и равновесие Нэша)[85]. Единственное различие состоит в том, что фактический анализ усложняется по мере увеличения количества ходов и взаимодействий.
Наш основной иллюстративный пример таких ситуаций касается двух вымышленных крупных телекоммуникационных компаний CrossTalk и GlobalDialog. Каждая из них решает, стоит ли инвестировать 10 миллиардов долларов в покупку волоконно-оптической сети; решение обеими принимается одновременно. Если ни одна не выберет инвестиции, это конец игры. Если одна сделает инвестиции, а другая нет, то компания-инвестор должна установить цены на телекоммуникационные услуги. Она может назначить либо высокую цену, позволяющую привлечь 60 миллионов клиентов, каждый из которых принесет компании операционную прибыль в размере 400 долларов, либо низкую цену, позволяющую привлечь 80 миллионов клиентов, каждый из которых обеспечит компании операционную прибыль в размере 200 долларов. Если обе компании купят волоконно-оптические сети и выйдут на рынок, то ценообразование станет второй игрой с одновременными ходами. Каждая компания может установить либо высокую, либо низкю цену. Если обе предпочтут высокую цену, они разделят рынок поровну и каждая получит 30 миллионов клиентов и операционную прибыль 400 долларов на одного клиента. Если обе выберут низкую цену, они тоже разделят рынок поровну и каждая получит 40 миллионов клиентов и операционную прибыль 200 долларов на одного клиента. Если одна компания установит высокую цену, а другая низкую, то компания с низкой ценой получит все 80 миллионов клиентов, а компания с высокой ценой не получит ничего.
Взаимодействие между CrossTalk и GlobalDialog представляет собой двухэтапную игру. Из четырех возможных комбинаций вариантов выбора в случае игры с одновременными ходами на первом (инвестиционном) этапе одна комбинация завершает игру, две приводят к принятию решения только одним игроком на втором этапе (ценообразования), а четвертая сводится к игре с одновременными ходами (игре в ценообразование) на втором этапе. Игра в графическом виде представлена на рис. 6.1.
Рис. 6.1. Двухэтапная игра, состоящая из последовательных и одновременных ходов
В целом рис. 6.1 иллюстрирует дерево игры, но более сложное, чем в главе 3. Его можно представить как своего рода «дом на дереве» с несколькими уровнями, показанными в разных частях одного двумерного рисунка, как будто вы смотрите на него с вертолета, зависшего непосредственно над ним.
Первый этап игры отображен в виде таблицы выигрышей в верхнем левом квадранте рис. 6.1. Вообразите его как первый этаж дома на дереве, на котором находятся четыре «комнаты». Комната, расположенная в северо-западном углу, соответствует ходам «не инвестировать», которые делают на первом этапе обе компании. Если принятые решения приводят компанию в эту комнату, дальше у нее нет никаких вариантов выбора, а значит, можно ассоциировать эту комнату с концевым узлом дерева из главы 3 и показать выигрыши в ячейке таблицы (в данном случае для обеих компаний он составляет 0). Тем не менее все остальные комбинации действий двух компаний ведут в другие комнаты, в которых компании делают дальнейший выбор, поэтому мы еще не можем показать выигрыши в этих ячейках. Вместо этого мы показываем ветви, ведущие на второй этаж. В комнатах, расположенных в северо-восточном и юго-западном углах, отображены только выигрыши компании, решившей не инвестировать; ветви, исходящие из каждой из этих комнат, приводят нас к решениям соответствующей компании на втором этапе. Комната в юго-восточном углу приводит к многокомнатной структуре второго этажа дома на дереве, которая представляет игру в ценообразование второго этапа, разыгрываемую лишь в случае, если обе компании инвестировали на первом этапе. Эта структура второго этажа состоит из четырех комнат, соответствующих четырем комбинациям ходов двух компаний в игре в ценообразование.
Все ветви и комнаты второго этажа подобны концевым узлам дерева игры, а значит, мы можем показать выигрыши в каждом из этих случаев. Выражены они в виде операционной прибыли каждой компании за вычетом предшествующих инвестиционных затрат и исчисляются в миллиардах долларов.
Рассмотрим ветвь, ведущую в юго-западный угол на рис. 6.1. Игра перемещается в этот угол, только если CrossTalk решит инвестировать в покупку волоконно-оптической сети. Тогда при выборе высокой цены операционная прибыль CrossTalk составит 400 долларов 60 миллионов = 24 миллиарда долларов, и после вычитания 10 миллиардов инвестиционных затрат будет получен ее выигрыш — 14 миллиардов долларов, что мы записываем как выигрыш 14. В том же углу при выборе CrossTalk низкой цены ее операционная прибыль составит 200 долларов 80 миллионов = 16 миллиардов долларов, что после вычитания первоначальных инвестиций даст выигрыш в размере 6 миллиардов долларов. В этой ситуации выигрыш GlobalDialog равен 0, как отображено в юго-западном углу рис. 6.1; выигрыш 0 компании CrossTalk при аналогичных расчетах для GlobalDialog показан в северо-восточной комнате таблицы игры, соответствующей первому этапу.
Если обе компании решат инвестировать, обе перейдут к игре в ценообразование, отображенной в юго-восточном углу рисунка. Если обе компании предпочтут высокую цену на втором этапе, каждая получит операционную прибыль 400 долларов 30 миллионов (половина рынка), или 12 миллиардов долларов; после вычитания 10 миллиардов долларов инвестиционных затрат у каждой компании останется по 2 миллиарда долларов чистой прибыли, или выигрыш 2. Если обе компании выберут низкую цену на втором этапе, каждая получит операционную прибыль 200 долларов 40 миллионов = 8 миллиардов долларов и после вычитания 10 миллиардов долларов инвестиционных затрат останется с чистым убытком в размере 2 миллиардов долларов, или выигрышем 2. И наконец, если одна компания установит высокую цену, а другая низкую, то вторая получит прибыль 200 долларов 80 миллионов = 16 миллиардов долларов, что обеспечит ей выигрыш 6, тогда как первая вообще не получит операционной прибыли и просто потеряет вложенные 10 миллиардов долларов с выигрышем 10.
Как и в любой многоэтапной игре, представленной в главе 3, мы должны решить эту игру в обратном порядке, начиная с игры второго этапа. В двух задачах с принятием решений о ценообразовании каждой компанией мы сразу же видим, что выбор высокой цены приносит более крупный выигрыш. Мы фиксируем это, выделив данный выигрыш более крупным шрифтом.
Игру в ценообразование, разыгрываемую на втором этапе, необходимо решать с помощью методов, представленных в главе 4. Несложно заметить, что она относится к категории «дилемма заключенных». «Низкая цена» — это доминирующая стратегия для каждой компании; следовательно, исход игры — комната в юго-восточном углу таблицы игры второго этажа: каждая компания получает выигрыш 2[86].
Обратные рассуждения показывают, что на первом этапе следует оценивать каждую конфигурацию ходов, сначала проанализировав равновесие в игре второго этапа (или оптимальное решение на втором этапе) и полученные в результате выигрыши. Это позволит подставить только что рассчитанные выигрыши в ранее незаполненные или частично заполненные комнаты на первом этаже дома на дереве. Такая подстановка дает нам первый этаж с известными выигрышами, представленный на рис. 6.2.
Рис. 6.2. Инвестиционная игра первого этапа (после подстановки выигрышей, полученных методом обратных рассуждений на основании равновесия на втором этапе)
Теперь можем использовать методы из главы 4 для решения этой игры с одновременными ходами. Вы должны сразу же распознать игру, представленную на рис. 6.2, как игру в труса. В ней два равновесия Нэша, каждое из которых сводится к выбору одной компанией стратегии «инвестировать», а другой — «не инвестировать». Компания-инвестор получит огромную прибыль, поэтому каждая компания предпочтет то равновесие, в котором она будет инвестором, а другая компания — нет. В главе 4 мы кратко описали способы, позволяющие выбрать одно из двух равновесий, и указали на то, что каждая компания может попытаться получить предпочтительный исход, но это приведет к тому, что обе решат инвестировать и обе понесут убытки. На самом деле именно это и произошло в реальной игре такого рода. В главе 7 мы проанализируем данный тип игр более подробно и покажем, что они имеют третье равновесие Нэша — в смешанных стратегиях.
Исходя из анализа рис. 6.2, в нашем примере в игре первого этапа нет единственного равновесия Нэша. Это не особо серьезная проблема, поскольку мы можем оставить решение неоднозначным в той степени, в которой это было сделано выше. Было бы гораздо хуже, если бы единственное равновесие Нэша отсутствовало в игре второго этапа. Тогда было бы очень важно указать точный принцип выбора исхода игры с тем, чтобы определить выигрыши на втором этапе и использовать их в процессе обратных расуждений в отношении первого этапа.
Игра в ценообразование второго этапа, показанная в нижней правой ячейке таблицы на рис. 6.1, — одна часть полной двухэтапной игры. При этом она представляет собой полноценную игру с полностью заданной системой игроков, стратегий и выигрышей. Для того чтобы точнее описать двойственную природу этой игры, ее называют подыгрой полной игры.
В более общем смысле подыгра — это часть многоходовой игры, которая начинается в определенном узле исходной игры. При этом дерево подыгры — просто часть дерева полной игры, в котором этот узел выступает в качестве корня, или начального узла. В многоходовой игре столько подыгр, сколько и узлов принятия решений.
В многоуровневой игре, представленной на рис. 6.1, каждый этап включает игру с одновременными ходами. Однако так бывает не всегда. Элементы игр с одновременными и последовательными ходами могут смешиваться и сочетаться друг с другом в любой комбинации. Мы приведем еще два примера, чтобы внести ясность в этот вопрос и закрепить идеи, рассмотренные в предыдущем разделе.
Первый пример — несколько измененный вариант игры между компаниями CrossTalk и GlobalDialog. Предположим, одна из них (скажем, GlobalDialog) уже инвестировала 10 миллиардов долларов в покупку волоконно-оптической сети. CrossTalk знает об этом и теперь должна решить, делать ли тоже такую инвестицию. Если CrossTalk откажется, то GlobalDialog останется только определиться с ценой. Если CrossTalk решит инвестировать, то две компании сыграют в описанную выше игру в ценообразование второго этапа. Дерево такой многоэтапной игры содержит условные ветви в начальном узле, а также подыгру с одновременными ходами в одном из узлов, к которому ведут эти исходные ветви. Полное дерево игры представлено на рис. 6.3.
Рис. 6.3. Двухэтапная игра в случае, когда одна компания уже сделала инвестиции
После построения дерева проанализировать игру не составит труда. На рис. 6.3 анализ методом обратных рассуждений показан посредством использования крупного шрифта для равновесных выигрышей, вытекающих из игры или решения на втором этапе, а также жирных линий для выбора CrossTalk на первом этапе. Иными словами, CrossTalk приходит к выводу, что инвестиции приведут ее к дилемме заключенных, которая оставит компанию с выигрышем 2, тогда как отказ от инвестиций обеспечит выигрыш 0. В итоге CrossTalk предпочитает второе. GlobalDialog получит выигрыш 14 вместо 2, который бы она получила в случае выбора CrossTalk стратегии «инвестировать», но CrossTalk интересует максимизация собственного выигрыша, а не намеренное уничтожение компании GlobalDialog.
Однако этот анализ показывает, что GlobalDialog может попытаться оперативно инвестировать средства в покупку волоконно-оптической сети, прежде чем CrossTalk примет решение, гарантирующее ей самый предпочтительный исход всей игры. А CrossTalk может попробовать обойти GlobalDialog аналогичным образом. В главе 9 мы проанализируем некоторые методы под названием «стратегические ходы», позволяющие игрокам обеспечить подобные преимущества.
Наш второй пример связан с футболом. Накануне каждого матча тренер команды нападающих выбирает игру, которую они будут вести; в то же время тренер команды защиты дает игрокам инструкции в отношении их размещения на поле, чтобы противостоять нападению. Следовательно, перед нами игра с одновременными ходами. Предположим, у команды нападения всего две альтернативы — безопасная и рискованная игра, а команда защиты может подготовиться к ответу на любой из вариантов. Если команда нападения настроена на рискованную игру и квотербек видит расстановку игроков защиты, позволяющую противодействовать такой игре, он может изменить игру у линии розыгрыша мяча. А команда защиты, в свою очередь, может отреагировать изменением своей расстановки. Таким образом, мы имеем игры с одновременными ходами на первом этапе, а одна из комбинаций вариантов выбора ходов на данном этапе приводит к подыгре с последовательными ходами. На рис. 6.4 показано полное дерево этой игры.
Рис. 6.4. Игра с одновременными ходами на первом этапе, за которым идут последовательные ходы
Это игра с нулевой суммой, в которой выигрыши команды нападения исчисляются в количестве ярдов, которое она рассчитывает получить, а выигрыши команды защиты прямо противоположны и исчисляются в количестве ярдов, которые она намерена уступить. Безопасная игра команды нападения обеспечивает ей 2 ярда, даже если команда защиты готова к такой игре; если не готова, игра будет ненамного успешнее и обеспечит 6 ярдов. Рискованная игра, в случае если команда защиты к ней не готова, принесет команде нападения 30 ярдов. Однако если команда защиты к ней готова, нападающие потеряют 10 ярдов. Эта совокупность выигрышей, 10 у команды нападения и 10 у команды защиты, показана в концевом узле, в случае если нападение не изменит игру. Если же изменит (вернется к безопасной игре), выигрыши составят 2, 2, если команда защиты отреагирует, и 6, 6 — если не отреагирует. Эти же выигрыши получат команды, если команда нападения изначально запланирует безопасную игру.
На рис. 6.4 ветви, выбранные в последовательной подыгре, представлены жирными линиями. Нетрудно увидеть, что, если команда нападения изменит игру, команда защиты отреагирует на это, чтобы обеспечить выигрыш 2, а не 6, и что команда нападения изменит игру, чтобы получить выигрыш 2 вместо 10. В ходе обратных рассуждений мы должны разместить полученную совокупность выигрышей 2, 2 в правой нижней ячейке таблицы выигрышей игры с одновременными ходами, протекающей на первом этапе. Далее мы увидим, что в этой игре отсутствует равновесие Нэша в чистых стратегиях. Причина та же, что и в игре в теннис из раздела 7 главы 4: один игрок (команда защиты) стремится согласовать ходы (выбрать расстановку, позволяющую противостоять игре команды нападения), тогда как другой (команда нападения) старается их рассогласовать (поймать команду защиты на неправильной расстановке). В главе 7 мы покажем, как вычислить равновесие в смешанных стратегиях в этой игре. Получается, что команда нападения должна выбирать рискованную стратегию с вероятностью 1/8, или 12,5 процента.
2. Изменение порядка выполнения ходов
Игры, рассмотренные в предыдущих главах, были представлены либо как последовательные, либо как одновременные по своему характеру. Мы использовали соответствующие инструменты анализа для прогнозирования равновесий в играх каждого типа. В разделе 1 данной главы мы обсуждали игры с элементами как последовательного, так и одновременного выполнения ходов. Для поиска решений таких игр понадобятся оба набора инструментов. А как на счет игр, которые можно вести либо последовательно, либо одновременно? Как изменение хода конкретной игры, а значит, и соответствующих инструментов анализа может повлиять на ожидаемые исходы?
Задача превращения игры с последовательными ходами в игру с одновременными ходами требует только изменения момента выполнения ходов или наблюдаемости, при которой игроки делают выбор. Игры с последовательными ходами становятся играми с одновременными ходами, если игроки не могут видеть ходы, сделанные соперниками, до того, как походят сами. В таком случае мы бы проанализировали игру скорее посредством поиска равновесия Нэша, а не равновесия обратных рассуждений. С другой стороны, игра с одновременными ходами могла бы стать игрой с последовательными ходами, если бы один игрок мог наблюдать за действиями другого игрока до выбора своего хода.
Любые изменения правил игры способны изменить ее исходы. Ниже мы проиллюстрируем ряд возможностей, возникающих вследствие изменений в играх разных типов.
I. Преимущество первого хода. Преимущество первого хода может возникнуть вследствие изменений правил игры с одновременного на последовательное выполнение ходов. Если в версии игры с одновременными ходами множество равновесий, версия с последовательными ходами как минимум позволяет игроку, который ходит первым, выбрать предпочтительный исход игры. Мы проиллюстрируем такую ситуацию на примере игры в труса, когда два подростка мчатся на автомобилях навстречу друг другу, решительно настроенные не сворачивать. На рис. 6.5a воспроизведена стратегическая форма, представленная на рис. 4.14 в главе 4, а на рис. 6.5б и 6.5в отображены две экстенсивные формы, по одной на каждый возможный порядок выполнения ходов в игре.
Рис. 6.5. Версии игры в труса с одновременным и последовательным выполнением ходов
При одновременном выполнении ходов два исхода игры, при которых один игрок сворачивает («трус»), а другой едет прямо («храбрец»), — это равновесия Нэша в чистых стратегиях. Без исторического, культурного или любого другого соглашения ни один из этих исходов не может стать фокальной точкой. Анализ в главе 4 показал, что координация действий могла бы помочь участникам этой игры, например посредством договоренности чередовать два равновесия.
Если мы изменим правила игры таким образом, чтобы предоставить одному из игроков возможность ходить первым, двух равновесий больше не будет. Скорее, мы увидим, что равновесная стратегия игрока, делающего ход вторым, сводится к выбору действия, противоположного действию игрока, который ходил первым. Далее анализ методом обратных рассуждений показывает, что равновесная стратегия игрока, ходившего первым, — «ехать прямо». На рис. 6.5б и рис. 6.5в мы видим, что предоставление одному игроку возможности сделать ход первым, причем так, чтобы другой игрок видел, как он это делает, в итоге приводит к единственному равновесию обратных рассуждений, в котором игрок, сделавший первый ход, получает выигрыш 1, тогда как второй игрок — выигрыш 1. При таких правилах фактическое ведение игры не имеет никакого значения, поэтому ее последовательная версия может не представлять интереса для многих наблюдателей. Хотя подростки, скорее всего, не захотели бы играть в эту игру по измененным правилам, стратегические последствия изменения правил весьма существенны.
II. Преимущество второго хода. Преимущество второго хода может возникнуть в играх, когда одновременное выполнение ходов меняется на последовательное. Это можно проиллюстрировать на примере игры в теннис, о которой рассказывалось в главе 4. Напомним, что в этой игре Эверт планирует место возврата подачи, тогда как Навратилова решает, где обеспечивать прикрытие. В рассмотренной ранее версии игры предполагалось, что каждая ее участница умеет маскировать предстоящие ходы до самого последнего момента, поэтому, по сути, они делали их одновременно. Однако если движения Эверт перед ударом по мячу каким-то образом раскроют ее намерения, Навратилова может отреагировать и сделать второй ход в игре. Точно так же, если Навратилова наклонится в ту сторону, которую планирует прикрывать, до того как Эверт фактически выполнит возврат подачи, то Эверт становится игроком, делающим второй ход.
В этой версии игры с одновременными ходами нет равновесия в чистых стратегиях. Тем не менее при каждом порядке выполнения ходов в последовательной версии существует исход в виде единственного равновесия обратных рассуждений, причем характер этого равновесия зависит от того, кто ходит первым. Если это Эверт, то Навратилова решит прикрывать то направление, которое выбрала Эверт для удара по линии. При таком равновесии каждая теннисистка должна выигрывать очко в половине случаев. Если порядок выполнения ходов обратный, Эверт решает послать мяч в направлении, противоположном тому, которое прикрывает Навратилова; следовательно, Навратилова должна двигаться так, чтобы прикрыть удар по диагонали. В такой ситуации Эверт должна выигрывать в 80 процентах случаев. Участница игры, делающая второй ход, добивается более весомых результатов, поскольку может оптимально реагировать на ход соперницы. Для иллюстрации таких исходов вы уже умеете строить деревья игры наподобие показанных на рис. 6.5б и рис. 6.5в.
Мы вернемся к версии этой игры с одновременными ходами в главе 7 и докажем, что в ней есть равновесие Нэша в смешанных стратегиях. При этом равновесии Эверт добивается успеха в 62 процентах случаев. Следовательно, в двух версиях игры с последовательными ходами показатель результативности Эверт при равновесии в смешанных стратегиях в одновременной игре выше 50 процентов, которые она получит, делая ход первой, но ниже 80 процентов, если она будет ходить второй.
III. Оба игрока могут добиться большего. То, что в игре может быть преимущество первого или второго хода, которое блокируется при одновременном выполнении ходов, вполне понятно на интуитивном уровне. Куда больше удивляет вероятность того, что оба игрока могут добиться большего при том или ином наборе правил выполнения ходов. Мы проиллюстрируем это на примере игры с монетарной и фискальной политикой между Федеральной резервной системой и Конгрессом. В главе 4 мы анализировали эту игру с одновременными ходами; таблица выигрышей (рис. 4.5) воспроизводится на рис. 6.6a, а две версии игры с последовательными ходами представлены на рис. 6.6б и рис. 6.6 в. Для краткости обозначим стратегии Конгресса как «баланс» и «дефицит» вместо «сбалансированный бюджет» и «дефицит бюджета», а стратегии ФРС как «высокие ставки» и «низкие ставки» вместо «высокие процентные ставки» и «низкие процентные ставки».
Рис. 6.6. Три версии игры с монетарной и фискальной политикой
В версии этой игры с одновременными ходами доминирующая стратегия Конгресса — «дефицит», и ФРС, зная об этом, выбирает стратегию «высокие ставки», что обеспечивает обоим выигрыши 2. Почти то же самое происходит в версии игры с последовательными ходами, где первой ходит ФРС. Предвидя, что на каждый сделанный ею ход Конгресс ответит стратегией «дефицит», ФРС должна выбирать стратегию «высокие ставки», обеспечивающую выигрыш 2 вместо 1.
Однако версия с последовательными ходами, в которой Конгресс ходит первым, отличается от предыдущей. Теперь Конгресс предвидит, что на выбор им стратегии «дефицит» ФРС ответит стратегией «высокие ставки», тогда как в случае выбора им стратегии «баланс» ФРС предпочтет «низкие ставки». Из этих двух вариантов развития событий Конгресс выберет второй, поскольку он обеспечит ему выигрыш 3 вместо 2. Следовательно, равновесие обратных рассуждений при таком порядке выполнения ходов состоит в том, чтобы Конгресс выбрал сбалансированный бюджет, а Федеральная резервная система — низкие процентные ставки. В итоге Конгресс получит выигрыш 3, а ФРС — 4, что лучше для обоих игроков, чем в случае двух других версий игры.
Различие между этими двумя исходами еще более парадоксально, потому что лучший исход, полученный на рис. 6.6в, будет в случае выбора Конгрессом стратегии «баланс», доминируемой на рис. 6.6a. Для устранения кажущегося парадокса необходимо глубже понять смысл доминирования. Чтобы стратегия «дефицит» была доминирующей, с точки зрения Конгресса она должна быть лучше стратегии «баланс» при каждом конкретном выборе ФРС. Такое сравнение стратегий «дефицит» и «баланс» уместно в игре с одновременными ходами, поскольку в ней Конгресс вынужден принимать решение, не зная о выборе ФРС. Он должен проанализировать или сформулировать убеждние в отношении действия ФРС и выбрать свой наилучший ответ на это действие. В нашем примере наилучший ответ Конгресса — стратегия «дефицит». Концепция доминирования уместна также и в игре с последовательными ходами, если Конгресс ходит вторым, поскольку тогда он знает, что уже сделала ФРС, и просто выбирает свой наилучший ответ, который всегда «дефицит». С другой стороны, если Конгресс ходит первым, он не может воспринимать выбор ФРС как данность и вместо этого должен понять, как его первый ход повлияет на второй ход ФРС. В нашем примере Конгресс знает, что ФРС ответит на стратегию «дефицит» стратегией «высокие ставки», а на стратегию «баланс» — стратегией «низкие ставки». В таком случае ему ничего не остается, как выбирать из этих двух вариантов; самый предпочтительный для Конгресса исход («дефицит», «низкие ставки») становится неактуальным, поскольку ответ ФРС делает его невозможным.
Мысль о том, что доминирование может утратить статус значимой концепции для игрока, делающего первый ход, мы продолжим в главе 9. Там же мы проанализируем вероятность того, что игрок может намеренно изменить правила игры, чтобы получить право первого хода. Это позволяет игрокам менять исход игры в свою пользу.
Предположим, два игрока в нашем примере могут выбирать порядок выполнения ходов в игре. В этом случае они согласились бы с тем, что Конгресс должен ходить первым. В действительности, когда возникает угроза дефицита бюджета и инфляции, во время слушаний в различных комитетах Конгресса члены совета управляющих ФРС часто предлагают именно такие сделки: они обещают отреагировать на сокращение расходов бюджета снижением процентных ставок. Но зачастую просто устной договоренности с другим игроком недостаточно. Необходимо, чтобы при этом были выполнены формальные требования к первому ходу, а именно — чтобы он поддавался наблюдению и не менялся в дальнейшем. В контексте макроэкономической политики очень выигрышно выглядит то, что законодательный процесс фискальной политики в Соединенных Штатах весьма прозрачен и протекает достаточно медленно, тогда как монетарную политику можно быстро изменить на заседании совета управляющих ФРС. Стало быть, игра с последовательными ходами, в которой Конгресс ходит первым, а ФРС — второй, вполне реалистична.
IV. Исход игры не меняется. До сих пор мы рассматривали только игры, в которых последовательное выполнение ходов вместо одновременных обеспечивает другой исход. Однако определенные игры имеют один и тот же исход в обоих случаях, независимо от порядка выполнения ходов. Как правило, такой результат наблюдается при наличии у обоих (или у всех) игроков доминирующих стратегий. Мы продемонстрируем, как это происходит, на примере дилеммы заключенных.
Рассмотрим игру с дилеммой заключенных из главы 4, в которой мужа и жену подозревают в причастности к совершению преступления. Равновесие Нэша в этой игре с одновременными ходами состоит в признании каждым игроком своей вины (или предательстве другого игрока и отказе от сотрудничества с ним). Но как бы проходила игра, если бы один из супругов сделал наблюдаемый выбор еще до выбора второго игрока? Применение метода обратных рассуждений к дереву игры, подобному изображенному на рис. 6.5б (которое вы можете нарисовать сами для проверки наших результатов анализа), показывает, что второму игроку выгоднее признать свою вину, если первый уже признался в совершении преступления (10 лет тюрьмы вместо 25 лет) и если первый отрицает свою вину (1 год тюрьмы вместо 3 лет). С учетом такого выбора второго игрока первому игроку лучше признать свою вину (10 лет тюрьмы вместо 25 лет). Следовательно, равновесие подразумевает тюремное заключение длительностью 10 лет для обоих супругов, независимо от того, кто будет ходить первым. Таким образом, во всех трех версиях этой игры одно и то же равновесие!