Организованный ум Левитин Дэниел

В рамках гибсоновской теории возможностей считается, что особенности дизайна объекта всегда подсказывают, как этот объект использовать. Знаменитый пример, предложенный другим когнитивным психологом, Доном Норманом, – обычная дверь. Когда вы подходите к ней, откуда вы знаете, открывается она внутрь или наружу, то есть толкать ее или тянуть? Если входите через эту дверь регулярно, вы можете и запомнить, как ее открывать, но это удается далеко не всем. Когда участников эксперимента спросили: «Дверь вашей спальни открывается внутрь комнаты или наружу?» – большинство не смогли вспомнить. Но некоторые особенности дизайна двери подсказывают ответ: конструкция объекта указывает на оптимальные возможности его применения, чтобы не нужно было запоминать, то есть перегружать мозг информацией, которую лучше гораздо более надежно и эффективно хранить во внешнем мире.

Берясь за дверную ручку, вы чаще всего видите, позволит ли дверной косяк открыть ее, потянув на себя. Скорее всего, вы оцениваете это неосознанно, но мозг успевает проанализировать особенности устройства дверной коробки и подсказывает нужные действия: это гораздо более эффективно с точки зрения работы мозга, чем запоминание механизма открывания всех дверей, с которыми приходится сталкиваться. В офисных зданиях и прочих общественных пространствах особенности устройства дверей часто позволяют еще быстрее догадаться, как именно они открываются: если дверь нужно толкать, на месте ручки мы часто видим плоскую пластину, чтобы не за что было взяться и потянуть, а вот двери, которые нужно открывать на себя, обязательно имеют удобную ручку. Бывает, мы задумываемся на мгновение, в какую же сторону открывается дверь, особенно если мысли заняты чем-то важным. Но чаще всего мозгу удается моментально распознать способ открывания – это и есть проявление теории гибсоновских возможностей.

Дизайн телефонного аппарата на столе подсказывает, что именно нужно сделать для ответа на звонок: телефонная трубка имеет такой размер, чтобы была возможность взять в руку именно ее, а не другую часть устройства. В ручках ножниц два отверстия, и одно больше другого, чтобы было ясно, какое из них для большого пальца (и с этим часто мучаются левши). Оформление ручки чайника подсказывает, как удобнее всего его поднимать. И таких возможностей, обусловленных конструкцией и дизайном изделия, масса.

Вот почему нам так помогают прибитые в удобном месте крючки для ключей. Чтобы не терять без конца мелочи, которые то и дело пропадают из поля зрения, вроде ключей от машины, очков или кошелька, нужно оптимизировать дизайн пространства, создать возможности и снять лишнюю нагрузку с мозга. В век информационной перегрузки важно научиться контролировать окружающую среду и использовать понимание устройства мозга. При организованном подходе он сам замечает возможности и формирует категории, чтобы практически без усилий функционировать в мире всех этих ключей, телефонов и прочих мелочей и успешно существовать в XXI столетии – веке идей.

Глава 2. Определимся с принципами

Как устроены внимание и память

Мы живем в мире, полном иллюзий. Думаем, будто понимаем, что происходит. Смотрим по сторонам и наблюдаем целостную картину мира, состоящую из тысяч детальных образов. Возможно, мы догадываемся, что у каждого есть и слепые зоны, но живем, не замечая и не ощущая их, потому что затылочная кора мозга мастерски дополняет картину и скрывает области, где информации не хватает. В ходе лабораторных исследований проявления слепоты невнимания (как в случае с той гориллой на видео из предыдущей главы) становится очевидно, насколько малую часть видимого мира мы на самом деле воспринимаем, – хотя и живем с ощущением, что нам доступна полная картина.

Мы обращаем внимание на окружающие объекты отчасти по собственной воле (то есть сами решаем, на что смотреть), отчасти в результате деятельности внутренней системы предупреждения, отслеживающей возникновение потенциальных опасностей, а также в силу разнообразных чудачеств мозга. Он умеет классифицировать объекты автоматически, без нашего сознательного участия. Когда формируемые нами системы связей между объектами противоречат тому, как создал категории сам мозг, мы начинаем терять вещи, пропускать встречи и забывать о важных делах.

Приходилось ли вам оказаться в самолете или поезде без книжки или журнала и просто долго смотреть в окно, не глядя ни на что конкретно? Прекрасный способ приятно провести время – а потом вы наверняка не вспомните, что видели, о чем думали и даже сколько времени так провели. Схожее чувство возникает, когда удается посидеть на берегу океана или озера: мы позволяем мыслям свободно течь и чувствуем, как отдыхаем. В этом состоянии мысли и правда вольно скачут, а идеи, образы, звуки, прошлое, настоящее и будущее сливаются в причудливую картину. Мы оказываемся в потоке собственного сознания и как будто спим наяву.

Это особое состояние мозга, когда не связанные вроде мысли перетекают одна в другую, а между ними и чувствами не остается почти никаких барьеров. В эти моменты приходят творческие идеи и решения сложных задач. Обнаружение и описание состояния, при котором мышление становится особым, текучим, нелинейным, оказалось одним из важнейших достижений в области нейробиологии за последние двадцать лет. Поддерживающая этот процесс нейронная сеть воздействует на сознание: если вы не заняты или вынуждены заниматься чем-то скучным, мозг легко погружается в полусон. То же происходит, когда вы вроде прочли несколько страниц книги, но не можете вспомнить, о чем шла речь[77]; или когда вы за рулем авто вдруг спохватываетесь, что давно уже ушли в свои мысли и пропустили нужный поворот; или если замечаете, что минуту назад еще держали ключи в руке, а теперь не представляете, где они. Но где же был ваш мозг, когда все это происходило?

Размышления о будущем или планирование дел, попытки представить себя в какой-то ситуации (особенно если в нее вовлечены другие), сострадание, воспоминания – все это задействует нейронную сеть, отвечающую за состояние полусонной задумчивости[78]. Наверняка вам случалось прекратить дела и попробовать вообразить последствия своих действий или представить себя в какой-то ситуации: возможно, взгляд при этом уплывал куда-то вверх или в сторону, и вы полностью уходили в мысли. Это она и есть, полусонная задумчивость[79].

Когда механизм возникновения этого состояния был описан, об этом не трубили в популярной прессе, но само открытие серьезно изменило взгляд нейробиологов на принципы работы внимания. Как мы теперь понимаем, состояние задумчивости и погруженность в мысли вполне естественны для мозга. Именно поэтому, выходя из полусна, мы часто чувствуем себя бодрее; по этой же причине и отпуск, и даже перерыв на короткий сон помогают восстановить силы. Человеческий мозг настойчиво стремится переключиться в это комфортное состояние. Описывая его, Маркус Райхл привел такой термин: стандартный пассивный режим работы[80]. Мозг не занят трудоемкими задачами, вы не заставляете его искать или анализировать информацию, а просто сидите на пляже или в кресле со стаканом скотча и позволяете мыслям свободно бродить. И не то чтобы вы в этот момент не могли ни на чем сосредоточиться – вы этого просто не хотите, как будто не находите для этого причин.

У режима полусонной задумчивости есть противоположность – состояние, в котором вы полностью концентрируетесь на какой-то задаче: заполняете налоговую декларацию, готовите отчет или ведете машину в незнакомом городе. Это второе из доминирующих «положений» нашей системы внимания, находясь в котором мы выполняем многие сложные вещи, поэтому исследователи назвали его активной сфокусированной деятельностью. Эти два состояния мозга взаимоисключающие, как инь и ян[81]: в каждый момент мозг может находиться лишь в одном из них. Для работы над сложными задачами включается режим активной деятельности, и чем более подавляется нейронная сеть, отвечающая за стандартный пассивный режим[82], тем лучшей точности действий и решений мы можем добиться.

После того как был обнаружен и описан стандартный режим работы мозга, удалось объяснить, почему иногда нам удается концентрировать на чем-то внимание лишь ценой заметных усилий. Вообще, нужно понимать: чтобы уделить внимание чему бы то ни было, приходится от чего-то отвлекаться. Здесь работает принцип «либо/либо»: мы концентрируем на чем-то внимание либо за счет осознанного решения это сделать, либо потому, что фильтр внимания оценил ситуацию как достаточно серьезную и поместил ее в фокус. Повторим: когда мы уделяем чему-то внимание, мы совершенно точно не замечаем чего-то другого.

Мой коллега Вайнод Менон обнаружил, что состояние пассивной мечтательности поддерживается целой нейронной сетью[83], то есть за него отвечает не отдельный участок мозга. Эта сеть, подобно электрической цепи, объединяет группы нейронов в разных отделах. Отмечу, что подход к анализу работы мозга в контексте нейронных сетей стал наиболее значительным открытием недавних лет.

Около двадцати пяти лет назад в психологии и нейробиологии произошли революционные изменения. В психологии использовались созданные за десятилетия до этого методы, с помощью которых предпринимались попытки понять человеческое поведение в рамках объективных и наблюдаемых проявлений, к примеру способности запоминать слова из списка или выполнять задания в среде, где много отвлекающих факторов. Нейробиология занималась преимущественно коммуникациями между клетками мозга и его биологической структурой. При этом психологам было сложно разобраться в физических особенностях строения мозга, то есть понять, как и почему в нем возникают мысли. А нейробиологам не удавалось перейти с уровня анализа отдельных нейронов к изучению поведения существа в целом. Революционной оказалась разработка бесконтактных технологий нейровизуализации: это целый набор инструментов, аналогичных рентгеновскому аппарату, которые не только показывают контуры и структуру мозга, но и помогают увидеть взаимодействие между отдельными его участками в процессе умственной и другой деятельности. Появилась возможность наблюдать мозг в действии! Новые технологии: позитронно-эмиссионная томография, функциональная магнитно-резонансная томография, магнитоэнцефалография – известны теперь по аббревиатурам ПЭТ, ФМРТ, МЭГ.

Поначалу исследования касались преимущественно локализации отдельных функций мозга и были похожи на своего рода нейрокартографию[84]: какая его часть активизируется, когда вы представляете свою подачу на теннисном корте, слушаете музыку или решаете математическую задачу? В последнее же время все больше исследователей стремятся разобраться, как эти отдельные зоны взаимодействуют. Нейробиологи приходят к выводу, что во многих случаях задействуются не отдельные зоны мозга, а целые нейронные цепи. Простой пример: отвечая на вопрос, где находится электричество, питающее холодильник, на что вы укажете? На розетку? Но ведь оттуда электричество начинает идти, только когда прибор в нее включен, – да и тогда питание там не хранится, оно идет по проводам. То есть находится не в какой-то единой точке, а в распределенной сети.

Аналогично эксперты по когнитивной нейробиологии в исследованиях все чаще исходят из того, что мозговая деятельность не ограничена отдельной зоной, а распределена. Скажем, процессы, связанные с освоением и использованием языка, не происходят локально, а реализуются в рамках сети – вроде электрической в вашей квартире, – которая включает разные отделы мозга. Когда-то считалось, что за изучение и использование языка отвечает одна зона, так как при травмах именно этого участка человек терял способность говорить или понимать речь. Но давайте вспомним электросеть: если в каком-то месте провод поврежден, часть помещений может быть обесточена, но это не значит, что источник тока находится в месте повреждения, – дело лишь в нарушении целостности сети, из-за которого ток не проходит. И поэтому независимо от того, в каком именно месте электрической разводки квартиры мы перережем провод, даже у электрощитка, некоторые приборы могут перестать работать. Если вы в этот момент включаете в кухне блендер, а он не работает, потому что нет электричества, вам все равно, где именно перебит провод. Чтобы восстановить электроснабжение, важно найти зону повреждения. Примерно так нейробиологи теперь рассматривают устройство и работу мозга: как фантастически сложную систему, состоящую из пересекающихся и взаимодействующих сетей.

Страницы: «« 12

Читать бесплатно другие книги:

Лелька, начав работу над новым романом, оказывается втянутой в расследование серии загадочных убийст...
Лучший способ передать окружающим свои экспертные знания и опыт – просто поговорить с ними. Но больш...
Михаил Владимирович Советов – практикующий профессиональный врач с 12-летним стажем работы в традици...
Уверенно раскладывать и читать карты Таро под силу не только магам. Благодаря учебнику, разработанно...
Harvard Business Review – ведущий мировой деловой журнал с многолетней историей. Вниманию читателей ...
Главный герой Вовчик в 80-х начинал, как писатель. Головокружение от успеха чуть не привело его на с...