Биология добра и зла. Как наука объясняет наши поступки Сапольски Роберт
Но есть и еще одна причина, в силу которой стресс усиливает агрессию – дело в том, что агрессия сама снижает стресс (и это особенно печально). Если крысу ударить током, то у нее подскакивает кровяное давление и уровень глюкокортикоидов; а если это проделывать многажды, то возникает риск «незаживающего» стресса. Кое-что помогает смягчить шоковый эффект: бегать в колесе, есть, грызть деревяшку от досады. Но самое эффективное средство для амортизации шока – это покусать другую крысу. Феномен смещения агрессии на почве стресса (или отчаяния) наблюдается у многих видов животных. У павианов, например, примерно половина агрессивных действий происходит именно поэтому: самец высокого ранга проигрывает в драке и начинает гонять какого-нибудь юного самца. Тот, в свою очередь, кусает самку, а самка нападает на детеныша. Согласно моим исследованиям, чем чаще у самцов происходит смещение агрессии после поражения, тем ниже у них уровень глюкокортикоидов (понятно, что сравнивались самцы одного ранга){249}.
Люди отточили искусство перенесения агрессии, или вымещения раздражения, на других; вспомните, насколько подскакивает количество случаев избиения жен и детей во время экономического кризиса. Вот результаты исследования о домашнем насилии и футболе. Если местная команда неожиданно проигрывает, то после этого количество случаев мужского насилия в семьях увеличивается на 10 % (и никакого процентного увеличения, если команда выиграла или если проигрыш был прогнозируемым). А если ставки на выигрыш высоки, то картина еще усугубляется: насилие увеличивается на 13 %, если команда проигрывает в матче на выбывание, и на 20 % – если команда уступает в финальной игре{250}.
Не так уж много известно о нейрофизиологии смещения агрессии и смягчении ею стресс-реакции. Я полагаю, что нападение на низшего по рангу активирует дофаминергические контуры в системе награды, что наверняка погасит выделение КРГ[125]{251}. Слишком часто жизнь учит: лучше мы, чем нас.
Продолжим список неприятных известий: из-за стресса мы становимся эгоистами. В одном из исследований респондентов ставили в социально-напряженную или социально-нейтральную ситуацию и после этого предлагали решать морально-этические дилеммы[126]. Некоторые дилеммы несли низкую эмоциональную нагрузку («У прилавка в магазине пожилой человек лезет без очереди. Вы будете протестовать?»), другие были, наоборот, эмоционально нагружены («Вы встретили любовь всей вашей жизни, но у вас жена и дети. Вы уйдете из семьи?»). Результаты этого эксперимента показали, что когда требовалось разрешить эмоционально тяжелую дилемму, то стресс заставлял участников эксперимента давать более эгоистические ответы; в ситуации слабой эмоциональной нагрузки этот эффект не выявился. Чем выше поднимался уровень глюкокортикоидов, тем эгоистичнее становились ответы. Одновременно стресс ослабил альтруистические склонности людей, если дело касалось личных (но не общих) моральных решений{252}.
Итак, мы имеем еще один эндокринный эффект, зависящий от обстоятельств: стресс делает людей эгоистами, но только если ситуация эмоционально насыщенна и касается человека лично[127]. Это напоминает другой пример ослабленного функционирования лобной коры: вспомним главу 2, где описаны люди с поврежденной лобной корой, достаточно здраво рассуждающие о проблемах других, но чем более личной и эмоциональной становится проблема, тем более ущербными оказываются их суждения.
Обижать более слабого, чтобы почувствовать себя лучше, или думать только о своих нуждах – это не слишком сочетается с умением сопереживать другому. А действительно, ослабляет ли стресс способность к эмпатии? Казалось бы, да – и у людей, и у мышей. Поразительная работа Джеффри Могила из Университета Макгилла, опубликованная в журнале Science в 2006 г., показала зачатки эмпатии у мышей: у зверька снижается болевой порог, когда рядом другая мышка испытывает боль, но такой – сопряженный – эффект наблюдается только в том случае, если другая мышка является знакомой – соседкой по клетке{253}.
Эта работа повлекла за собой следующую, которую мы провели с группой Могила совместно. Для нового исследования использовалась та же схема экспериментов, но с учетом того, что в присутствии незнакомой особи мышь, как правило, испытывает стресс. Поэтому мы искусственно заблокировали выделение глюкокортикоидов (сняли стресс), и в опытах с определением болевого порога мышь показывала ту же «болевую эмпатию» к незнакомой мыши, что и к знакомой соседке. Другими словами, глюкокортикоиды ограничивают группу «своих», которые «достойны» эмпатии. Тот же результат наблюдался и у людей: эмпатия к чужаку, который испытывал боль, не появлялась, пока у испытуемых не снижали уровень глюкокортикоидов (например, вводя участникам эксперимента препараты короткого действия или давая им возможность пообщаться перед экспериментом). Вспомним главу 2 – там было описано, как передняя поясная кора участвует в формировании «болевой» эмпатии. Готов поспорить, что в той части мозга глюкокортикоиды проделали с нейронами нечто изнуряющее, притупляющее.
Как мы выяснили, продолжительный стресс воздействует на поведение весьма неприятным образом. И все же при определенных обстоятельствах в моменты напряжения мы проявляем лучшее, на что способны. Работа Шелли Тейлор из Калифорнийского университета в Лос-Анджелесе указывает на то, что эффект «бей или беги» – это типичная реакция на стресс у мужчин и вдобавок литература о стрессе изучает в основном мужчин и написана мужчинами{254}. У женщин часто все по-другому. Тут Тейлор продемонстрировала, на что способны дамы, когда требуется переспорить старых добрых ученых мужей: она доказала, что женская стресс-реакция выглядит совсем не агрессивно. Ее скорее можно описать словами «приголубь и приветь» – т. е. заботься о младших и ищи социального признания (дружбы). В этом проявляется поразительное различие в способах мужчин и женщин справиться со стрессом, а женский подход «приголубь и приветь», вероятнее всего, указывает на окситоциновый компонент регуляции стрессового ответа.
Понятно, что все гораздо сложнее, чем упрощенная схема «мужчины – бей/беги, женщины – приголубь/приветь». Нередко встречаются примеры поведения прямо противоположные: всех самцов игрунок, а не только «женатых», стресс зачастую побуждает к большей социальности, а самки очень даже способны на агрессивные поступки. И вообще: у нас есть Махатма Ганди и Сара Пэйлин[128],[129]. Как получается, что некоторые люди настолько не вписываются в гендерные схемы? Это отчасти разъясняется в следующих главах.
Стресс нарушает интеллектуальную деятельность, самоконтроль, регуляцию эмоций, процесс принятия решений, способность к эмпатии и общению. И последнее. Как мы помним из главы 2, лобная кора заставляет нас выбирать трудный путь вместо привычного легкого, если трудный видится более правильным; между тем определение, что правильно, отдается полностью на наше усмотрение. То же самое и со стрессом. Считается, что влияние стресса на принятие решения отрицательно, но это только с точки зрения нейрофизиологии. Так, в моменты стресса врачи скорой помощи могут начать действовать по привычной в обычных условиях схеме (ведь для экстремальных ситуаций у них тоже есть автоматические действия) и потому не успеют спасти пациенту жизнь. Это плохо. Но в момент стресса будет автоматически повторять проверенные стратегии и психопат-военачальник, а потому не сможет «эффективно» провести «зачистку» деревни. И это уже хорошо.
Развенчание мифа: алкоголь
Обсуждая биологические процессы, происходящие за несколько минут или часов до поведенческого акта, никак нельзя обойти влияние алкоголя. Все считают, что алкоголь снимает запреты и человек становится более агрессивным. Это неверно – и мы уже знаем почему. Алкоголь вызывает агрессию, только если: а) индивид предрасположен к агрессии, как, например, мыши с низким уровнем серотонина в лобной коре или мужчины с вариантом гена окситоцинового рецептора, менее восприимчивого к окситоцину; б) человек верит, что алкоголь повышает агрессию, и это лишний раз демонстрирует, насколько мощно социальное обучение формирует биологию{255}. Алкоголь действует на всех по-разному. Кто не знает примеров экстравагантных свадеб в Лас-Вегасе, справляемых в состоянии алкогольной одури, которые на следующий день представляются уже совсем в другом, неприглядном виде.
Итоги и некоторые выводы
а) Гормоны – это хорошо. Они работают вкупе с нейромедиаторами, обеспечивая разновременные и разносторонние реакции от их действия. Эти реакции создают многообразие поведения, которое и является главным предметом этой книги.
б) Зависимость агрессии от тестостерона намного меньше, чем принято считать. Индивидуальные колебания данного андрогена в пределах нормы не позволяют предсказывать, будет ли человек вести себя агрессивно, нарушать законы. Более того, чем особь изначально агрессивнее, тем меньше ей требуется добавлять тестостерона для агрессивного акта. И если уж тестостерону и отведена какая-то роль, то только в качестве «пособника» – сам по себе этот гормон не порождает агрессию. Он делает нас более восприимчивыми к факторам, ее запускающим, – особенно тех из нас, кто и так предрасположен к агрессии. Повышение уровня тестостерона, как мы выяснили, способствует агрессии только в обстоятельствах угрозы социальному статусу. Но если даже уровень гормона и подскакивает в такой ситуации, это не обязательно усиливает агрессию: он активирует любые из тех действий, которые помогают сохранить статус. В мире, где социальный статус поддерживается добрыми делами, тестостерон окажется самым «просоциальным» гормоном на свете.
в) Окситоцин и вазопрессин содействуют формированию связи матери и ребенка, а также моногамному поведению в парах, снижают тревогу и стресс, укрепляют доверие, упрочивают социальные группы, делают людей щедрее и общительнее. Однако ко всему этому прилагается огромное НО: гормоны способствуют просоциальности только по отношению к Своим. Когда дело касается Чужих, окситоцин и вазопрессин превращают нас в ксенофобов и этноцентристов. У окситоцина характер не «космополитичный» – у него местечковый характер.
г) Женская агрессия как средство защиты детей является обычно адаптивной реакцией и задействует эстроген, прогестерон и окситоцин. Важно помнить, что и во многих других эволюционно-адаптивных обстоятельствах самки проявляют агрессию. Такую реакцию обеспечивают присутствие андрогенов и сложные эндокринные хитрости, с помощью которых сигналы андрогенов получает «агрессивный», а не «материнский», «дружелюбный» участок мозга самки. Изменения в настроении и поведении в период месячных – физиологический факт (пусть даже и понимаемый схематично); патологизация этих изменений является социальной концепцией. И наконец, кроме редких крайних случаев, связь между ПМС и агрессией минимальна.
д) Длительный стресс имеет множество нежелательных последствий. Миндалина становится слишком возбудимой и задействует нейронные структуры, связанные с привычным поведением; страху легче научиться, чем разучиться. В автоматическом режиме мы обрабатываем эмоционально значимую информацию быстрее, но при этом жертвуем ее точностью. Функции лобной коры – рабочая память, самоконтроль, принятие решений, оценка риска, распределение приоритетных задач – становятся менее эффективными, уменьшается контроль лобной коры над миндалиной. Помимо того, мы становимся менее заботливыми, мы меньше сопереживаем. Снижение пролонгированного стресса идет на пользу во всех отношениях и нам, и окружающим.
е) Оправдание «я просто был под градусом» не извиняет агрессивные акты.
ж) В промежуток времени от нескольких минут до первых часов эффект гормонального воздействия зависит в основном от ситуации и является стимулирующим. Гормоны не определяют, не являются причиной, не руководят, не порождают поведенческого акта. Вместо этого они делают нас более восприимчивыми к социальным стимулам в эмоционально-значимых ситуациях, усиливают поведенческие тенденции и предрасположенности, соответствующие случаю. А откуда берутся эти предрасположенности и тенденции? Узнаем из следующих глав.
Глава 5
За недели и месяцы до…
Поступок совершен: курок нажат или рука прикоснулась к руке – и о смысле этих поступков можно судить только из их контекста. Но почему случилось именно так, а не иначе? Мы узнали, что за секунду до поступка из мозга к телу исходят определенные нервные импульсы, что за минуты и часы до этого определенные сенсорные стимулы вызывают возбуждения в мозге, а за часы и дни до поступка меняется чувствительность определенных частей мозга, потому что они подвергаются воздействию гормонов. А до того? Какие события, происходившие за дни и месяцы до поступка, предопределили его?
Глава 2 познакомила нас с пластичностью нейронов: самые разные события могут их менять. Меняются сила дендритного входа, аксонные холмики, которыми инициируются потенциалы действия, продолжительность рефрактерного периода. В предыдущей главе мы обсуждали, как тестостерон меняет возбудимость нейронов миндалины, а глюкокортикоиды снижают возбудимость нейронов префронтальной коры. И даже как прогестерон стимулирует ГАМК-ергические нейроны, снижающие возбудимость других нейронов.
На изменение пластичности такого рода требуется несколько часов. Мы теперь обратимся к другой пластичности, той, на которую уходят дни и месяцы. Дни и месяцы – это сколько? Это промежуток времени, в который уложились и Арабская весна, и Зима тревоги нашей[130], и Лето любви со всеми своими проблемами… В этот же промежуток укладываются и колоссальные изменения, которые затрагивают структуру мозга.
Нелинейное возбуждение
Начнем с малого. Как могут события, произошедшие месяц назад, спровоцировать изменения в сегодняшнем синапсе? Как синапс может вообще «запоминать»?
Когда нейробиологи в начале XX в. начали интересоваться сущностью памяти, они задавали этот вопрос по-другому, на макроуровне: как сам мозг может запоминать? Тут все очевидно: раз память хранится в мозге, в нейронах, то новая память требует и нового нейрона.
Эта идея с треском провалилась, когда было доказано, что у взрослых людей новые нейроны не образуются. Но с совершенствованием техники микроскопирования стала доступна для визуального наблюдения ошеломительная по сложности сеть ветвящихся дендритов и аксонных окончаний. Возможно ли, что новая память требует отращивания новой веточки на аксоне или дендрите?
А потом узнали про синапсы, и стала развиваться нейромедиаторология; тогда гипотеза о носителе новой памяти видоизменилась. Для новой памяти нужно сформировать новый синапс, т. е. новую связь между окончанием аксона и дендритным шипиком.
Вскоре и эта версия отправилась на свалку истории: тут постарался канадский нейробиолог Дональд Хебб, человек такой провидческой мудрости, что и сейчас, через почти 70 лет после опубликования его фундаментального труда «Организация поведения» (The Organization of Behaviour), нейробиологи покупают себе китайских болванчиков[131] с головой Хебба. Эта книга вышла в свет в 1949 г., в ней ученый предложил новую гипотезу, ставшую общепринятой на сегодняшний день. Для формирования нового воспоминания новые синапсы не нужны (и тем более новые нейроны или их отростки), а нужно лишь усилить уже существующие{256}.
Как понимать слово «усилить» в данном случае? А понимать это нужно в контексте связи между нейронами. Если нейрон А связан синапсом с нейроном В, то после «усиления» потенциалу действия нейрона А проще вызывать потенциал действия в нейроне В. И связка данных событий, потенциалов, становится все теснее; это и есть «запоминание». «Усиление» в терминах клеточного строения означает, что волна возбуждения в дендрите распространяется дальше, подходя ближе к отстоящему аксонному холмику, месту выхода аксона.
В многочисленных исследованиях показано, что действие, раз за разом приводящее к повторению возбуждения в синапсе, «усиливает» его. И ключевую роль в этом процессе играет нейромедиатор глутамат.
Вспомним главу 2. В ней среди прочего говорилось о том, что возбуждающий нейромедиатор связывается с рецептором в постсинаптическом дендритном шипике. Как выяснилось, это влечет за собой открытие натриевого канала, а вслед за тем в клетке распространяется всплеск возбуждения.
Глутамат работает более изощренно, и это оказывается важно для процесса обучения. Сильно упрощенная схема примерно такова. Обычные дендритные шипики несут один тип рецепторов, но в тех, что связываются с глутаматом, таких рецепторов два типа. Первый тип – обычный, называется «non-NMDA-рецептор». При связывании этого рецептора с глутаматом все происходит классическим образом: небольшая порция глутамата запускает в клетку капельку натрия, и возбуждение чуточку подскакивает. Второй, NMDA-рецептор, действует нелинейно, по принципу порогового значения. В обычном случае он не отвечает на поступление глутамата. Не отвечает до тех пор, пока все новые и новые рецепторы non-NMDA не свяжутся со своими порциями глутамата и после этого в клетке окажется повышенное количество натрия. И вот тогда все рецепторы NMDA вдруг как активируются, отвечая на весь накопившийся глутамат! Все их ионные каналы открываются разом, и в результате клеточное возбуждение резко подскакивает.
В этом и состоит сущность обучения. На лекции лектор что-то говорит, а у слушателя в одно ухо влетает, в другое вылетает. Лектор повторяет свою мысль, а потом и другую ее сторону продемонстрирует. И если повторить ее несколько раз, то – ага! Вот оно! На слушателя снисходит озарение, ему все становится ясно. На синаптическом уровне это озарение заключается в том, что своими повторениями лектор заставил аксон потихоньку выделять глутамат; и вот момент настал: сработали рецепторы NMDA – и дендритные шипики внезапно получили новую информацию.
«Ага! Вот оно!» и настоящее запоминание
Но это только самое начало. Нужно ведь, чтобы явленная посреди лекции мысль удержалась хотя бы час, не говоря уже о том, чтобы дождаться в голове экзамена. Как же получается так, что этот всплеск возбуждения сохраняется, не сглаживается, а рецепторы NMDA – запоминают, т. е. в будущем при необходимости с легкостью активируются? Как это повышенное возбуждение становится долговременным?
И вот теперь самое время представить вам долговременную потенциацию (LTP – от англ. long-term potentiation). Впервые она была продемонстрирована Терье Лёмо из Университета Осло; ее суть в том, что первая вспышка активации NMDA вызывает длительное увеличение возбудимости синапса[132]. Над разгадкой секрета долговременной потенциации билось множество светлых голов. И выяснился следующий ключевой факт: NMDA-рецепторами открываются не натриевые каналы, а кальциевые; в клетку попадает именно кальций. В результате происходит целый ряд изменений, и вот некоторые из них:
а) Волна кальция приводит к вставке новых глутаматовых рецепторов в мембрану дендритного шипика. В результате нейрон легче откликается на появление глутамата[133].
б) Кальций меняет также и те глутаматовые рецепторы, которые уже находятся в мембране, на переднем фронте дендритного шипика. У каждого повышается чувствительность к глутаматовым сигналам[134].
в) Кальций запускает синтез определенных нейромедиаторов в шипике; эти нейромедиаторы выделяются в синаптическую щель и отправляются в обратном направлении, т. е. к окончанию аксона. Оказавшись на месте, они, когда в аксоне в будущем возникнет потенциал действия, увеличат выход глутамата.
Иными словами, долговременная потенциация выражается в том, что аксон со своей пресинаптической стороны кричит «ГЛУТАМАТ!» громче, а шипик со своей постсинаптической стороны слушает внимательнее.
Есть и другие механизмы долговременной потенциации. Ученые спорят, какой из механизмов главнее (склоняясь, как правило, к предмету своего изучения) в реальных процессах обучения. Что для обучения важнее – постсинаптические или пресинаптические трансформации: вот основная тема дебатов специалистов{257}.
Пока обсуждалась долговременная потенциация, пришло время для следующего открытия, восстановившего равновесие во Вселенной. Речь идет о долговременной депрессии (LTD – от англ. long-term depression) – зависимом от опыта долговременном снижении синаптической возбудимости (любопытно, что механизмы LTD не являются просто повернутыми вспять механизмами LTP). Ее, LTD, нельзя считать и функциональной противоположностью LTP: долговременная депрессия не является основой забывания, она, скорее, обостряет сигнал, затушевывая лишние шумы.
И наконец, вот что: следует понимать, где долговременный, а где долгое время. Как мы говорили, одним из основополагающих механизмов LTP является трансформация рецепторов в сторону более чуткого реагирования на глутамат. Подобное преобразование сохраняется, пока работают рецепторы, измененные в ходе долговременной потенциации. Но продолжительность их жизни измеряется днями, за это время они накапливают дефекты из-за вредного действия радикалов кислорода, деградируют и заменяются на новые (такие процессы свойственны любым белковым молекулам в клетках). Поэтому изменения при долговременной потенциации каким-то образом передаются следующим поколениям рецепторов. А как еще восьмидесятилетние бабушки и дедушки могут помнить свой детский сад?
Все это прекрасно, но пока что мы говорили о запоминании некоторой явной информации, к примеру телефонного номера, т. е. о том, чем занимается гиппокамп. А нас больше интересует другое – как мы учимся бояться, контролировать себя, сочувствовать или даже относиться к кому-то с безразличием.
Синапсы, выделяющие глутамат, находятся не только в гиппокампе. Они, как и долговременная потенциация, присутствуют во всей нервной системе. Для многих исследователей, которые изучали LTP в гиппокампе, это явилось неприятным открытием: одно дело, когда Шопенгауэр читает Гегеля, а в это время в его гиппокампе происходит долговременная потенциация, и совсем другое, когда та же долговременная потенциация обнаруживается в спинном мозге при обучении тверку[135].
Тем не менее LTP происходит по всей нервной системе[136]{258}. Например, при выработке условных рефлексов на боль долговременная потенциация затрагивает базолатеральную миндалину. Затем, при необходимости контролировать миндалину, LTP имеет место в лобной коре. Именно так дофаминовая система учится связывать стимул с наградой – например, у наркоманов то конкретное место, где они получали наркотик, немедленно вызывает страстное желание.
А теперь добавим к этой системе гормоны, переведя таким образом наши идеи о стрессе на язык нейронной пластичности. Небольшой, проходящий стресс (а мы считаем его хорошим, стимулирующим) порождает в гиппокампе долговременную потенциацию, тогда как продолжительный стресс обрывает ее и порождает там долговременную депрессию. И это одна из причин, почему наш здравый смысл временами трещит по швам. Вот так и выводится закон оптимального уровня стресса Йеркса – Додсона[137] – он предписан нам синапсами{259}.
Затяжной стресс и высокий глюкокортикоидный фон имеют, помимо того, и другие следствия. В частности, в миндалине они усиливают LTP и подавляют LTD, ускоряя выработку реакции страха; а в лобной коре в этих условиях LTP ослабляется. И что получится, если скомбинировать эти эффекты? Итогом будут более возбудимые синапсы в миндалине и менее возбудимые в лобной коре; перед нами переживающий стресс человек, вспыльчивый, со слабым контролем поведения{260}.
Назад из мусорной корзины
Сейчас в представлениях о механизмах памяти доминирует гипотеза синаптического усиления. Но удивительным образом пригодилась и забракованная идея о формировании новых синапсов. Когда научились считать синапсы в нейронах точнее – спасибо новой технике, – выяснилось, что если крыс содержать в разнообразной, стимулирующей обстановке, то число синапсов в гиппокампе растет.
Применяя изощреннейшие методики, можно наблюдать, как по ходу обучения у крысы меняется та или иная дендритная веточка. И это фантастика! Мы видим, как за минуты или часы отрастает новый дендритный шипик, тянется к нависшему рядом аксональному кончику. А спустя неделю-другую между ними формируется и функциональный синапс, который стабилизирует новое воспоминание/навык (при других обстоятельствах дендритный шипик, наоборот, втягивается, а синапс исчезает).
И этот индуцированный действием синаптогенез взаимоувязан с долговременной потенциацией: когда в синапсе происходит LPT, кальциевая цунами в шипике запускает заодно и формирование нового шипика по соседству.
Новые синапсы появляются по всему мозгу. Разучиваешь какие-нибудь гимнастические упражнения – синапсы возникают в моторной коре, смотришь на что-то много раз – вот они и в зрительной коре. А если трогать крысу за усики один раз, другой, третий – то новые синапсы появляются у крысы, в вибриссовой зоне коры{261}.
Более того, когда в нейроне сформировано достаточно много новых синапсов, то количество и длина веточек дендритного «дерева» тоже возрастают, увеличивая, таким образом, число вероятных аксональных переговорных пунктов.
В истории об оптимальном стрессе (закон Йеркса – Додсона) стрессу и глюкокортикоидам отведена своя роль. Средний, проходящий стресс и соответствующий ему уровень глюкокортикоидов увеличивают число шипиков в гиппокампе, а длительный стресс (со своим уровнем глюкокортикоидов) действует в противоположном направлении{262}. И даже еще хуже: при хронической депрессии и тревожных состояниях – двух синдромах, которые характеризуются повышенным уровнем глюкокортикоидов, – уменьшается количество шипиков и размер самого дендритного дерева в гиппокампе. И дело тут в пониженном количестве фактора роста BDNF, о котором говорилось в предыдущей главе.
Хронический стресс и высокий уровень глюкокортикоидов вызывают редукцию шипиков и потерю синапсов, снижают уровень молекул склеивания нервных клеток, стабилизирующих синапсы (NCAM, от англ. neural cell adhesion molecule), уменьшают выброс глутамата в лобной коре. Чем больше выражены эти изменения, тем труднее принимать решения, тем хуже внимание{263}.
В главе 4, как мы помним, сообщалось, насколько явно стресс усиливает взаимосвязь лобной коры и двигательных отделов мозга и при этом ослабляет связь лобной коры и гиппокампа. В результате принятие решений идет по накатанной, а новые обстоятельства во внимание не принимаются. В том же ключе срабатывает хронический стресс: он увеличивает число шипиков в лобно-моторных путях и уменьшает его в лобно-гиппокамповых{264}.
Добавим к отличиям миндалины от лобной доли и гиппокампа еще одно: хронический стресс увеличивает уровень BDNF и количество дендритов в БЛМ, таким образом укрепляя реакцию страха и усиливая тревожность{265}. То же самое происходит и в том транспортном узле, из которого расходятся пути из миндалины в другие части мозга (это ЯЛКП). Вспомним, что если БЛМ включена в формирование реакции страха, то центральная миндалина занимается врожденными фобиями. И любопытно, что стресс не затрагивает врожденные фобии и не влияет на число шипиков нейронов центральной миндалины.
Заметим здесь интереснейшую особенность, а именно связь с контекстом. Когда у крысы в ответ на ужас вырабатываются тонны глюкокортикоидов, это приводит к атрофии дендритов в гиппокампе. Но когда она с удовольствием бегает в колесе, выбрасывая точно такое же количество глюкокортикоидов, то дендриты, наоборот, растут. Выглядит все так, как будто гиппокамп должен приписать эти глюкокортикоиды «хорошему» или «плохому» стрессу, а затем дать – или, соответственно, не давать – указание миндалине вступать в игру{266}.
На число шипиков и длину дендритных отростков в гиппокампе и лобной коре положительно влияет эстроген{267}. У самок крыс дендритные деревья вытягиваются и сжимаются, как аккордеон, в согласии с овуляционным циклом: эстроген растет – и деревья растут (и между прочим, когнитивные показатели у самок растут тоже)[138].
Резюмируем: нейроны могут отращивать новые дендритные веточки и шипики, увеличивая размер дендритного дерева, или – в других обстоятельствах – могут их уменьшать; а гормоны при этом выступают в качестве исполнителей.
Пластичность аксонов
Между тем на другом конце нейрона, аксональном, есть своя пластичность: аксоны могут давать свои ростки, которые отправляются осваивать новые пути. Вот удивительнейший и нагляднейший пример. Когда незрячий человек учится читать по шрифту Брайля, у него, как и положено, активируется тактильная область, но кроме нее, заметьте, возбуждается одновременно и зрительная кора{268}. Иными словами, нейроны, которые обычно посылают аксоны в тактильную область, обрабатывающую информацию от кончиков пальцев, на этот раз заставляют аксоны уйти с маршрута на тысячи нейронных миль и дорасти до зрительной области. Описан один поразительный случай слепой от рождения женщины, у которой вследствие инсульта пострадала зрительная кора. В результате она потеряла способность читать по Брайлю. Выпуклые буквы казались ей теперь плоскими, нечеткими – но при этом другие тактильные функции остались в норме. В другом исследовании слепых людей учили ассоциировать буквы Брайля с определенным звуковым тоном; нужно было добиться того, чтобы последовательность звуков воспринималась как последовательность букв или слов. И когда такие обученные испытуемые «читали со звуком», то у них возбуждалась та часть зрительной коры, которая активируется при чтении у зрячих. Сходные явления известны и для глухих, использующих жестовый язык. Когда они смотрят на поющего человека, у них активируется та часть слуховой коры, которая в обычном случае возбуждается звуками речи.
При травмах нервная система может несколькими способами перепланировать себя. Предположим, при инсульте у человека повреждена часть коры, которая отвечает на тактильные сигналы, поступающие от руки. Тактильные рецепторы в пальцах в норме, но им не с кем вести переговоры. И в результате человек теряет чувствительность. Спустя месяцы, а иногда и годы аксоны, идущие от этих рецепторов, отращивают новые ветки в соседние области коры и там формируют новые синапсы. В результате руке вернется чувствительность, пусть и менее точная, чем раньше (так же снизится чувствительность той части тела, нейроны которой проецируются в область коры, принявшую аксонов-перебежчиков).
Давайте вообразим, что перестали работать тактильные рецепторы ладони. Теперь от них не идут аксоны к соответствующей области коры. Но кора не выносит пустоты, и вот уже аксоны от осязательных нейронов запястья пускают свои веточки на заброшенную соседнюю территорию в коре. Представим, что будет при деградации сетчатки, когда рецепторы из нее больше не посылают сигналов в зрительную кору. Как в случае со слепыми людьми, нейроны от кончиков пальцев, обученные читать азбуку Брайля, отсылают отростки в зрительную область, обустраивая там свой собственный лагерь. Или ситуация с псевдотравмой: после нескольких дней, проведенных испытуемым с повязкой на глазах, его слуховые нейроны начинают переориентироваться на зрительную область (и уходят обратно, когда повязку снимают){269}.
Предположим, что отростки нейронов из осязательной области, относящейся к кончикам пальцев, обученным азбуке Брайля, ушли в зрительную кору. И допустим, мы знаем, что тактильная область коры далеко отстоит от зрительной коры. Тогда нужно понять, каким образом нейроны, занятые осязанием, узнают:
а) что где-то в зрительной области есть пустующая территория;
б) что скучающие зрительные нейроны поспособствуют преобразованию выпуклостей под пальцами в читабельную информацию;
в) как вообще отправить аксональный отросток на неизведанную доселе территорию.
Сейчас ученые как раз и работают над этими вопросами.
Что происходит, когда слуховые нейроны посылают свои отростки в не занятую делом зрительную кору, расширяя таким образом зону своего влияния? У слепого обостряется слух – вот что происходит: мозг восполняет дефицит одной функции за счет усиления другой.
Итак, отростки сенсорных нейронов можно перенаправить в другие места. И если уж зрительные нейроны оказываются вовлечены в чтение по Брайлю, то и они, в свою очередь, вынуждены перепланировать путь собственных отростков в новые, соответствующие задаче места, где опять же потребуется перепланировка. Это волны пластичности.
Перепланировка постоянно происходит и в отсутствие травм. Мой любимый пример – музыканты. У них области коры, вовлеченные в обработку звуковой информации, существенно больше, чем у немузыкантов. Особенно это касается областей, отвечающих за звуки их собственного инструмента и определение высоты голоса. Чем раньше ребенка начинают учить музыке, тем сильнее эта перестройка{270}.
Для такой перепланировки не требуется десятилетий практики, как показал в своей красивой работе Альваро Паскуаль-Леоне из Гарвардского университета{271}. Добровольцев-немузыкантов каждый день по два часа учили играть на пианино упражнение для пяти пальцев. Через несколько дней тренировок область моторной коры, заведующая движениями руки, расширилась, правда, это увеличение без последующих тренировок сохранялось всего около суток. По существу похоже на открытый Хеббом процесс, т. е. на усиление уже существующих связей после повторов действий. Но если ученик упорен в своих занятиях – по два часа ежедневно, то через четыре сумасшедшие недели перестройки в коре не исчезают, а сохраняются еще в течение многих дней. Предположительно, по мере тренировок отрастают новые аксоны и формируются новые нейронные связи. Любопытно, что такие же перестройки в коре происходили и у тех, кто это упражнение не играл по два часа в день, а воображал по два часа в день, как он его играет.
Еще одним примером подобных перестроек является расширение зоны коры, связанной с чувствительностью кожи вокруг сосков; это расширение регистрируется у самок крыс сразу после рождения детенышей. И другой пример – совсем иного рода: когда учишься жонглировать, то через несколько месяцев тренировок расширяется область зрительной коры, которая обрабатывает визуальную информацию о движениях[139]{272}.
Мы видим, что под влиянием опыта меняются число и сила синапсов, широта дендритного охвата и цели аксональных отростков. Пришло время самой главной революции для отяжелевшей нейробиологии.
Раскопки в куче исторического пепла
Вернемся к старой гипотезе, которую отвергли еще в те доисторические времена, когда Хебб пешком под стол ходил. А как же иначе – ведь мозг у взрослых не выращивает новые нервные клетки. Их число максимально у новорожденного, а потом оно неуклонно уменьшается, спасибо безрассудству и старению.
Чувствуете, куда мы клоним? К мозгу взрослого, и даже пожилого, человека, у которого появляются новые нейроны. Это открытие произвело революцию, началась новая эпоха. В 1965 г. внештатный преподаватель МТИ Джозеф Альтман (вместе со своим бессменным сотрудником Гопалом Дасом) впервые обнаружил признаки нейрогенеза у взрослых. Исследователи использовали совершеннейшую на тот момент технику. В новых клетках должна была быть и новенькая ДНК. Значит, нужно поискать специфические для ДНК компоненты. Возьмите раствор с составляющими ДНК, пометьте их радиоактивной меткой. Затем помеченные молекулы впрысните крысе, подождите сколько нужно и приступайте к разглядыванию крысиного мозга. Те нейроны, в которых обнаружится радиоактивная метка, родились прямо сейчас, построив себе новую ДНК.
Именно это и увидел Альтман в серии своих исследований{273}. И как он сам отмечал, первые работы были прекрасно приняты, опубликованы в хороших журналах, все радовались сделанным открытиям. Но потом, спустя несколько лет, что-то изменилось, главные нейробиологические голоса высказались против альтмановских достижений – потому что этого просто не может быть, и точка. Он не смог получить штатную должность, преподавал в Университете Пердью, где ему не дали финансирования на работы по нейрогенезу у взрослых.
Вокруг темы так и царило молчание, пока доцент Университета Нью-Мексико по имени Майкл Каплан не продолжил исследования Альтмана, но с помощью новых методик. И снова результаты исследований получили резчайшую критику от сильных нейробиологического мира, включая влиятельную в нейробиологии фигуру Паско Ракича из Йельского университета{274}.
Ракич публично забраковал работу Каплана (и попутно Альтмана), заявив, что он сам пытался найти новые нейроны, но их нет, не нашел он их, а Каплан перепутал нейроны с другими клетками. Ракич так и сказал: «Может, в Нью-Мексико они и считаются нейронами, но у нас в Йеле это не нейроны». Каплан после этого ушел из науки, а четверть века спустя, оказавшись в центре бури восторгов по поводу переоткрытого взрослого нейрогенеза, опубликовал свои краткие воспоминания, озаглавив их «Сложность внешнего окружения стимулирует нейрогенез зрительной коры: Смерть догмы и научной карьеры» (Environmental Complexity Stimulates Visual Cortex Neurogenesis: Death of a Dogma and a Research Career).
Затем на целое десятилетие наступило затишье. И вдруг из лаборатории Фернандо Ноттебома, сотрудника Университета Рокфеллера, хлынули новости. Ноттебом, исключительно грамотный и опытный нейробиолог, прекрасный во всех отношениях человек, занимался исследованием нейробиологии птичьих песенок. У него имелась хорошая, высокочувствительная техника, и с ее помощью он показал нечто замечательное: в мозге птиц каждый год при выучивании новой территориальной песенки появляются новые нейроны.
С учетом того уважения, которым пользовался Ноттебом, а также высокого качества его научных изысканий, скептически настроенным оппонентам взрослого нейрогенеза пришлось примолкнуть. Однако они зашли с другой стороны: мол, птички, песенки, все это прекрасно, но с настоящими животными, с млекопитающими как быть?
Вскоре и с млекопитающими разобрались, подтвердив результаты на крысах с помощью новейших технологий. В основном это было сделано силами Элизабет Гулд из Принстонского университета и Фреда Гейджа из Института Солка.
Вскоре очень многие, используя разработанные методики, включились в работу по нейрогенезу у взрослых, и даже – подумать только! – сам Ракич{275}. Снова с его стороны повеяло скептицизмом. Ну да, мы видим новые нейроны у взрослых, но этих новообразований мало, они живут недолго и появляются не там, где нужно, – не в коре. И более того, новообразования наблюдаются у грызунов, а про приматов нам ничего неизвестно. Однако через некоторое время и для обезьян был доказан взрослый нейрогенез[140]{276}. «Да-да, – сказали скептики, но как обстоят дела с человеком? И потом, кто сказал, что эти новые нейроны встраиваются в имеющиеся нейронные пути и там реально функционируют?»
Все это было, естественно, доказано и продемонстрировано. У взрослых людей новые нейроны появляются в гиппокампе (каждый месяц в нем заменяется около 3 % нейронов) и несколько меньше – в лобной коре{277}. Этот процесс идет на протяжении всей жизни человека. Нейрогенез в гиппокампе усиливается, например, во время обучения и повторения упражнений, при выделении эстрогена, использовании антидепрессантов, содержании в обогащенной среде, поражении мозга[141], но приостанавливается при действии стрессогенных факторов[142]{278}. И что интересно, новые нейроны, встраиваясь в действующие нервные пути, демонстрируют возбудимость, как в перинатальном мозге. Вступив в работающий коллектив нейронов, они становятся ключевыми фигурами в деле интеграции новой информации в уже существующие схемы; данный процесс иногда называют вычленением паттерна. Это происходит, когда вы понимаете, что два объекта, которые вы раньше считали одним и тем же, на самом деле различаются – тюлени и моржи, например, или разрыхлитель для выпечки и сода, или, скажем, Зои Дешанель и Кэти Перри[143].
В современной нейробиологии нейрогенез у взрослых – это горячая тема. Так, за пять лет после публикации статья Альтмана была процитирована (в положительном ключе) 25 раз, за последние пять лет она получила больше тысячи цитирований. Изучается, например, как упражнения стимулируют нейрогенез (в основном исследования направлены на исследование уровня факторов роста в мозге), как нейроны узнают, куда им расти, вызывается ли депрессия нарушением нейрогенеза в гиппокампе и является ли стимуляция нейрогенеза необходимым условием работы антидепрессантов{279}.
Почему ушло так много времени на принятие идеи о взрослом нейрогенезе? Я расспрашивал об этом целый ряд людей, имевших к данному вопросу самое непосредственное отношение. И был поражен разнообразием ответов. С одной стороны, высказывалось мнение, что когда Ракич и иже с ним держали науку в кулаке, то старались обеспечить высокое качество исследований, ведь если оглянуться на героический путь сопротивления, все же нужно признать, что не все работы были безупречны.
С другой стороны, люди говорили, что, поскольку Ракич не смог сам обнаружить взрослый нейрогенез, он и не принял его. В таком немного психоаналитическом видении истории, где адепты старого мира изо всех сил цепляются за свои догмы под натиском надвигающихся перемен, картинка немного смазывается фигурой самого Альтмана, который вовсе не был юным бунтарем, запертым в подвальных архивах. Он ведь на самом деле был даже немного старше самого Ракича и остальных главных скептиков. Хорошо бы историки как следует разобрались во всем, а вместе с ними и сценаристы, и – есть у меня такая надежда – Нобелевский комитет.
Альтман, которому на момент написания этой книги было 89 лет[144], в 2011 г. опубликовал статью с воспоминаниями{280}. Частью она звучит растерянно и горестно: все ведь сначала так обрадовались, что же произошло потом? Может, как он предполагает, нужно было меньше времени проводить в лаборатории и больше внимания уделять маркетингу, продвижению своего открытия? В статье угадывается амбивалентность некогда изгнанного, но как минимум полностью реабилитированного пророка. Он смотрит на вещи философски: да, я венгерский еврей, сбежавший из нацистского лагеря; после этого все остальное воспринимается спокойно.
И другие области нейропластичности
Мы увидели, как взрослый опыт может изменить число синапсов и дендритных веточек, перекроить нейронные связи и активировать нейрогенез{281}. Все вместе эти эффекты могут оказаться весьма значительными и реально повлиять на размер тех или иных областей мозга. Так, эстроген в постменопаузе увеличивает размер гиппокампа (в основном за счет новых дендритов и нейронов). А во время продолжительной депрессии гиппокамп сжимается, что приводит к когнитивным проблемам; атрофия гиппокампа с соответствующим увеличенным уровнем глюкокортикоидов отражает его склонность к стрессам. Проблемы с памятью и уменьшение размеров гиппокампа наблюдаются также у пациентов с хроническим болевым синдромом или синдромом Кушинга (это нарушения, при которых опухоли вызывают резкое повышение уровня глюкокортикоидов). И даже так: при посттравматических стрессах возрастает объем миндалины и, насколько нам известно, ее возбудимость. Во всех этих случаях не ясно, насколько эффекты стресса/глюкокортикоидов вызваны изменением числа нейронов или дендритных веточек[145].
Одним их ярких примеров того, что размеры тех или иных участков мозга меняются под влиянием опыта, является задняя часть гиппокампа – область, связанная с пространственной памятью. Известно, что таксистам как раз данный вид памяти и помогает заработать на хлеб с маслом. И выяснилось, что у лондонских таксистов[146] эта часть мозга увеличена. В следующем же лондонском исследовании было проведено нейросканирование мозга таксистов как до, так и после получения лицензии; а это, как отмечала газета The New York Times, самый жесткий из всех подобных отборов. У таксистов – счастливых обладателей лицензий, и только у них, за время многолетней подготовки к тестированию, как оказалось, размер задней части гиппокампа заметно увеличился{282}.
Следовательно, и опыт, и состояние здоровья, и гормональные флуктуации могут всего за несколько месяцев изменить размер тех или иных областей мозга. Упражнения и опыт плюс к этому вызывают долговременные изменения в числе рецепторов различных нейромедиаторов и гормонов, а также в количестве ионных каналов и в уровне экспрессии генов, работающих в мозге (это мы рассмотрим в главе 8){283}.
При хроническом стрессе в прилежащем ядре не хватает дофамина, в результате чего крысы начинают вести себя приниженно по отношению к товарищам, а у человека развивается депрессия. Как мы отмечали в предыдущей главе, у крысы, которая выиграла битву на своей территории, в прилежащем ядре и вентральной покрышке наблюдается долговременный рост уровня тестостероновых рецепторов и тем самым усиливается «тестостероновое» удовольствие. А еще есть такой паразит Toxoplasma gondii, который может забраться в мозг. Крыса в этом случае через несколько недель или месяцев становится совершенно бесстрашной, и даже запах кошки ее не пугает. У человека этот паразит тоже снижает уровень страха и увеличивает импульсивность, но срабатывает более тонко, чем у крыс.
В общем и целом все, что в принципе в нервной системе смогли измерить, продемонстрировало изменения в ответ на упорно действующий стимул. А при определенных условиях все измененное зачастую возвращалось в исходное состояние[147].
Некоторые выводы
Открытие взрослого нейрогенеза стало настоящей революцией; с какой стороны ни посмотреть, нейропластичность – исключительно важная область исследований. Так обычно и бывает, когда эксперты твердят, что чего-то не может быть, а оно оборачивается правдой{284}. Для нас тема привлекательна еще и потому, что в ней заключены наши оптимистические чаяния. Посмотреть хотя бы на заглавия посвященных ей книг: «Пластичность мозга: Потрясающие факты о том, как мысли способны менять структуру и функции нашего мозга», «Тренируй свой ум, измени свой мозг», «Укрощение амигдалы и другие инструменты тренировки мозга», – все они подразумевают некую новую нейрологию, т. е. такую, которая на полную катушку задействует нейропластичность.
Но кое-что все же следует воспринимать с аккуратностью.
а) Вспомним предостережение из прошлых глав: мы не принимаем оценочных суждений, в том числе и относительно нейропластичности. Для слепых и глухих людей перестройка нейронных путей видится прекрасной, волнующей и обнадеживающей. Лондонские таксисты со своим увеличенным гиппокампом – это вообще замечательно. А уж про музыкантов c разросшейся и специализированной слуховой корой нечего и говорить. Но, с другой стороны, при травмах миндалина разрастается, а гиппокамп атрофируется, формируя устойчивое ПТСР – разве это не страшно? А увеличение числа моторных нейронов при тренировке подвижности пальцев? Если речь идет о нейрохирурге, то мы только за, а если о взломщике, то мы, безусловно, против;
б) Нейропластичность определенно не бесконечна. В противном случае любое серьезное повреждение головного или спинного мозга рано или поздно залечивалось бы. И более того, пределы нейропластичности понятны на бытовом уровне. В книгах Малкольма Гладуэлла[148] есть пассажи относительно того, какое необъятное количество практики требуется, чтобы стать настоящим мастером своего дела: 10 000 часов – вот это волшебное число. Но при этом возможен откат назад, потому что даже это количество часов не гарантирует того объема нейропластичности, который превратил бы обычного человека в супербейсболиста или супервиолончелиста.
Если мы получим возможность влиять на нейропластичность при необходимости восстановить ту или иную функцию, это будет просто великолепно и исключительно перспективно для неврологии. Но данная тема далека от содержания нашей книги. Несмотря на потенциальные ресурсы нейропластичности, мы вряд ли когда-нибудь дойдем до того, чтобы, к примеру, накапать в нос какой-нибудь фактор роста и стать более открытым и милосердным или, скажем, с помощью генной терапии подкрутить нейропластичность и вылечить пациента с жалобами на неконтролируемые вспышки агрессии.
Тогда – в контексте этой книги – зачем нам нужно знать о нейропластичности? Я бы остановился на ее психологических аспектах. Тут нелишне вспомнить те фрагменты главы 2, где говорилось о нейросканировании мозга пациентов с посттравматическим синдромом, у которых наблюдалось уменьшение объема гиппокампа (очевидный пример неблагоприятного эффекта нейропластичности). Я тогда съязвил, что суды выглядели посмешищем со своим требованием томограмм мозга таких пациентов, ведь и без того очевидно, что у этих бедняг-ветеранов имеются глубокие органические поражения мозга.
Подобным образом с нейропластичностью функциональная податливость мозга более осязаема, более «научно доказуема». Да, мозг меняется. И люди меняются. Мы говорили в этой главе о неделях и месяцах – за такой промежуток времени жители некоторых арабских стран смогли из безгласных теней вырасти до низвергателей тираний, Роза Паркс, оставив позицию жертвы, оказалась катализатором мирового антирасистского процесса, Садат и Бегин перестали враждовать и стали строителями мира, Мандела из тюремного заключенного превратился в крупного политика. И не только те, кого я упомянул, – вместе с ними и все остальные были захвачены мощными событиями. Новый мир ведет к новому мировоззрению, а это означает обновленный мозг. И чем более осязаема и реальна нейробиология этих изменений, тем легче представить себе, что все эти изменения, а с ними и прекрасные события прошлого могут повториться.
Глава 6
Подросток: «Чувак, где моя лобная кора?»
Это одна из двух глав, где речь пойдет о развитии. У нас уже сложился определенный ритм: вот произошел поведенческий акт – какие события предшествовали ему за секунду, минуты, часы, дни и еще раньше по времени, т. е. что привело к данному конкретному действию? В следующей главе будут разобраны события детства и эмбрионального развития – как они повлияли на поведение.
Но здесь, в этой главе, мы сосредоточимся на подростковом периоде, немного нарушив принятую временную развертку. У подростков биологическая основа, разобранная в предыдущих главах, срабатывает иначе, чем у взрослых, и поведение получается другим. Да, именно так.
В этой главе все определяется одним Фактом. Глава 5 разрушила догму о железной незыблемости взрослого мозга. Согласно еще одному устоявшемуся положению, мозг формируется в раннем детстве – уже к двум годам он достигает 85 % своего взрослого объема. Но развитие его идет поступью гораздо менее торопливой. И Факт заключается в том, что в мозге самой последней созревает лобная кора: лишь к двадцати-тридцати годам она превращается в полноценный рабочий ресурс{285}. Говоря «созревает», мы имеем в виду число синапсов, степень миелинизации нервных волокон и уровень метаболизма.
Отсюда вытекают два исключительнейше важных следствия. Первое: ни одна часть мозга не формируется в подростковом возрасте так интенсивно, как лобная кора. И второе: мы не сможем понять подростковый возраст вне контекста запоздавшего развития лобной коры. Ведь у подростка уже имеются в полной боевой готовности и лимбическая, и автономная, и гормональная системы, а лобная кора еще на подходе и может посылать только скудный набор инструкций – именно потому наши подростки такие ранимые, прекрасные, тупые, импульсивные и возбудимые, всё разрушающие и саморазрушающие, самоотверженные и самолюбивые, невозможные нигилисты и миротворцы. Если подумать, то и вправду юность – это то время, когда человека с наибольшей вероятностью могут убить или сам он станет убийцей, когда он сможет уйти навсегда из дома, изобрести новый вид искусства, бросить вызов диктатору, очистить деревню от этнических выродков, посвятить себя сирым и убогим, стать наркоманом, жениться или выйти замуж за инородца, перевернуть физику, ужаснуть окружающих своими чудовищными шмотками, сломать себе шею во время забав, уйти в монастырь во имя Господа, убить старушку топором, а еще убедить себя, что все сошлось в этом самом моменте, самом важном в жизни, самом страшном и судьбоносном, когда жизнь требует самого решительного участия. Другими словами, это время наивысшего риска, поиска новизны и дружбы с равными. И все из-за незрелости лобной коры.
Реальность подросткового периода
А вдруг подростковый период – это выдумки? Можем ли мы в этом периоде найти нечто такое, что качественно отличало бы его от предыдущего детства и последующей взрослости? Возможно ведь, что на самом деле есть лишь плавный, постепенный переход от ребенка ко взрослому. Это же мы на своем Западе, предложив населению хорошее питание и приличное здоровье, сдвинули половое созревание на более ранние сроки, а рождение детей в силу экономических и культурно-образовательных условностей отодвинули на более поздние – получился разрыв. И вот вам – вуаля! – изобретен подростковый период[149]{286}.
Как мы увидим, подростковый возраст – это реальность, и нейробиология доказывает, что мозг подростка – не просто полуготовый мозг взрослого или передержанный мозг ребенка. Во многих традиционных культурах к подросткам особое отношение, т. е. у них уже есть кое-какие права и обязанности взрослых, но не в полном объеме. Но что у Запада не отнять, так это самого долгого тинейджерства[150].
В культурах с идолом индивидуализма подростковый возраст становится эпохой конфликта поколений. А вот в коллективистских культурах молодые редко закатывают глаза при контактировании со взрослыми-придурками, начиная с собственных родителей. Впрочем, и в индивидуалистических обществах не все тинейджеры маются «психическими» прыщами, не всё у них «Буря и натиск»[151], у большинства этот период проходит гладко.
Изнанка созревания лобной коры
Отставшее созревание лобной коры, согласно сценарию, предполагает, что в лобной коре по ходу взросления количество нейронов, дендритных веточек, синапсов увеличивается, доходя до требуемых объемов где-то между 20 и 30 годами. Но на самом деле оно уменьшается.
И все оттого, что мозг млекопитающих эволюционировал весьма умно. В мозге эмбриона нейронов существенно больше, чем в мозге взрослого. Почему так? Потому что в конце эмбрионального периода нейроны соревнуются что было сил, чтобы успеть дорасти быстрее в правильном направлении, пустить аксон в нужную область и сформировать там наибольшее число синаптических связей с другими нейронами. А что с теми, кто отстал в этой гонке? Их ожидает т. н. запрограммированная клеточная смерть: в них активируются особые гены, которые в итоге заставляют клетки сморщиваться и отмирать, а их органические остатки перерабатываются. Перепроизводство нейронов с последующей конкуренцией, получившее, кстати, наименование «нейронный дарвинизм», позволяет эволюции выстраивать эффективные нейронные сети: это тот случай, про который говорят «Лучше меньше, да лучше».
То же самое происходит в лобной коре у подростков. В начале подросткового пути объем серого вещества (по нему можно прикинуть общее количество нейронов и дендритов) в лобной коре и число синапсов увеличены; но по мере взросления толщина серого вещества уменьшается, потому что лишние дендритные веточки и синапсы отмирают[152]{287}. В пределах лобной коры первой созревает самая древняя часть, тогда как самая молодая, рассудочная, область – длПФК – даже не начинает терять свои избыточные нейроны до позднего подросткового периода. В одном из классических исследований была продемонстрирована значимость этого замедленного процесса. У детей по ходу взросления измеряли объем серого вещества в лобной коре и одновременно давали тест на IQ. И оказалось, что чем медленнее идет созревание лобной коры у подростков, тем выше показатели IQ у повзрослевшей молодежи.
Поэтому нужно понимать, что, говоря о созревании лобной коры, мы говорим об увеличении не мозга, а эффективности мозга. И это показано с помощью его нейросканирования у взрослых и подростков. Анализируя полученные результаты, легко понаделать ошибок именно из-за путаницы, возникающей при сравнении объемов и эффективности{288}. Зачастую исследования направлены на изучение более жесткого контроля поведения у взрослых, чем у подростков, при выполнении тех или иных задач; при этом демонстрируется повышенная активация лобной коры. Но можно подобрать и такие задачи, при которых контроль поведения у подростков такой же, как у взрослых. И в этих случаях уровень активации лобной коры у них будет выше, чем у взрослых. Иначе говоря, на сходный уровень контроля у взрослой, хорошо отлаженной лобной коры тратится меньше усилий.
Можно и другими способами показать, что лобная кора у подростков еще не дотягивает до нужного уровня. Например, подростки хуже, чем взрослые, распознают иронию. А когда им приходится это делать, то активация дорсомедиальной префронтальной коры (дмПФК) у них весьма высока. У взрослых же, в отличие от подростков, повышена активность области распознавания лиц. Другими словами, взрослым различить иронию не составляет труда, это невеликая задача для их лобной коры, им достаточно лишь бросить взгляд на лицо собеседника{289}.
Теперь обратимся к белому веществу лобной коры (оно служит косвенным показателем миелинизации аксонов). Здесь все по-другому: если серое вещество прошло стадии перепроизводство – созревание – отмирание, то аксоны формируют свою миелиновую оболочку по ходу дела. Миелинизация, как разобрано в приложении 1, служит для ускорения и точности передачи нервных импульсов. Это означает, что в течение подросткового периода активность разных частей лобной коры становится все более скоординированной и все более слаженной – они срабатывают как единая функциональная единица{290}.
И это важно учитывать. Проще всего, когда изучаешь нейробиологию, сконцентрироваться на каком-то одном отделе мозга, считая его функциональной единицей (а посвящение всей трудовой жизни какой-нибудь одной области в мозге только обостряет ситуацию). Показательно в этом смысле появление высококлассных специальных биомедицинских журналов Cortex («Кора») и Hippocampus («Гиппокамп»), в которых ученые публикуют результаты исследований своих любимых, избранных отделов мозга. На нейробиологических конференциях, куда съезжаются десятки тысяч ученых, устраиваются социальные мероприятия для специалистов по тому или иному отделу мозга, и там они могут вволю наговорится между собой, посплетничать, завязать новые связи. Но это только один отдел (призрачный) мозга, а как же остальные? Ведь мозг является по сути нейронной сетью, системой функционально связанных участков. И растущая миелинизация мозга у подростков жирной чертой подчеркивает важность этой взаимосвязанности.
Любопытно отметить, что остальные части мозга стараются помочь недоразвитой лобной коре подростка, принимая на себя часть ее пока дефицитных функций. Например, у подростков область вентрального полосатого тела (стриатума) помогает регулировать эмоции, а у взрослых уже нет (мы еще вернемся к этому){291}.
Есть еще кое-что, что правит подростковой лобной свистопляской. Это эстроген и прогестерон у девочек и тестостерон у мальчиков. Как говорилось в главе 4, данные гормоны влияют на структуру и функции мозга, и лобная кора не исключение. Здесь половые гормоны меняют скорость миелинизации и количество рецепторов различных нейромедиаторов. Поэтому ясно, что поворотным моментом в созревании лобной коры будет не столько конкретный хронологический возраст, сколько наступление пубертатного периода{292}.
Но тут оказывается важным не просто выброс половых гормонов, а то, как они начинают работать{293}. Жесткой характеристикой эндокринной функции яичников является цикличность выделения гормонов – т. е. «те самые критические дни месяца». У девочек-тинейджеров упомянутая функция стабилизируется не сразу после первых месячных, а лишь через несколько лет. В это время только около половины циклов включают в себя овуляцию и выброс эстрогена и прогестерона. Соответственно, у девочек имеется не только обычная цикличность месячных, но и цикличность более высокого порядка, связанная с наступлением реальной овуляции. Мальчики не имеют подобных гормональных коловращений, но тем не менее переживают свои трудности, и связаны они с гипоксией лобной коры из-за мощного оттока крови к мошонке.
Следовательно, на заре подросткового периода эффективность лобной коры сильно разбавлена неспособными к четкой субординации избыточными синапсами, замедлена недоразвитыми миелиновыми оболочками; она страдает из-за путаницы, возникающей вследствие неслаженной работы разных частей коры, которые то и дело «перебивают» друг друга. И даже если подключается полосатое тело, то и с этим запасным игроком далеко не уедешь. Да еще вся эта каша круто замешена на половых гормонах. Вот вам и поведение тинейджеров.
Изменения лобной коры и когнитивные функции у подростков
Если мы хотим понять, как созревание лобной коры связано с нашими лучшими и худшими поступками, то полезно сперва рассмотреть, как этот процесс отражается на когнитивных функциях.
В течение подросткового периода наблюдается постепенное улучшение рабочей памяти, гибкости в принятии решений, выстраивания списка задач и эффективности торможения при лобной регуляции (что важно при необходимости переключения с одной задачи на другую). В целом эти улучшения сопровождаются увеличением активности лобной коры во время решения тех или иных задач: чем активность выше, тем они выполняются точнее{294}.
Также в это время подростки начинают все лучше справляться с проблемами, связанными с пониманием чужой точки зрения. Я здесь подразумеваю не эмоциональное состояние другого человека, а именно его абстрактную позицию, то, как выглядит та или иная ситуация на взгляд другого человека. И улучшение в восприятии иронии у подростка свидетельствует о совершенствовании его абстрактного мышления.
Изменения лобной коры и эмоциональные функции у подростков
Тинейджеры старшего возраста переживают все гораздо острее и сильнее, чем дети помладше или взрослые, – это факт, хорошо известный любому, кто хоть раз провел время с подростками. Они, к примеру, более восприимчивы к выражению сильных эмоций на лицах[153]{295}. У взрослых при рассматривании эмоционально выразительного лица активируется миндалина, а вслед за ней, по мере привыкания к эмоциональной составляющей, регулирующая эмоции вмПФК. А у подростков активация вмПФК при этом заметно ниже, значит, ответ миндалины все растет и растет.
В главе 2 мы познакомились с возможностью переоценки событий, т. е. когда сильный эмоциональный ответ вполне реально отрегулировать, посмотрев на проблему с другой стороны{296}. Взять, к примеру, плохую оценку на экзамене – первая мысль: «Какой я идиот!»; но если посмотреть на ситуацию иначе, то можно увидеть, что подготовка к экзамену шла через пень-колоду или что все дело в ужасной простуде, которая навалилась как раз в это время… Короче, можно найти какое-то разумное объяснение такому результату вместо того, чтобы констатировать собственную непременную дефективность.
В подростковом периоде такая стратегия сдвига в оценках становится все совершеннее. И это логично вытекает из нейробиологического контекста. Вспомним, как в раннем подростковом возрасте вентральное полосатое тело старается помочь, принимая на себя часть «лобных» задач (кстати, работая чрезвычайно неэффективно, т. к. это совсем не его компетенция). И вот у подростков полосатое тело включается также в задачу по сдвигу оценки. Большая его активация соотносится с меньшей активацией миндалины и лучшим эмоциональным контролем. По мере взросления за дело берется префронтальная кора, и эмоции выравниваются[154]{297}.
Добавив к общей картине полосатое тело, мы неизбежно вводим в действие дофаминовую систему награды, что заодно объясняет, почему подростки так любят банджи-джампинг.
Рисковые подростки
У подножия Сьерра-Невады расположены знаменитые Калифорнийские пещеры. Это подземная система, которая начинается узким извилистым 10-метровым спуском, ведущим к резкому обрыву 50 м глубиной (теперь там оборудовали дюльфер, спуск с помощью альпинистского снаряжения). Под обрывом смотрители этих пещер находят скелеты любопытных, сотни лет назад осмелившихся ступить на шаг дальше в непроглядную тьму лаза. И все это скелеты подростков.
Как показано в экспериментах, в ходе принятия рискованных решений у тинейджеров меньше, чем у взрослых, активируется префронтальная кора – значит, они хуже оценивают риск. И этот просчет принимает специфическую форму, что продемонстрировала Сара-Джейн Блэкмор из Университетского колледжа Лондона{298}. Сначала попросили участников оценить риски того или иного события (например, выигрыша в лотерею или гибели в авиакатастрофе). Потом сообщили реальную вероятность событий. Сравнение могло быть как в лучшую сторону (если вероятность хороших вещей недооценена испытуемыми, а плохих – переоценена), так и в худшую (наоборот, вероятность хороших событий переоценена, а плохих недооценена). Затем снова предлагали оценить риски тех же событий. Взрослые дают новые оценки с учетом полученной информации. Подростки тоже учитывают поступившую информацию, но только хорошую. А плохую пропускают мимо ушей. (Вопрос экспериментатора: «Каков риск автокатастрофы, если вы сели за руль, сильно выпив?» Подросток: «Один к миллиарду миллиардов». Экспериментатор: «На самом деле около 50 %». Подросток: «Да что вы, это же я за рулем! Шанс один на миллиард миллиардов».){299} Вот мы только что и объяснили, почему патологическая тяга к азартным играм встречается у подростков в два-четыре раза чаще, чем у взрослых.
Так что подростки уверенно рискуют, и плевать им на все вероятности. Но дело тут не столько в том, что тинейджеры больше хотят идти на риск. Желание риска испытывают и взрослые, и подростки, просто взрослые лучше контролируют это желание с помощью сформированной лобной коры. Но возрастные различия в поиске острых ощущений все же есть: подростки склонны к банджи-джампингу, а взрослые – к обманным маневрам вокруг своей бессолевой диеты. Нужно говорить не только о более рискованном поведении, но и о большем стремлении к новизне[155]{300}.
Поиск новизны пронизывает весь подростковый мир. Именно тогда происходит становление наших музыкальных и пищевых пристрастий, приверженность той или иной моде, а затем открытость разным инновациям постепенно снижается{301}. То же самое свойственно не только людям. У грызунов, например, именно в переходном возрасте животные стремятся попробовать новую еду. Особенно сильно выражен поиск нового у приматов. У многих социальных млекопитающих именно подростки того или иного пола покидают своих родичей, уходя в другую группу, – классический путь, чтобы избежать инбридинга. Взять, к примеру, импал. У них группы самок с малышами охраняются одним самцом, который и спаривается со всеми самками. Другие самцы сбиваются в холостяцкие компании и бродят вокруг, мечтая сместить самца-производителя. Когда в семейной группе с самками подрастает теленок, самец-производитель изгоняет его из родного стада (только не нужно примешивать сюда чепуху про Эдипа, нынешний самец-производитель, скорее всего, не отец изгнанному подростку, его генетический отец был много производителей назад).
Но у приматов все по-другому. Вот, например, павианы. Предположим, две группы встретились у какой-нибудь естественной границы, скажем у ручья. Самцы некоторое время будут устрашать друг друга, демонстрируя свою мощь, затем им это надоест и они вернутся к своим занятиям. Но не подросток. Тот ни за что не отойдет от берега. Там же другие павианы, новые, незнакомые! Он то отбежит на пять шагов, то вернется на четыре, мечется, вертится, возбужденный, нервный. Вот он опасливо перешел на другую сторону ручья и уселся, готовый рвануть назад, если хоть кто-то на него посмотрит.
Так начинается небыстрый переход: завтра павиан-подросток проведет на другом берегу больше времени, на следующий день еще больше, пока наконец не исчезнет в новой семье на всю ночь. Его никто не гонит. Но, если ему придется еще хоть один день провести в унылой обыденности с теми, кого он всю жизнь знает и выучил уже вдоль и поперек, он просто закричит. А вот у шимпанзе родную семью склонны оставлять юные самочки – не самцы. Мы, приматы, не гоним своих подрощенных детенышей. Они сами отчаянно ищут новизны[156].
Можно сказать, что подростковый возраст – это время риска и поиска нового. И при чем тут дофаминовая система награды, как она срабатывает в данном случае?
Вспомним главу 2, те параграфы, которые касаются области вентральной покрышки. В этой области начинается мезолимбический дофаминовый путь к прилежащему ядру и мезокортикальный дофаминовый путь к лобной коре. В течение подросткового периода и в мезолимбическом пути, и в мезокортикальном плотность и эффективность дофаминовых аксонов неуклонно увеличивается (хотя поиск новизны обостряется в середине этого периода, указывая, вероятно, на становление лобной регуляции во второй половине подростковой эпохи){302}.
Не очень понятно, сколько дофамина выделяется в ожидании награды. В некоторых исследованиях на эту тему сообщается, что в предвкушении награды у подростков выделяется больше дофамина, чем у взрослых, а в других, напротив, что меньше. При этом наименьший дофаминовый ответ регистрируется у подростков-сорвиголов, которым свойственно самое рискованное поведение{303}.
На абсолютный уровень выделения дофамина в разных возрастах смотреть не очень интересно, зато на относительный стоит обратить пристальное внимание. В одном из прекрасных исследований детей, подростков и взрослых, подключенных к нейросканеру, попросили решать задачу, и если решение было правильным, то давали различные денежные награды (см. рис. на следующей странице){304}. Видно, что активация префронтальной коры у детей и подростков беспорядочная и рассеянная. Но активация в прилежащем ядре у подростков при этом вполне отчетлива. У детей правильный ответ вне зависимости от величины награды вызывал более или менее сходную активацию прилежащего ядра. У взрослых небольшая, средняя и крупная награды соотносились соответственно с низким, средним и высоким уровнем дофаминового ответа в прилежащем ядре. А у тинейджеров? Если награда была среднего размера, то все выглядело так же, как и у детей и взрослых. Но если давали большую награду, то на выходе наблюдалась бешеная активация, гораздо большая, чем у взрослых. А небольшая награда? Активация прилежащего ядра – да-да! – уменьшается. Иными словами, подростки сильнее радуются крупной (больше, чем ожидали) награде, чем взрослые, а награда меньше ожидаемой вызывает у них отвращение. Как запущенный волчок, неуправляемый в своем кручении.
Все это позволяет говорить о преувеличенной подростковой дофаминовой реакции в ответ на крупную награду, тогда как награда благоразумно соразмерная кажется им никчемной. И незрелая лобная кора не имеет никаких инструментов, чтобы уравновесить дофаминовую систему. Но есть еще кое-что любопытное.
Несмотря на сумасшедшие, неконтролируемые дофаминергические нейроны, подростки способны во многих ситуациях волне разумно, не хуже взрослых, оценить риски. Но при этом в других ситуациях – долой логику и рассудительность, подростки ведут себя как подростки. В работе Лоуренса Стейнберга из Университета Темпл как раз и показано, в какой ситуации, презрев всякую предосторожность, они бросаются в омут с головой – когда вокруг сверстники.
Сверстники, социальное принятие и социальное исключение
О подростковой чувствительности к окружению, в особенности к окружению сверстников, чье расположение хотелось бы заслужить, ходят легенды. Но и экспериментально это можно показать. В одном из своих исследований Стейнберг предлагал подросткам и взрослым играть в видеоигру «Авторалли», где очевидно требовалось идти на определенный риск. Если при этом рядом со взрослым игроком сидели двое его ровесников, которые вовсю его раззадоривали, это никак не меняло уровень рискованных решений. Но у тинейджеров в той же ситуации количество рискованных решений утраивалось. В ходе нейросканирования выяснилось, помимо прочего, что действия провокаторов-сверстников (подначивающих игрока дистанционно) снижают у подростков активность вмПФК и усиливают активность вентрального полосатого тела. А у взрослых – нет{305}.
Почему сверстники имеют столь сильное социальное влияние на подростков? Для начала вспомним, что подростки вообще более социальны и социальные связи у них сложнее, чем у детей и взрослых. Например, в работе 2013 г. было показано, что у подростков в «Фейсбуке» в среднем около 400 френдов, гораздо больше, чем у взрослых{306}. Их социальность зиждется по большей части на эмоциональных, аффективных стимулах: вспомним более высокую подростковую лимбическую реакцию и пониженную лобную на эмоциональные выражения лиц. Эти четыре сотни френдов нужны тинейджеру вовсе не для социологической статистики в своей ученической работе. Они нужны, потому что ему до смерти необходимо быть частью общества.
В результате имеем подростковую чувствительность к давлению со стороны сверстников и подверженность эмоциональному подражанию. Более того, такое давление обычно способствует т. н. научению девиантному поведению, которое увеличивает шансы тинейджера совершить правонарушение, насилие, пристраститься к наркотикам, заняться небезопасным сексом или навредить собственному здоровью (оглянитесь: вряд ли в вашем поле зрения окажутся банды подростков, которые вынуждали бы детей вступать в их ряды с целью научить новичков регулярно чистить зубы и в обязательном порядке совершать добрые поступки). Например, в общежитиях колледжей сильно пьющий подросток повлияет на своего непьющего соседа по комнате, а не наоборот. А случаи пищевых отклонений распространяются среди тинейджеров со скоростью вирусного заражения. То же самое происходит и с депрессией у девочек, что отражает их свойство снова и снова пережевывать с подружками чувства, взаимно подогревая негативные эмоции.
В исследованиях с нейросканированием ясно видно, насколько подростки восприимчивы к ровесникам. К примеру, взрослого сначала попросили поразмышлять, что о нем думают другие, а потом – что он сам о себе думает. Нейросканер при этом выдает две различные, частично перекрывающиеся картины возбуждения в лимбической и лобной нейронных системах. А у подростка таких различий нет, возбуждение сходно. «Что ты думаешь о себе?» для них эквивалентно вопросу «Что о тебе думают другие?»{307}.
В красивых исследованиях по исключению из социума как раз и было продемонстрировано отчаянное стремление подростков быть частью группы. Для этого была разработана потрясающе тонкая игра «Кибербол», ее автор – Наоми Эйзенбергер из Калифорнийского университета в Лос-Анджелесе. «Кибербол» смоделирован так, чтобы заставить людей чувствовать себя изгоями общества{308}. Человека помещают в нейросканер и предлагают виртуальную игру с еще двумя игроками (они, понятное дело, не существуют, это просто компьютерная программа). Каждый игрок находится в углу треугольного игрового поля и должен бросать мяч другому игроку, одному из двух по выбору. Испытуемый предполагает, что остальные действуют по тем же правилам. Мяч некоторое время перелетает от одного к другому и третьему в случайном порядке, а затем эксперимент начинается – конечно, без ведома испытуемого. Два виртуальных игрока начинают бросать мяч только друг другу, но не нашему подопытному кролику. Они исключают его из игры. При этом у взрослых сначала активируется центральное серое вещество, потом передняя поясная кора, миндалина и зона островка. Превосходно – полный комплект для ощущения боли, злости и отвращения[157]. А затем, после некоторой паузы, подключается вентролатеральная ПФК (влПФК). И чем больше она активируется, тем ниже активность в поясной коре и островке и тем меньше уровень разочарования, который выражает испытуемый после эксперимента. Что же делает влПФК? А вот что: «Зачем же я расстраиваюсь? Это ведь всего лишь глупая игра в мяч». Ура, лобная кора пришла на помощь со своим рациональным взглядом на вещи и регуляцией эмоций.
А теперь обратимся к подросткам. У некоторых выявляется схожая со взрослыми картина активации. Это у тех, кто считает себя наименее чувствительным к исключению из социума, у кого полно друзей. Но у большинства тинейджеров при социальном исключении влПФК практически не активируется. И активность других участков мозга у них выше, чем у взрослых, после такой игры они чувствуют себя глубоко несчастными. У подростков нет необходимой мощи лобного контроля, чтобы просто махнуть на все рукой, мол, не очень-то и хотелось. Исключение ранит тинейджеров гораздо сильнее, и тем сильнее необходимость находиться в группе{309}.
В одном из исследований с использованием нейросканирования было раскрыто содержание нейронного комплекса, связанного с конформизмом{310}. Если наблюдать за движением руки, то в премоторной области коры будет регистрироваться небольшое возбуждение – это мозг почти изготовился повторить данное движение. Так вот, в исследовании конформизма использовано именно это явление. Десятилетним детям показывали ролики с движениями руки или эмоциональными выражениями лиц. Оказалось, что у детей, наиболее подверженных влиянию сверстников (степень этой подверженности оценивалась по шкале, разработанной Стейнбергом)[158], при просмотре роликов наблюдалась наибольшая активация премоторных областей – но только роликов с эмоциональными лицами, а не с движениями рук. Иначе говоря, десятилетние дети, весьма чувствительные к социальному давлению со стороны сверстников, готовы повторять эмоциональную реакцию окружающих. (Учитывая возраст испытуемых, авторы работы обсудили эти результаты с точки зрения возможного прогнозирования поведения будущих подростков.)[159]
Спустившись на такой атомистический уровень объяснения конформизма, можно с определенной вероятностью предсказать, кто из тинейджеров присоединится к банде нарушителей. Но с позиции этого уровня нельзя объяснить, кто будет распоряжаться, кого приглашать, а кого не приглашать на вечеринку, т. е. кто назначает изгоев.
Можно рассмотреть более абстрактный конформизм сверстников и его соотношение с различными нейробиологическими признаками, что и было проделано в одной из работ. Вспомним, что у подростков вентральное полосатое тело помогает лобной коре переосмыслять исключение из социума. Так вот, выяснилось, что подростки, наиболее устойчивые к влиянию сверстников, демонстрируют повышенное возбуждение в вентральном полосатом теле. Откуда же это возбуждение берется? На самом деле ответ вы уже знаете: из следующих глав это станет очевидно.
Эмпатия, сочувствие и моральные суждения
Достигнув подросткового возраста, человек уже вполне воспринимает другую точку зрения, он способен увидеть мир глазами другого человека. Об этой способности мы узнаем, впервые услышав заявление типа: «Я с ним не согласен, но в принципе могу понять его чувства, в особенности учитывая, что он пережил».
Но подростки все же еще не взрослые. В отличие от тех, они склонны все примерять на себя: «Что бы я чувствовал в ее/его положении?», а не «Что она/он сейчас чувствует»{311}. Моральные суждения тинейджеров по ходу взросления становятся все изощреннее, но пока не соответствуют взрослой планке. Они, подростки, уже оставили позади детский эгалитаризм, когда все нужно делить поровну. Вместо этого они принимают более меритократические (каждому по заслугам) решения, может быть, чуть сдобренные поверхностными суждениями о пользе и свободе. Меритократическая позиция сложнее эгалитарной, потому что для последней важен лишь конечный результат действий, а первая учитывает причины того или иного исхода. Но при этом меритократическая позиция подростков не достигает уровня сложности взрослых. Например, и подростки, и взрослые учитывают обстоятельства, влияющие на то или иное поведение, но подростки не различают единичные и систематически повторяющиеся обстоятельства.
Постепенно, по мере взросления, подростки начинают осознавать разницу между случайным и намеренным вредом, и последний для них непростительнее первого{312}. При наблюдении акта случайного вреда у подростка меньше возбуждаются три зоны коры, связанные с восприятием боли, – миндалина, островок и премоторные области (последние отражают тенденцию съеживаться, когда вы слышите о причинении боли). А если вред намеренный, длПФК и вмПФК возбуждаются все сильнее. Иными словами, в том, был ли причинен вред намеренно или нет, должна разбираться лобная кора.
Также по ходу взросления подростки начинают лучше осознавать разницу между вредом для людей и повреждением вещей; первое, ясно, хуже. Когда ущерб наносится человеку, то у подростка активируется миндалина, а при поломке вещей этого не происходит. Обратим внимание на то, что для старших подростков мера наказания за ненамеренную и намеренную порчу вещей более или менее выравнивается. То есть важным становится именно результат действия, неважно, случайного или умышленного: в любом случае чертову поломку нужно исправлять. Как говорится, над пролитым молоком нечего слезы лить – но лужу-то вытирать все равно приходится[160].
А теперь обратимся к самой важной черте подростков – их способности остро, нет – бешено! – ощущать чужую боль, общую боль, пытаться сделать так, чтобы всем вокруг было хорошо. В следующих главах мы разберем различие между сочувствием и эмпатией[161], т. е. между пониманием чужой боли и ощущением ее. Подростки специализируются на последнем, для них сила ощущения чужой боли граничит с ощущением собственной.
Сила этих ощущений не должна удивлять, здесь сходятся многие грани подросткового бытия. Тут и обилие эмоций, и лимбические вихри. Подъем превращается во взлет, снижение оборачивается падением в пропасть, эмпатия обжигает, а сияние правильных поступков превращает их в ясную цель, к которой, как кажется, и вели жизненные пути. Еще одна грань – это открытость всему новому. Открытый ум предрасполагает и к душевной открытости, потому тинейджер, жаждущий новых ощущений, готов чьи угодно переживания испытать на собственной шкуре. Да еще припомним подростковый эгоизм. Будучи подростком, я крутился вокруг квакеров, а у них в ходу была поговорка «Все, что Богу нужно, это ты»[162]. Сразу представлялся Бог с ограниченными возможностями, которому для исправления несправедливостей нужен человек, и не просто человек, а именно ты, и только ты. Столь эгоистический призыв скроен как будто специально для подростков: с их неисчерпаемой энергией, с их ощущением собственной всесильности – почему бы не помочь миру?
В главе 13 мы порассуждаем о том, что ни эмпатия, даже самая острая и мощная, ни самые высокопарные моральные доводы не способны подвигнуть человека на смелый и реально трудный поступок. В этом заключается тонкое ограничение подростковой эмпатии.
Мы увидим одну сторону рассуждений, при которых эмпатия не приводит к решительным шагам, – это рационализация («Проблема, очевидно, раздута» или «Пусть кто-нибудь еще этим займется»). Но и слишком сильная эмпатия тоже не помогает совершению действия. Ведь почувствовать чужую боль – это действительно больно, и люди с обостренной способностью к подобному со-чувствию, с повышенной тревожностью и впечатлительностью совершают меньше просоциальных поступков. У них чувства сфокусированы на собственных болезненных ощущениях, которые приводят к реакции избегания: «Все это ужасно, я больше не могу здесь находиться…» То есть чем больше боли передается за счет эмпатии, тем сильнее человек концентрируется на своих собственных переживаниях.
И напротив, чем лучше человек контролирует эмоции, перенятые от другого, тем с большей вероятностью он будет вести себя альтруистически, просоциально. В связи с этим нелишне упомянуть, что в стрессовой ситуации, такой, что может вызвать у других эмпатию, человек с колотящимся сердцем вряд ли бросится совершать просоциальные поступки. Их скорее совершит тот, чье сердце спокойно. Так что если уж делать ставки, кто будет реально действовать, то ставить нужно на того, кто не захлебнется волной эмпатии, а сможет, отстранившись, оседлать ее.
И как же быть подросткам с их открытой душой, переполненной эмоциями, лимбической системой, загруженной на полную катушку, и кряхтящей позади лобной корой? Трудно им. С такими сверхэмпатией и возбудимостью тинейджерам нелегко дается взвешенное поведение{313}.
Подростковая болезненная эмпатия кажется взрослым чуточку чрезмерной. Но, когда я смотрю на своих юных студентов, переживающих подростковый угар, думаю, что ведь когда-то проще было вести себя именно так, а не иначе. Конечно, моя взрослая лобная кора разрешит мне совершить любой добрый поступок, рассмотрев все с отстраненных позиций. Но не станет ли эта отстраненность помехой для добрых дел – мол, «я не я, и лошадь не моя»?
Подростковое насилие
Хорошо известно, что подростковый период – это не только продажа благотворительных конфеток в поддержку борьбы с глобальным потеплением. Повзрослевшие подростки и молодежь входят в пик возраста насилия, будь оно импульсивным или намеренным, совершенным в старомодном кулачном бою или в перестрелке, в одиночку или в банде, в форменной или в повседневной одежде, против неизвестного чужака или близкого партнера. А затем уровень насилия резко падает. И, как говорят, лучшим средством от этой беды является тридцатилетний юбилей.
На определенном уровне подростковое хулиганство сродни членству в экологическом клубе, где тинейджер жертвует все свои карманные деньги на спасение горных горилл. Срабатывает все тот же повышенный эмоциональный фон, жажда одобрения со стороны сверстников, поиск новизны и, естественно, та самая лобная кора. Но на том сходство и кончается.
И что же лежит в основе этого всплеска насилия у молодежи? Нейробиологи не могут обнаружить ничего особо выдающегося по сравнению со взрослым насилием{314}. Как взрослые, так и юные психопаты демонстрируют пониженную чувствительность ПФК и, соответственно, затрудненную обратную регуляцию дофаминовой системы, меньшую болевую чувствительность, нарушенную сопряженность в работе миндалины и лобной коры при решении задач на моральные суждения или эмпатию.
Не связан этот пик преступности и с волной тестостерона. Вспомним главу 4 – и у взрослых, и у юношей тестостерон индуцирует сходный уровень жестокости. А кроме того, тестостероновый максимум приходится на ранний подростковый возраст, пик насилия же – на более поздний.
В следующей главе будет рассматриваться основа подростковой жестокости, но сейчас нам важно знать, что среднестатистический подросток не может так управлять своим поведением или суждениями, как среднестатистический взрослый. Из-за этого, по мнению некоторых, тинейджеров не следует судить по всей строгости закона. Другие же считают, что, даже несмотря на незрелость суждений и ослабленный самоконтроль, они все равно заслуживают полноты наказания. Первая из этих точек зрения выразилась в двух решениях Верховного суда США.
Одно из них было принято в 2005 г. в деле «Роупер против Симмонса». Суд постановил пятью голосами против четырех, что наказание правонарушителей моложе 18 лет является неконституционным, т. к. нарушает 8-ю поправку о недопустимости жестокого и нестандартного наказания. Второе решение было вынесено в 2012 г. в слушаниях дела «Миллер против Алабамы» – также пятью голосами против четырех. Суд на том же самом основании вынес запрет на пожизненное заключение без права досрочного освобождения для несовершеннолетних правонарушителей{315}.
Судебное объяснение, выраженное судьей Энтони Кеннеди от лица большинства голосов в деле «Роупер против Симмонса», имеет прямое касательство к теме этой главы. Вот оно:
Во-первых, [как все знают] незрелое и недоразвитое чувство ответственности сопутствует юности чаще, чем взрослым. И это свойство зачастую приводит к поспешным и необдуманным решениям и действиям{316}.
Я целиком и полностью согласен с обоими решениями. Но, забегая вперед, открою карты: кажется мне, что все это не более чем красивая витрина. Вся глава 16 посвящена данной идее, и я считаю, что с помощью научных знаний, изложенных в этой книге, нам следует переложить всё до камешка в нашей уголовно-правовой системе.
И последнее: почему лобная кора не может взрослеть, как все?
Как и было обещано, в этой главе основной упор был сделан на Факт, что лобная кора отстает в развитии от остальных частей мозга. С чем связано это отставание? С тем ли, что это самая сложная мозговая конструкция?
Скорее всего, не с этим. В лобной коре работают те же самые нейроны и системы нейромедиаторов, что и в других частях мозга. Плотность нейронов и число межнейронных связей тоже примерно такое же, как в остальных участках коры. Так что выстроить лобную кору ничуть не труднее, чем любую другую.
Поэтому маловероятно, что мозг, который мог бы в принципе ускоренно сформировать лобную кору, упустил бы такую возможность. Я думаю, что отставание в созревании лобной коры обусловлено действием отбора в ходе эволюции.
Если бы лобная кора созревала шаг за шагом вместе со всем мозгом, то не было бы никаких подростковых вспышек, не было бы тревожного возбужденного поиска и творчества, не было бы длинноволосых прыщавых гениев, которые бросают школу и запираются в гараже, чтобы изобрести огонь, колеса, наскальную живопись…
Возможно. Но вся эта история с изобретениями должна как-то учитывать поведение, которое приводит к передаче генов следующим поколениям, а не к деяниям на благо человечества (оставайтесь с нами до главы 10). И на каждого, кто с пользой провел свое продуктивное время, найдется сотня таких, кто сломал себе шею из-за подросткового безрассудства. Не думаю, что развитие лобной коры было отбором попридержано ради того, чтобы подростки имели возможность совершать свои сверхдеяния.
Мне кажется, лобная кора отстала от других, чтобы мозг мог все изготовить как следует. Мозг, правда, все делает как следует, все части. Но с лобной корой это «как следует» означает кое-что особенное. В предыдущей главе мы со всех сторон обсудили нейропластичность – и как формируются новые синапсы, и как зарождаются новые нейроны, и как перепланируются нервные пути, и как разные части мозга растут и сжимаются – так мы учимся, меняемся, приспосабливаемся к окружению. И для лобной коры это важно как ни для какой другой части мозга.
Все уже знают, что наилучшими предсказателями успеха во взрослой жизни являются вовсе не высокие показатели IQ или SAT[163], а т. н. социальный и эмоциональный интеллекты{317}. Успех сопутствует тем, кто обладает социальной памятью и умением видеть ситуацию с другой, эмоциональной, стороны, кто умеет контролировать свои порывы и решения, может работать в команде. Здесь просматриваются параллели с другими приматами, у которых, между прочим, крупная лобная кора тоже созревает последней. Зададимся, например, вопросом: какими качествами должен обладать доминантный самец-павиан? Для начала, конечно, у него должны иметься крепкие мускулы, острые клыки и изрядная агрессивность. Но вот он ими воспользовался и оказался наверху павианьей иерархии – а дальше, чтобы там удержаться, требуется социальный ум: знать, кто с кем образует коалиции, как запугать соперника, какие из провокаций следует пропустить, а на какие ответить, какой уровень агрессии считать приемлемым. И у самцов макак-резусов, как мы помним из главы 2, размер лобной коры идет рука об руку с социальным доминированием.
На взрослом пути то и дело попадаются развилки, где приходится выбирать правильный путь, и он, как водится, труднее. Компасом на этом пути служит лобная кора, это ее обязанность. Потому для выбора верного направления в каждом конкретном случае ей сначала требуется глубокая перекройка по лекалам жизненного опыта.
В этом-то и может заключаться ответ. Как мы увидим в главе 8, развитие и функционирование мозга сильно зависит от генов. Но на протяжении детства и юности та часть мозга, которая определяет существенную часть нашей личности, меньше зависит от работы генов, приданных нам при рождении, чем от событий, сквозь которые проводит нас жизнь. Эта часть мозга созревает последней, а значит, она формируется больше за счет опыта, чем за счет генов. Так и должно быть у высокосоциальных животных, какими мы являемся. Получается, как это ни забавно, что генетическая программа развития человеческого мозга эволюционировала в таком направлении, чтобы по возможности освободить лобную кору от влияния генов.
Глава 7
Назад – в колыбель, назад – в утробу
Завершив путешествие на Планету подростков, вернемся к нашему повествованию. Поведенческий акт – хороший ли, плохой ли, сомнительный – произошел. Почему? Все эти нейроны и гормоны оставим в стороне, ведь обычно первым делом мы обращаем взгляд в детство.
Путь усложнения
Детство – это тот период, когда все аспекты и мыслей, и поведения, и эмоций постепенно усложняются. При этом важно, что усложнение происходит поэтапно, минуя последовательно стандартные единообразные стадии. Почти все исследования детского развития так или иначе ориентированы на эти стадии; их тематика касается: а) последовательности стадий; б) влияния опыта на скорость и гармоничность путешествия по дороге взросления; в) влияния особенностей прохождения этих стадий на личность будущего взрослого. Давайте начнем с рассмотрения вопроса, как нейробиология определяет природу постадийного развития.
Коротко о развитии мозга