Как ГМО спасает планету и почему люди этому мешают Иванова Анна
В оформлении переплета использована фотография: Vasiliy Koval / Shutterstock.com
Используется по лицензии от Shutterstock.com
Во внутреннем оформлении использованы фотографии и иллюстрации: Jon Benedictus, Gigoliver, Anastasia Averina, Natspace, Mateusz Atroszko, Katerina Davidenko, StocKNick, meechai39 / Shutterstock.com
Используется по лицензии от Shutterstock.com
© Иванова Анна, текст, 2022
© Иволга М.В., иллюстрации, 2022
© ООО «Издательство «Эксмо», 2023
От автора
– Возьмите корм вот этой марки, они без ГМО.
– Вы считаете ГМО опасными?
– Нет. Я вообще на биофаке учусь. Просто люди такие лучше берут.
Этот диалог произошел несколько лет назад в зоомагазине на следующий день после внезапного появления в нашей жизни кошки. Не знаю, зачем записала его в тот день, но это оказалось правильным решением: он натолкнул меня не только на написание этой книги, но и на желание разобраться в тех механизмах человеческого мышления, работа с которыми и есть основная задача популяризатора науки.
Некоторые читатели блога сознавались мне, что когда-то предпочитали брать с полки продукты с маркировкой «без ГМО», хотя уже тогда не имели перед ГМО никаких явных страхов или вовсе были безразличны к вопросу. Такое поведение кажется контринтуитивным, но на самом деле ему есть совершенно научное объяснение. За исследования формирования суждений и принятия решений в условиях неопределенности в 2002 году израильско-американский психолог Даниел Канеман даже был удостоен Нобелевской премии по экономике. Профессор Канеман вместе с коллегами ввели понятия система 1 (С1) и система 2 (С2) для двух различных механизмов принятия решения[1]. Каждый человек обладает обеими системами.
С1 – система быстрого реагирования, она постоянно находится в режиме «включено». Это она помогает нам реагировать на светофоре на выскочившую машину, выбирать вкус мороженого на десерт или отвечать улыбкой на улыбку незнакомца. Когда-то, в давние-давние времена, это она заставляла нас убегать от внезапно мелькнувшей тени, не дожидаясь, окажется эта тень проплывающим мимо облаком или пещерным медведем.
С2 – наш медленный и обстоятельный рациональный друг. Она обдумывает не только решение, но и его последствия, задействует имеющиеся знания, прошлый опыт и статистические данные.
У каждой из них свое место в наших жизнях: не миновать беды, если С2 решит взять поводья в свои руки перед летящей на вас на красный свет машиной. Как не миновать ее, если мы доверим С1 решать, стоит ли вакцинироваться от новой коронавирусной инфекции.
Кроме введения самого понятия двух систем, группа Даниела Канемана и Амоса Тверски пришла к выводу, что люди склонны подменять рациональные ответы (С2) интуитивными (С1), но при этом могут находиться в уверенности, что решение было тщательно обдумано и взвешено. Такая подмена почти всегда ведет к ошибкам (и иногда фатальным).
Согласно выводам авторов работы «Психологические факторы принятия решения о вакцинации», часть российских родителей не оценивает реальные риски побочных явлений при вакцинации или риски самого заболевания. Их решение склонно формироваться под влиянием психологических защитных механизмов[2]. Вспомнить громкую историю с родительского форума об осложнениях у некоего ребенка мозгу проще, чем столбики статистических данных. В итоге родителям кажется, что риски от вакцинации выше, чем риски самого заболевания. То есть для принятия важного для жизни ребенка решения родители иногда используют С1 вместо С2!
Но что служит пищей для С1? Наш личный опыт и опыт близких людей, наши эмоции и система ценностей, окружающая среда и предпочтение нулевого риска[3]… Именно поэтому информация, вызывающая в нас эмоциональный отклик, так сильно влияет на принимаемые нами решения. Еще одним из важных пунктов в этом списке можно назвать влияние информационного поля – той информации, которую мы получаем из СМИ, интернет-ресурсов, постов в соцсетях[4]. Той информации, которая окружает нас в течение жизни. К сожалению, злую шутку здесь сыграли так горячо любимые мною технологии машинного обучения. Стремясь сделать алгоритмы выдачи поисковых систем и формирования лент новостей в соцсетях наиболее персонализированными, человечество само загнало себя в опасную ловушку. Каждый из нас погрузился в собственный информационный пузырь и оказался во власти иллюзии, что мир вокруг него таков, каким он видит его через экраны своего компьютера и мобильного телефона. Если человек однажды усомнился в пользе вакцинации, существовании ВИЧ или шарообразности Земли, то услужливые алгоритмы подгонят ему множество новостей, подтверждающих его точку зрения, а соцсети сами найдут ему в Сети единомышленников. Чем больше человек будет находиться в этом коконе, тем больше настроенной под это информации он получит. Тем сильнее укрепится в своих позициях.
Не так давно создатели крупных соцсетей осознали свою ошибку и размер нанесенного обществу ущерба в вопросах вакцинации. Теперь при каждом запросе о вакцинации при любой его формулировке пользователю первыми в выдаче будут показаны официальные ресурсы с достоверной, научно обоснованной информацией. Следующий удар системе персонализации новостей нанесла пандемия Covid-19. Любое упоминание пользователем ключевых слов на множестве разных ресурсов вызывает автоматический показ ссылок на научные данные. К сожалению, популяризаторам науки, бьющимся на полях сражений с мифами о плоской Земле, с отрицанием глобального потепления и высадки человека на Луну, с хемофобией и ГМО-фобией, с опасными для здоровья диетами и упражнениями, такой подмоги ждать не приходится.
Именно поэтому задача формирования информационного поля, основанного на научных данных, кажется мне первостепенной для популяризаторов, научных журналистов и коммуникаторов, всех неравнодушных сторонников критического мышления. Иными словами: мы не можем заставить людей использовать С2 для принятия решений. Настоящая наша задача – это калибровка С1, чтобы товары без маркировки «не содержит ГМО» были «интуитивно» более привлекательны покупателю, чтобы первой ассоциацией на слово «вакцина» всплывало слово «защита» и чтобы при первых признаках простуды рука сама «на всякий случай» не тянулась к заначке антибиотиков. Цель автора этой книги – внести свой вклад в этот процесс.
В моей работе биоинформатика и специалиста по анализу биологических и медицинских данных мне постоянно приходится смотреть на вещи под разными углами. Так я вижу их как математик, чтобы учитывать статистические процессы и математические модели, лежащие в их основе. Так я изучаю их глазами биолога, чтобы понять причины и следствия, определить механизмы и уложить их на фундамент научных знаний о мире. А затем трогаю их руками программиста, чтобы соединить результаты работы первого и второго. Затем в гости к этой шайке обязательно заглядывает популяризатор и неизменно пытается устроить еще больший балаган, где раскрашивает выводы глупыми (и не очень) аналогиями и травит байки из истории науки. Вся эта банда (в лице уставшего от их постоянного гвалта автора) искренне надеется, что у нее получится достичь этой светлой цели в интересной для читателя форме.
Часть 1. Или часть-матчасть
Введение
В чем только не соревновались мы в детстве с одноклассниками! Кто первым съедет верхом на стуле по лестнице с третьего этажа до первого, кто сможет на большее время задержать дыхание, кто быстрее всех произнесет английский алфавит и даже кто сможет с первого раза без единой запинки произнести «дезоксирибонуклеиновая кислота». К сожалению, ровно на этом знания генетики у 11 «Л» класса и заканчивались.
Последние 6 лет, которые я с переменным успехом занимаюсь популяризацией науки, в многочисленных разговорах с читателями блога LabMouse вырисовалась совсем нерадостная картина: многим из них повезло не больше. Я точно знаю, что в мире есть совершенно потрясающие школьные учителя биологии (и мне очень повезло быть лично знакомой с несколькими из них), которые любят свой предмет, постоянно обновляют собственные знания, могут заинтересовать ученика и даже помочь ему найти любимую профессию. Но если вдруг по этой или иной причине вам кажется, что перед чтением этой книги вам стоило бы освежить свои знания генетики, то первая глава книги написана специально с этой целью. Если же знания биологии постоянно находятся в вашей активной памяти, то главу 1 вы можете бегло пролистать. Однако не пропускайте ее совсем уж полностью. Среди привычно знакомой вам информации я постаралась встроить немного интересных данных, полученных учеными за последние годы.
Попробуйте провести эксперимент: задайте произвольному человеку вопрос «что такое ГМО?». Я готова поспорить, что большинство из вас получит ответ, который можно сформулировать как-то так: ученые пошли против природы и специально изменили гены таких организмов. Это убеждение невероятно популярно. И в следующих нескольких главах мы поговорим о том, сколько же в нем правды.
Глава 1, в которой мы вспоминаем, как все устроено
Вот ведь что странно. Когда физик пишет популярную книгу об элементарных частицах, от него никто не требует начинать с объяснения того, что такое молекула, атом, атомное ядро. Считается, что все это и так знают. Но любая попытка писать о современных проблемах генетики, не объяснив сначала, что такое гены и хромосомы, решительно пресекается редактором и рецензентами.
Нет, – говорят они, – так непонятно.
Но как же, ведь и устройство ДНК, и законы Менделя учат в школе!
Это ничего не значит. Мало ли чему учат в школе. Вот я, например, – говорит редактор, – понятия не имею о том, что такое гетерозигота и чем она отличается от гомозиготы.
Но ведь чтобы это все объяснить, – начинаю оправдываться я, – нужно написать отдельную большую книгу вовсе не о том, о чем хочу написать я.
А вы коротенько, в первой главе объясните все фундаментальные понятия, а потом уж пишите, что хотите про ваших кошек.
П. М. Бородин. Кошки и гены
Честно говоря, с редактором Павла Михайловича я скорее согласна. Уж лучше в самом начале договориться, что вы планируете говорить об одном и том же, чем очень долго спорить каждый о своем. Эта мысль возникла у меня впервые пару лет назад, после многочасовых споров о том, почему традиционная селекция ничем не безопаснее[5] генной модификации. И только пару километров сообщений спустя случайно выяснилось, что под той самой традиционной селекцией мы с собеседником понимаем совсем разные вещи. Но об этом я предлагаю поговорить в отдельной главе. Пока же последуем мудрому совету и… будем говорить о пицце.
1.1. Говорить о пицце
Вы умеете готовить пиццу? Я – нет. Но я попробую пофантазировать, что все-таки умею. По традиции тесто следует готовить самостоятельно. Смешать муку из твердых сортов пшеницы с водой, дрожжами, солью и свежевыжатым оливковым маслом, а затем по всем правилам завести. Собрать на собственном огороде за домом самые спелые и ароматные томаты и приготовить томатный соус. За сыром нужно отправиться в… хлев – будущий сыр надо сначала добыть из упрямой козы.
Сколько же деталей! Хорошо бы подробно записать их все для будущих поколений. Создать настоящую энциклопедию о пицце с тысячами рецептов мировых кухонь и новомодных экспериментов от шеф-поваров известных ресторанов. Вот это вышла бы книга!
А ведь подобной кулинарной книгой запаслась каждая клетка нашего тела. Да и не только нашего – все живые существа, от помидора до бактерии, живущей на его спелом боку, таскают с собой такую энциклопедию. Правда, готовить по ней нужно не пиццу, а много куда более интересных вещей.
Мы зовем эту книгу геномом. Геном живого существа – это кулинарная книга, генеральный строительный план, по которому будет изготовлена каждая деталь и собран сложный механизм – живое существо. Но что представляет собой этот план?
Как кулинарная книга состоит из отдельных глав – рецептов, так наш геном состоит из генов[6]. Как повар читает рецепт перед началом готовки, так специальные молекулярные «машинки» внутри каждой клетки читают информацию с генов и переводят ее в молекулы РНК. Прочитав кулинарный рецепт, повар начинает готовить блюдо. Например, соус для пиццы. По прочитанному с гена «рецепту» механизмы клетки готовят белок[7]. Тесто, сыр, соус и, наконец, сама пицца – это все уже не буквы на бумаге. Это вещественное и съедобное, результат работы повара. Результат работы «молекулярной кухни» внутри клетки – аминокислотные последовательности и сложенные из них впоследствии белки.
Представьте дальше, что нашу энциклопедию о приготовлении пиццы мы разослали в разные уголки мира. В ресторанчике на Крайнем Севере вряд ли станут готовить пиццу по рецепту с тропическими фруктами. А в ресторане в самом сердце австралийской пустыни повару не по возможностям пицца с ломтиками свежего лосося. Хотя книга рецептов и будет одинакова на каждой кухне, но готовить из нее повара будут по разным рецептам. Так и каждая клетка тела любого живого организма содержит одинаковый[8] геном, но в каждой клетке читается только та часть генов, что нужна именно этой клетке для выполнения ее функций.
Пожалуй, пора перейти от абстрактных сравнений к скучным деталям.
• Геном – это совокупность всех молекул ДНК (дезоксирибонуклеиновой кислоты) или РНК (рибонуклеиновой кислоты, как, например, у некоторых вирусов), которые расположены в клетке.
• В живых клетках ДНК не «разбросана» просто так, а уложена в аккуратные структуры, в поддержке которых участвуют специальные белки.
• Каждая отдельная молекула ДНК с прикрепленными к ней белками называется хромосомой. К примеру, геном человека состоит из 46 хромосом, расположенных в ядре клетки, и множества небольших молекул ДНК, которые находятся в митохондриях[9].
• В геноме бактерий, как правило, всего одна хромосома и несколько очень маленьких молекул ДНК, которые называются плазмидами.
Запомните это слово. Ведь благодаря механизму обмена плазмидами, о котором мы еще поговорим далее, бактерии умеют становиться настоящими суперзлодеями и приобретать антибиотикорезистентность. Но для нас гораздо интереснее то, что благодаря этому же механизму ученые смогли поставить бактерии на службу во благо человечества. Плазмиды – один из главных инструментов генетической модификации!
Геномы растений и вовсе космос. Без пол-литра крепкого чая с ними разобраться никаких шансов. Одна только простая и привычная пшеница способна свести с ума любого неподготовленного биолога сложностью устройства своего генома[10]. А некоторые растения и вовсе обзавелись в процессе эволюции тысячами хромосом! И это я еще промолчу, что в клетках растений есть хлоропласты со своими собственными геномами. Очень хорошо представляю, как легко запутаться во всем этом с ходу и забросить эту книжку как можно дальше. Поэтому мы начнем по порядку.
1.2. По порядку
В основе всего атомы. Если вернуться к аналогии про приготовление пиццы, то атомы будут отдельными крупинками муки.
Все в мире состоит из атомов. Атомы могут соединяться друг с другом, образуя молекулы. Сами атомы настолько малы, что без применения сложных технических подходов разглядеть их невозможно[11] даже в самый сильный микроскоп. Но можно, например, пытаться увидеть не саму молекулу, а восстановить ее вид по «теням», которые отбрасывают ее атомы в рентгеновских лучах, – этот метод носит название «рентгеноструктурный анализ». Еще молекулу можно поместить в магнитное поле, затем подвергнуть действию других магнитных полей, считать сигналы поведения атомов, возмущенных таким безобразием, и проанализировать их при помощи компьютера, воссоздав трехмерную структуру их расположения. Метод, основанный на явлении ядерно-магнитного резонанса (ЯМР), называется ЯМР-спектроскопия. А вот еще популярный метод: молекулу можно превратить в замороженный кристалл и «фотографировать» уже его. Это криоэлектронная микроскопия.
В общем, вот из таких микроскопических частиц (атомов) состоит и кристалл соли, и частица космической пыли у далекой звезды, и воздух, которым мы с вами дышим. И даже мы с вами. Не знаю, как вам, а мне удивительно сознавать, что я состою из тех же самых частиц, что миллиарды и миллиарды лет назад были частью далеких, ныне ярко погибших звезд.
В этом месте можно справедливо отметить, что все вокруг (и включая) нас лишь физика. Или химия. Все зависит только от того, физик или химик возьмется рассказывать эту историю.
В основе любого организма, живущего на планете Земля, лежат атомы углерода и водорода. Они – кирпичики, из которых построены все органические (то есть обязательно имеющие в своем составе углерод) вещества. Вполне возможно, на иных планетах и в иных Вселенных совсем другие атомы являются основой жизни. Эта идея уже много десятилетий любима не только писателями-фантастами, но и серьезными учеными. Однако на старушке Земле все сложилось именно так.
Часто вместе с упомянутой выше парочкой можно встретить также кислород, азот, фосфор и серу, а иногда и более экзотических ребят. Некоторые органические вещества, например, не стесняются иметь в своем составе атом магния или железа. Но кто их решится за это осуждать.
Основные молекулы, с которыми нам обязательно нужно познакомиться как можно ближе для комфортного чтения этой книги, называются аденин, тимин, гуанин и цитозин. Они – основные строительные и информационные единицы самой главной молекулы всего живого – молекулы ДНК[12]. Всю их группу называют азотистые основания (а иногда просто основания). Каждое азотистое основание в ДНК соединено с остатком молекулы сахара – дезоксирибозы. Она тоже состоит из атомов углерода, кислорода и водорода.
А теперь мне потребуется ваше воображение. Представьте себе, что молекула сахара – это такое смешное одушевленное существо, у которого есть две цепких лапки. Одну из лапок оно протянет к какому-то из азотистых оснований, например к тимину, и крепко за него ухватится. Вторую лапку протянет к другой такой же молекуле сахара и ухватится за нее. Но не «голыми руками», а через связку с использованием атома фосфора – этакую «фосфатную рукавичку». Взгляните на картинку. Такую конструкцию можно назвать «позвоночником» молекулы ДНК. Или сахарофосфатным остовом, поскольку он состоит из сахаров и фосфатных (содержащих в себе фосфор) групп. Вторая молекула сахара тоже не лыком шита: она точно так же имеет две лапки, одной из которых поймает свое азотистое основание – пусть это будет молекула гуанина, – а второй через такую же фосфатную рукавичку ухватит третий сахар. Эта третья молекула сахара тоже имеет две лапки…
Так звено за звеном образуется настоящая цепочка – одноцепочечная молекула ДНК. Важно заметить, что «информационный» состав цепочки определяется именно азотистыми основаниями – они в этой истории главные герои. Потому биоинформатики записывают «текст» ДНК так: АТГГГТТАЦАЦ.
Так, мы вроде разобрались, как ДНК устроена и даже в том, кто в ней носитель информации. Но как именно она эту информацию носит и передает? Этим вопросом миллиарды лет назад задалась и эволюция. И уж она-то нашла выход!
Любой школьник знает, что самый простой способ выполнить работу – это списать ее из учебника или у соседа по парте. И эволюция выбрала ровно тот же метод – списывание! Каждая новая одноцепочечная молекула ДНК «списана» с предыдущей молекулы. Этот же механизм лежит и в основе деления клеток (роста, развития и обновления тканей организмов), и «производства» новых организмов. Итак, новую цепочку ДНК всегда можно воссоздать по старой. Дело в том, что у каждого азотистого основания есть свой «напарник». У аденина это всегда тимин. У гуанина это всегда цитозин. Только с таким напарником он может устанавливать связи[13]. Это называется комплементарность, что переводится как взаимодополнение. Можно спорить, существуют ли «идеальные половинки» в человеческих отношениях, но вот в отношениях азотистых оснований они точно есть.
Получается, если у нас есть одна произвольная цепочка ДНК, то мы всегда можем построить на ее основе другую, комплементарную. А главное, что это может сделать и клетка любого организма! Напротив каждого аденина должен встать тимин, а напротив тимина, наоборот, – аденин. Напротив каждого цитозина должен встать гуанин. И наоборот. Получается, что цепи АТГГА комплементарна будет ТАЦЦТ. На положенное место в новой растущей цепи азотистое основание встает не само по себе, а в связке с сахаром – то есть в виде нуклеозида. В среде, где происходит копирование молекулы[14], все четыре варианта свободно плавают, пока не проплывут достаточно близко от растущей молекулы. Тогда в нужном месте и в нужное время они будут подхвачены ферментом[15], отвечающим за построение цепи. Плавают они, кстати, «надев удлиненную фосфатную рукавичку». В такой форме нуклеозид с фосфатным хвостиком называется нуклеотидом. Как только нуклеотид подплывет достаточно близко к положенному в цепи ДНК месту, он отбросит часть фосфатного хвостика, встроится в растущую цепь и приготовится остатками своей «рукавички» захватить следующий удачно проплывающий мимо нуклеотид.
Таким образом напротив старой одинарной ДНК-нити со временем вырастает вторая, которая как зеркало отражает информацию первой цепи. Сложно это представить? Возьмите с полки любую книгу и подойдите с ней к зеркалу. Поднесите книгу обложкой к зеркалу. Мы привыкли читать текст слева направо. То есть начало названия книги на левой стороне обложки, а конец – на правой. Но вот зеркало сейчас показывает вам иную картину! Заглавная буква названия оказалась справа от вас, а его конец – слева. Но при этом напротив буквы «к» по-прежнему стоит буква «к». Просто раньше она была началом, а теперь стала окончанием отзеркаленного названия. Так информация передается от нити к нити, от поколения к поколению.
Но еще кое-что всегда идет рука об руку со списыванием. Спросите у любого третьеклассника, уж он-то знает. Списать без единой ошибки практически невозможно! В этом простом правиле кроется и наше счастье, и наше горе: и тому, что эти строки набирает не одноклеточная амеба, и тому, что в любой момент времени у набирающего эти строки может начать развиваться раковое заболевание, мы обязаны тем самым ошибкам, допускаемым при «списывании». Но все-таки это уже другая история.
Связи между двумя комплементарными цепочками довольно хрупкие, а звенья в каждой из отдельных цепочек, наоборот, держатся очень крепко. Поэтому даже когда под влиянием каких-то факторов цепочки расходятся будто застежка-молния – денатурируют, после они так же легко за счет комплементарности «слипаются» обратно при первой возможности – то есть ренатурируют.
Почему такое разрушение вообще происходит? Часто под действием внешних факторов, например ультрафиолетового излучения (вот почему так важно пользоваться солнцезащитными средствами) или радиации, которая всегда присутствует в атмосфере Земли.
Скорость такого распада не очень высока и сильно зависит от условий, в которых находится ДНК. Например, погибший под снежной лавиной мамонт очень быстро замерзнет, и его ДНК может сохраниться в холодных условиях намного лучше, чем ДНК неосторожного кролика, провалившегося в тропическое озеро всего, скажем, лет 50 назад. Но чтобы ориентироваться на какие-то числа, можно сказать, что скорость полураспада ДНК составляет 521 год[16]. Как посчитали? Ученые взяли от давно вымерших нелетающих птиц моа 158 костей из трех мест гибели на территории Новой Зеландии, где они когда-то проживали. Разные кости датировались возрастом от 600 до 8000 лет. Из них выделили митохондриальную ДНК, составили математические модели, учитывающие температуру окружающей среды, особенности почвы, и вывели среднее значение: при температуре около 13 °C молекула ДНК длиной 242 нуклеотида распадается наполовину за 521 год. За следующий 521 год пополам распадется оставшаяся половина, затем еще раз пополам оставшаяся и так далее. Так что получается, что даже от вымершего всего какие-то 4000 лет назад на острове Врангеля последнего мамонта ученым могут перепасть вполне крупные фрагменты ДНК, по которым мы можем узнать очень много всего об этих прекрасных созданиях. А вот надеяться на получение хоть совсем маленького фрагмента ДНК динозавра нам не стоит. Уже через пару миллионов лет от молекулы ДНК даже в самых хороших условиях остается не так много – самая древняя на декабрь 2021 года ДНК имеет возраст чуть больше миллиона лет и получена из зуба мамонта буквально недавно[17]. Последние динозавры же вымерли аж 65 миллионов лет назад.
В этой главе мы обсудили, как хранится информация об организмах и как она передается каждой новой клетке и соответственно дочернему организму от родительского. Мы поняли, что можем сравнить информацию, хранящуюся в ДНК, с набором слов, с книгой, в которой записан организм. Но как эта записанная информация становится вполне вещественными «кирпичиками», из которых состоит организм?
То есть как перейти от слов к делу?
1.3. От слов к делу
Между рецептом в книге и готовым блюдом на столе спрятался повар. Тот, кто сначала прочел, а затем, старательно соблюдая инструкции и выбирая самые лучшие ингредиенты, приготовил и подал на стол свежую, ароматную и невероятно аппетитную пиццу. На молекулярной кухне внутри каждой клетки трудится не один такой повар, а целая армия ответственных и узкоспециализированных профессионалов, чтобы в конечном итоге «подать на стол» свой кулинарный шедевр – белок – цепочку из аминокислот, которая после некоторых превращений станет важной шестеренкой в функционировании живого существа. Одни работники зажимают страницы раскрытой на нужном рецепте книги, другие – читают его вслух. Третьи тащат из кладовых на кухню нужные ингредиенты, а четвертые соединяют их в указанном порядке. Эти ребята – отточенные эволюцией за три с половиной миллиарда лет существования жизни на Земле молекулярные механизмы.
Поэтому мы сосредоточимся на ключевом понятии – центральной догме молекулярной биологии. Название пафосное, но это потому, что описывает оно ключевой принцип молекулярной биологии и вообще жизни. А сформулировал этот принцип Фрэнсис Крик – один из легендарных авторов открытия структуры[18] молекулы ДНК. Если выразить ее коротко, то в изначальном виде она звучит так: информацию, записанную в виде ДНК, можно перевести в форму РНК, а из РНК – в белок[19].
«Она [центральная догма] утверждает, что как только “информация” перешла в белок, она уже не может вернуться обратно. Если точнее, передача информации от нуклеиновой кислоты к нуклеиновой кислоте или от нуклеиновой кислоты к белку может быть возможна, но передача от белка к белку или от белка к нуклеиновой кислоте невозможна. Под информацией здесь понимается точное определение последовательности оснований нуклеиновой кислоты или аминокислотных остатков в белке», – говорит Крик в 1958 году[20], через 5 лет после открытия структуры ДНК.
А еще по ДНК может быть построена новая ДНК. В последующие годы центральная догма была снова расширена – теперь мы знаем, что на основе РНК может строится новая РНК, а некоторые вирусы, такие как ВИЧ, могут даже построить ДНК на основе РНК, – но главный принцип центральной догмы остается неизменен: изменяя последовательность белка, нельзя изменить последовательность РНК или ДНК. Поток в этом случае идет всегда только в одну сторону.
1.4. Трудности перевода
Итак, пусть ДНК – это наша книга рецептов. Каждый отдельный рецепт в ней называется «ген». Иногда ген содержит информацию для создания других молекулярных механизмов, которые будут работать в клетке. Например, для создания специальных транспортных молекул РНК, которые доставляют аминокислоты на их рабочие места. Но чаще всего ген – это все же инструкция по сборке белка.
Белки – строительные и функциональные единицы всего живого – блюда, ставшие результатом приготовления по рецептам-генам. Поговорим немного о процессе их приготовления, в котором главную роль играют РНК.
Молекулы РНК бывают разные. Хотя все они и представляют собой похожую на ДНК последовательность азотистых оснований, скрепленных с несущими их сахарами. У ДНК в клетке не так много обязанностей – хранить информацию да передавать ее потомкам. У молекул РНК задач намного больше. Их можно назвать молекулярными инструментами, с помощью которых в клетке выполняется самая разная полезная работа. Объем работ для каждой задачи разный, потому и нужные инструменты необходимы клетке тоже в разных количествах. Все как в жизни – например, у меня на кухне есть сразу несколько ножей, но только одна открывашка для консервных банок. Если же взять активно функционирующую клетку и подсчитать соотношение разных типов молекул РНК в ней, то окажется, что на долю рибосомальной РНК (необходимой для сборки молекулярных «заводиков» по производству белков) приходится порядка 90 % от общего количества всех РНК в клетке. Еще 4 % молекул РНК – это транспортные РНК – или «грузовики», которые поставляют «строительные материалы» на «заводы». Немногим больше 1 % – различные другие типы молекул РНК (например, малые ядерные РНК). И всего 3–5 % молекул РНК – информационные, или матричные, РНК – будут интереснее всего для нас в контексте этого рассказа[21].
В нашей аналогии с заводом и грузовиками мРНК стали бы распечатанной копией конкретной инструкции для сборки готовой детали. Но постойте! Мы же чуть ранее уже назвали ген инструкцией (или рецептом) по сборке! Все верно. Здесь уместно сравнить ген с рецептом, являющимся частью книги, а мРНК – с рецептом, выписанным на отдельную карточку, в текст которого внесены некоторые изменения. А пока не пугайтесь следующей странной просьбы: громко вслух произнесите слово «молекула».
Прочли? При чтении вслух мы переводим символы в звуки. Буква «к» в слове «молекула» соответствует звуку [к]. Но вот безударная «о», например, мягко маскируется под [а]. Так и РНК похожа на ДНК, но некоторые отличия, никак не влияющие на саму информацию, передаваемую в тексте, все-таки есть. Мы помним, что в «алфавит» ДНК входит четыре основания, четыре «буквы»: А – аденин, Т – тимин, Г – гуанин, Ц – цитозин. Если бы мы хотели «что-то сказать» при помощи этого алфавита, то получили бы, к примеру:
ТАЦАЦАЦГААТААААГАТААЦАААГАТГАГТАААГГАГААГААЦТТТТЦАЦТГГАГТТГТЦЦЦААТТЦТ[22]
«Алфавит» РНК очень похож на ДНК-овый, но вместо молекулы тимина в РНК всегда будет стоять урацил. То есть вместо буквы Т мы встретим У. В виде РНК приведенная выше фраза превратится в:
УАЦАЦАЦГААУААААГАУААЦАААГАУГАГУАААГГАГААГААЦУУУУЦАЦУГГАГУУГУЦЦЦААУУЦУ
Если бы я попросила вас прочесть вслух не одно слово, а несколько предложений, то, готова спорить, с первого раза у вас не вышло бы это сделать без единой ошибки. Тут неверное ударение получилось, там окончание в спешке потерялось или на длинном слове пришлось споткнуться. У молекулярных механизмов внутри клеток те же проблемы! Иногда при копировании одной молекулы по шаблону другой они совершают ошибки. Если специальные молекулярные «надзиратели» ошибку замечают, то высылают «ремонтные бригады», которые ломают проблемный участок цепи и позволяют отстроить его заново. Этот процесс называется репарация.
Но бывает и так, что ошибка остается незамеченной. И молекула передаст эту ошибку другим своим копиям, а те своим. И так далее. Что не всегда плохо, но и не всегда хорошо.
Передачу звуков на письме лингвисты называют транскрипцией. В генетике похожий процесс называется так же: создание молекулы РНК на базе молекулы ДНК – то есть процесс переноса с языка ДНК на язык РНК – тоже называется транскрипцией. Сама считанная при этом последовательность РНК – новая РНК-молекула – получила название «транскрипт».
Возьмем еще буквально пару нужных в будущем терминов и побежим дальше. Итак, трансляция – это перевод с языка ДНК/РНК на язык аминокислот, из которых состоят белки. И репликация – удвоение молекулы ДНК или РНК. Запоминать не обязательно, не беспокойтесь об этом.
1.5. Что бывает, когда неудачно обращаются со словами
Первые подозрения о том, что истоки страхов перед ГМО лежат где-то вне темы самих ГМО, возникли у меня довольно давно. Со временем впечатление, что репутацию всей генетике как науке портят какие-то неучтенные факторы «за кадром», становилось все крепче. Может быть, дело в ассоциации с евгеникой, успешно маскировавашейся под науку десятки лет, но не имевшей никакого отношения ни к генетике, ни к науке вообще? Многочисленные разговоры с читателями блога и слушателями лекций показали, что в этом предположении достаточно много правды. Но не вся она. Свою роль здесь сыграло, например, слово «мутация», превращенное популярной культурой в нечто опасное и грозящее эволюционированием в зеленого монстра. Или вот еще хорошее название – «вырожденность генетического кода». Когда-то давно я устраивала в блоге опрос, что видят в этой фразе читатели. И в ответ многие люди описывали жутковатые образы и истории про кровосмесительные браки с рождением очень нездоровых детей.
Бороться с дурной репутацией чего бы то ни было очень тяжело. Медицинские генетики стремятся избегать использования слова «мутация» в практике и в литературе из-за его негативной коннотации. Теперь чаще можно встретить слова «вариант», «перестройка», «полиморфизм» (однобуквенная замена) и многие другие, соответствующие конкретному виду мутации, но не само дискредитированное слово. А вот слово «вырожденность» в ходу до сих пор. Кстати, по-английски этот термин звучит еще более жутко – degeneracy (дегенерация). Уф! Ну точно ничего хорошего за таким словом стоять не может!
К счастью, это вовсе не так. И за жутковатым термином стоит очень простой процесс, благодаря которому обеспечивается устойчивость организма к множеству случайно возникающих при репликации и транскрипции мута… вариантов.
Итак, любой геном (и каждый отдельный его кусочек – ген, и все межгенные интервалы) для биоинформатика выглядит как текст. Текст этот написан только буквами А, Т, Г и Ц (а в РНК вместо Т «пишут» У).
Каждый организм, будь то бактерия, гриб или человек, построен из белков самого разного рода, как любой дом построен из кирпичей и цемента. Белок – это аккуратно определенным образом уложенная длинная молекула, состоящая из отдельных элементов – аминокислот. Представьте себе бусы, уложенные в пространстве в красивой и сложной форме. Тогда все бусы – это белок, а отдельная бусина – аминокислотный остаток.
В конце XIX века, когда общество в большинстве своем смирилось с учением Дарвина, в разных концах света начали появляться организации с общей идеей «за чистоту» в основе. Чистоту государства, нации или сразу всего человечества, чего уж мелочиться. Одни считали, что право иметь детей должны иметь только определенные категории людей, другие выбрали путь уничтожения всех «не таких». Недостаточно умных, недостаточно здоровых, недостаточно белых. Во главе многих из них стояли люди, часто принимающие государственные решения или имеющие вес в таких вопросах. И если у вас в памяти сейчас всплыл образ фашистской Германии, идеи арийской расы и «всего цивилизованного мира», противостоящего этому злу, то нужно вспомнить – нацистская Германия случилась намного позже. За годы до этого и годы после тот самый «цивилизованный мир» часто следовал тем же идеям. (Iredale R. Eugenics and its relevance to contemporary health care. Nurs Ethics. 2000 May; 7(3):205–14. doi: 10.1177/096973300000700303. PMID: 10986944.) Пусть и в других масштабах. Часто не через убийство, а через принудительную стерилизацию (в конце XIX – начале XX века из-за уровня развития медицины саму операцию по стерилизации переживали не все, так что по факту это часто оборачивалось тем же убийством). Нацистская Германия пала в 1945-м. А принудительная стерилизация и по сей день остается в практике некоторых стран, пускай и неофициально. В разное время и в разных политических интересах принудительной стерилизации подвергали людей, чей балл IQ не дотягивал до установленного порога, людей, совершивших преступление и имевших уже в роду преступников, людей с диагностированными психическими заболеваниями. Многие из этих ужасных вещей делались под «прикрытием» генетики, хотя последняя часто не имела к этому никакого отношения: иногда гены могут сделать вклад в предрасположенность к тому или иному дурному поступку, но само решение мы принимаем на основании нашего воспитания и внутренних моральных норм, в других ситуациях человек может стать жертвой обстоятельств независимо от того, что записано в его геноме. «Фильтрация» по «генетическим» признакам получила собственное название – евгеника. А люди, защищавшие личные, государственные или иные интересы, возвели ее в статус настоящей науки. По иронии судьбы формальным основоположником евгеники стал Фрэнсис Гальтон – кузен Чарльза Дарвина, вдохновленный идеями своего знаменитого родственника.
Аминокислота – это тоже химическое соединение. Молекула. В основе молекулы аминокислоты, как вы уже, наверное, догадались, также лежат наши старые знакомцы – углерод, водород, кислород и азот. У всех аминокислот есть одна одинаковая для всех часть[23] и одна уникальная для каждой. Эта уникальная часть называется радикалом. 20 различных аминокислот могут входить в состав белка[24].
И тут мы переходим к самому интересному: откуда молекулярные машинки внутри клетки знают, какую именно «бусину» из 20 различных надо «нанизать» на растущую белковую цепь в нужный момент времени? И вот эта информация как раз и зашифрована в геноме! Отдельные инструкции для построения отдельного белка передаются при помощи тех самых матричных РНК, о которых мы говорили выше. А процесс перевода инструкции с языка РНК на язык аминокислот носит название «трансляция». Каждое «генетическое слово» – кодон – состоит из трех «букв». И оно всегда однозначно переводится в одну «белковую букву» – аминокислоту, которую стоит добавить к цепи. Этот язык понятен каждой живой клетке на планете, поэтому наш генетический код называют универсальным. Клетка лягушки и клетка кактуса поймут записанные в геноме инструкции одинаково. Что уж говорить о людях: разделенные языками и культурами, объединенные единым языком жизни, записанным в их ДНК.
Происходит трансляция внутри молекулярного заводика – рибосомы. Рибосома состоит из двух половинок – одна поменьше, другая побольше. «Текст инструкции» – готовая матричная РНК – соединяется с маленькой частью рибосомы, а затем получившаяся конструкция присоединяется к ее большей части. Нить мРНК будет протягиваться через эту конструкцию от одного своего конца к другому.
Получается, будто рибосома продвигается вдоль молекулы мРНК (мне это немного напоминает движущийся по монорельсе поезд). А внутри нее в это время происходит тот самый перевод РНК-овых слов – кодонов – в белковые буквы – аминокислоты (как это получается, описано чуть ниже). Происходит это с просто фантастической скоростью: 15 аминокислот в секунду присоединяются к растущей белковой цепи! А так как каждый кодон состоит из трех нуклеотидных «букв», то можно представить себе скорость движения рибосомы по нити РНК: между двумя ударами вашего сердца каждая рибосома в каждой клетке вашего тела успела пробежать по полсотни «букв»! А если вы очень быстро читаете, то за время чтения этого абзаца ваши рибосомы успели прочесть почти полторы тысячи нуклеотидов и посадить на растущую белковую цепь около пяти сотен аминокислот. А это, например, значит, что к моменту прочтения этих слов внутри каждого вашего эритроцита успели построиться по парочке новых молекул гемоглобина[25].
Переводить помогают еще одни маленькие труженики молекулярного фронта – молекулы транспортной РНК (тРНК). тРНК на первый взгляд самые обычные одноцепочечные молекулы, но есть у них две суперспособности. Первая заключается в том, что несколько участков каждой молекулы тРНК взаимно комплементарны. Так что стоит таким участкам в один момент времени оказаться слишком близко друг к другу, как они тут же «склеиваются». Происходит благодаря тому же принципу, что удерживает вместе две нити ДНК. Склеившись таким образом, из прямой ниточки тРНК превращаются в фигуру, напоминающую лист клевера: от «стебля» отходят три «листочка». Еще немного пространственных преобразований, и молекула примет свою трехмерную структуру. Участок молекулы, соответствующий «среднему лепестку» «клевера», получил название «антикодон». Кодон – «генетическое слово», состоит из трех нуклеотидных букв. Антикодон, соответственно, также из трех, комплементарных буквам кодона. Например, кодону АУГ будет соответствовать антикодон УАЦ, а кодону ААЦ – антикодон УУГ.
Вторая суперспособность тРНК – это умение крепить к противоположному концу молекулу аминокислоты, строго соответствующую тому кодону, который задан при помощи антикодона. Звучит ужасно запутанно. Здесь поможет разобраться картинка. Когда кодон мРНК оказывается внутри рибосомы, трудяги-тРНК тут же бегут к нему, размахивая каждый своей аминокислотой. Если антикодон подошедшей близко тРНК оказывается комплементарным кодону мРНК, находящемуся в данный момент «на рабочем столе» у рибосомы, тРНК отсоединяет свой полезный груз, и аминокислота присоединяется к растущей белковой цепи. Затем тРНК налегке уплывает из рибосомы, чтобы поймать себе следующую подходящую к ее антикодону аминокислоту. И повторить все сначала, доставив ее точно на рабочее место. Мне молекулы тРНК немного напоминают портняжек, которые бегают за клиентами с мерками в одной руке и готовым костюмом в другой. Стоит им встретить клиента, идеально подходящего под их мерки, как они тут же натягивают этот костюм на него.
Почему же в кодоне три буквы? И вот еще хороший вопрос: сколько же всего существует различных тРНК (то есть молекул с различными антикодонами)? Давайте посчитаем вместе. Мы знаем, что видов тРНК должно быть как минимум 20, чтобы можно было запрограммировать антикодонами все 20 необходимых аминокислот. Еще нам нужна комбинация для кодирования «точки» в тексте гена – стоп-кодона. Различных нуклеотидов же всего 4. Так что, если бы кодон состоял всего из одной буквы, то закодировать мы смогли бы лишь 4 аминокислоты. Маловато. Предположим далее, что кодон состоял бы из двух букв. Тогда на первой позиции может стоять любая из четырех (А, У, Г или Ц) и на второй позиции также любая из четырех: АА, АУ, АГ, АЦ, УА… Сколько всего таких вариантов? 4 x 4 = 16. А надо минимум 20 + 1. Снова не хватает. Перебираем варианты дальше. Для кодонов из трех букв на первом месте может стоять одна из 4 букв, на втором одна из 4 и на третьем также. Итого комбинаций: 4 4 4 = 64. Что даже больше, чем нужно. Но в данном случае эта избыточность дает очень сильные преимущества организмам. Поговорим об этом далее. А пока же подведем черту: по законам комбинаторики, во-первых, чтобы закодировать 20 аминокислот, нужно использовать как минимум трехбуквенные комбинации (поэтому второе название для кодона – триплет). А во-вторых, все по тем же законам комбинаторики, в клетке может существовать 64 различных тРНК[26].
Итак, получается, что любое комбинаторное сочетание из трех ДНК-овых букв дает всегда одну строго определенную аминокислоту (минус три возможные комбинации для стоп-кодона). Таким образом, зная это трехбуквенное сочетание, мы всегда можем точно сказать, какая аминокислота будет добавлена в белок. Видим кодон ЦГУ – знаем, что добавится аминокислота аргинин (R).
А если наоборот? Взгляните на таблицу. Каждой аминокислоте может соответствовать от одной комбинации (как у метионина) до сразу целых шести (как у лейцина). Но чаще все же это от двух до четырех различных комбинаций. Это свойство генетического кода называется избыточностью. Если мы увидим «белковую» букву R (аминокислоту аргинин), то будем в растерянности – как же именно перевести его обратно на язык РНК? Ведь и вариант ЦГУ будет правильный, и вариант АГГ, и еще целых 4 разных варианта! Эта невозможность произвести однозначный перевод в обратную сторону и называется страшным словом «вырожденность». Вырожденность генетического кода. Иногда мне кажется, что если бы в прошлом генетики придумывали термины попроще, больше людей доверяли бы сегодня этой науке.
Еще немножко про генетический код напоследок. Этакая вставка для читателей, которые любят самые хитрые подробности. Хотя мы и называем код универсальным, есть и здесь несколько исключений. В таких ситуациях мы называем код (или коды) альтернативным(и). Впервые альтернативный код обнаружили еще в 1979 году. Причем не где-то далеко, а прямо внутри нас! Оказалось, что генетический код митохондрий отличается от стандартного, о котором мы говорили на протяжении всей этой главы[27]. Вот, например, обычно кодон УГА означает «точку» – символ окончания трансляции (терминации), после которого аминокислотная цепочка отсоединяется от рибосомы. А вот в коде митохондрий УГА всего лишь кодирует аминокислоту триптофан! Кодон АУА вместо обычного для большинства живых организмов изолейцина соответствует метионину. Ну а так как митохондрии – органеллы внутри наших клеток, то получается совсем парадоксально: даже внутри наших тел действуют разные «правила перевода»! Но на самом деле это не так уж и удивительно, ведь мы уже знаем, что когда-то митохондрии были вольными и самостоятельными организмами, которых захватили и поставили себе на службу наши одноклеточные предки.
Своими вариациями генетического кода обладают также некоторые бактерии, водоросли, плоские черви, паразиты… А кое-кто из них даже умеет переключаться между тем, какой код им использовать, в зависимости от окружающих их условий[28]! Воистину, генетика – настоящее олицетворение утверждения, что из каждого правила просто обязаны быть исключения!
1.6. Чей это у вас тут ген?
Ну что, кажется, мы разобрали уже достаточно скучной теории, чтобы в первый раз начать говорить про интересные вещи, связанные с ГМО. Так и начнем! Вот нам загадка: если все организмы на планете (забудем на несколько минут обо всех исключениях, что мы чуть выше перечислили) записаны на одном универсальном генетическом «языке», то сможем ли мы понять, что в некий «помидор вставили ген скорпиона»[29]?
В большинстве случаев – да. Большая часть методик редактирования геномов оставляет за собой следы – вместе с целевым геном в геном вставляются определенные узнаваемые последовательности и маркеры. Такие следы довольно просто обнаружить при помощи молекулярно-биологических методов – например, при помощи ПЦР (полимеразной цепной реакции – операции, при которой возможно многократно копировать ДНК. Или только нужный ее фрагмент. Например, фрагмент, который мы надеемся обнаружить в геном. Конечно, таким образом затруднительно найти любой чужеродный ген – нам нужно знать, что мы ищем, чтобы попробовать получить много копий этого, – но вполне возможно обнаружить гены и генетические маркеры, традиционно используемые при создании ГМ-организмов). Однако, если кто-то решит специально спрятать модификацию и не добавит никаких опознавательных последовательностей, то ответить однозначно, было проведено редактирование или нет, будет довольно сложно. Хотя кое-какие подсказки есть в руках именно у биоинформатиков.
Первая подсказка в том, что хотя мы и поговорили выше, как одна и та же аминокислота кодируется разными кодонами, встречаемость этих альтернативных кодонов в тексте одного гена и даже целого генома не равновероятна[30]. Вот аминокислота изолейцин может быть задана кодонами АУЦ, АУА или АУУ. Но возьмем, например, туберкулезную палочку (Mycobacterium tuberculosis). Ей нравится, чтобы кодоны в ее генах заканчивались на букву Г или Ц. Поэтому изолейцин в ее геноме записывается как АУЦ почти в 30 раз чаще, чем АУА, или в 5 раз чаще, чем АУУ[31].
Это явление получило название «предпочтение кодонов», и оно активно изучается эволюционными биологами уже много десятилетий. Какие-то организмы более строго придерживаются правил предпочтения кодонов, а какие-то менее. Для нас тут самое интересное в том, что относительно недавний перенос гена из одного организма в геном другого можно предположить, если в этом гене статистика употребления каких-то кодонов отличается от картины в других генах этого же организма. Сработает этот метод, конечно, лишь для некоторых пар организмов. Мы не сможем использовать его, если хотим, например, найти в геноме яблони сорта X следы переноса генов от яблони сорта Y. А вот найти в том же геноме яблони сорта X следы переноса генов из бактерии вида Agrobacterium tumefaciens вполне реально, так как бактерия предпочитает использовать свой набор кодонов[32].
Вторая подсказка для биоинформатиков также основана на статистике и во многом следует из факта существования принципа предпочтения кодонов. Представьте, что перед вами фото многолюдной улицы неизвестного вам города. Вы бы хотели понять, где именно сделано это фото. Оценив, какой оттенок кожи и разрез глаз вы видите на фото чаще, вы можете сделать первые выводы. Если добавить к признакам, какую одежду предпочитают люди с фото, можно скорректировать свои выводы. Добавим далее то, какая архитектура преимущественно попала на снимок, и вуаля – наш прогноз стал достаточно хорошим даже для снимка крупного портового города, каковые известны своей смесью национальностей, культур и архитектур. Примерно так же мы можем посмотреть и на геном. Сначала оценить, как часто в нем встречаются определенные буквы. Чаще всего измеряют долю букв Г и Ц (этот параметр получил название ГЦ-состав) или долю букв А и Т (АТ-состав) на геном или на определенный фрагмент генома. Уже по такому простому, казалось бы, параметру можно неплохо различать между собой различные организмы. Например, в человеческом геноме доля букв Г и Ц составляет в среднем 41 % (есть отдельные специфические регионы в геноме, которые содержат значительно больше или меньше, но среднее для большей его части такое)[33], а в геноме бабочки монарха (Danaus plexippus) ГЦ-контент равен 31,6 %[34].
Затем можно изучить различные двухбуквенные сочетания. Например, сколько раз в геноме (или определенном регионе генома) найдется сочетание АГ, или АТ, или ЦЦ. Потом вычислить частоту вхождения различных троек. Например, как много в геноме сочетаний ЦЦЦ, ГГГ или АГА. После перейти к четверкам и определить, скажем, процент вхождения сочетаний ААГГ и ЦЦГА. Затем к пятеркам… Таким образом мы сформируем индивидуальный портрет генома из признаков частоты вхождения в него различных подстрок. Такой же портрет мы можем получить для каждого отдельного региона в этом геноме. А потом наложить два портрета друг на друга и сделать выводы о том, вписывается ли рассматриваемый фрагмент в картину всего генома. Если ответ «да», вероятно, все в нем «родное». Если ответ «нет», можно предположить, что там есть ген, который был перенесен из генома организма другого вида.
К сожалению, даже этот и так не слишком-то однозначный метод имеет свои недостатки, осложняющие биоинформатический анализ. Во-первых, со временем ген как бы адаптируется к организму, в котором он оказался. То есть нетипичные кодоны в результате последовательных мутаций со временем становятся самыми типичными. Генетики говорят, что гены «одомашниваются» в процессе эволюции[35]. О том, почему это происходит, ученые тоже думают уже очень давно. Об этом мы поговорим немного далее в главе о мутациях. Во-вторых, чтобы искать чужеродный (перенесенный) ген в геноме, надо хотя бы примерно знать, что мы ищем и где именно – в каком месте генома. Иначе такая задача поиска будет достаточно вычислительно сложной, что связано с большой длиной эукариотических[36] геномов и просто огромным количеством комбинаторных вариантов, по которым можно осуществлять поиск.
В таком случае, мы можем понять, имел ли место перенос чужеродного гена в чей-то геном, но уверенность наших выводов будет зависеть от того, случился ли этот перенос относительно недавно (по эволюционным меркам) и были ли донор и реципиент организмами разного вида.
Что же еще есть в арсенале биоинформатиков? Кое-какие методы из тех, что использовал еще Шерлок Холмс. Помнится, доктор Ватсон написал в списке характеристик своего нового соседа: «способен по внешнему виду отличать разные виды почв; после прогулок показывал мне пятна на своих брюках и по их цвету и консистенции определял, какое в каком районе Лондона получено»[37]. Некоторые приемы генной инженерии оставляют от себя вот такие пятна – следы вмешательства, небольшие фрагменты из генетических букв, которые можно найти, если знать, какой именно фрагмент мы ищем, и указывать примерный диапазон поисков в геноме. Почему так происходит и что нужно искать, рассмотрим дальше в главе 3.1. Дело о картошке. Недостатки у этого метода такие же, какие бы помешали и великому сыщику: если ваш подозреваемый притащил на штанах пятна грязи не из районов Лондона, а, скажем, из пригорода Челябинска, то ничего бы эти пятна ему сами по себе о своем происхождении не рассказали – ведь почвы тех мест ему попросту незнакомы. Да и способов не принести с собой на одежде никаких пятен, наверное, столько же, сколько современных технологий редактирования геномов, которые следов в геноме не оставляют.
Ну и уж совсем напоследок биоинформатический метод, который требует довольно высоких вычислительных ресурсов и… наличия явного подозреваемого. Текст конкретного гена (или фрагмента гена) можно приложить по очереди к каждому из известных науке геномов и узнать, на чей ген он больше всего похож. Биоинформатики говорят, что ген нужно выравнять на геном. Тут важно, что выравнивать (прикладывать) надо именно этот самый подозреваемый ген, а не весь (предположительно отредактированный) геном. Потому что, во-первых, при сравнении «в лоб» одного полного генома с другими полными геномами всех известных организмов это будет невероятно вычислительно сложная задача для очень мощного компьютера, которая займет не одни сутки, а то и недели. А во-вторых, сравнение одного генома с другими геномами однозначного ответа все равно не даст – по разным генам организмы могут походить на геномы разных организмов. Ведь эволюция шла очень заковыристыми путями. Отсюда в науке есть даже такая сложная задача – построение эволюционных (так называемых филогенетических) деревьев.
Подводя небольшой итог: опознать, что в геном произведена встройка чьего-то чужого гена, теоретически возможно, но не со 100 %-ной уверенностью. И уровень этой уверенности будет зависеть от того, каким методом производилось редактирование, насколько различны виды, как давно это произошло и знаем ли мы хотя бы примерно, какой именно ген ищем.
1.7. Про белки в белке и белке
Вся эта хитрая магия, описанная в главах выше, нужна в конечном итоге для того, чтобы произвести белок. Тот самый окончательный продукт молекулярной кухни, из которого преимущественно состоит все живое, от клеща до куриного яйца, от гриба до белки.
Итак, по матрице ДНК будет считана нить РНК. По нити РНК на молекулярном заводе – рибосоме – соберут аминокислотную цепь. От этого шага до того, что является выполняющим свою функцию белком, еще далековато. Выстроенные в единую цепочку аминокислоты – это первичная структура белка. Теперь этой цепочке предстоит пройти череду трансформаций. На первой стадии ее фрагменты свернутся в один из двух основных вариантов укладки: a-спираль или b-слой (еще называют b-лист) – вторичную структуру. Как несложно догадаться, в первом случае цепь закручивается в виде спирали, а во втором – фрагменты цепи зигзагом укладываются друг подле друга, образуя фигуру, напоминающую мне гармошку или самодельный бумажный веер. Такая фигура держится за счет водородных связей. Такие связи устанавливаются между функциональными группами (это те части, которые одинаковы у всех аминокислот)[38]. А дальше начинается самое интересное.
За вторичной структурой следует структура третичная. В пространстве ее также удерживают водородные связи. И вот здесь-то самое время разгуляться многообразию различных радикалов[39]. В зависимости от того, какие радикалы входят в состав аминокислотной цепи, будет формироваться и третичная структура белка. За счет водородных связей между радикалами аминокислот спирали и слои будут укладываться друг на друга, заворачиваться в невероятные узлы, собираться в сферы и принимать формы согласно только им одним известной логике.
Конечно, логику эту ученые уже немного научились предсказывать. И с помощью компьютерных программ, основанных на понимании правил укладки, могут находить третичную структуру по информации о первичной структуре. Но это возможно лишь для некоторых, очень коротких аминокислотных цепей. Все дело в том, что возможных конформаций (форм в пространстве) даже у небольшой молекулы так много, что для выбора подходящего варианта методом простого перебора уже для цепи относительно малой длины потребуется много лет работы на мощных вычислительных ресурсах. А представьте, что предсказать нам было нужно структуры белков коронавируса в самом начале пандемии. От скорости решения этой задачи зависела скорость изобретения вакцин! Здесь нет доступных пары десятилетий.
Поэтому решать такую задачу «в лоб» не имеет смысла. Для ее решения биоинформатики придумали множество различных алгоритмов, основанных на крутой математике[40]. А буквально недавно к арсеналу биоинформатиков добавились нейросети. И по предварительным данным, которые будут проверяться еще много лет на различных настоящих белках, нейросети очень неплохо и достаточно быстро могут делать относительно точные предсказания о третичной структуре даже довольно сложных белков.
Но как же с этой задачей справляется клетка? Загадочным образом она делает это за совсем маленькое время. Это время, по оценкам, намного меньше того, которое понадобилось бы для даже самого невероятно быстрого перебора всех возможных вариантов укладки на самом мощном компьютере.
Что будет, если белок сложится неверно? Такое тоже иногда бывает. В части случаев этот белок просто не будет выполнять той функции, что ему положена, или выполнять ее как-то неправильно[41]. А изредка даже бывает, что неверно сложенный белок становится прионом, или инфекционным белком. Если такой злодей лишь прикоснется к правильно сложенному родственному белку, то тот немедленно также примет неправильную форму. Прионные болезни стали известны науке не так давно. Самым ярким примером является 100 %-но смертельное нейродегенеративное заболевание куру. Когда в 1950-х годах медики занялись его исследованием, оказалось, что болеют им только жители Папуа Новой Гвинеи, да и то только в некоторых регионах. А преимущественно и вовсе только люди, принадлежащие к языковой группе форе или их ближайшие соседи, разделяющие с ними традиции и культуру. Поначалу способ распространения этой лингвистически избирательной болезни поставил ученых в тупик. Как оказалось, всему виной местная традиция уважения усопших. Если кто-то из членов семьи умирал, то тело ритуально поедали его родственники. Съедали они и мозг с его поврежденными болезнью тканями, а вместе с ним и сам патогенный белок. Точнее, белок-то совершенно обычный, но так неудачно свернувшийся, что его неправильная пространственная структура сделала его патогенным. Соответствующие белки здорового человека при контакте с прионным белком приобретают точно такую же неисправную форму. И человек заболевает. Благодаря активной кампании по искоренению этой традиции вспышки заболевания практически прекратились[42]. А вот еще об одной прионной болезни наверняка слышали все – и это коровье бешенство. Тоже нейродегенеративное заболевание, которое необратимо и в конечном итоге летально разрушает мозг, превращая его в подобие пористой губки. Заполучить его можно, съев мясо больного животного. Причем болезнь может очень долго спать в организме, и никакие ее симптомы не будут проявляться. Коровы на фермах тоже, вероятно, заболевали через пищу – в корм для скота добавляют костную муку. Предполагается, что большая эпидемия коровьего бешенства в Европе на рубеже XX–XIX веков случилась из-за того, что в муку попали прионы из больного животного, скорее всего овцы, больной схожим заболеванием под названием «скрейпи»[43]. В XIX веке мы хорошо учимся на своих ошибках, и тот опыт производители и контролирующие организации учли, чтобы больше такого не могло повториться. Ну и вот почему все стада, где было хоть единственный раз обнаружено бешенство, скотоводы вынуждены немедленно полностью уничтожать.
Для некоторых белков на третичной структуре последовательность преобразований, приводящая к полноценно функционирующему белку, заканчивается. Но для других впереди есть еще один важный этап. В таких белках за третичной следует четвертичная структура: несколько правильно уложенных белковых цепей объединяются вместе в едином белковом комплексе. Вот теперь все. Новая прекрасная молекулярная машина полностью готова к труду и обороне.
1.8. Впихнуть невпихуемое
Сделаем шаг назад и снова поговорим о ДНК. О генетике, как и о любой другой науке, сложно говорить линейно: постоянно нужно делать шаги то вправо, то влево.
Итак, цепочка ДНК не просто так валяется в клетке. Клетка – штука маленькая, а ДНК, например, человека, если ее растянуть в длину, будет больше двух метров. И как уместить 2-метровую (пусть и очень тонкую) ниточку в «коробочку» величиной в микроны[44]? Решением этой задачи занимался еще великий философ Иа-Иа из рассказов о приключениях Винни-Пуха, укладывая воздушный шарик в горшочек из-под меда. Определенно, чтобы она поместилась в клетку, нужно упаковать ее очень плотно. Такая структура, в которую уложена ДНК вместе со вспомогательными белками, носит название «хромосома».
У бактерий, как правило, хромосома всего одна и она замкнута в кольцо. Поэтому такой тип хромосом называется кольцевым. Бактериальная ДНК относительно короткая, а делиться бактериям нужно очень быстро. Потому репликация (удвоение ДНК) в бактериальной хромосоме проходит по кругу – начинается и заканчивается в одной точке, а транскрипция (чтение генов) происходит крупными целыми блоками генов, идущих на хромосоме друг за другом. О бактериях мы поговорим подробнее дальше. Сейчас нам интересен подход к хранению ДНК у более сложных существ.
Таких как внучка, Жучка, кошка и репка (а знает ли кто-нибудь, почему у собаки в сказке есть имя, а у кошки нет? Вопрос попросила записать моя кошка Куся, будучи в крайнем возмущении от такой несправедливости). Эукариотические геномы очень большие – иногда в сотни тысяч раз больше геномов бактерий![45] А еще клеток у нас очень много и все разные – и в разных клетках еще и читаются разные гены, а не все подряд. Подход бактерий к чтению с хромосомы нужных генов не сработает. Здесь необходима возможность в любой момент развернуть любой отдельный кусочек ДНК и считать с него информацию.
Чтобы это получалось, единая молекула ДНК поделена на большие фрагменты, а затем каждый из них через равные интервалы намотан на специальные белки – гистоны. Готовые клубочки с гистоном внутри укладываются один за другим, образуя спираль. А спираль затем соберется во что-то вроде петелек. Когда появится необходимость прочесть некую группу генов, соответствующие петельки легко «вытянутся» из общего «вязания», раскрутятся, освободятся от гистонов и дадут прочесть с себя всю необходимую информацию для построения нового белка. Такой подход очень удобен для клетки – он позволяет одновременно и независимо читать множество разных генов с совершенно разных мест молекулы. Такая хромосома зовется линейной.
В каждой соматической[46] клетке человека 46 таких хромосом. Два почти идентичных набора по 22 хромосомы – аутосомы, и две хромосомы половые. Такой удвоенный набор хромосом называется диплоидным. В половых клетках – клетках, отвечающих за размножение, – набор одинарный (22 аутосомы + 1 половая), он носит название гаплоидного. И вот эти знания нам сильно пригодятся дальше для разговора о модификации геномов растений, так что это первое, что стоит и правда запомнить. Размер гаплоидного набора принято обозначать буквой n. Так, для человека n=23, а полный кариотип – число, форма и особенности всех хромосом организма – равен n2, то есть 232=46.
Половые клетки одного родителя, несущие один гаплоидный набор хромосом, в момент оплодотворения сливаются с половыми клетками второго родителя, также несущего гаплоидный набор хромосом. Получившаяся диплоидная клетка – зигота – дает начало новому человеку. Зигота делится пополам, и у зарождающегося существа становится уже две клетки, каждая из двух снова делится, и вот их уже четыре, на следующем шаге деления восемь, затем 16…[47]. И у каждой из них будет удвоенный набор хромосом: когда такая клетка собирается делиться, сначала ее диплоидный набор удваивается еще раз, а затем в каждую новую клетку уходит такой удвоенный набор. Но некоторые клетки зародыша ждет иная судьба – на определенной стадии развития плода им предстоит стать половыми. В таких клетках произойдет редукция числа хромосом, и их полный набор будет вновь гаплоидным. Чтобы однажды дать жизнь новому потомку все по той же схеме.
Основы процесса одинаковы для всех организмов, использующих половое размножение: два полученных от двух родителей набора сливаются и создают удвоенный общий. Так оно справедливо для внучки (Homo sapiens, n=23 и 223=46), Жучки (Canis familiaris, n=39 и 239=78 хромосом[48]), кошки (Felis catus, n=19 и 219=38 хромосом[49]) и даже репки (Brassica rapa, n=10 и 210=20 хромосом[50]). Но мы же помним, что это игра на поле генетики, а значит, «все просто» точно не будет.
Например, иногда родителями могут стать два вида, которые даже различаются по числу хромосом. Таким примером можно назвать мула – гибрид между лошадью и ослом. Диплоидный геном его матери-лошади состоит из 232=64 хромосомы, а геном его отца-осла – из 231=62. Таким образом, диплоидный геном мула состоит из 32+31=63 хромосом, что нормально не делится на 2, отчего у мулов большие проблемы с размножением.
Для растений история с гибридизацией в результате соединения двух видов с разным количеством хромосом происходит еще чаще. Вот, например, возьмем кузена нашей репки – рапс (Brssica napus). И репа, и рапс относятся к роду Капуста (Brassica). Известно, что у рапса 38 хромосом в обычных клетках и по 19 в половых. Анализ показал, что рапс когда-то давно, до появления науки генетики, получился в результате скрещивания двух других членов капустного рода с последующим удвоением числа хромосом (аллополиплоидия): нашей репки (Brassica rapa, с n=10) и капусты огородной (Brssica olercea, с n=9). То есть эти наборы из 9 и 10 хромосом почти во всем дублируют друг друга. Получается, что в рапсе сразу четыре набора хромосом: 29 + 210 = 38, то есть на самом деле он тетраплоидный[51].
Иногда тетраплоидия получается и другим путем. Редукции числа хромосом не происходит, и в половой клетке остается двойной набор хромосом. Как правило, для животных такая ошибка ведет к большим проблемам и у такой мутации нет способа закрепиться в популяции. Но вот у растений удвоение очень популярная история. Происходит это из-за нарушения процессов расхождения хромосом в клетке во время ее деления и может быть вызвано разными причинами.
В мире растений с хромосомными наборами происходит настоящая вакханалия! Бывает так, что весь геном растения оказывается одинарным, как в половых клетках – такие гаплоидные потомки нормальных диплоидных родителей называются моноплоидами[52]; бывает, что уже удвоенный ранее набор удваивается еще раз; бывает, что удваиваются уже гибридные или гибридизуются уже удвоенные… Таким образом, в этом удивительном мире растений можно встретить гаплоиды, диплоиды, триплоиды, тетраплоиды, гексаплоиды, октоплоиды… и сумасойтиплоиды. При этом все осложняется тем, что с течением времени в разных хромосомных наборах одного полиплоидного генома могут накапливаться разные и происходящие параллельно и независимо мутации, так что наборы, еще вроде бы недавно бывшие точными копиями друг друга, начинают все более различаться… Короче, растения – это космос. И мы об этом точно еще поговорим в будущих главах.
1.9. Дашь списать?
Итак, гены – это фрагменты ДНК, а ДНК уложена в хромосомы. Наборов хромосом внутри одной соматической клетки может быть от одного до нескольких. Значит, копий каждого гена в геноме будет[53] столько же, сколько в нем есть хромосом (его содержащих). Правда, копии из них почти такие же, как три варианта перевода трагедий Шекспира разными переводчиками, которые можно найти на одной полке в библиотеке. То есть, с одной стороны, в каждой из книг Монтекки все еще воюют с Капулетти, но, с другой стороны, делают они это с лингвистическими нюансами, по-разному влияющими на наше восприятие текста.
Мы выше уже поговорили о том, что каждому делению клетки предшествует удвоение числа хромосом. Такое удвоение больше всего похоже на бездумное списывание контрольной работы соседом-двоечником через плечо его соседа-отличника. Бездумное и автоматическое. Все сделанные им ошибки он сам заметить не в состоянии. Каждая новая нить ДНК в процессе репликации обязательно имеет такие ошибки. Часть из них заметят и исправят механизмы репарации, но что-то пройдет мимо их внимания[54]. Так каждая новая нить ДНК – каждая новая хромосома, уходящая в новую клетку, – будет пусть совсем капельку, но отличаться от оригинала[55]. Такие отличия мы исторически зовем мутациями. И они – главная причина эволюции. В современной генетике ученые стараются избегать слова «мутация» из-за негативной окраски, которую оно приобрело в популярной культуре. Вместо слова «мутация» предпочитают говорить «вариан». Но в самих мутациях нет окраски оценкой, это лишь случайные события, которые могут оказаться для организма или его потомков вредными, полезными или и вовсе нейтральными. Благодаря мутациям жизнь сохранилась на нашей планете, несмотря на неоднократные и радикальные изменения окружающей среды. Сегодня о том, как жилось нашим первым на планете предкам, могут рассказать лишь одноклеточные жители горячих источников – ведь примерно такими были условия на планете долгое время после зарождения на ней жизни. Благодаря мутациям мы имеем огромное разнообразие форм жизни в прошлом, настоящем и обязательно будем иметь в будущем.
Мутации бывают разными: на уровне генома, на уровне хромосом и на уровне генов. Мутации геномного уровня, на самом деле, мы уже разобрали выше, когда говорили о плоидности. Таким образом, мутации на уровне генома – это изменение числа хромосом в нем: удвоение всего набора или только некоторых отдельных хромосом (как, например, удвоение 21-й хромосомы при синдроме Дауна), редукция числа хромосом. Хромосомные мутации – это крупные перестройки внутри одной хромосомы. Например, когда из хромосомы случайно удалился целый большой фрагмент. Такая мутация называется «делеция». Если откуда-то пришедший фрагмент, наоборот, вставился в хромосому, такая мутация зовется инсерцией. Бывает, что фрагмент хромосомы сначала «выпал», развернулся и вставился обратно в хромосому, но задом наперед. А бывает, что из-за какого-то молекулярного сбоя один фрагмент повторился несколько раз подряд, как заевшая пластинка. В общем, все такие достаточно крупные проблемы зовутся хромосомными мутациями.
Но в контексте этой подглавы интереснее всего нам мутации генные. То есть самые маленькие. Например, выпадение одной или нескольких нуклеотидов из цепочки ДНК или, наоборот, их случайная вставка. Такие мутации возможны, но они сравнительно редкие, ведь выпадение или добавление лишней буквы может приводить к сдвигу рамки считывания. Мы же читаем гены триплетами для перевода их на язык аминокислот. Значит, добавление или выпадение всего одной буквы сдвинет все, что написано после нее. Самая популярная генная мутация – замена одной буквы на другую. Или однонуклеотидный полиморфизм. Это самый безопасный для организма и потому самый популярный вариант мутаций. Эта относительная безопасность обеспечивается двумя вещами: первая – вероятность того, что мутация произошла в кодирующем хоть что-то полезное регионе генома, не такая высокая, вторая же связана с избыточностью генетического кода, о которой мы подробно говорили в главе 1.5, в которой индейцы совершенно ни при чем. То есть о большинстве таких мутаций никто до прочтения генома в лаборатории даже и не узнает: они или ни на что в организме просто не влияют, или в итоге все равно переводятся в нужную аминокислоту, так как большинство аминокислот может кодироваться сразу несколькими вариантами триплетов. Но даже если полиморфизм привел к замене аминокислоты, тут тоже не все потеряно – некоторые аминокислоты достаточно похожи друг на друга, чтобы справляться с более-менее правильной укладкой белка[56].
В общем, за счет генных мутаций копии гена и становятся не совсем копиями. То есть вариантами одного и того же гена. Такие варианты называют аллелями. Вот, например, есть у цветка ген, отвечающий за цвет его лепестков. Тогда вариант этого гена, при котором цвет лепестков будет розовым, – это один аллель. А вариант гена, дающего желтый, – другой.
Распространенных мутаций внутри одного гена бывает много, так что у одного и того же гена может быть множество аллелей. Если в клетке обе копии хромосомы несут одинаковый вариант некоего гена, то о такой клетке мы будем говорить, что она гомозиготна по данному гену. Если копии гена различны, то будем называть ее гетерозиготной по данному гену.
Если одна копия гена справляется с нужными процессам в клетке примерно так же, как если бы таких копий было две (или более, по числу хромосом в наборе), то мы называем признак, который задает этот аллель, доминантным. В противном случае – рецессивным. На самом деле аллели могут взаимодействовать друг с другом намного сложнее, и в рамки определения доминантности и рецессивности из школьного учебника это может сильно не укладываться, но для чтения этой книги эти подробности можно не рассматривать, а перейти наконец уже к самому интересному – к ГМО!
1.10. Немного выводов
В этой главе мы освежили знания самых основ генетики, которые обязательно пригодятся по мере чтения этой книги. В ней мы поговорили о том, из чего состоят ДНК, РНК и белки; как происходит репликация – удвоение ДНК или РНК, и транскрипция – чтение текста генов молекулярными механизмами клетки; что такое центральная догма молекулярной биологии; как происходит трансляция – перевод с языка ДНК на язык белков; и возможно ли найти в геноме встроенный чужой ген. Мы разобрались с хромосомами, аллелями, мутациями и кучей всего еще полезного для чтения книги. Когда встреченный далее по тексту термин не сможет оперативно выпрыгнуть из памяти, просто возвращайтесь к этой главе, чтобы использовать ее как шпаргалку.
Конечно, впереди еще не раз возникнут и новые термины, и новые теоретические вещи. Было бы нечестно пообещать, что дальше ничего такого вы уже не встретите и обмануть в первом же абзаце новой главы. Но все же точно могу ручаться, что следующие главы будут куда более динамичными и прикладными.
Глава 2. Как бактерии становятся суперзлодеями и поступают на службу к биотехнологам
Известно, что это самое высокое из млекопитающих животных обитает во внутренних областях Африки и водится в местах, где почва почти всегда сухая и лишена растительности. Это заставляет жирафа объедать листву деревьев и делать постоянные усилия, чтобы дотянуться до нее. Вследствие этой привычки, существующей с давних пор у всех особей данной породы, передние ноги жирафа стали длиннее задних, а его шея настолько удлинилась, что это животное, даже не приподнимаясь на задних ногах, подняв только голову, достигает шести метров в высоту.
Ж.-Б. Ламарк[57]
2.1. Эх, мне б такой хвост…
Обычно гены передаются от родителей к детям. Не важно, как происходит процесс размножения – переносом спор, почкованием или привычным нам половым способом. Важно одно: одна родительская клетка (или две в случае полового размножения) делится и дает в результате клетки потомство. А значит, передает этим новым клеткам и свои гены. Этот механизм называется вертикальный перенос генов. От родителей к детям – по вертикали поколений.
Противоположностью вертикальному является горизонтальный перенос генов – или передача генетического материала от одного организма другому, не являющемуся его потомком. И долгое-долгое время биологи полагали, что это достаточно редкий процесс. Скорее исключение, чем правило. Но с накоплением геномных данных их взгляд кардинально поменялся. Теперь-то мы знаем, что горизонтальный перенос не просто достаточно частое явление, но мы даже обязаны ему такими судьбоносными для жизни на Земле событиями, как появление кислородной атмосферы в результате фотосинтеза[58].
Конечно, как бы сильно я ни обнималась со своей кошкой, такой же шикарный хвост у меня не отрастет, и вы бы только знали, сколь сильно меня это расстраивает. Для того чтобы произошел горизонтальный перенос генов, потребуется соблюдение условий, о которых мы еще поговорим на страницах этой книги. Эту же главу я полностью посвящаю им – виртуозам горизонтальных манипуляций и верным помощникам многих поколений биологов – бактериям. Короче, пора начинать наш разговор о ГМО.
2.2. Пожалуйста, соблюдайте спокойствие и пристегните ремни, мы падаем
Возможно вы так же, как и я, обожаете разглядывать картинки с динозаврами (или даже бывать в музее, где вместо картинок настоящие скелеты). И тогда вы наверняка помните динозавров с о-о-очень длинными шеями. Например, брахиозавра. В детстве меня очень интересовал вопрос, почему же его шея такая длинная.
«Брахиозавры жили там, где съедобные листья росли очень высоко на деревьях. Так что тем динозаврам, кто рождался с короткой шеей, еды попросту не хватало, в результате чего они могли оставить меньше потомства. Так действовал естественный отбор, оставляя и позволяя размножаться только наиболее приспособленным особям – то есть с наиболее длинными шеями и генами длинношеести, которые они передавали своему потомству», – ответит нам без запинки последователь основателя всей современной эволюционной биологии Чарльза Дарвина. «Просто они очень тянулись к кронам деревьев, чтобы добыть себе листья. Так их шеи со временем становились все длиннее и длиннее», – ответит нам ламаркист, сторонник теории Жана-Батиста Ламарка, долгое время конкурировавшей с дарвиновской[59].
Иными словами, ламаркисты считали, что, если долго мучиться, что-нибудь получится. То есть организмы могут приобрести необходимые им для выживания в неких условиях качества, если будут очень стараться: прыгать с крыши, пока не отрастут крылья, тонуть в реке, пока не образуются жабры. Но так это, разумеется, не работает. Или все-таки…
Оказывается, есть в мире особенно «упрямые» и «целеустремленные» организмы, которые действительно могут «постараться»[60] и приобрести новое свойство. Это бактерии. Да, бактерии подчиняются всем законам эволюции, и при делении старой клетки обе новые получают «в наследство» копии генома клетки родительской, в котором записаны все положенные им свойства. Но есть у бактерий одна ужасно любопытная сверхспособность: они умеют передавать генетический материал от одного организма другому, не являющемуся его потомком. То есть практикуют тот самый горизонтальный перенос.
Помните всех этих героических персонажей из кино, которые в экстремальной ситуации за 5 минут прочитывают руководство пилота и сажают терпящие бедствие самолеты с перепуганными пассажирами? Вот именно так и могут бактерии! Пусть пассажиров им и не спасти, но вовремя достать нужные инструкции – гены – и в короткие сроки научиться по ним работать – синтезировать новый для них белок – очень даже в их силах.
Все дело в необычном строении их генома: в теле бактерии помимо основной кольцевой хромосомы, в которой записана вся главная генетическая информация, есть еще и маленькие (и тоже кольцевые) двуцепочечные молекулы ДНК. Такие молекулы – плазмиды – хранят «дополнительные инструкции». У бактерии может быть от всего нескольких одинаковых плазмид до достаточно обширной и разнообразной «библиотеки».
Когда бактерия попадает в экстремальные для нее условия, ее внутриклеточный аппарат начинает считывать информацию с «нужного тома» в этой «библиотеке». С соответствующего гена соответствующей плазмиды синтезируется требуемый в данной ситуации «инструмент», например некий белок. Благодаря чему бактерия получает какие-то суперспособности. Например, одни плазмиды позволяют бактерии стать патогенной, вторые – дают оружие, которым можно уничтожать других бактерий, третьи – усиливают ее способности к размножению, четвертые – позволяют бактерии «переваривать» несъедобные для нее вещества, пятые делают ее устойчивой к новым условиям…
Примером таких условий является и среда, содержащая антибиотик. Вообще говоря, антибиотики – это оружие, которое изобрели одни бактерии для войны с другими. И как всегда в военном деле, главное, чтобы у нападающих была защита от собственных изобретений. Под такой защитой в мире бактерий можно понимать гены, в которых записаны различные ферменты, позволяющие своего врага уничтожить, изгнать или попросту от него замаскироваться. Однако таскать с собой бронежилет невыгодно в мире без огнестрельного оружия, а кованые доспехи – лишь досадная обуза во вселенной, где нет рыцарских поединков. Для бактерии оборона тоже дается не даром: на ее поддержание приходится расходовать драгоценную энергию. Здесь вполне логично напрашивается поискать какой-то механизм, благодаря которому бактерия могла бы читать нужные гены в определенных опасных условиях и не читать их, когда таких условий вокруг нее нет. Но вот беда: одних только природных антибиотиков огромное множество. А кроме них бактерии могут угрожать и другие опасности. Если все инструкции по выживанию постоянно носить с собой – в своем основном геноме, то со временем хромосома бактерии так увеличится, что на ее репликацию – удвоение в процессе деления бактерии на две новых – будет требоваться очень много времени. А это для бактерии недостаток.
В таких условиях гены «противотанковых гранат», «бронежилетов», «маскхалатов» и «противогазов» с собой на всякий случай таскать не станешь. Вот было бы хорошо хранить их где-то отдельно и доставать лишь по необходимости… С такой непростой задачкой эволюция отлично справилась. И один из ее весьма элегантных способов решения проблемы – плазмиды, о которых мы поговорили выше.
Если бактерия живет в условиях, где присутствует некий антибиотик, то держит внутри плазмиду, в ДНК которой записаны гены – инструкции по выживанию в этой среде. С этих генов считываются и синтезируются ферменты, которые и защищают бактерию от данного антибиотика. Если же антибиотик из среды исчезает, то и плазмида становится больше ненужной. А значит, ее просто можно случайно потерять без каких-либо для себя последствий[61].
Бактерия может обзавестись плазмидой разными способами. В первую очередь, получить в наследство от родительской клетки. Но это не все. Например, она может подобрать что-то кем-то выброшенное. Этот путь называется трансформацией: бактерия, находясь в определенных условиях, захватывает плазмиду из внешней среды. Или, например, может «попросить» себе копию чужой плазмиды напрямую у соседки. Такой путь осуществляется при помощи процесса конъюгации – аналога полового размножения у бактерий. Только в результате страстных отношений не появляется общий бактериальный малыш, теща и ипотека, а лишь копии генетического материала одной бактерии оказываются внутри второй. Помогать плазмидам перемещаться могут и вирусы бактерий – бактериофаги. Такой процесс вирусного горизонтального переноса называется трансдукцией. И даже это не все доступные способы![62]
Кстати, горизонтальный перенос возможен не только среди бактерий одного вида, но и с бактериями другого вида, и даже с археями[63], [64]. Таким образом гены, которые позволяют одним бактериям быть устойчивыми к какому-то антибиотику, могут появиться даже у вида, который ранее не мог против этого антибиотика сопротивляться[65]. Бактерии, которые собрали целую коллекцию защитных плазмид, могут быть устойчивы ко множеству разных антибиотиков. Так рождаются бактерии-суперзлодеи, против которых сегодня почти невозможно найти лекарства. Они могут встречаться в помещениях больниц, где регулярно контактируют с антибиотиками, а потому реже теряют свои плазмиды и соответственно суперзлодейские качества[66].
Часто исходная бактерия может не уничтожить (или выгнать) полностью попавший в нее антибиотик, но только его определенную дозу. Если антибиотика попало мало – она ослабнет, но выживет, а если много – погибнет. Такая «недобитая» бактерия даст следующее поколение, которое сможет защищаться от такого малого количества антибиотика, но более того – случайные мутации могут эту защиту усилить. Так, если в среде все это время будет оставаться антибиотик, правнуки первой бактерии будут еще более устойчивы, чем внуки. А их правнуки – еще более… Пока в один прекрасный (не для нас) день этому штамму такой антибиотик будет совсем не страшен[67]. Отсюда следует очень важное правило: не стоит принимать антибиотики без назначения компетентного врача, чтобы не делать свой вклад в создание супербактерий, против которых антибиотики будут уже бессильны. Однако последние годы в науке есть некоторые споры о том, обязательно ли следует проходить весь назначенный курс до самого конца или останавливать прием по достижении улучшения, и какая стратегия эффективнее уменьшает общий вклад в развитие антибиотикорезистентности у бактерий. Тем не менее текущими медицинскими рекомендациями все-таки является прохождение полного назначенного курса[68].
Мир самого ближайшего будущего без антибиотиков представить очень страшно, а ведь именно таким он был еще сравнительно недавно. Это будет мир, где простое удаление зуба будет равняться по опасности операции на сердце, а бактериальные осложнения после любой болезни или процедуры вновь станут для нас смертельно опасны.
Новые антибиотики появляются очень редко. Их разработка чрезвычайно дорогая, а все этапы исследования занимают многие и многие годы. При этом ученые находятся в постоянной гонке: к моменту выхода нового антибиотика на рынок он уже может оказаться неэффективным, так как за время разработки и тестирования к нему уже была выработана резистентность[69]. Не очень оптимистичное вышло окончание у главы, добавим к нему ложку меда: сегодня ученые ищут принципиально новые решения на замену антибиотикам. Мне очень любопытно узнать, что из этого получится.
2.3. «Тот, кто нам мешает, тот нам поможет!»[70]
Представьте себя кинооператором эпохи пленочного кино. Вы снимаете сцену, в которой рыцарь стремительно скачет на лошади, скажем, в гости к дракону. Одновременно вы хотите показать, что дракон готовится ко встрече с рыцарем – чашки там на столе расставляет, варенье из сосновых шишек переливает в подаренные бабушкой блюдца. А рыцарь в это время скачет, плащ развевается, у коня из ноздрей пар валит – красотища! И что, ради смены плана на пещеру дракона останавливать на скаку рыцаря, а затем просить его продолжить свой путь с тем же решительным настроем? Ну уж нет! Есть другой выход, и «это называется монтаж!» – как объяснял мистер Джонни Фест своей нетерпеливой даме сердца[71]. То есть кинопленку в нужном месте разрезают, а между двумя получившимися ее частями вставляют кусочек другой пленки с нужной сценой. Вот хорошо бы уметь «делать монтаж» в геномах разных организмов, чтобы добавлять и убирать из них гены по своему желанию!
Ученые мало чего придумывают сами. Чаще они подсматривают за природой, заимствуют ее механизмы, улучшают и добавляют их в свой арсенал. Так они поступили и при решении этой задачи. Как и нам, бактериям угрожают вирусы. Только вирусы у них специальные, бактериальные, и зовутся они бактериофаги. Бактериофаги превращают бактерию в завод по производству собственных вирусных копий, заставляя забыть обо всех собственных делах. Поэтому бактериям необходим некий механизм борьбы с интервентами. Что же они придумали?
Итак, вирус – это защитная белковая оболочка – капсид – и молекула ДНК или РНК внутри нее. Во время путешествий вирусный генетический материал упакован в капсид, но при проникновении в клетку капсид остается снаружи – как мокрое пальто на вешалке у входа в дом. В саму клетку проникает только молекула, поэтому эволюция выбрала такой подход: каждая проникающая в клетку молекула ДНК (или РНК), которая выглядит чужеродно, будет немедленно порезана на нефункциональные куски. Роль ножниц внутри бактерии исполняют специальные ферменты – эндонуклеазы рестрикции (рестриктазы). Их задача опознавать определенный довольно короткий (обычно состоящий из 4–8 букв) фрагмент генетического текста и в случае опознания делать в нем разрез по обеим цепям ДНК (или по единственной в случае РНК). Каждая эндонуклеаза рестрикции настроена на узнавание своего текстового фрагмента – сайта рестрикции. Некоторые рестриктазы делают разрез симметрично по обеим цепям, как показано на картинке ниже. Два конца молекулы, которые получаются в результате такого разреза, биотехнологи называют тупыми. Другие рестриктазы разрезают «внахлест»: разрез по одной цепи смещен на несколько букв от места разреза на второй цепи. Комплементарные цепочки на этом фрагменте расходятся и напоминают две ступеньки. Биотехнологи называют их липкими, и не случайно: в результате с каждой стороны от разреза остается по фрагменту одноцепочечной молекулы, которые могут легко соединиться обратно по принципу комплементарности.
Две получившиеся комплементарные[72] цепочки стремятся соединиться друг с другом обратно. Предотвратить это воссоединение можно, немного химически модифицировав нуклеотиды на концах. Или сделав на молекуле разрезы двумя разными типами рестриктаз на небольшом отдалении друг от друга – если удалить маленький фрагмент между разрезами, тогда оставшиеся концы не будут комплементарны друг другу и молекула не сможет соединиться по месту такого разреза.
Внимание, дальше нам снова понадобится воображение. Представьте себе коробку детского конструктора, в которой есть множество элементов типа «кирпичик» разного цвета. Независимо от цвета мы можем сцеплять эти кирпичики в любом порядке, выстраивая все более и более высокую башню. Секрет башни из кирпичиков в механизме сцепления деталей между собой: выпуклости на одной детали идеально подходят к разъемам на другой. И ничего кроме длины рук строителя не мешает нам вырастить эту башенку хоть до самого неба. Липкие концы позволяют проделывать похожий фокус: если разрезать одной и той же рестриктазой две разные молекулы ДНК, то оставшиеся в обоих случаях хвостики будут прекрасно соответствовать друг другу. А это значит, что их можно соединить между собой – встроить фрагмент одной ДНК в другую. Или даже множество фрагментов. Затем останется только сшить оставшиеся пробелы между нуклеотидами каждой цепи. Для этого пригодится еще один фермент – лигаза. И вуаля, у нас получился монтаж, то есть генетическая рекомбинация.
Тут любопытному читателю самое время спросить: неужели в геноме самой бактерии не найдется таких же фрагментов текста, которые способны узнавать рестриктазы? Как же рестриктазам тогда отличить чужеродную ДНК от собственной бактериальной и не совершить по неосторожности харакири? И этот вопрос совершенно справедливый!
А бактерии выкручиваются так: ДНК бактерии имеет своего рода химическую надстройку над нуклеотидами А и Ц, содержащую метильную группу. Поэтому называется такая надстройка «метилирование». В обычное время вся бактериальная ДНК метилирована, то есть замаскирована от рыскающих в поиске врагов рестриктаз[73]. Так что от собственных острых ножниц бактерия находится в полной безопасности.
Возможно, вы уже догадались, что такой механизм можно поставить на службу науке. Так и было сделано, причем о-о-очень давно.
Пожалуй, самый частый аргумент противников ГМО, который мне приходилось слышать, – это обвинение технологий генной инженерии в их непростительной молодости. А если продолжить распутывать нить разговора, то чаще всего выясняется, что появление генной модификации в человеческой памяти на временной шкале стоит где-то рядом с клонированием овечки Долли. То есть на рубеже XX и XIX веков. То есть буквально вчера. (И мне тоже кажется, что этот рубеж был буквально вчера. Пока не вспоминаю, что пора идти искать подарок на тридцатилетний юбилей моему «маленькому братишке»). И мало кто знает, что технология рекомбинантных ДНК, отрасль генной инженерии, в 2021 году отпраздновала свой 50-летний юбилей!
А начиналось все вот как. В 1971 году американский ученый Пол Берг в лаборатории Стэнфордского университета провел эксперимент, который навсегда вошел в историю науки. Спустя 9 лет на одной сцене с Уолтером Гилбертом и Фредериком Сенгером – изобретателями двух самых первых методов чтения ДНК – Берг получил за этот эксперимент Нобелевскую премию по химии[74].
К тому моменту механизмы рестрикции уже были известны ученым, в наличии имелись даже выделенные рестриктазы[75]. В своей лаборатории Поль Берг взял ДНК вируса SV40, который был выделен из клеток макак-резусов; бактериофаг (лямбда) – вирус, поражающий кишечную палочку E. coli; и рестриктазу EcoRI, дающую липкие концы у разрезаемой молекулы. Кольцевые ДНК обоих вирусов разрезали при помощи одной и той же рестриктазы – EcoRI, затем специальным образом обработали получившиеся линейные молекулы и смешали их в одной пробирке[76]. Концы двух молекул соединились друг с другом, образовав новую гибридную кольцевую молекулу ДНК. Новую комбинацию генов. То есть первую в истории человечества искусственно созданную рекомбинантную молекулу.
Это открыло дорогу исследованиям и экспериментам с бактериями. Создать рекомбинантную ДНК – это только половина работы. Вторая половина – заставить бактерию такую плазмиду проглотить. В обычном состоянии бактериальная клетка не «подбирает все, что валяется на дороге», ее стенки достаточно плотные, чтобы такого не происходило. Однако в определенных условиях клетка может стать компетентной – ее стенки начнут пропускать внутрь разный генетический «мусор» снаружи. Переход в состояние компетентности – задача довольно сложная, а случается он под действием разных факторов, которые мы не станем разбирать здесь, чтобы окончательно не заблудиться в молекулярных дебрях. Важно только отметить, что внутри таких бактерий запустятся определенные молекулярные процессы, начнут читаться ответственные за состояние компетентности гены, и клетка перейдет в состояние, в котором через ее стенки сможет проникать генетический материал из внешней среды.
Такое состояние бактерий к 1970-м годам было известно уже очень давно: впервые его обнаружил британский бактериолог Фредерик Гриффит в попытках создать вакцину от пневмонии. Он заметил, что одни бактерии могут передать другим свои свойства при определенных условиях среды. В те времена знаний о наследственности было слишком мало, чтобы разобраться в механизмах случайно обнаруженного процесса. Выяснить причину трансформации и назначить «виновницей» ДНК только много лет спустя смогли трое канадских и американских исследователей Освальд Эвери, Маклин Маккарти и Колин Маклауд[77].
Теперь, объединив знания о трансформации бактерий путем искусственного введения ее в состояние компетентности с умением создавать рекомбинантные ДНК, можно было приступать к работе – к созданию первых генетически модифицированных бактерий. За дело одновременно взялись многие ученые.
На плазмидах бактерии могут хранить самые разные гены. Например, гены резистентности к различным антибиотикам. Такие плазмиды называются R-плазмидами, или R-фактором. Если у бактерии есть такая плазмида, то антибиотики, защитные гены от которых есть в этой плазмиде, бактерии не страшны. Когда в среде ее обитания окажется один из таких антибиотиков, бактерия будет жить себе припеваючи, не замечая, что среда вообще-то отравлена.
Итак, ученые взялись за разработку методов трансформации для разных бактерий. Дошло дело и до любимой учеными кишечной палочки[78]. Пробежимся галопом по истории.
• Следующим успехом стала трансформация кишечной палочки рекомбинантной плазмидой pSC101[79], благодаря которой та стала устойчивой к антибиотику тетрациклину.
• Затем новый успех – трансформация кишечной палочки уже гибридной плазмидой, дающей устойчивость сразу к двум антибиотикам: тетрациклину и канамицину. Причем гены устойчивости к канамицину располагались на той части плазмиды, что была получена от другой бактерии – стафилококка (Staphylococcus). Так было показано, что генетический материал может передаваться даже между видами организмов!
• И вот, чтобы уж совсем закрепить успех, все тот же союз ученых, состоящий из Стенли Коэна и Герберта Бойэра, разработал еще более удивительную химеру: для все той же кишечной палочки создали плазмиду, в которую встроили ген южноафриканской лягушки (Xenopus laevis)[80] – так показали, что даже разные царства не помеха для переноса генов.
Кстати, свойство антибиотикорезистентности ученые тоже поставили себе на службу: добавляя в редактируемую бактерию дополнительно R-плазмиду, можно определять, произошла ли у бактерий целевая модификация, поместив их в среду с антибиотиком: если бактерии выживут, значит, редактирование в них произошло. Таким образом R-плазмиду можно использовать в качестве маркера трансформации.
Так начинается история технологий рекомбинации генов, подаривших нам те самые ГМО, которым посвящена эта книга. Там, на заре 1970-х, начался отсчет новой эры – эры биотехнологии.
Выходит, что технологии направленной контролируемой генетической модификации недавно исполнилось полвека. Но многие люди все еще по привычке продолжают считать ее молодой (как я считаю маленьким своего младшего брата и все еще делаю ему дурацкие подарки. Нет, ну правда, что вообще дарят 30-летним «маленьким братишкам»?).
2.4. Заверните вон ту плазмиду, с верхней полки справа
В теории резать рестриктазами разные молекулы ДНК и соединять их по соответствующим липким концам мы можем хоть до бесконечности. С каждым разом все больше увеличивая размер и сложность получающейся плазмиды. На практике же все не так просто. Чем сложнее получается плазмида, тем больше с ней проблем. Во-первых, чем больше фрагментов мы пытаемся склеить, тем менее стабильной становится плазмида. Во-вторых, желательно, чтобы в плазмиде были только нужные нам (и ей для ее функционирования) фрагменты. То есть ничего лишнего: простые плазмиды в обращении удобнее, чем слишком сложные и многофункциональные. В-третьих, какими бы четкими ни были протоколы создания плазмид, делать это каждый раз самостоятельно примерно как каждый раз заново разрабатывать и собирать велосипед, вместо того, чтобы купить готовый и блестящий в специальном магазине. Даже самые первые экспериментаторы работали над модификацией существующей «природной» плазмиды, а не конструировали нечто совершенно новое. К хорошей плазмиде существует целый список требований о, так сказать, тактико-технических характеристиках[81]. Ну и наконец, с этого момента мы перестанем называть модифицированную плазмиду плазмидой, а присвоим ей гордое имя «плазмидный вектор». Вектор – потому что такая молекула используется для направленной модификации. Помимо плазмидного вектор может быть также на основе, например, вируса. Но про это мы еще поговорим.
Современные биотехнологи могут воспользоваться огромным количеством интернет-сервисов, где можно выбрать готовый плазмидный вектор из каталога или в удобном онлайн-конструкторе сформировать список требований к будущей покупке. Специальная биотехнологическая компания, специализирующаяся на изготовлении плазмидных векторов и других необходимых в лаборатории готовых наборов компонентов, подготовит и пришлет заказчику ровно то, что ему нужно. С гарантией качества и точными характеристиками. На самом деле, чтобы сделать такой заказ, совсем не обязательно быть ученым и работать в лаборатории. Любой читатель этой книги может проделать это самостоятельно. А потом заняться изготовлением трансгенных бактерий прямо на собственной кухне[82].
Генетическая карта плазмидного вектора pBR322. Гены устойчивости к тетрациклину (Tet) и ампицилину (Amp) содержат уникальные сайты узнавания для HindIII, BamHI и PstI. EcoRI-сайт расположен вне этих генов. Длина ветора – 4361 п. н.
Кстати, плазмидные векторы используются учеными не только для создания трансгенных организмов, но и как… библиотеки! Вот например, создали вы некоторый искусственный ген или разработали нужный для будущей модификации другого организма конструкт[83], но использовать пока не хотите. Тогда свои результаты можно сохранить на будущее в стабильной и удобной для быстрого применения форме – в таком плазмидном векторе. Как говорят, в библиотеке. Там нужная вам последовательность сохранится столько, сколько будет нужно. А когда понадобится достать ее для использования, можно положить ее в копир! Ну то есть в бактерию. Молекулярные механизмы бактерии помогут наработать нужное количество копий вектора (а значит, и вашего фрагмента) с такой точностью, которой нельзя достичь, используя обычный в таких делах метод ПЦР[84].