Идущие по пустыне: время Кретов Юрий
Теория самоорганизации, говоря словами выдающегося советского химика В. И. Кузнецова, «отражает законы такого существования динамических систем, которое сопровождается их восхождением на все более высокие уровни сложности в системной упорядоченности, или материальной организации». По сути, речь идет об использовании химического опыта живой природы.
Каким образом природа в результате химических соединений образовала сложнейший высокоорганизованный комплекс – биосистему? Ответить на этот вопрос означает объяснить, каким образом природа из минимума химических элементов и соединений создала сложнейшие макромолекулы, а затем высокоорганизованный комплекс биосистем.
Для того чтобы элементарные частицы могли объединиться в атомы, должны были соблюдаться жесткие условия, характеризующиеся так называемыми фундаментальными постоянными.
Для нашей планеты таких фундаментальных постоянных четыре: скорость света в вакууме С = 299792,458 км/с; заряд и масса электрона; постоянная Планка, связывающая свойства волны и частицы, которая составляет 6,626 10–34 Дж/с.
Причем случись изменение значения хотя бы одной из фундаментальных постоянных в ту или другую сторону на бесконечно малую долю процента – и жизнь на Земле никогда бы не возникла.
Для того чтобы создать сложнейшие макромолекулы, необходимо было провести отбор химических элементов.
В настоящее время известно более 100 химических элементов, однако, основу живых систем составляют только шесть элементов, получивших название органогенов С, Н, О, N, Р, S (углерод, водород, кислород, азот, фосфор, сера), общая весовая доля которых составляет 97,4 %. За ними следуют еще 12 элементов, которые принимают участие в построении многих физиологически важных компонентов биосистем: Na, K, Ca, Mg, Mn, Fe, Si, Al, Cl, Cu, Zn, Co (натрий, калий, кальций, марганец, магний, железо, кремний, алюминий, хлор, медь, цинк, кобальт). Их весовая доля в организмах менее 1,6 %.
Об отборе свидетельствует и общая химическая картина мира. В настоящее время известно около 8 миллионов химических соединений. Из них подавляющее большинство (около 96 %) – это органические соединения, основной строительный материал, в которых все те же 6 + 12 элементов.
Интересно, что из остальных химических элементов Природа создала лишь около 300 тысяч неорганических соединений. Принцип отбора действует и далее. Так из миллионов органических соединений в построении живого участвуют лишь несколько сотен. Далее, из 100 известных аминокислот в состав белков входят только 20. Важно отметить, что из такого узкого круга отобранных природой органических веществ сформировался весь труднообозримый мир живого.
Каковы же принципы отбора химических соединений – своеобразной «химической подготовки» к образованию сложнейших биологических систем? Выяснилось, что определяющая роль здесь принадлежит катализаторам, то есть веществам, активирующим молекулы реагентов и повышающим скорость химических реакций.
Этот процесс ныне представляется следующим образом.
1. На ранних стадиях химической эволюции мира катализ отсутствовал. Условия высоких температур (выше 5 тысяч градусов по Кельвину[39]), электрические разряды и радиация препятствуют образованию конденсированного состояния.
2. Проявления катализа начинаются при снижении температуры ниже 5 тысяч градусов по Кельвину и образовании первичных тел.
3. Роль катализатора возрастала (но пока еще незначительно) по мере того, как физические условия (главным образом температура) приближались к современным земным значениям. Появление аминокислот и первичных сахаров было своеобразной некаталитической подготовкой старта для большого катализа.
4. Роль катализа в развитии химических систем после достижения стартового состояния, то есть известного количественного минимума органических и неорганических соединений, начала возрастать с фантастической быстротой. Отбор активных соединений происходил в природе из тех продуктов, которые получились относительно большим числом химических путей и обладали широким каталитическим спектром.
В 60-х годах XX века было экспериментально установлено, что в ходе химической эволюции отбирались те химические структуры, которые способствовали резкому повышению активности и избирательной способности катализаторов. Это позволило профессору МГУ А. П. Руденко в 1964 году выдвинуть теорию саморазвития открытых каталитических систем, которая в развернутой форме появилась в 1969 году и была названа теорией эволюционного катализа.
Профессор А. П. Руденко считал, что единственной формой диалектического перехода от неживого вещества к живому среди всех возможных процессов развития материального мира является биогенез, или эволюционная химия, приводящая к возникновению жизни! [13].
Теория эволюционного катализа
Сущность этой теории состоит в том, что химическая эволюция представляет собой саморазвитие каталитических систем, и, следовательно, эволюционирующим веществом являются катализаторы, а не молекулы.
При катализе идет реакция химического взаимодействия катализатора с реагентами с образованием при этом промежуточных комплексов со свойствами переходного состояния. Именно такой комплекс Руденко назвал элементарной каталитической системой.
Если в ходе реакции идет постоянный приток извне новых реактивов, отвод готовой продукции, а также выполняются некоторые дополнительные условия, реакция может идти неограниченно долго, находясь на одном и том же стационарном уровне. Такие многократно возобновляемыекомплексы являются элементарными открытыми каталитическими системами (ЭОКС).
С точки зрения А. П. Руденко, процесс химической эволюции неотделим от явления катализа, причем объектом служит не отдельная молекула, а каталитическая система.
Наиболее сложным случаем катализа является автокатализ, возникающий при каталитическом воздействии продукта реакции на вступающие в нее исходные вещества. Таким образом, на химическом уровне организации материи возникает способность многократного самоускорения, изменения и развития, а саморазвитие, самоорганизация и самоусложнение каталитических систем происходят за счет постоянного притока энергии.
Основным источником энергии, по мнению Руденко, является химическая реакция, которая борется с равновесием и самоорганизацией каталитических систем. В результате борьбы преимущество получает та, которая развивается на основе реакции с большим выделением тепла[40] и с ростом активности (базисная реакция). Максимальное эволюционное преимущество получает каталитическая система, развивающаяся на базе реакции с самым большим тепловыделением.
Базисная реакция является не только источником энергии, необходимой для полезной работы в системе, которая направлена против равновесия, но и орудием отбора наиболее прогрессивных эволюционных изменений катализаторов.
– Руденко считает, что источником энергии, необходимой для полезной работы в организме, которая направлена против равновесия, является базовая химическая реакция. Базовая реакция – это та, которая идет с наибольшим тепловыделением. Это правильно?
Аструс: Нет, не совсем. Внутренняя энергия не задевается. Надо обязательно затрагивать именно внутреннюю энергию.
– Нам непонятно: с одной стороны, базовая реакция должна идти с ростом негэнтропии, а с другой – она характеризуется большим тепловыделением. А это ведет к росту энтропии (потерь энергии). Как связать два противоположных свойства?
Аструс: Как внешнее и внутреннее.
– Реакция – внешний фактор, выделение тепла – внутренний фактор. А как задеть внутреннюю энергию?
Аструс: Привлечь как диссипативный элемент, который нарушает закон равновесия.
– Нарушает закон в какую сторону?
Аструс: Возникает дискретность то вверх, то вниз. Вызывается раскачка. А при раскачивании возникает эффект усиления.
В ходе реакции происходит естественный отбор тех каталитических центров, которые обладают наибольшей активностью. Те же центры, изменение которых связано с уменьшением активности, постоянно выключаются из кинетического процесса, они «не выживают».
С точки зрения Руденко, при многократных последовательных необратимых изменениях катализатора переход его на все более высокие уровни сопровождается эволюцией механизма базисной реакции как за счет изменений состава и структуры катализаторов, функционировавших в начале реакции, так и за счет дробления химического процесса на элементарные стадии и появления новых катализаторов этих стадий. Эти новые катализаторы появляются за счет их саморазвития.
А. П. Руденко сформулировал основной закон химической эволюции, согласно которому с наибольшей скоростью и вероятностью реализуются те пути эволюционных изменений катализатора, при которых происходит максимальное увеличение его абсолютной активности.
Большую роль в этом процессе играет так называемый автокатализ, благодаря возникновению которого происходит самоускорение базисной реакции.
Итак, суть теории эволюционного катализа Руденко заключается в том, что в любой открытой системе (в живом организме) в процессе, направленном к равновесию, (за счет свободной энергии обменного процесса) происходит выделение энергии, часть которой расходуется на полезную работу, направленную против равновесия, а часть рассеивается в виде тепла.
Процесс, направленный к равновесию, – это катаболизм, связанный с химической реакцией распада продуктов питания и их окислением. Катаболизм идет с выделением энергии и ростом энтропии.
Процесс, направленный против равновесия, – это анаболизм, связанный с синтезированием новых клеток за счет энергии, выделившейся при катаболизме. Этот процесс идет с поглощением энергии и ростом негэнтропии (энтропия падает).
Итак, в настоящее время существуют два наиболее разработанных теоретически подхода в оценке физической сущности явления самоорганизации в открытых системах. Это подход с позиций неравновесной термодинамики Пригожина и подход с позиций эволюционного катализа Руденко. Оба этих подхода одинаковы в оценке антиэнтропийной природы процесса самоорганизации.
Принципиальное различие теорий самоорганизации Пригожина и Руденко заключается в следующем. Конструктивную роль в возникновении самоорганизации, согласно Пригожину, играет условие необратимости, а согласно концепции эволюционного катализа – условие неравновесности. Причиной самоорганизации в первом случае является диссипация энергии, а во втором случае – внутренняя полезная работа против равновесия. Движущей силой самоорганизации в первом случае является отрицательная энтропия, поступающая в открытую систему из внешней среды, а во втором случае – часть потока свободной энергии обменного процесса в открытой системе [14].
Автоколебания в организме человека
Колебания характеризуются амплитудой и периодом, или обратной ему величиной – частотой колебаний. Амплитуда есть наибольшее отклонение переменной величины от ее среднего значения. Физический смысл частоты – число колебаний в единицу времени. Измеряется частота колебаний в герцах.
Когда период колебаний сохраняется постоянным за все время измерения, такой процесс называется строго периодическим. В апериодическом случае значение периода колебаний не является постоянной величиной. Если имеет место ряд параллельных простых колебательных процессов, суммарное сложное колебание представляет собой суперпозицию всех входящих в него элементарных составляющих сигналов.
Важно отметить, что хотя организм находится в равновесии, его физиологическое состояние может быть динамическим. Во многих организмах наблюдаются эндогенные[41] изменения, связанные с ритмами. Так, даже находясь в гомеостазе, температура тела, кровяное давление, частота сердечных сокращений и большинство метаболических индикаторов не всегда находятся на постоянном уровне, но изменяются в течение времени.
Физиологические колебательные процессы в живых организмах, уже многие тысячи лет наблюдаемые человечеством, являются собственными биоритмами. Природой собственных биоритмов являются непрерывные чередования фаз потребления и выделения энергии посредством управляемых реакций синтеза и расщепления АТФ, направленные на обеспечение устойчивого неравновесного термодинамического состояния биологических систем.
В теле человека постоянно имеют место периодические и апериодические колебательные процессы различных частот и амплитуд. Их локализация определяется биофизическими свойствами как задающих генераторов (ритмообразователей, пейсмекеров[42]), так и окружающих их тканей.
Следует различать естественные и искусственные пейсмекеры. Естественные пейсмекеры – это совокупность нервных и мышечных клеток, задающих ритм деятельности какой-либо системе или органу. Физиологическая роль естественного пейсмекера состоит в обеспечении автоматизма и регуляции интенсивности работы физиологических систем организма (в том числе и центральной нервной системы) за счет изменения частоты (ритмики) возбуждения. Отличительной особенностью функциональной организации пейсмекера являются способность к самовозбуждению, участию в развитии распространяющегося возбуждения, исходящего из другого пейсмекера.
Искусственные пейсмекеры – это электроимпульсные устройства, позволяющие навязывать искусственный ритм сокращений различным естественным возбудимым образованиям. Разработаны, в частности, электронные стимуляторы еятельности сердца, дыхания, пищеварительной, мочеполовой и других систем [15].
Центральным ритмообразователем традиционно принято считать сердце. В синусовом узле сердца имеется небольшое количество клеток – «истинных водителей ритма» – это пейсмекер сердца. В таких клетках за фазой реполяризации (возврата к состоянию расслабления) следует фаза самостоятельной медленной деполяризации (электрического возбуждения, или активации сердца), приводящая к повышению деполяризирующего электрического тока до порогового уровня и генерации потенциала действия. Собственный источник энергии – энергия метаболизма клеток.
В пейсмекерных клетках формируется потенциал действия длительностью 200–300 миллисекунд с частотой около 1 Гц в норме. Основным механизмом передачи потенциалов действия в живом организме является распространение волн возбуждения. Так, автоколебания, возникающие в пейсмекере, распространяются по нервным волокнам и мышечным структурам сердца. Волны возбуждения могут распространяться по клеткам скелетной мускулатуры, мочевого пузыря, кровеносных сосудов и другим структурам. Распространение колебаний осуществляется также гидромеханическим путем по главным транспортным путям: артериям, венам и лимфатическим сосудам.
Пейсмекер оказывает влияние на ритм сердца, вызывая его флуктуации. По современным представлениям, на ритм сердца оказывают влияние не только дыхательные нейроны, но и активность симпатической нервной системы, другие отделы мозга. Таким образом, именно комплекс пейсмекеров является системообразующим задающим колебательным контуром.
Кроме сердца, ритмообразователем является дыхательная система. При взаимодействии ритмов различных частот наблюдаются суперпозиции, а также модуляции[43] высокочастотных ритмов низкочастотными. Следует заметить, что природа ритмообразования в деятельности сердца и легких различна: пейсмейкер деятельности сердца находится в самом органе, а пейсмейкер дыхания – в стволовой части мозга [16].
Так уж исторически сложилось, что наиболее исследованными оказались гидромеханические процессы, связанные с флуктуацией артериального давления (АД). В условиях его непрерывной регистрации у бодрствующих животных обнаружен сложный характер колебаний.
Еще в 1760 году швейцарский анатом, физиолог и естествоиспытатель А. Галлер обнаружил периодичность в изменении циклов сердечных сокращений. Это явление получило название вариабельности ритма сердца (ВРС). ВРС наблюдается даже в состоянии покоя в положении лежа.
В 1847 году немецкий физиолог Карл Людвиг впервые обнаружил, что изменения АД связаны с дыхательными движениями, и назвал их «волнами кровяного давления».
Двадцать лет спустя немецкий врач Л. Траубе в экспериментах над животными при выключенном дыхании обнаружил существование других самостоятельных ритмов артериального давления с периодом колебаний около 10 секунд. Эти колебания были названы волнами Траубе.
Несколько позже немецкий физиолог Е. Геринг доказал прямую связь дыхательного ритма с колебаниями АД. Эти колебания, синхронные с ритмом дыхания, были названы волнами Геринга.
Но и это еще не все. Немецкий врач С. Майер обнаружил у экспериментальных животных колебания АД с большим периодом, чем дыхательные (волны Майера).
Все эти волны выявляются при изучении частоты сердечных сокращений (ЧСС). Можно представить, в каких сложных условиях поддерживается в необходимом диапазоне колебаний артериальное давление в организме человека. А добавьте сюда еще реакцию организма на внешние воздействия. Причем реакцию нелинейного характера.
Какой бы внешний раздражитель ни подействовал на организм (то есть на клетку, так как организм состоит из клеток), он это воздействие преобразует в изменение электрического потенциала на мембране. Но само изменение потенциала на мембране клетки определяется тем, какие именно процессы в клетке будут подключены внешним раздражителем. Таким образом, на внешний раздражитель клетка, прежде всего, откликается электрическим «способом».
Словом, клетка переводит информацию о внешнем раздражителе на электрический язык. В нервных окончаниях возбуждаются электрические импульсы. Но они следуют друг за другом не беспорядочно, а в определенной последовательности, чем-то напоминая сообщение с использованием азбуки Морзе. Эти последовательности импульсов представляют собой закодированное определенным образом сообщение. Применяемый клеткой код называют пространственно-временным [17].
Гибкий принцип организации процессов
Процесс внутри организма построен по гибкому принципу, хотя гибкую организацию сложнее обеспечить, чем жесткую. В жесткой системе реализован один-единственный вариант организации процесса. В гибкой системе надо обеспечить реализацию бесконечного числа вариантов, причем на каждый момент времени надо выбрать из этого бесконечного количества один-единственный вариант, наиболее подходящий для ситуации в данный момент.
Именно по такому наиболее совершенному принципу работает человеческий организм и все его составные части, вплоть до мембран клеток.
При этом в каждой работающей клетке многие молекулы постоянно распадаются и вновь синтезируются. Их концентрации непрерывно изменяются, колеблются. Эти колебания не затухают, поскольку процесс распада-восстановления длится непрерывно, то есть колебания являются незатухающими. Это непрерывное изменение (колебание) нужно для того, чтобы для каждого момента времени выбрать свой вариант, свой режим работы, свой производственный процесс в зависимости от того, какие внешние раздражители действуют на клетку в этот момент. В этом и есть гибкость организации всего производственного процесса в клетках. Для ее практической реализации понадобилось режим работы клетки (то есть процессов, которые в ней протекают) сделать колебательным.
Раз процессы в клетке – и во всем организме – носят колебательный характер (именно так организм может обеспечивать оптимальную реакцию на изменение внешних условий), то с этим нельзя не считаться. А воздействие на колебательные системы принципиально отличается от воздействия на другие системы, которые не связаны с колебательными процессами.
Поскольку процесс внутри организма построен по гибкому принципу, наличие в организме человека нескольких фаз (фазы чувствительности, бездействия и раздражительности), в пределах которых меняется реакция на действия внешнего раздражителя, позволяет организму наиболее эффективно отвечать на внешние сигналы с целью повышения выживаемости вида, что обеспечивает совершенство взаимодействия организма с внешней средой.
Фазная реакция
Фазной реакцией на внешние раздражители обладает не только человеческий организм в целом, но и каждая отдельная мембрана клетки, каждая клетка, отдельная клеточная популяция, отдельное нервное волокно, а также каждый участок кожи.
Реакции организма человека на внешние раздражители по тем последствиям, которые они вызывают в организме, делятся на разные типы.
Организм начинает реагировать только на те внешние сигналы, которые выше порогового значения. Для каждого организма этот порог свой. Но даже один и тот же организм может увеличить этот порог. Так, человеческий организм не реагирует на холодовый раздражитель до определенной температуры. Но если организм закалить, то он может повысить этот порог, то есть начнет чувствовать только более значительное понижение температуры и соответствующим образом реагировать на него.
Регулярное воздействие на организм определенных внешних сигналов соответствующим образом тренирует организм. Реакция организма на такие слабые сигналы называется тренировочной. Она позволяет поднять порог реакции организма, то есть сделать человека более независимым от внешней среды, от изменения условий внешней среды. Она делает организм более способным сопротивляться этим изменениям, короче говоря, увеличивает сопротивляемость организма.
Если раздражающий внешний сигнал усиливается, то есть становится более сильным, то характер реакции организм на него меняется. В данном случае реакция организма (на средний сигнал) строится так, чтобы защитить организм от его действия. Поскольку пренебречь действующим сигналом организм не может, он активизируется, стремясь приспособиться к новым внешним условиям. В частности, организм начинает дрожать. Дрожь – это непроизвольное сокращение скелетных мышц. При охлаждении организма скелетные мышцы непроизвольно сокращаются и тем самым усиливают выделение тепла. Специалисты говорят, что реакция человека в этом случае находится в зоне спокойной активации.
Если сигналы по интенсивности выше средних, то степень активации организма повышается, то есть реакция организма переходит в зону повышенной активации. Человек начинает активно и много двигаться, чтобы выделить в организме много энергии и тем самым согреть организм.
Если же сигнал увеличивается еще больше, то реакция организма принимает форму стресса. Организм не может отреагировать на такой сигнал адекватно. Поэтому он вынужден снять защиту организма, убрать «предохранитель» на входе электрической системы.
Таким образом, при действии сильного сигнала внешней среды защитные системы организма подавляются и в организме в этой ситуации могут произойти поломы, срывы [17].
Частотные биоритмы человека
– Не знаем, как подступиться к биоритмам. С чего бы начать?
Аструс: Разберитесь с аллергией.
– С аллергией? Разве аллергия зависит от биоритмов?
Аструс: Еще как.
Современный человек реагирует на пространственно-волновые и частотные влияния, подстраиваясь или резонируя с ними посредством биоритмов, которые имеют три градации, или уровня: высокой, средней и низкой частоты.
Ритмы высокой частоты – ультрадианные биоритмы, длящиеся до получаса, включая 20-минутный ритм дыхания, поочередно сменяющий дыхание в правой (нагревающей, ян) и левой (охлаждающей, инь) ноздрях.
Ритмы средней частоты – циркадианные биоритмы, длятся от получаса до 6 дней и включают:
1) 4-часовой назальный (носовой) цикл;
2) 3-часовой цикл продуцирования гормона роста;
3) 90-минутную фазу быстрого сна (наиболее активная стадия сна, во время которой в сознании человека возникают яркие и сложные образы, сновидения);
4) двенадцать 2-часовых циклов органов и систем с их наивысшей и низшей активностью;
5) общий суточный (земной) циркадианный (околосуточный) цикл 24 часа.
Ритмы низкой частоты:
1) инфрадианные – недельные;
2) лунные – циркалунные – 28/29 дней;
3) стихийные – 18, 72 и 75 дней;
4) полугодовые, годичные (солнечные);
5) более длительные – индивидуальные нумерологические ритмы души и личности – 3– и 7-летние;
6) астрологические, солнечные – 12 лет (отмечено достоверное влияние на живую материю солнечной активности, периодичность которой составляет 11,1 года) и 36 лет [18].
Живые организмы обеспечивают устойчивость своего неравновесного термодинамического состояния с помощью биоритмов. Отсюда можно считать, что биоритмы являются способом существования всех живых организмов [3].
В живых организмах жизнедеятельность каждой клетки, каждого органа, каждой системы и целостного организма характеризуются соответствующими комплексами биологических ритмов, параметры которых находятся в тесной взаимосвязи и определяются как внутренними свойствами соответствующих элементов организма, так и их ролью в составе того или иного органа или системы, а также средой обитания.
Например, частота сердечных сокращений у человека в спокойном состоянии составляет 58–75 уд./мин., а при большой нагрузке может доходить до 160 и более, циклы биохимических реакций, связанных с перевариванием пищи, происходят, например, от 3 до 5 раз в сутки, в зависимости от режима питания и т. д.
Поскольку каждый живой организм по-своему уникален, для него будет характерен соответствующий только ему оптимальный образ жизни: время сна и бодрствования, режим и состав питания, соответствующая окружающая среда, необходимые физические нагрузки и многое другое.
В связи с этим для такого живого организма будут характерны и соответствующие только ему биологические ритмы физиологических параметров. Однако в реальной жизни такой режим невозможен, так как он не может существовать в отрыве от условий окружающей его обстановки.
Каковы же условия этой обстановки? Во-первых, все живые существа на Земле – от растений до высших млекопитающих – подчиняются суточным ритмам. У человека в зависимости от времени суток циклически меняются физиологическое состояние, интеллектуальные возможности и даже настроение. Ученые доказали, что виной тому – колебания концентраций гормонов в крови.
Период цикла сон-бодрствование составляет 24 часа. Это условие определяется периодом вращения Земли вокруг своей оси.
Вторым основным условием является то, что человек живет в обществе, в связи с чем он должен подчиняться его правилам, в частности режиму дня, времени работы и отдыха, времени приема пищи и т. д. Поэтому в большинстве случаев параметры биоритмов его организма являются принудительными.
Каким же образом в организме человека происходит согласование собственных и принудительных биоритмов? Здесь необходимо обратить внимание на то, что все процессы, происходящие в организме человека в условиях собственного биоритма, являются абсолютно необходимыми для его жизнедеятельности, так как иначе происходит накопление значений невосстанавливающихся функциональных сдвигов, что может привести к потере работоспособности, заболеваниям и гибели. Широко известны случаи потери работоспособности в результате длительного отсутствия сна, сильного физического или умственного переутомления и другие.
Поэтому принудительные периоды биоритмов организации биохимических процессов циклов сна и бодрствования, режима труда и отдыха, режима питания и других циклов корректируются организмом таким образом, чтобы все необходимые для его жизнедеятельности функции укладывались в эти принудительные рамки.
В частности, человек определяет для себя вид трудовой деятельности, время и продолжительность сна, вид отдыха, ассортимент продуктов питания, занятия спортом и многое другое.
Как показывают многочисленные исследования в области хронобиологии и хрономедицины, способность живых организмов, и в частности человека, к коррекции собственных биоритмов очень индивидуальна.
Циркадные ритмы
В последние годы в науке о биоритмах, хронобиологии, было сделано многое, чтобы установить механизм возникновения суточных гормональных циклов. Ученые обнаружили в головном мозге «циркадный центр», а в нем – так называемые «часовые гены» биологических ритмов здоровья [19].
Главное понятие хронобиологии – дневные циклы, длительность которых периодична. Сменяющие друг друга дневные циклы называются циркадными ритмами – от латинских слов circa (около) и dies (дня). Эти ритмы напрямую связаны с циклической сменой освещенности, то есть с вращением Земли вокруг своей оси. Они есть у всех живых существ на Земле: растений, микроорганизмов, беспозвоночных и позвоночных животных, вплоть до высших млекопитающих и человека.
В течение циркадного дня (бодрствования) наша физиология в основном настроена на переработку накопленных питательных веществ, чтобы получить энергию для активной дневной жизни. Наоборот, во время циркадной ночи питательные вещества накапливаются, происходят восстановление и «починка» тканей. Как оказалось, эти изменения в интенсивности обмена веществ регулируются эндокринной системой, то есть гормонами.
Вечером, перед наступлением ночи, в кровь из так называемого верхнего мозгового придатка – эпифиза – выделяется «гормон ночи» мелатонин. Эпифиз, величиной с горошину, задает околосуточный ритм, регулируя выделение мелатонина.
Мелатонин вызывает засыпание, а его колебания в ночное время суток приводят к смене фаз сна. Секреция мелатонина подчиняется циркадной ритмике и зависит от освещенности: темнота ее стимулирует, а свет, наоборот, подавляет.
Мелатонин – удивительное вещество, производится эпифизом только в темное время суток, и время его присутствия в крови прямо пропорционально длительности световой ночи. В ряде случаев бессонница у пожилых людей связана с недостаточностью секреции эпифизом мелатонина. Препараты мелатонина часто используют в качестве снотворных.
Мелатонин вызывает снижение температуры тела, кроме того, он регулирует продолжительность и смену фаз сна. Человеческий сон представляет собой чередование медленноволновой и парадоксальной фаз. Медленноволновой сон характеризуется низкочастотной активностью коры полушарий. Это «сон без задних ног», время, когда мозг отдыхает.
Во время парадоксального сна частота колебаний электрической активности мозга повышается, и мы видим сны. Эта фаза близка к бодрствованию и служит как бы «трамплином» к пробуждению. Медленноволновая и парадоксальная фазы сменяют одна другую 4–5 раз за ночь, в такт изменениям концентрации мелатонина.
Перед пробуждением здоровый организм должен быть готов к активному бодрствованию. В это время кора надпочечников начинает вырабатывать возбуждающие нервную систему гормоны – глюкокортикоиды. Наиболее активный из них – кортизол, который приводит к повышению давления, учащению сердечных сокращений, повышению тонуса сосудов и снижению свертываемости крови. Вот почему клиническая статистика свидетельствует о том, что острые сердечные приступы и внутримозговые геморрагические инсульты в основном приходятся на раннее утро[44].
Почему некоторые люди встают «ни свет, ни заря», а другие не прочь поспать до полудня? Оказывается, известному феномену «сов и жаворонков» есть вполне научное объяснение.
Дело в том, что минимальная концентрация кортизола в крови обычно приходится на середину ночного сна. У большинства людей уровень кортизола в крови начинает нарастать с полуночи и достигает максимума к 6–8 часам утра. К этому времени практически прекращается выработка мелатонина. Приблизительно через 12 часов концентрация кортизола начинает снижаться, а спустя еще 2 часа запускается синтез мелатонина. Но эти временные рамки весьма условны.
У «жаворонков», например, кортизол достигает максимального уровня раньше – к 4–5 часам утра, у «сов» позже – к 9–11 часам.
Поэтому «жаворонки» более активны в утренние часы, но быстрее утомляются к вечеру. Их обычно рано начинает клонить ко сну, поскольку гормон сна мелатонин поступает в кровь задолго до полуночи.
У «сов» ситуация обратная: они любят поспать утром и проявляют завидную активность вечером.
Указанные временные рамки сугубо индивидуальны и могут варьировать в зависимости от выраженности утреннего («жаворонки») или вечернего («совы») хронотипа.
Супрахиазматическое ядро
– Является ли супрахиазматическое ядро биологическими часами в организме?
Аструс: Является.
– Управляет ли супрахиазматическое ядро циркадным ритмом?
Аструс: Есть такой момент.
Долгое время ученые пытались найти ответ на вопрос: что за орган управляет циркадными колебаниями концентрации гормонов в крови?
Но ни у кого из них не возникало сомнений, что «циркадный центр» должен находиться в головном мозге. Его существование предсказывали и основатели хронобиологии Ашофф и Питтендриг.
Внимание физиологов привлекла давно известная анатомам структура головного мозга – супрахиазматическое ядро, расположенное над перекрестом зрительных нервов. Оно имеет сигарообразную форму и состоит, например, у грызунов всего из 10 000 нейронов, что очень немного[45]. Протяженность супрахиазматического ядра также невелика – не более 0,5 мм, а объем – 0,3 мм3.
В 1972 году двум группам американских исследователей удалось показать, что супрахиазматическое ядро и есть центр управления биологическими часами организма. «Главный „дирижер“ биологических ритмов – супрахиазматическое ядро – располагается в гипоталамусе, эволюционно древнем отделе мозга» [18].
Супрахиазматическое ядро лежит над перекрестом зрительных нервов, через которые оно получает световую информацию из сетчатки глаза. Информация о свете у млекопитающих поступает в эпифиз сложным путем: от сетчатки глаза до супрахиазматического ядра, затем от супрахиазматического ядра до верхнего шейного узла и от верхнего шейного узла в эпифиз. Отсюда еще одно название эпифиза – «третий глаз». Как мелатонин управляет засыпанием и сменой фаз сна, наука пока не знает.
Аструс: Мелатонин не управляет, а он всякий раз является пусковым механизмом на включение – на выключение, на включение – на выключение.
– А что в таком случае управляет сменой фаз сна?
Аструс: Структура погружения, сжатие глубже – поверхностней.
– Как структуру погружения связать со сном? Погружение в сон?
Аструс: В сон, в глубину. Возникает сжатие…
– Сжатие чего?
Аструс: Сжатие психического пространства, чем сильнее оно сжимается, тем глубже идет погружение в сон.
– Когда мы засыпаем, психическое пространство сжимается?
Аструс: Сжимается глубже.
– И вот этим процессом сжатия и руководит мелатонин?
Аструс: Да.
– И от этого зависит смена фаз сна?
Аструс: Да.
Уникальность супрахиазматического ядра – в том, что в его клетках работают так называемые часовые гены. Циркадные ритмы «придуманы» природой, чтобы приспособить организм к чередованию светлого и темного времени суток и поэтому не могут не быть связаны с восприятием света. Но даже в отсутствие световой информации суточный цикл остается стабильным – изменяется лишь его продолжительность. В случае, когда информация о свете в супрахиазматическое ядро не поступает, циркадный период у человека по сравнению с астрономическими сутками удлиняется.
Чтобы доказать это, в 1962 году «отец хронобиологии» профессор Юрген Ашофф на несколько дней поместил в абсолютно темную квартиру двух волонтеров – своих сыновей. Оказалось, что циклы «бодрствование – сон» после помещения людей в темноту растянулись на полчаса. Сон в полной темноте становится фрагментарным, поверхностным, в нем доминирует медленноволновая фаза. Человек перестает ощущать сон как глубокое отключение, он как бы грезит наяву.
На сегодняшний день установлено, что именно супрахиазматическое ядро посылает сигналы в центры мозга, ответственные за циклическую выработку гормонов – регуляторов суточной активности организма. Так что супрахиазматическое ядро можно назвать «дирижером» циркадной активности организма. Но и другие клетки подчиняются своим циркадным ритмам.
Известно, что в клетках сердца, печени, легких, поджелудочной железы, почек, мышечной и соединительной тканей работают часовые гены. Сердце, как и все внутренние органы, тоже обладает собственной циркадной активностью. В искусственных условиях оно проявляет значительные циркадные колебания, что выражается в циклическом изменении его сократительной функции и уровня потребления кислорода. Биоритмы сердца совпадают с активностью «сердечных» часовых генов. В гипертрофированном сердце (в котором мышечная масса увеличена из-за разрастания клеток) колебания активности сердца и «сердечных» часовых генов исчезают. Поэтому не исключено и обратное: сбой в суточной активности клеток сердца может вызвать его гипертрофию с последующим развитием сердечной недостаточности. Так что нарушения режима дня и питания с большой вероятностью могут быть причиной сердечной патологии.
Ни у кого из ученых не вызывает сомнения, что циркадные ритмы – один из основополагающих биологических механизмов, благодаря которому за миллионы лет эволюции все обитатели Земли приспособились к световому суточному циклу. Хотя человек и является высокоприспособленным существом, что позволило ему стать самым многочисленным видом среди млекопитающих, цивилизация неизбежно разрушает его биологический ритм. И в то время как растения и животные следуют природной циркадной ритмике, человеку приходится намного сложнее. Циркадные стрессы – неотъемлемая черта нашего времени, противостоять им крайне непросто. Однако в наших силах бережно относиться к «биологическим часам» здоровья, четко следуя режиму сна, бодрствования и питания [19].
– Вы нам сказали: «Сон – это один аспект взаимодействия». Чего с чем?
Аструс: Пространства и, условно говоря, телесной оболочки.
– А какие еще есть аспекты взаимодействия?
Аструс: Выключение внимания, это, иными словами, потеря сознания или, как называла Бехтерева[46], деперсонификация, когда объект себя не осознает. Еще искажение восприятия, когда оболочка захватывается проявлением красного огня, тогда захватывается мироощущение и идет миросовпадение и при мощной персонификации потеря ощущения самого себя.
– Это один из аспектов взаимодействия пространства с физическим телом?
Аструс: Да.
Суточные ритмы по «биологическим часам»
Раннее утро. В 4–5 часов (по реальному, географическому времени) организм готовится к пробуждению. К 5 часам утра начинает снижаться продукция мелатонина, растет температура тела. К 6 часам нарастает продукция «гормонов активности» – кортизола, адреналина. В крови увеличивается содержание гемоглобина и сахара, учащается пульс, повышается артериальное давление (АД), углубляется дыхание. Увеличивается частота фаз быстрого сна, растет тонус симпатической нервной системы. Все эти явления усиливаются под действием света, тепла и шума.
Утро. С 7 до 9 утра – время подъема, физических упражнений, завтрака. В 9 часов отмечается высокая работоспособность, быстрый счет, хорошая работа кратковременной памяти. Утром на свежую голову хорошо усваивается новая информация. Через 2–3 часа после пробуждения следует поберечь сердце. С 9 до 10 часов – время строить планы, «шевелить мозгами». Не зря говорится «Утро вечера мудренее». В 9–11 часов повышается иммунитет, эффективны лекарства, усиливающие сопротивляемость организма болезням.
День. До 11 часов организм в отличной форме. После 12 часов рекомендуется уменьшать физические нагрузки. Активность головного мозга снижается. Кровь приливает к органам пищеварения. Постепенно начинает снижаться артериальное давление, соответственно, пульс и мышечный тонус, но температура тела растет и дальше.
С 12 до 14 часов – время обеда, а в промежутке между 13 и 15 часами – полуденный и послеобеденный отдых (обеденный перерыв, «тихий час», сиеста).
После 14 часов отмечается минимальная болевая чувствительность, в это время действие обезболивающих препаратов наиболее эффективно и продолжительно.
С 15 часов лучше работает долговременная память, это время вспомнить или хорошо запомнить нужное.
После 16 – повышение работоспособности. В 15–18 часов – самое время заняться спортом. В это время дня рекомендуется обильное и частое питье чистой кипяченой воды – горячей или теплой в зимнее время (для профилактики простудных, желудочно-кишечных заболеваний и болезней почек). Летом можно пить прохладную и минеральную воду.
Между 16 и 19 часами – высокий уровень интеллектуальной активности. Это время также хорошо подходит для домашних дел.
Вечер. Промежуток между 18 и 20 часами – время, подходящее для ужина. Углеводная пища (натуральная – мед и т. п.) способствует выработке особого гормона – серотонина, который благоприятствует хорошему ночному сну.
В это время дня мозг активен, после 19 часов отмечается хорошая реакция, после 20 часов психическое состояние стабилизируется, улучшается память. После 21 часа почти вдвое возрастает количество белых кровяных телец (повышается иммунитет), температура тела понижается, продолжается обновление клеток.
С 20 до 21 – полезна легкая физкультура, пешие прогулки на свежем воздухе. После 21 часа организм готовится к ночному отдыху, 22 часа – время отойти ко сну. Иммунитет усиливается, чтобы охранять организм во время ночного отдыха.
Ночь. В первой половине ночи, когда преобладает медленный сон, выделяется максимальное количество соматотропного гормона, стимулирующего процессы клеточного размножения и роста. Недаром говорят, что во сне мы растем. Происходит регенерация и очищение тканей тела. У бодрствующих в 2 часа ночи может наблюдаться депрессия. В 3–4 часа – самый глубокий сон. Температура тела и уровень кортизола минимальны, содержание мелатонина в крови – максимальное.
Биологические ритмы и биологическое время
– Существуют ритмы собственные и привнесенные. Можно сказать, что собственные биоритмы связаны с принципом работы клеток: чередование фаз потребления и выделения энергии посредством управляемых реакций синтеза и расщепления АТФ. Это чередование и вызывает появление ритма. Так?
Аструс: Очень правильно.
– Биологический ритм делает развитие организма квантованным. В связи с этим вопрос: являются ли биологические ритмы единицами измерения биологического времени?
Аструс: Да.
– Но их же огромное множество.
Аструс: И, тем не менее, являются.
– А не существует ли какая-нибудь единая единица измерения биологического времени?
Аструс: Ученые придут к этому, где обозначат ее и примут за точку отсчета.
– Можно сказать, что основа «биологических часов» – это строгая периодичность протекающих в клетках физико-химических процессов, скорость которых закономерно меняется?
Аструс: Снаружи да, изнутри нет.
– А изнутри как?
Аструс: Изнутри коэффициент поправки.
– В таком случае, нельзя сказать «нет». Изменяется определенным образом.
Аструс: Правильно.
– Существуют ли материальные отпечатки реликтовых биологических ритмов?
Аструс: Существуют.
– А их можно встретить? Как они выглядят хотя бы? В виде чего?
Аструс: В виде пятен кофейного цвета. Причем всегда будет создаваться ощущение, что они вывернуты наружу, но не к вам, сюда, а наружу. Будет создаваться ощущение, что вывернуты наружу в противоположную от вас сторону.
– А где их следует искать?
Аструс: Даже в атмосфере Земли.
– Хотелось бы подробнее узнать, какова роль реликтового излучения в формировании Вселенной, Солнечной системы и планет, человека.
Аструс: Космогонического свойства или же явления галактического свойства. Даже если галактика погибает.
– То есть это комплексное влияние окружающей галактики на данный объект. Через реликтовое излучение. Так?
Аструс: Так.
– А на создание человека тоже такое же комплексное влияние?
Аструс (улыбается): Еще какое. Если бы это влияние учитывалось в гороскопах, то приложение было бы более точным.