Сумма технологии Лем Станислав
Но именно от него Лем и отвлекался в своей книге. Этот пробел он ощутил теперь и сам.
Заключая дискуссию в «Studia», Лем говорил, что наиболее существен вопрос, во имя чего и с какой целью предпринимаются действия. «На эту тему в книге почти ничего не сказано. Меня скорее интересовал вопрос “Что можно сделать с миром?”, нежели “Что с ним следует сделать?”»
Отказ от проблемы целей сам автор справедливо считает серьезным пробелом книги. Мы же видим оправдание автора лишь в том, что социальный аспект грядущего мог бы послужить темой особой книги.
Развитие технологии на Земле Лем ставит в прямую связь с положением человека в Космосе. В основу рассуждений он кладет три тезиса. Лем считает, что разум в Космосе возникает закономерно, что астроинженерные возможности разумных существ не ограничены и что пути развития цивилизаций в Космосе – множественны.
Когда астрономия получит, наконец, информацию о жизни в Космосе, это позволит дать известный прогноз будущего земной цивилизации. Отправляясь от этой идеи, Лем тут же сталкивается с вопросом: случайна или закономерна разумная жизнь в Космосе?
Можно, собственно говоря, задать два последовательных вопроса. Закономерно ли возникает жизнь во Вселенной, там где сложились подходящие условия? Приводит ли эволюция жизни закономерно к разуму? Сама постановка этих вопросов предполагает, конечно, что определения жизни и разума уже даны. Но это-то как раз не простая задача.
Как мы сказали, Лем считает закономерностью не только жизнь, но и разум. Он аргументирует это самой природой разума. Разуму же он дает определение на кибернетическом уровне, принятом в «Сумме». Растения, бактерии или насекомые – это «гомеостаты» (или «регуляторы») первой ступени; гомеостаты, развитие и поведение которых заранее запрограммировано. Но есть и гомеостатические системы «второго рода», которые обладают «регулятором второй ступени». Это регулятор, который в зависимости от требований среды может изменять «программу действий», осуществлять «самопрограммирование за счет обучения». Иначе говоря, в таких гомеостатах получает развитие некий орган, действие которого основано на создании пробных моделей ситуаций, или же «внутренних моделей внешнего мира».
Единственный известный нам гомеостатический регулятор второго рода – человеческий мозг. Все остальные существуют в мечтах кибернетиков и в писаниях фантастов. Читатель, вероятно, знаком с такими гомеостатами второй ступени, как Черное Облако (конструктор Фред Хойл), Солярис (конструктор Станислав Лем), Лиловые цветы (конструктор Клиффорд Саймак) и с многими, многими другими. Главное здесь – твердо помнить первую заповедь фантазмоведения:
Не отождествляй автора с его детищем – гомеостатом второго рода!
Если такой гомеостат ходит, обросший шерстью, и похож на медведя, то не думай, будто и сам автор на это животное похож. Видимость, как говорят философы, – не есть сущность, хотя и момент бытия.
Впрочем, читатель должен помнить и вторую заповедь, согласно которой всякий автор описывает, в конечном итоге, какую-то сторону самого себя. Ведь ни один из них до сих пор не снабдил главного героя гомеостатом первой ступени...
Но как бы то ни было, вернемся к нашей теме.
С неизбежностью ли эволюция жизни создает мощный регулятор второй ступени, подобный человеческому мозгу?
Развитие сложных кибернетических систем – считает Лем – ведет к таким гомеостатам, однако создаются они далеко не всегда. Ведь возникновение разума, психики, т.е. «психогенез, – это эволюционное решение, которое является одним из лучших, но не всегда, не для всех миров оптимальным» (гл. III). Гравитация, температура, радиация, климат и другие факторы должны сочетаться для того, чтобы биологические силы (увеличение числа мутаций и усиление отбора), а затем и внебиологические (труд) привели к возникновению огромной «перспективной потенции разума» – исходному пункту строительства цивилизации.
Мы подчеркиваем внебиологические факторы психогенеза, так как Лем не уделяет им достаточного внимания. Речь идет о целевом изготовлении и применении орудий труда. Правда, судить об этом можно пока только «на опыте» Земли, но все же генезис «гомеостатов высшего типа» связан, должно быть, именно с целевой деятельностью. Именно она требует таких «внутренних моделей», которые позволяют предвидеть события. В свою очередь орган, который вырабатывает подобные модели внешнего мира и планы будущего, вряд ли может развиваться без активного воздействия на среду. В борьбе со средой рано или поздно придется использовать как «усилители» естественные предметы, а затем и искусственно созданные орудия труда. Наконец, для труда нужен коллектив и мощная знаковая система – средство общения. Такой системой на Земле явилась речь.
Мы говорили о «естественном психогенезе». Ну, а «искусственный», видимо, ускользнул от внимания автора. Овладев аппаратом наследственности, человек станет управлять не только собственной эволюцией, но и эволюцией других видов – в первую очередь эволюцией других! Будут выделены виды животных со способностью к психогенезу, и в лабораторных условиях, а может быть и в масштабах всей планеты, подобному виду будет дан психогенетический «толчок». Вряд ли такая эволюция может протекать детерминированно. Скорее характер ее будет статистическим, и здесь способность к труду послужит, видимо, важным критерием отбора наилучших генотипов в популяции. Какие животные будут избраны для такого эксперимента? Дельфины? Или, быть может, спруты, одаренные «прекрасным, защищенным хрящевым черепом мозгом, большими и зоркими глазами»?[152]
Условия среды, допускающие психогенез, видимо, не столь уж редки на планетах, и потому-то, говорит Лем, мы должны встретить во Вселенной наших «братьев по разуму». Такой вывод ставит нас перед задачей поиска внеземных цивилизаций. Этот поиск на основе проектов Коккони-Моррисона и Таунса-Шварца уже начат! (см. И. С. Шкловский, op. cit.).
Следует отметить, что вся третья глава «Суммы технологии», посвященная космическим цивилизациям, написана автором под сильным влиянием книги И. С. Шкловского.
Лем рассматривает вопрос с различных сторон: его интересуют возможные формы цивилизаций; длительность их во времени; вероятность одновременного существования, в частности, в развитой технологической фазе; частота их во Вселенной; расстояния между ними; проблемы космической связи и т.п.
Весьма остро ставит писатель проблему судеб цивилизации. Он перебирает такие исходы, как «самоубийство» цивилизации, ее «вырождение», сознательное ограничение уровня или темпа развития, «нетехнологический» путь, «видообразование» и, наконец, беспредельный прогресс технологии. Прогресс, который ограничен только законами природы и материальными ресурсами прилегающей части Вселенной. Это – путь к астроинженерии.
Здесь возникает одна проблема. Астроинженерная деятельность разумных существ заметна на «звездных» расстояниях. Однако в настоящее время таких наблюдений нет. Как согласовать этот факт с тезисом о «космической всеобщности» разума?
Ответ на этот вопрос представляется нам очень простым. В июне 1609 г. при поездке в Венецию Галилей услыхал о зрительной трубе, только что изобретенной голландцами. Голландская труба давала увеличение всего в 5 раз. Вернувшись в Падую, где он был профессором, Галилей изготовил собственную трубу. Ему пришлось открыть «секретное» сочетание линз. Труба Галилея увеличивала уже в 30 раз. Через десять месяцев (срок рекордный и сейчас!) из печати вышло сочинение Галилея «Nuncius sidereus» с описанием его астрономических открытий. С той поры прошло всего лишь три с половиной века. Мы думаем, что этот срок ничтожно мал для получения космической информации, особенно если учесть, что и сам вопрос о поиске жизни в Космосе поставлен в астрономии совсем недавно. Сегодня еще нельзя сделать никакого заключения ни о наличии, ни об отсутствии астроинженерной деятельности в Космосе. Вселенная попросту недостаточно хорошо осмотрена и «продумана». Вспомним хотя бы пульсары![153]
Впрочем, мы не являемся специалистами в этой области и, быть может, наше суждение наивно.
Во всяком случае, автор уделяет указанной проблеме достаточно места. Вслед за И. С. Шкловским он обсуждает гипотезу фон Хорнера, которая постулирует «отсутствие» астроинженерной деятельности в Космосе. Согласно фон Хорнеру жизнь цивилизаций эфемерна; главной же причиной этого фон Хорнер считает «самоубийство» цивилизаций – «автоликвидацию психозоя». А среди прочих возможностей отмечает психическое или физическое вырождение и потерю интереса к науке и технике. Мрачновато!
Лем критически относится к этой гипотезе, считая ее чересчур наивной. Конечно, мнение фон Хорнера отражает некие тенденции в истории человечества. Гонка ядерных вооружений порождает гипотезы о взаимоистреблении «психозойцев», причем в фазе развития, близкой к достигнутой на нашей Земле. А из истории мы знаем, что общества по-разному относились к прогрессу науки и техники. Кризисы и «вырождения» культур – вспомним хотя бы позднюю римскую империю с ее культом наслаждений в «высших» слоях общества – наводят на мысль о «гедонистическом» торможении цивилизации.
Полностью пренебречь этими возможностями в космическом масштабе было бы неразумно!
Почему же Лем отвергает гипотезу фон Хорнера? Не потому ли, что отрицает факторы, тормозящие развитие цивилизации? Отнюдь нет! Лем попросту обнаруживает в ней внутреннее противоречие. Ведь фон Хорнер, выдвигая свои «причины эфемерности», принял тем самым один неявный постулат – постулат об универсальности технологического пути развития. Того пути, который ведет к астроинженерии.
Если это так, то в силу общих вероятностных причин, хотя бы небольшое число цивилизаций выйдет в Космос. Бурная вспышка астроинженерии будет заметна «издали», и мы увидим космические «чудеса».
По тем же соображениям Лем отвергает и противоположную гипотезу, согласно которой цивилизации в Космосе очень редки, но долговечны. Ведь тогда мы тоже наблюдали бы «чудеса». Вдобавок эта гипотеза противоречит тезису о заурядности жизни и разума в Космосе.
Как же оценить рассуждения Лема? Конечно, они гадательны, как и критикуемые гипотезы. Однако они помогают вскрыть те постулаты, которые – явно или неявно – лежат в основе всех расчетов плотности цивилизаций и времени их существования, в основе всех гипотез, объясняющих «вакуум психозоя».
Этих постулатов – два: универсальность технологического пути и постоянство темпов развития. (Лем называет эти постулаты «ортоэволюционными» от греч. ортоз – прямой). Поскольку гипотезы, основанные на них, не объясняют «вакуум психозоя», Лем предлагает отказаться от этих постулатов. Его «особое мнение» состоит в том, что цивилизации в Космосе и часты, и долговечны, но не «ортоэволюционны». Экспоненциальная фаза развития – только короткий этап, после чего движение идет по другим «кривым».
Цивилизации идут по «общему пути» до некоторого «барьера». Этот барьер носит вероятностный характер. После «барьера» пути цивилизации расходятся. Одни цивилизации, как наша, вступают на героический путь технологии, другие же – нет. Творцы таких цивилизаций не столько преобразуют мир, сколько переделывают самих себя, чтобы получше приспособиться к миру, в котором они живут. Наконец, некоторые цивилизации углубляются в «видообразование», причем овладение Космосом для многих – «недоступная роскошь».
Что же мы думаем об этом «особом мнении»? Множественность путей разума естественно принять как антитезу «ортопостулатов». Но все же самостоятельного оправдания – как, впрочем, признает и сам автор – это «особое мнение» не имеет. У нас попросту нет никаких научных аргументов для его обоснования.
Дальнейшие соображения Лема и попытки объяснить отсутствие в Космосе «чудес» напомнили нам один эпизод, описанный Е. Тарле. Во время похода Наполеона в Египет сей просвещенный завоеватель вез в своем обозе небольшой научно-исследовательский институт. С той поры этот обычай широко распространился. Однажды император пригласил мамелюков присутствовать при научных демонстрациях. Мамелюкам показали действие электрической машины и еще какую-то «физику» и «химию». Император ожидал, что их потрясут новейшие «чудеса» европейской науки, однако мамелюки не дрогнули. Помолчав, они попросили показать им ковер-самолет, который мигом перенес бы их в далекие края...
Можно сказать, что эти подданные султана не располагали критерием, который позволил бы отличить «чудеса» от «нечудес», к тому же у них было специфическое представление о «волшебстве». Спросим себя – вслед за Лемом, – есть ли у нас критерий, который позволил бы отделить труд разумных существ от естественных феноменов в Космосе?
Многие из явлений в Космосе еще ждут своего объяснения; однако астрофизики всегда стремятся к «естественному» объяснению. «Бритва Оккама» всякий раз отсекает избыточную гипотезу о «чуде». Совсем недавно английские астрономы открыли «пульсары» – неизвестные ранее источники излучения, сходного с сигналами искусственного происхождения. Сходство было столь поразительным, что англичане полгода ждали и проверяли свои результаты, прежде чем их опубликовать. Астрофизики не торопятся объявить «пульсары» космическим чудом, а ищут «естественное» объяснение.
Как бы то ни было, Лем подчеркивает важность поиска внеземных цивилизаций при любом его исходе. Для положительного исхода это очевидно, но не менее важным был бы и отрицательный. Он потребовал бы пересмотра многих взглядов естествознания – взглядов на генезис жизни и психики.
Задумаемся над этой последней возможностью! Быть может, мы все-таки в Космосе одни? Или почти одни. Быть может, в нашей Галактике земная цивилизация – единственна. Иногда считают, будто материалистичен лишь тезис о «множественности обитаемых миров», а любое представление о редкости жизни и, особенно, разума – таковым не является. Но дело обстоит не так просто. Единственность жизни отнюдь не подразумевает Творца, а ее множественность отнюдь его не отвергает. Церковь давно уже примирилась с коперниканской ересью Бруно...
Против редкости жизни и разума говорит скорее «дух» науки, взращенной в борьбе с геоцентризмом, чем ее конкретные факты. Генезис жизни и разума – это, прежде всего, возможность, реализация же этой возможности зависит от огромного числа условий. Многие из них нам неясны. Во всяком случае, если наука, наблюдательная наука, скажет нам завтра, что мы одни, здание материализма не даст трещины. Не будет также и места для «пессимизма растерянности». Наоборот, это наложит на человека особую ответственность, моральную обязанность сохранить жизнь на Земле, выйти в Космос и распространить разум по всей Галактике. Человечество станет тогда Творцом, сотворившим самого себя...
«Бабушке исполнилось тогда всего лишь восемьдесят шесть лет, но мне она казалось очень старой. Я считал, что такой она была всегда. Седые волосы она гладко зачесывала назад и укладывала в тяжелый узел; одевалась в фиолетовое или темно-синее и не носила никаких украшений. Только на безымянном пальце переливался у нее прямоугольный камень на тоненьком колечке. Ута, моя старшая сестра, как-то сказала, что в этом кристаллике хранится голос деда, еще с тех лет, когда он был жив, молод и влюблен в бабушку. Эти слова захватили мое воображение. Играя с бабушкой, я незаметно прижался ухом к колечку, но ничего не услышал, и пожаловался ей на Уту. Смеясь, бабушка стала убеждать меня, что Ута сказала правду, но это оказалось безуспешным. Тогда, поколебавшись, она вынула из секретера какой-то ларчик, вставила в него кольцо, и в комнате раздался мужской голос. Я не понимал, что он говорит, но чувствовал себя довольным и очень удивился, увидев, что бабушка плачет».
В этой сценке из «Магелланова облака» Лем знакомит читателя с «трионами» – кристаллами для хранения информации. Потом он посвящает им целую главу романа. Прежде всего, это – «точная реалия» из тех, о которых мы говорили выше. Микроминиатюризация в новейшей электронике создаст, видимо, «память на молекулярном уровне» – необычайно емкие и компактные блоки хранения информации.
Но здесь же содержится и некая общая концепция. Сила цивилизации – в энергии, которую она обуздала, а ключ к обузданию энергии – в знаниях общества, в его «информационной мощи», т.е. в его возможностях добывать, хранить, обрабатывать и использовать информацию. При нехватке информации доступ к тому или иному виду энергии закрыт, что тормозит прогресс. Для прогресса необходима «определенная» скорость роста познания. И Лем, вслед за футурологами, спрашивает: ограничена или неограничена эта скорость. Нет ли здесь «потолка», которого мы вскоре достигнем?
Но ведь один из принципов научного мировоззрения, скажет в недоумении иной читатель, состоит в том, что познание неограничено! Это, конечно, так. Только речь здесь идет о другом, о том, что познание зависит от темпа исследований, от динамики науки.
Еще совсем недавно мы мало что знали об этой динамике, мы ограничивались общими фразами об «убыстрении» развития науки. Развитие науки стало в последние годы предметом особой дисциплины – науковедения. Его отличительная черта – применение количественных методов. Уже первые работы как зарубежных (Дж. Бернал, Дирек Де ла Солла Прайс), так и советских ученых привлекли здесь внимание к тому, что Д. Прайс назвал «насыщением».
Напомним сначала «нематематизированному» читателю, что такое экспонента, экспоненциальный рост. Впервые перед экспонентой в изумлении остановились индусы. Как известно, изобретатель шахмат попросил у раджи в награду одно зерно на первую клетку доски, два – на вторую, четыре – на третью и т.д. Раджа простодушно согласился. Как показали более поздние подсчеты, радже, пожелай он сдержать свое слово, пришлось бы вознаградить лихоимца тысячей кубических километров зерна.[154] Это и есть экспоненциальный рост с основанием 2. Это – всего лишь 263зерен!
Оказывается, что именно такому закону подчиняются все параметры, характеризующие развитие науки. По экспоненте или по родственной кривой растет число ученых, массив научных публикаций, по ней же растут и ассигнования на научные исследования.
Что дальше? К чему же ведет подобная тенденция? Известно, что каждые десять – пятнадцать лет число научных публикаций удваивается. Масса Земли оценивается приблизительно в 6*270тонн. Значит, через 700-1000 лет, на каждую тонну придется по одному научному журналу. Очевидно, что экспонента должна замедлить свой рост гораздо раньше. Это явление хорошо известно: если ограничить «натуральный» рост извне, то экспонента начнет «перегибаться» и превращается в так называемую логистическую кривую. Это и есть «насыщение». Как показывает анализ, любой из динамических параметров науки должен перейти с экспоненты на логистическую кривую. Эта перспектива вполне реальна; на нее попросту нельзя закрывать глаза: ожидают, что ощутимый «перегиб» начнется уже через несколько десятилетий.
Рост науки – отмечает Лем вслед за Д. Прайсом – может затормозить, прежде всего, нехватка кадров. Кто бы ни принимал решение, какие исследования надо обеспечить людьми, а какие – свернуть, эти решения могут оказаться ошибочными. К тому же лавина научной информации все нарастает; ученые должны «переваривать» ее, чтобы двигаться вперед. Все это медленно, но неуклонно снижает эффективность научной работы.
За торможением науки грядет и спад роста технологии, а, значит, в конечном итоге – регресс. Возникает ситуация «мегабитовой бомбы» – «информационного барьера». Это – переломный этап в развитии любой цивилизации.
Исходов здесь – три: «проигрыш», «ничья» и «выигрыш».
Мы не станем разбирать первые два, в тексте книги изложены опасности этих исходов и точка зрения автора в целом. Остановимся лишь на «выигрыше», который нас, как и Лема, привлекает больше всего.
Пройти информационный барьер – значит обеспечить сколь угодно высокий темп роста науки, снять блокаду «пропускной способности» науки. Трудно, разумеется, сказать, какие формы примет этот прорыв, т.е. как будут выглядеть «усилители интеллекта». Лем рассматривает одну из таких возможностей – «эволюцию» самой научной информации – выращивание молекул-теориеносцев.
Остановимся на этом подробнее. Выращивание информации – одна из самых романтических идей науки нашего времени. Трудно указать ее автора, но все началось с открытий Грегора Менделя. Он ввел атомизм в биологию, установив дискретность наследственной информации. Длинный путь был пройден затем генетикой. Хромосомная теория Т. Моргана (1911), построение хромосомных карт, искусственные мутации Г. Меллера (1927) – так шаг за шагом вырабатывалось представление о вытянутом в одну линию, очень длинном «блоке», в котором хранится наследственная информация. Клеточное ядро содержит несколько таких блоков – хромосом.
Эта была, так сказать, «феноменологическая» генетика. Но вот, в 1953 г. Ф. Крик и Дж. Уотсон расшифровали «химию блока». Стала понятной роль нуклеиновых кислот ДНК и РНК – дезоксирибонуклеиновой и рибонуклеиновой. Появилась знаменитая спиральная модель ДНК. Было понятно, что эти вещества не уступают по своей сложности белкам. Началась расшифровка генетического кода. На смену феноменологической генетике пришла молекулярная.
Возникли представления о механизме синтеза белка, стала выясняться «молекулярная роль» мельчайших образований в клетке – рибосом и т.д., и т.д., и т.д. ...
Путь этот отнюдь не пройден до конца, скорее наука находится где-то в самом его начале. Но пройденный отрезок уже поражает своим величием и, кроме того, он приводит к первым успехам и в выяснении молекулярной природы памяти и мышления. Мы стоим на пороге новой науки, которую можно назвать «молекулярной психологией».
Высказываются предположения о том, что молекулы белка и нуклеиновых кислот служат носителями памяти! Ставятся эксперименты по проверке этих гипотез! Думал ли настоятель августинского монастыря в Брно, что его опыты с горохом поведут к такому натиску армии ученых!?
Таков генезис идеи о выращивании информации. Если сложные молекулы могут хранить информацию, то, по-видимому, создав «эволюцию» таких молекул, можно информацию добывать.
Однако если этот путь и будет реализован, то, видимо, «средой», в которой будет протекать такая эволюция, послужит некое «биологическое образование», а не чан с питательным раствором. Попытавшись отказаться от мозга, мы снова пришли бы к некоему варианту «мозга»!
Сколь фантастично не выглядит «выращивание информации», этот путь стоит рассматривать именно потому, что он позволяет радикально преодолеть «информационный барьер». Пройдя барьер, цивилизация обретет свободу выбора. Разум докажет свое превосходство над природой, когда он научится реализовывать то, что для нее невозможно.
Конечно, в только что описанных соображениях Лема есть немало спорного. Об этом мы будем говорить ниже. Но в общей картине, им нарисованной, есть много такого, с чем нельзя не согласиться. Ибо человек действительно ведет стратегическую «игру» «Цивилизация – Природа». Лишь овладев информационным процессом огромной эффективности, он откроет себе путь к победе в этой «игре». Для этой цели уже сейчас начинают разрабатываться кибернетические усилители мышления, начинает создаваться «интеллектроника».
В 1936 г. английский математик Алан М. Тьюринг (1912-1954) опубликовал свою ставшую впоследствии знаменитой работу «О вычислимых числах». Он ввел в ней концепцию абстрактного вычислительного устройства, которое получило потом название машины Тьюринга.[155] Напомним, что в мире вычислительных машин в те годы господствовали... арифмометры. Сейчас машина Тьюринга известна каждому кибернетику.
«Философскую огласку» получила другая статья А. М. Тьюринга «Может ли машина мыслить?» (1950 г.).[156]
Некогда ответ на вопрос, что такое мышление, что значит мыслить, подразумевался. В лучшем случае следовала ссылка на человека, как на существо, обладающее мышлением. Вопрос о том, что же такое мышление, по-настоящему возник, когда всерьез стали обсуждать возможность встречи с разумными существами из иных миров и когда в связи с кибернетикой встала проблема искусственного разума.
Ответ на этот вопрос не дан и посейчас, и более или менее ясно, что его дадут лишь в ходе исследования человеческого разума и попыток построить разум искусственный. Не попадаем ли мы в порочный круг? Чтобы построить разум, надо знать, что это такое, а чтобы узнать, что такое разум, его надо построить!
История науки изобилует подобными «кругами», и здесь имеется два выхода из положения. Первый – ждать озарения, кое открыло бы нам «правильное определение», а вместе с ним и «завершенную конструкцию». Этот выход можно назвать «теологическим». Второй выход – в том, чтобы принять какое-нибудь неточное, «однобокое», «уязвимое» для «пуристов» определение и попытаться с ним что-то сделать.
По этому второму пути пошел А. М. Тьюринг. Он предложил элегантную «игру в имитацию» (см. op. cit.), и к этому же методу вслед за Тьюрингом обращается Ст. Лем. При этом Лем выступает как противник априорного ограничения возможностей кибернетических машин. Впрочем, он не впадает в high animal spirits[157] иных «пророков будущего», которые не видят трудностей в моделировании, скажем, эвристических процессов.
Как ныне в виде атомного реактора сбылась мечта алхимиков о философском камне, так, может быть, завтра сбудется их мечта о гомункуле, этом человечке из реторты. И не был ли предтечей кибернетиков «лаборант» Фауста Вагнер, который встретил рождение гомункула словами:
- Нам говорят «безумец» и «фантаст»,
- Но, выйдя из зависимости грустной,
- С годами мозг мыслителя искусный
- Мыслителя искусственно создаст.[158]
Лем, конечно; находится в лагере «гомункулистов», а спор в кибернетике между «гомункулистами» и «антигомункулистами» он расценивает как спор, говорящий о детстве науки, подобный спору «эпигенетиков» и «преформистов» в биологии в XVII-XVIII вв.
Левенгук (1632-1723) впервые увидел в семени трески микроскопически мелкие подвижные элементы. Он назвал их сперматозоидами – животными семени – и стал думать, что в них-то в виде мельчайшего зачатка заключен взрослый организм. Этот взгляд получил название анималькулизма. Марчелло Мальпиги (1628-1694) – профессор медицины в Болонье – также прославился своими открытиями с помощью микроскопа. Он считал, что взрослый организм «заключен» в яйцеклетке. Это был овизм. Простим этим исследователям-пионерам их наивную попытку выработать общую концепцию, концепцию преформизма (предопределенности организма зародышем)! Без них не было бы современной медицины и биологии.
На смену преформизму пришел эпигенез (греч. эпи – над, генезис – происхождение), согласно которому развитие не предопределено, а представляет собой процесс последовательных новообразований. От него прямой путь вел к витализму – признанию неких «творческих сил». Сегодня эпигенез и витализм также неприемлемы!
Но с чего же должна была начинать бедняжка-биология?! Путем озарения выработать наши сегодняшние, увы, по-видимому, все еще наивные представления о нуклеиновых кислотах?! Так и кибернетика сейчас переживает свой «детский спор»!
Лем считает этот спор бесплодным. В принципе человекоподобный «разум» построить можно, но строить его никто не будет. «Искусственных людей не будет, потому что это не нужно. Не будет и “бунта” мыслящих машин против человека» (гл. IV).
Как бы там ни было, а спор идет. Одним из самых прославившихся «антигомункулистов» является Мортимер Таубе. Мы советуем читателю прочесть его книгу.[159] Впрочем всерьез полемизировать с М. Таубе не стоит, и тем более в академическом тоне. Его книга, так сказать, образец «просвещенного обскурантизма».
Вопрос о возможном превосходстве «машинного мышления» над человеческим Лем в противовес Таубе склонен решать «в пользу» машин. Он выделяет здесь три a priori возможных ответа.
Первый гласит, что «машинное мышление» принципиально не может превысить «потолок человеческого интеллекта». Второй – что оно может превысить этот потолок, однако человек всегда сможет контролировать «познавательную стратегию машин». Наконец, третий возможный ответ гласит, что машины способны превзойти интеллектуальный потолок человека как в том, что человек еще может понять, так и в том, чего он понять уже не может.
Как мы отмечали выше, Лем упускает возможность такой автоэволюции человека, когда тот будет все время идти «впереди» создаваемых им машин. Для этой цели человеку вовсе не обязательно превращаться в спрутообразного «марсианина» из «Войны миров» Герберта Уэллса.
Итак, перечисленные три ответа не представляются нам исчерпывающими; впрочем, и наше дополнительное соображение отнюдь не исчерпывает всех возможностей.
Лем отвергает первый и второй ответы и останавливается на третьем. «Усилители интеллекта» – Лем называет их гностическими машинами (греч. гнозис – познание) – будут обладать «коэффициентом усиления» не меньшим, чем коэффициент усиления физической силы человека энергетическими машинами.
Мы считаем, однако, что Лем недостаточно осветил «усиление интеллекта» с точки зрения современных психологических теорий. Здесь, безусловно, «скрыто» много тем для размышлений как футуролога, так и писателя-фантаста. Скрыто много эссе, рассказов и романов. Мы обратим лишь внимание читателя на недавно изданную (1966 г.) издательством «Прогресс» «Экспериментальную психологию» под редакцией Поля Фресса и Жана Пиаже, быть может, он и сам поразмыслит кое над чем.
Электрократия – нелепость, считает Лем, и мы с ним полностью согласны. «Ни один Усилитель Интеллекта не станет электронным Антихристом», – говорит он (гл. IV). Необходима «социологическая кибернетика», а не «искусство постройки управляющих машин» (там же). Со всем этим нельзя не согласиться, а форма, в которой автор преподносит этот тезис, производит немалое впечатление. И все же мы считаем, что Лем недостаточно осветил здесь другую сторону дела.
Уже сейчас математические машины управляют на расстоянии сталеплавильными процессами, уже сейчас они заведуют деятельностью нефтеперегонных заводов и т.д. Видимо, управляющие машины будут срастаться с управляемыми отраслями технологии, а эволюция таких «сростков» будет идти без детального контроля человека. Вряд ли можно строить «роботы» так, как сейчас строятся радиоприемники. «Схема» нуклеиновых кислот человека заняла бы много томов, и система такой сложности, как человек, воспроизводима лишь «статистически». Так же и «роботы» будут производиться на основе лишь общих «блок-схем», ибо детальные схемы попросту невозможны. Среди «роботов» будет идти «отбор», лучшие будут сохраняться на службе цивилизации, худшие – идти на слом. По мере усложнения «роботов» – скажем, самодвижущихся экипажей с электронным мозгом и «вечной» энергетической установкой (такие экипажи описаны Лемом в «Возвращении со звезд») – будет эволюционировать и «мозг», управляющий их производством. Этот «центральный мозг» будет сам решать, как ему себя «надстроить», «расширить». Мозг будет заниматься своей собственной «автоэволюцией». И вот на каком-то этапе он, скажем, решит, что для эволюции экипажей необходимы нуклеиновые кислоты, которые употребляются для исправления генетических дефектов человека, решит и тем самым заложит основы антропоморфизации экипажей.
Последствия такого решения могут оказаться самыми пагубными. Остановить производство будет нельзя, подобно тому как сейчас невозможно в целой стране остановить хотя бы на неделю всю металлургию. Это не «бунт» машин и не «электрократия», это – «лжеэволюция», начало которой может наступить незаметно, без угрозы. В чем же средство против такой лжеэволюции и других опасностей? Мы думаем, что оно – в научном регулировании симбиоза людей и кибернетических машин. Сегодня одним из подходов к этому является как раз «социологическая кибернетика».
Эта наука возникла в сущности при рождении кибернетики. О «кибернетике и обществе» писал Норберт Винер. С годами идеи кибернетики стали все шире проникать в гуманитарные науки.[160]
Взгляд Лема на роль кибернетики в социальных исследованиях определен, таким образом, фактическим движением науки. И, конечно, в отличие от этнолога или «конкретного» социолога кибернетик должен абстрагироваться от содержания тех или иных ритуалов, заповедей и норм поведения. Лем говорит, и это верно, что кибернетика в первую очередь интересует социостаз, т.е. гомеостаз в области социальных структур. Социолог-кибернетик должен искать «оптимальные модели» социостаза. Приближение к оптимуму может означать, например, устранение избыточности, ограничение разнородности функций людей в данном обществе. В оптимизации нуждается всякая социальная структура. Последнее замечание Лема особенно приложимо к тому обществу, в котором основным принципом станет «полное и свободное развитие каждого индивидуума».[161]
Термин «эпистемология» происходит от греческого слова эпистэмэ – знание. Эпистемология, таким образом, теория познания. Этот термин широко распространен во французской и особенно в англо-американской литературе. Менее – в немецкой. Придавать «эпистемологии» какой-либо иной смысл, например, связывать ее исключительно со взглядами того или иного мыслителя – значит отнимать лавры у бедного Шалтая-Болтая. Ведь это именно Шалтай-Болтай – яйцо, «в облике которого было нечто человеческое», утверждал, что когда он берет слово, оно значит то, что он хочет.[162]
Вопросам эпистемологии Лем уделяет большое внимание. При этом он опирается на идеи кибернетики. Мы начнем обсуждение его взглядов... с Электрибальда.
Ст. Лем был, наверно, знаком с работой А. Н. Колмогорова «Жизнь и мышление как особые формы существования материи».[163] Во всяком случае, есть прямая связь между заключительным примечанием А. Н. Колмогорова и рассказом Ст. Лема «Путешествие первое А, или Электрибальд Трурля».[164] Приведем для ясности примечание А. Н. Колмогорова:
«Возможно, что автомат, способный писать стихи на уровне больших поэтов, нельзя построить проще, чем промоделировав все развитие культурной жизни того общества, в котором поэты реально развиваются».
В своей статье А. Н. Колмогоров рассматривает вопрос о связи сознания и подсознания. Он пишет: «В развитом сознании современного человека аппарат формального мышления не занимает центрального положения. Это скорее “вспомогательное вычислительное устройство”, запускаемое в ход по мере надобности». И там же: «...кибернетический анализ работы развитого человеческого сознания и его взаимодействия с подсознательной сферой еще не начат».
Вот эти-то вопросы и привлекают внимание Ст. Лема. Он отмечает, например, что информация, которую перерабатывает мозг лыжника во время слалома, куда больше той информации, которую перерабатывает за тот же отрезок времени мозг блестящего математика. При этом под информацией здесь понимается не шенноновская мера, а «количество параметров», которыми управляет мозг слаломиста. Быть может, в этом сравнении и есть нечто верное, однако в целом оно неудачно. Лем говорит, что большинство параметров слаломиста находится вне сферы его сознания. Отсюда – эффективность. Но кто учел те «параметры», которые приходят в движение в подсознании математика, когда он размышляет о банаховых алгебрах?
Сказать свое слово о подсознании давно пытается психоанализ. Отвергнуть его целиком было бы неверно, в нем есть островки трезвой мысли, но лишь островки – среди океана вымыслов.
Другое дело – логика, теория познания и психология. Эти науки давно стремятся раскрыть природу познавательных психических процессов. Особенно интригуют исследователей эвристические процессы, т.е. процессы поиска решения той или иной задачи.[165]
Вот что об этом пишет А. Н. Колмогоров (op. cit.). «Общеизвестно, что карандаш и бумага необходимы в процессе интуитивных творческих поисков. Вместо полностью выписанных формул иногда на бумаге появляются их предположительные схемы с незаполненными местами, несколько линий и точек изображают фигуры в многомерном или бесконечномерном пространстве, иногда знаками обозначается ход перебора вариантов, сгруппированных по принципам, которые перестраиваются в ходе перебора и т.д. Вполне возможно, что вычислительные машины с надлежащим устройством ввода и вывода данных могли бы быть полезны уже на этой стадии научной работы».
Процедуры поиска подчиняются не «черно-белой» дедуктивной логике, не логике «истины» и «лжи», «да» и «нет», а малоизученной «цветной», «гадательной» логике, логике «наверно это так».
Следуя этим общим воззрениям, Лем связывает с моделированием творческих процессов проблемы «внемозгового воспроизведения» «неалгоритмических процедур». При этом, конечно, приходится «деалгоритмизировать» алгоритм, например вводить «генератор акцидентальности», т.е. делать выбор шагов случайным. Или же использовать не «предписывающие», а «разрешающие» правила типа: если получено то-то, то можно делать то-то или то-то. Наборы таких предписаний иногда называют диспозициями. Алгоритмы становятся при этом «пластичными».
Устройство, которое достаточно хорошо моделирует реальные познавательные процедуры, должно обладать механизмами обучения и самообучения. Сейчас активно ведутся работы по созданию алгоритмов и машинных программ опознавания образов, т.е. по созданию перцептронов.[166]
Быть может, перцептроны выяснят, наконец, на «машинном уровне» онтологический статус универсалий. «Быть может, – пишет Лем, – будущие перцептроны подведут нас ближе к пониманию “интуиции”» (гл. IV).
Ведь восприятие – мгновенный психический «снимок» объекта как целого – имеет аналог в интеллектуальной сфере. Речь идет о понятии целостного образа, о так называемом гештальте, введенном гештальт-психологией (нем. die Gestalt – образ). Это направление психологии перенесло понятие целостного образа из сферы чувственного восприятия в интеллигибельную сферу.
Ученые, художники и музыканты подтверждают эту догадку психологов[167], а Лем резюмирует их свидетельства. Он говорит, что ученый-теоретик, сжившийся с аппаратом и абстракциями своих теорий, воспринимает эти теории как некие целостные образы – гештальты. Эти образы связываются в сознании ученого с чувственными образами и знаковыми формами. И зачастую общность двух теорий ученый улавливает именно как некую общность их гештальтов. Или же интуитивно предчувствует, что два гештальта можно слить в некое, еще неизвестное целое – обобщение. Предчувствует до фактического построения.
Построить модель познавательного процесса? Хорошо бы! Но это упирается в проблему значения. Этой проблеме автор уделяет много места. Его взгляды подчас расходятся с общепринятыми точками зрения. Скажем несколько слов о самой проблеме. Увы, это не так-то просто! Одним из первых осветил эту проблему Готлоб Фреге (1848-1925).[168] Речь идет о связи экстралингвистической ситуации с языком. Мы разъясним эту связь на «модели».
Представим себе, что на неизведанной планете высадились космонавты и перед ними открылся необычайный мир. Захватывающие пейзажи, странные минералы, удивительные растения и животные. Пусть на планете нет никаких разумных существ.
Космонавты попали в экстралингвистическую (т.е. «внеязыковую») ситуацию. (Кажется, в таком положении впервые оказался библейский Адам.)
Космонавтам предстоит дать имена всем «предметам» нового мира, его минералам, растениям и животным. Всем связям в этом мире, всем его антагонизмам и симбиозам, всему, всему... Космонавты должны описать эту внеязыковую ситуацию неким языком. Отобразить ее некой знаковой системой.
В Школе Космических Полетов средь многих других дисциплин эти юнцы штудировали логику и семиотику. (Без этого они попросту не поняли бы, как отражается в мозгу корабля внеязыковая космическая обстановка.) К тому же у них есть фантазия и они легко придумывают всевозможные слова.
В ШКП им говорили, что «объект», который предстоит назвать, это «денотат», или «номинат», или «сигнификат», а слово, которым его обозначают, – его «имя». Такие обороты речи, как «имя денотата» или «денотат имени» хорошо знакомы космонавтам. И на планете они «раздают» имена «денотатам».
Некоторые предметы, движения или связи получают по одному имени. Все согласны, что оно – самое удачное, что оно – «ухватывает объект». Другие – получают много имен, и каждое из них «ухватывает» лишь какую-то «сторону объекта». В одном имени – в имени A «ухвачено», что денотат порхает, в имени B – что он мяукает, наконец, в имени C – то, что он охотно ест шоколад из рук. У этих имен – один и тот же денотат, но различный смысл, различное содержание, различное значение. Они – отнюдь не синонимы.
Итак, у имени есть денотат и смысл (значение, смысловое содержание), имя называет или обозначает свой денотат и выражает смысл. «Ассоциация», которая возникает в мозгу космонавта, когда он произносит имя, и представляет собой смысл имени. Про смысл говорят, что он есть концепт (понятие) денотата и что он определяет денотат. Эти концепты также имеют внеязыковую природу, но уже иную, это, как мы сказали, определенные «ассоциации» в мозгу космонавтов.
Но вот две группы космонавтов после вылазки вернулись на корабль и привезли с собой каждая по находке. И каждая упрямо называла свою находку, ну, скажем, ринограденцией.
Так создается омонимия – одно и то же имя может иметь разные денотаты и выражать разный смысл. Это не очень мешает космонавтам, ведь в разговоре каждый раз ясно, о какой ринограденции идет речь – о животном или о минерале.
И вот, наконец, возникла связь между экстралингвистической ситуацией и языком, описывающим эту ситуацию. Со всеми обычными «неприятностями» – с омонимией, синонимией и т.д. И даже с именами без денотатов, но с концептами! Да, да, бывает и так! На Земле, скажем, «король финляндский» – это имя, имеющее концепт, т.е. вызывающее в мозгу определенные «ассоциации», но не имеющее и никогда не имевшее денотата.
На языке, созданном космонавтами, могут быть написаны тексты. Пусть их даже пишут алфавитом, специально изобретенным для этой цели. Всякий член экипажа, прошедший через всю работу экспедиции, сможет эти тексты читать. При чтении в мозгу читающего проходят определенные «картины» – цепь внеязыковых «ассоциаций». Реальный мир, для которого был создан этот язык, «дефилирует» через сознание читающего. Причем при чтении одного и того же текста у двух различных космонавтов проходят две в общем-то не тождественные цепи ассоциаций.
Но вот космический корабль вернулся на Землю. Ученые получили в свое распоряжение драгоценнейшие коллекции, однако у земных ученых пока еще нет того экстралингвистического «поля», которое есть в голове у космонавтов. По мере изучения записей, просмотра кинофильмов и знакомства с живыми и мертвыми экспонатами в мозгу ученого возникает экстралингвистическое «поле», при чтении текста через его мозг также «дефилирует» цепь «ассоциаций», но, быть может, несколько иная, чем у космонавтов.
Ученый, правда, не видел, как ринограденции кувыркаются в высоких травах планеты Икс, зато он создал их классификацию и при этом слове у него «перед глазами» возникает «графа» классификационной таблицы. Имя ринограденция обрело другой смысл. Сохранились денотат и имя, но изменился концепт.
Ученый – «самообучающаяся машина», ну, а как научить робота этой «экстралингвистике»? Какие рудименты этих ассоциаций надлежит ввести в его «мозг», чтобы робот мог, скажем, перевести «новый» язык на обычные земные языки...
Мы постарались по возможности просто пояснить читателю эту достаточно сложную проблему – проблему значения, проблему смысла. Мы чуть-чуть отодвинули занавес, приподняли ту его часть, которую умеем приподнимать.
Еще много лет, а может быть, и на протяжении всей истории нашей цивилизации, пока не погаснет Солнце, не остынут Галактики, пока вся наша вселенная не приостановит свой красный разбег и не перейдет к голубому сжатию, пока, наконец, вся материя не соберется вновь в одну гигантскую сверхплотную и сверхгорячую каплю, вне которой не будет пространства, а внутри – времени, пока, наконец, в этой капле не сольется все сущее, Разум будет рассматривать проблему Смысла...
Но до голубого сжатия еще далеко, а нынешние земные исследователи лишь приступили к изучению этой проблемы. Спорят кибернетики, логики, лингвисты, философы. Спорят с самими собой и друг с другом, и в спорах есть разные подходы: логико-семантический, языковедческий, психологический. Лет тридцать назад эта проблема носила чисто академический характер. Теперь она стала вполне актуальной – формальная логика и семиотика в арсенале кибернетики приобретают все более мощное прикладное значение: кибернетические переводящие машины должны переводить именно смысл, «выходить» из языка А в какое-то внеязыковое «поле» и «возвращаться» к языку В.
Однако понимание смысла имеет градации. Лем считает, что машину надо снабдить «пониманием», близким к человеческому, иначе «по-настоящему эффективных машин-переводчиков не будет вовсе» (гл. IV). Это ошибка, во всяком случае, если речь идет о машинном переводе научно-технических текстов. Уже осуществлен довольно добротный перевод таких текстов на машинах, кои, увы, все еще несравнимы с человеком.
Если же говорить о переводе художественных текстов, переводе, в котором слит артистизм и пластичность человеческого разума, то Лем прав: «Мы просто не знаем, в какой мере можно “недодать личность” машине, которая призвана хорошо переводить. Мы не знаем, можно ли “понимать”, не обладая и “личностью”, хотя бы в зачатке» (гл. IV).
Впрочем, и здесь есть оборотная сторона медали. Если уж удастся снабдить машину «личностью»; то, безусловно, удастся сделать эту личность сколь угодно богатой. Например, придать машине-живописцу напряженный универсализм Пабло Пикассо. Правда, это сделает особенно трудной задачу человека-критика... Живопись, как язык, обладает своим экстралингвистическим полем, своими «ассоциациями» с реальностью. Однако уже сегодня такие «ассоциации» иногда тождественны работе нынешних вычислительных машин-роботов с заложенной программой.[169]
Но вернемся к Ст. Лему. Нет ли в его высказываниях недоверия или недооценки метода формализации, т.е. «перевода» того или иного «поля» на формальный язык? К этому методу прибегают исследователи, анализирующие проблему значения. Сомнение тут же рассеется, если понять, что Лем рассматривает эту проблему, не отвлекаясь от человека, т.е. на уровне прагматики. Поясним термин.
Языки, будь то естественные или искусственные, в том числе и формализованные языки науки, да, наконец, и произвольные знаковые системы вообще, можно рассматривать на трех уровнях абстракции: на уровне синтаксиса, семантики и прагматики.
Если нас интересуют только внутренние связи языка, если мы отвлекаемся от экстралингвистического «поля» (т.е. от «денотатов») и от существ или машин, воспринимающих язык (а тем самым и от смысловых значений), то мы анализируем язык на уровне синтаксиса. Если мы привлекаем к рассмотрению денотаты и смысл, но все-таки отвлекаемся от существ или машин, воспринимающих и понимающих язык, то мы находимся на уровне семантики. Если же, наконец, мы учитываем и перципиентов языка, если мы принимаем во внимание реальные обстоятельства языкового общения, то мы находимся на уровне прагматики (греч. прагма – действие, дело).
Прагматические аспекты языка очень существенны, особенно для натуральных языков. «Неформальные начало и конец формального построения», о которых говорит Лем, исследуются именно прагматикой. Самым главным в прагматике Лем считает понимание значений человеком. В недавних советских работах также подчеркивалась важность этого аспекта.
В психологических работах анализ «понимания» уже начат. (Но они с трудом поддаются «стыковке» с кибернетикой и с семиотикой.) Кибернетический анализ лишь берет разбег. Между формальным и смысловым «берегом» языка зияет пропасть. «Значение» в конце концов всегда цепляется за «понимание», а «понимания» нет там, где некому понимать, говорит Лем. Поэтому «безлюдность» языка (мы бы сказали «бесперципиентность», имея в виду и машины) сохранить невозможно.
Лем думает, что, высказывая подобные взгляды на феномен значения, он впадает в «непристойность». Не стоит тревожиться! Сие допустимо и при пожилых дамах! Язык и в самом деле живет в «экологической среде» человеческого мозга. Начало ее «лежит» в природе, а «простирается» она в пределах общественных систем. Для человека «значения» – это прежде всего переживания. «Смысловым содержанием фраза наполняется в психическом процессе» (гл. IV). Обо всем этом позволительно «забыть», если стоишь на синтаксическом или семантическом уровне. Именно с этих позиций наука начала штурм «крепости значения». Первыми пошли на приступ логики и семантики. Они-то и захватили «плацдарм», на котором Лем развертывает – и с комфортом – свои построения. Позитивный смысл лемовских рассуждений, конечно, не в попрании логики, а в том, что они напоминают нам о «феномене человека». О феномене, который наука отбросить не может.
Чтоб объяснить явления, наука строит теории и модели. В употреблении Лема эти термины несколько диффузные. Мы остановимся на одном мнении, которое высказывает Лем и которое довольно часто встречается у различных авторов.
Это мнение заключается в том, что теории и модели науки все дальше уходят от «наглядности» и «приятности». Это мнение людей, знающих о науке понаслышке. Современной науке противопоставляют «классическую», которая якобы была «понятной» и близкой к «обыденному опыту», тогда как современная таковой не является. Это – нелепость!
Законы Ньютона, в то время когда они были только что открыты, отнюдь не воспринимались «мирянином» как «наглядные», как часть его повседневного опыта. Они стали «наглядными» потому, что последние триста лет их преподносил Школьный Учитель. Его питомцы, став взрослыми, начинали считать эти законы «наглядными», ну, а значит, – «наглядной» и всю «классическую» физику. Для «отрезвления» заглянем хотя бы в сочинение Леонарда Эйлера «Новая теория движения Луны»[170], датируемое 1772 г. Некоторые страницы этого сочинения состоят целиком из формул. Где же тут наглядность!?
Итак, в момент зарождения классическая физика была далека от наглядного восприятия, некоторые ее положения стали казаться «наглядными» за счет привычки, а основной массив «классики» с его выкладками и вычислениями лежит попросту вне поля зрения «мирянина».
В точности так же обстоит дело и с современной наукой. Всякий, кто изучал «высокие» разделы современной математики или физики, знает, сколько в них «наглядных» объектов. Однако эти «объекты» просто не успели перейти в школьные учебники. Через какое-то время новые идеи войдут в «общественное сознание», как уже вошли представление о шарообразности Земли, гелиоцентризм, законы Ньютона и пр.
Прошло время, когда квантовая механика воспринималась как нечто абстрактное, ее объекты также апеллируют к внутреннему зрению физика-квантиста. Недалек, видимо, день, когда наглядная таблица основных частиц будет висеть в школьных классах рядом с таблицей Менделеева. С распространением лазеров в быт войдет представление о фотонах, так же как с лампочкой Эдисона вошли электроны.
Есть, правда, и другая сторона дела – обычное невежество. Мы склонны проходить мимо «удивительного», даже когда оно совсем «рядом». Для многих ли небо «организовано» в созвездия и среди них – Волопас с его Арктуром или Лебедь? Нет! Увы, на небе есть две Медведицы, а остальное – звездная пыль.
Многие ли встречают как друзей растения в лесу, любят их и «понимают»? Да нет же, растения – это просто «трава»!
Итак, не следует путать двух сторон дела. Есть невежество, слепота, умение проходить мимо совсем «наглядных» и «понятных» вещей. И есть эмоциональное и рациональное восприятие мира, восприятие, которому надо учиться, делая над собой усилие. Тогда созвездия, нуклеиновые кислоты и кванты становятся «наглядными».
Вот почему мы не согласны здесь с Лемом.
Заметим в заключение, что «наглядность и понятность» – явление историческое. Одно дело «наглядность» на уровне «здравого смысла», другое – «наглядное виденье» научных теорий. Эта вторая наглядность будет, безусловно, возрастать по мере роста науки в ущерб «здравому смыслу».
Что же касается математики, то Лем и ей дает оценку, повторяя известное сравнение ее с портным-безумцем, шьющим по произвольному плану одежды. Надо прямо сказать, что в целом это оценка человека, незнакомого серьезно с математикой. Лем попросту не разобрался в клубке математических фактов и идей, идей, связанных с вычислимостью, финитностью, эффективностью, с тем рывком в область законов рассуждения, который сделала современная математическая логика.
Повторяя слова Рассела: «Математика может быть определена как доктрина, в которой мы никогда не знаем, ни о чем говорим, ни того, верно ли то, что мы говорим», Лем, к сожалению, не знает, на каком математическом «фоне» они были сказаны. Д. Гильберт сравнивал математику с шахматами, и это сравнение преследовало определенную цель. Играя в «формальную игру», ученик Д. Гильберта Курт Гедель пришел к своим знаменитым теоремам. Лем также поминает шахматы и... притча, рассказанная великим математиком, становится в устах популяризатора догмой!
Если математика есть игра, подобная шахматам, то почему же она пригодна для описания природы? Мы не можем подробно рассмотреть этот вопрос здесь, в послесловии. Скажем лишь кратко, что, следуя Дж. Джинсу и А. Эддингтону, мы считаем природу «математичной». (Это вовсе не значит, будто мы склоняемся к их философии.) Природа «математична» потому, что человек создает математику «под природу». Отыскивает то, что поддается математическому описанию, и вместе с тем раздвигает границы и обогащает формы самого описания. Лем же считает, что природа «нематематична». Довольно сложный спор о связи между реальностью и ее описанием, спор с участием Эйнштейна, Розена, Подольского, Бора и других физиков, Лем также не понял. Этот спор кратко изложен в одной из книг Дэвида Бома[171] в ее последних пунктах (стр. 700 и далее).
Особенно наивным выглядит утверждение Лема, будто классической физике было свойственно представление о том, что каждый промежуточный этап математических вычислений должен обладать «материальным эквивалентом»!
Поясним это. Пусть имеются два уравнения A и B, причем B выводимо из A. Существует «путь» с промежуточными уравнениями C1, C2, ..., Cn, т.е. цепочка следствий
A => C1 => C2 => ... => Cn => B.
Сколько таких цепочек возможно? Бесконечно много! Всегда к обеим частям уравнения можно прибавить одно и то же число, а затем его вычесть. Это дает лишнее звено в цепочке. Всегда можно взять экспоненту от обеих частей уравнения, а затем прологарифмировать и т.п. И все эти звенья должны иметь материальные эквиваленты?! Иначе нет «изоморфизма» теории и реальности?! O, sancta simplicitas![172]
Впрочем, Лем «допускает» и теории, «не изоморфные» реальности, но «сходящиеся» с ней в конечных точках!
Страницы, посвященные математике, следовало бы обстоятельно разобрать строка за строкой, абзац за абзацем. Однако эта нагрузка слишком велика для нас. Отметим лишь одну из целой коллекции фактических ошибок. Лем пишет, что «матричное исчисление было “пустой структурой”, пока Гейзенберг не нашел “кусочка мира”, к которому подходит эта пустая конструкция» (гл. V).
Это ошибочное утверждение. Системы линейных уравнений, для исследования которых было создано в прошлом веке матричное исчисление, встречались в математике, должно быть, со времен Вавилона. Гейзенберг же нашел, что матрицы годятся и для, повторяем, и для описания атомных явлений. Он нашел, что некоторым матрицам (отнюдь не любым!) можно в определенных условиях придать прямой физический смысл.
Снова притча превратилась в догму!
Заканчивая нашу критику, скажем, что на этих страницах «Суммы» больше красноречия, чем проницательности. Их польза в том, что они вызывают недовольство и тем самым побуждают к собственным размышлениям.
Мы перешли фактически к характеристике философских взглядов Лема. Отметим сначала, что автор книги не философ по специальности и попросту негуманно требовать от него отточенных философских формулировок и исчерпывающей ясности философского анализа. Но характер книги вынуждает автора совершать экскурсы в философию. Многие из них интересны, и мы видим вдумчивого мыслителя, тонко подмечающего такие детали, которые порой ускользают от взгляда философа-профессионала.
Однако Лем высказывает и философски неубедительные взгляды.
Философская позиция, наиболее подходящая, по мнению Лема, для «подглядывания будущего», – это «позиция Конструктора». Он характеризует ее как «веру в возможность успешного действия и в необходимость определенного отказа от чего-то. Прежде всего – это отказ от задавания “окончательных вопросов”» (гл. V).
Позиция Конструктора – это «молчание действия». «О том, что действовать можно, мы знаем намного уверенней и лучше, чем о том, каким способом это действие происходит». Ту же мысль где-то в начале века высказал О. Хевисайд: «Стану ли я отказываться от своего обеда только потому, что я не полностью понимаю процесс пищеварения?».
Конструктор, по Лему, не «узкий прагматик».[173] «Не строитель, который сооружает свой дом из кирпичей, не заботясь, откуда они взялись и что они собой представляют, лишь бы этот дом был построен» (гл. V). Однако при всем этом здравом начале дальнейшие взгляды Лема нельзя признать убедительными и плодотворными для конструкторской деятельности.
Конечно, «конструктор», как и сам автор, материалист. Конструктор «уверен, что мир будет существовать и после него» (гл. V). «Реальность мира он принимает как предпосылку» (там же). Он отнюдь не агностик, природа для него познаваема. Однако же автор не всегда правильно смотрит на связь между познанием и конструированием. Этому препятствуют прежде всего некоторые, мы бы сказали, наивные представления о процессе познания. В этом процессе – своя диалектика! Ее надо понимать!
Начнем со взгляда Конструктора на «кирпичи». Обратимся на минуту к одной характеристике Бертрана Рассела[174]: «Не только правильные взгляды Локка, но даже его ошибки на практике были полезны. Возьмем, например, его теорию о первичных и вторичных качествах. К первичным качествам относятся такие, которые неотделимы от тела и перечисляются как плотность, протяженность, фигура, движение или покой и число. Вторичные качества – все остальные: цвет, звуки, запахи и т.д. Он утверждает, что первичные качества находятся фактически в телах; вторичные же качества, наоборот, существуют только в восприятиях. Без глаза не было бы цветов, без уха не было бы звуков и т.п.».
А вот что пишет Лем:
«Он [т.е. конструктор – ред.] знает, что свойства являются отличительными чертами ситуаций, а не вещей. Существует химическое вещество, которое для одних людей не имеет вкуса, а для других – горько... Некоторые считают, что, кроме свойств, являющихся функцией ситуации, существуют еще неизменные свойства... Эту точку зрения разделяет и Конструктор» (гл. V).
Похоже!? Не так ли? Ведь это, пожалуй, Локк (1632-1704)! И остается лишь вслед за Б. Расселом повторить, что эта теория устарела.
Ни к чему, кроме субъективизма, мы не придем, если будем последовательно проводить эту точку зрения!
Польский писатель не понял того, что в философии называют диалектикой относительной и объективной истины, диалектикой сущности и явления. И в самом деле, Лем ставит вопрос: «Что является целью науки? Познание “сущности” явлений? Но как можно узнать, что мы ее уже познали?» (гл. V). А ответ, который он дает, весьма грустен: «Наука сама толком не знает, чем же являются ее теории» (гл. VII).
Увы, знает! Нам придется в этой связи терпеливо повторить некоторые прописные истины.
Законченное познание «сущности» возможно лишь для сравнительно простых объектов. Для объектов сложных познание их «сущности» всегда относительно. Оно дает знание, т.е. объективную истину, но знание относительное – т.е. относительную истину. Оно движется от «внешних» закономерностей к новым, более глубоким, к «сущностям второго порядка», как говорил В. И. Ленин. И именно в этом смысле Конструктору следует «обойтись без вопросов», точнее без поиска «окончательных ответов», ответов, исчерпывающих «сущность».
Связь между научным объяснением и практическим использованием явлений природы Лем преподносит с аналогичными «огрехами». Он пишет: «Желание получить “объясняющую” теорию понятно, но овладеть явлением... важнее, чем понимать его сущность» (гл. VII). Мысль о том, что овладеть явлением можно без понимания его сути, что овладение имеет приоритет перед пониманием, эту мысль Лем повторяет снова и снова.
Например, относительно значения он говорит, что надо «понять не что такое значение, а как его сделать (воспроизвести)».
Такая точка зрения фактически ошибочна. Позицию Лема мы можем лишь сравнить с позицией некой мисс из американского анекдота.
Один бизнесмен пригласил свою знакомую в ресторан. Сидя за столиком, он стал ей жаловаться: «Дорогая, как мне хотелось бы следить за развитием наук. Но я так занят делами, что не могу себе этого позволить. Вот, например, электричество, – я совсем не знаю, как оно “работает”!» – «О, – ответила мисс, улыбаясь, – это очень просто! Вы поворачиваете выключатель, и оно “работает”!»
Помимо чисто фактической несостоятельности этих взглядов Лема, они несостоятельны и философски. Ведь теория и практика находятся в единстве. Наука развивается на основе практики, а практика включает в себя науку. Практическое овладение миром неотделимо от его теоретического объяснения. Вспомним Хевисайда. Конечно, «успеха» можно достичь, и не понимая «пищеварения». Но не стоит возводить это в норму, в желанный идеал, как это делает Лем. Чем выше теория, тем легче практике. Это трюизм. Что же касается философского понимания мира, то его роль проявляется не столько в конкретных исследованиях, сколько в эволюции науки «в большом». Вопрос об «онтологическом статусе» научных теорий так или иначе подлежит здесь решению.
Выясним наконец, как смотрит Лем на критерии истинности научных теорий. Здесь его взгляды также не страдают излишней последовательностью. В целом он принимает критерий практики, но порой склоняется к прагматизму – прагматизму уже в философском смысле. Так Лем, например, пишет: «Следовательно, он [т.е. конструктор – ред.] – прагматик, и истинное значит для него то же самое, что и полезное» (гл. V).
Однако нельзя же принимать всерьез этот критерий истинности, предложенный прагматизмом.[175]
Можно лишь улыбнуться вместе с Расселом. Вот его «улыбка»: если спросить у обыкновенного человека, пил ли он утром кофе, то он постарается это припомнить. Прагматист же попросит «времени на два эксперимента». Сначала он уверит себя в том, что он пил кофе, а затем – в том, что он кофе не пил, и взвесит последствия в каждом из этих случаев. Ответ может быть трех типов: «да», «нет» и «я не знаю», в зависимости от того, «чья польза перевесит»! А ведь Рассел отнюдь не склоняется к диалектическому материализму!
В «Сумме» есть много упоминаний о различных философских течениях, в частности о современной буржуазной философии. По книге рассеяно множество критических замечаний. Лем с иронией говорит о феноменологии Э. Гуссерля и о текстах М. Хайдеггера, одного из основателей экзистенциализма. Он критически относится и к попыткам М. Таубе опереться в подходе к понятию значения на объективно-идеалистическую философию английского логика и философа А. Н. Уайтхеда. Лем отмечает, что неубедительны и бихевиористские попытки истолковывать психику и решать проблему значения. С этой проблемой не могут управиться и направления логического позитивизма (неопозитивизма) – логический эмпиризм и «физикализм». Лем отмечает, что многовековая дискуссия о природе научного обобщения, восходящая к номинализму и реализму, не увенчалась успехом. Он указывает, наконец, на неудовлетворительность позиции конвенционализма – так называемого «радикального конвенционализма» философов и логиков польской школы.
Критика критикой, но противостоит ли этим взглядам четкая философская позиция самого автора? Увы, нет! Манера изложения заставляет думать, будто «от имени науки» с наибольшим правом могут выступать неопозитивисты. Это скорее поза, чем позиция, а позу можно менять, но тогда различия в критикуемых позициях смазываются!
Лем затрагивает такие направления в основаниях математики, как «интуиционизм» (Э. Л. Я. Брауэр, Г. Вейль), «формализм» (Д. Гильберт) и «конструктивизм» (А. А. Марков). Однако он забывает, что исторически интуиционизм был связан с различными вариантами субъективистских теорий познания, а конструктивное направление – с диалектическим материализмом. При оценке всех этих направлений следует четко отделять сами конкретные исследования по логике, метаматематике (теории доказательства), логической семантике и т.д. от философии, на них произраставшей (логический позитивизм и пр.).
Перейдем теперь к рассмотрению некоторых идей из второй половины книги. Частично о них уже шла речь. Здесь полезно еще раз напомнить, что Лем рисует весьма далекое будущее. Развитие нашей цивилизации он делит на три фазы.
Первая заканчивается сейчас, в эпоху электричества, и тут же начинается вторая. В этой фазе энергетика достигнет высвобождения в двигателях мощностей, сравнимых по масштабу с явлениями природы, и кибернетика будет конструировать все более сложные «системы». Третья фаза – фаза автоэволюции вида Homo sapiens. Ко второй фазе Лем относит значительную часть своих фантастико-гипотетических построений.
Займемся сначала ею... и тут же на нас сыплются слова: имитология, фантомология, пантокреатика, цереброматика, телетаксия и еще, и еще, и еще...
Ахти нам, да где ж словарь?!
«Имитология» – от латинского слова imitatio – подражание. Фантомология – от французского fantom – призрак, видение. (Отсюда Фантомас!)
Пантокреатика – греко-латинский гибрид: пантоз – весь, всякий; creatio – создание, созидание. (Сказать бы короче «панкреатика» – но, увы, панкреатит – воспаление поджелудочной железы!)
Эти слова звучат зазывно, как названья далеких, еще неоткрытых стран. Кажется, будто ты – юнга на каравелле, которую ведет Колумб! Каскара саграда!
Имитология охватывает все материальные процессы и явления как естественные (звезда, извержение вулкана), так и «неестественные» (атомный реактор, цивилизация). «Совершенный имитолог, – пишет Лем, – это тот, кто сумеет воспроизвести любое явление Природы или же явление, какого Природа, правда, спонтанно не создает, но создание которого является реальной возможностью» (гл. V).
Имитология плавно переходит в фантомологию – более позднюю фазу пантокреатики. Фантомология охватывает уже создание процессов, все более отличных от естественных – «вплоть до совершенно невозможных, т.е. таких, которые ни при каких обстоятельствах произойти не могут, ибо они противоречат законам природы» (гл. V).
Начинается она с фантоматики. Это нечто вроде кинематографа, только с обратной связью. Здесь ты и зритель, и сам себе актер, а иллюзия, тобой создаваемая и переживаемая, совершенна!
Фантоматический сеанс описан Лемом в «Возвращении со звезд». Герой – Хэл Брегг – лишь накануне вернулся на Землю, он бродит по парку большого города и попадает в фантомат. И вот он уже в лодке, на бурной африканской реке. Лодку выбрасывает на камни, и он прыгает в воду за упавшей в нее Аэн Аэнис. И... слышит смех окружающих, это иллюзия, он – в фантомате. Этот прыжок заставит потом Аэн Аэнис выпить «перто» – напиток, возвращающий страх...
Это случилось в «Возвращении со звезд», здесь же, в «Сумме», Лем излагает свою общую концепцию – основу творчества (о такой перекличке мы и говорили в начале нашего Опыта). Сначала Лем упоминает о результатах некоторых недавних экспериментов по исследованию «рая» и «ада» в мозгу.[176] Затем он рассматривает «цереброматику», «телетаксию», «фантопликацию»... Страницы, посвященные всем этим «предметам», – одни из наиболее занятных в книге... но не всегда убедительных!
Пантокреатическая деятельность в целом слагается из добывания информации и из ее использования. «Автоматическое» добывание информации войдет, согласно Лему, в имитологию.
«Имитология с помощью бесчисленных процессов... дает нам различные связи, “теории” и свойства явлений» (гл. VII). Но как же создать эти «имитологические машины»? Нужно – «выращивать информацию»! Естественнонаучный генезис этой идеи мы проследили выше. Здесь же мы дадим некоторую оценку самой идеи и того, с чем ее связывает автор.
Схема рассуждений Лема приблизительно следующая. Технология будущего будет руководствоваться математикой будущего. Пользуясь математическими системами, конструкторы смогут производить «наперед заданные миры». Нынешняя математика с ее аналитическими методами и символическими языками, по мнению Лема, не годится для этой цели. Нужна другая математика. Какая же именно? Математика, которую «без всякого формализма реализует оплодотворенное яйцо»; математика, которая «управляет процессами в хромосомах и звездах, обходясь без всяких формализмов». Эта-то «математика» и будет создаваться путем выращивания молекул – носительниц теорий на «информационной ферме».
Рассмотрим эту идею Лема. Надо прежде всего сказать, что ее реализация уже начата... современной математикой. Только вместо «молекул в чане» математики используют «программы в вычислительной машине». И эти программы не столь уж «малы», они «сравнимы по длине» с молекулами нуклеиновых кислот. С микроминиатюризацией машин и с развитием принципов программирования подобные «длины» будут быстро превзойдены. В самом деле, вот что пишет Ф. Крик[177] (один из авторов «спиральной модели ДНК») о длине этих молекул:
«Общая длина цепи ДНК в клетке составляет: для фага T-4, инфицирующего кишечную палочку Escherichia coli, примерно 2*105пар оснований; для самой кишечной палочки – вероятно 107, а для человека 2-3*109в каждой клетке (этого вполне достаточно для миллиона с лишним генов, если считать, что длина каждого гена соответствует нескольким тысячам пар оснований)».
Число хромосом у человека около 50, и, значит, в среднем на молекулу приходится около 108пар оснований и такое же по порядку число битов информации, ибо пара оснований несет 2 бита.
А вот что пишут о машинах Е. А. Жоголев и Н. П. Трифонов: «Самой быстродействующей машиной в мире в настоящее время является машина Си-Ди-Си-6600, построенная в 1964 г. фирмой “Контрол дэйта корпорейшн” в США, – производительность этой машины превышает 3 млн. операций в секунду. Фактически Си-Ди-Си-6600 является не машиной в обычном понимании этого слова, а целой вычислительной системой, состоящей из ряда машин, работающих в едином комплексе. Центральная вычислительная машина (центральный процессор) имеет оперативную память на ферритовых сердечниках емкостью в 131072 60-разрядных двоичных слова со временем обращения в 1 мксек».[178]
Вдумаемся в эти числа (они на самом деле уже устарели, ибо сейчас действует машина со скоростью 12 млн. операций в секунду!). Емкость оперативной памяти машины равна 131072*60 примерно 6*106битов. Она превосходит количество информации в ДНК фага T-4 и приближается к количеству информации в ДНК кишечной палочки. Молекулы такой длины уже можно «записать» в памяти Си-Ди-Си-6600!
Мы, наверно, сильно занизим «цифры», если будем считать, что в каждое десятилетие емкость оперативной памяти машин будет повышаться на один порядок. Но и тогда всего лишь через 30 лет можно будет записать в оперативной памяти машины уже всю цепь ДНК человека! Подчеркиваем – в оперативной, т.е. в «быстрой» памяти.
Время обращения в 1 мксек у Си-Ди-Си-6600 означает, что «молекулу» длиной в 106бит машина может «прочитать» за одну секунду. (Вряд ли натуральные «биохимические считчики» в клетке – рибосомы – считывают наследственную информацию с такой быстротой.) Наконец, быстродействие в 3*106операций в секунду означает, что «переработка» «молекулы» длиной в 106бит также будет длиться около одной секунды. Можно думать – и это скорее пессимизм, чем оптимизм, – что к 2000 году аналогичные времена считывания и переработки будут относиться уже к «человеческим» молекулам, т.е. к молекулам «длиною» в 109битов. (Надо, конечно, учитывать, что память машины должна загружаться не только самой «молекулой», но и программой для ее переработки.)
Еще по прошествии некоторого времени оперативная память машин вместит уже целые «популяции» таких молекул, популяции численностью в 103, 106, а затем и в 109«особей». Одна «приличная» цифровая вычислительная машина сможет моделировать запас генотипов всего человечества.
Выращивать информацию можно уже сегодня. Но, быть может, это выращивание еще не начато? Нет! Уже начато! И никаких ограничений типа «формализации» оно не имеет! И на самом деле уже сегодня оно богаче по своим возможностям, чем «химия ДНК». Программы, «эволюционирующие» в машине, уже сегодня самоперестраиваются, ветвятся, производят случайный выбор. И если поначалу машины решали чисто вычислительные задачи, то теперь интенсивно исследуются принципы решения задач эвристики.[179]
Итак, сама идея выращивания информации вполне здравая. Ее реализация уже началась. Дойдет ли это выращивание до «молекулярного уровня»? По-видимому, дойдет. Примет ли оно формы «эволюции» молекул в чанах или в биосистемах или останется эволюцией программ, т.е. «состояний» машин – систем «типа мозга», покажет будущее.
