Полезная еда. Развенчание мифов о здоровом питании Кэмпбелл Колин

Изъяны редукционистской модели

Практически все мы, профессионалы и обычные люди, говорим о питании, исследуем его, продаем и потребляем пищевые продукты, заботясь о конкретных питательных веществах, а часто — о конкретных дозах. Мы зациклены на количестве. Витамины. Минеральные вещества. Жирные кислоты. И, конечно, главная мания: калории.

Мы увидели, откуда взялась эта одержимость, и ее легко понять. В конце концов, большинство людей хотят быть здоровыми и хорошо себя чувствовать, а нас учат, что здоровье частично зависит от снабжения организма определенным количеством данных веществ. Поэтому, говорим ли мы о навязчивом подсчете калорий в диете «Весонаблюдатели» или абсурдном соотношении 40/40/30 в диете «Зона», мы верим, что чем точнее отслеживаешь поступление питательных веществ, тем лучше контролируешь результат — здоровье.

К сожалению, это неправда. Питание — не математическая формула, где 2 + 2 = 4. Пища не контролирует наше состояние — точнее, не до конца. Все дело в том, что наш организм с ней делает.

Изъян № 1. Мудрость нашего организма

Вы сидите? Если нет, то сядьте, потому что я объясню то, что практически никто не осознаёт: прямая связь между количеством потребляемых питательных веществ и их количеством, достигающим основного места действия в организме, практически отсутствует. Это называется биодоступностью. Если, например, я съем 100 мг витамина C, а затем еще 500 мг, это не значит, что из второй порции в ткани, где он действует, попадет в пять раз больше витамина.

Плохая новость? Для редукционистов — безусловно. Это значит, что мы никогда точно не узнаем, сколько надо съесть, потому что не можем предсказать, сколько будет использовано. Неизвестность — худший кошмар редукциониста!

На самом деле это очень хорошо. Мы не можем предсказать, сколько питательных веществ будет поглощено и использовано организмом, главным образом потому, что это зависит от его потребностей в данный момент времени. Разве это не чудесно? Выражаясь более научным языком, доля питательных веществ, которые перевариваются, абсорбируются и поставляются в различные ткани и клетки, зависит в основном от потребности организма в данном питательном веществе в данный момент. Она постоянно «ощущается» и контролируется разнообразными механизмами на пути от поглощения вещества до его использования. Организм безраздельно властвует над выбором питательных веществ, которые он использует или отбрасывает. Пути нутриентов часто многократно ветвятся, проходя через лабиринты реакций, и намного сложнее и непредсказуемее, чем предлагаемая редукционизмом линейная модель.

Доля поглощенного бета-каротина, который превращается в свой самый распространенный метаболит — ретинол (витамин A), может отличаться до 8 раз. Этот показатель снижается с ростом дозы бета-каротина, тем самым поддерживая абсолютное количество всасываемого вещества практически на одном уровне. Процент абсорбируемого кальция может отличаться в 2 раза. Чем больше потребление кальция, тем меньшая его доля попадает в кровь, обеспечивая достаточное, но не чрезмерное его содержание в организме. Биодоступность железа может варьировать в пределах от 3-кратного до 9-кратного. Это справедливо практически для всех питательных и сопутствующих веществ.

Взаимосвязь между потребляемым и используемым количеством практически всех питательных веществ нелинейна. Большинство специалистов об этом знают, но немногие способны оценить значение этой сложности. Получается, пищевые базы данных далеко не так полезны, как кажется, а большие дозы конкретных веществ в редукционистских пищевых добавках совсем не означают, что они будут использованы организмом. (На самом деле пищеварение так сложно и динамично, что сверхдозы одного вещества гарантируют только дисбаланс с другими, как я покажу ниже.)

Изъян № 2. Непостоянство состава продуктов

Мы не знаем, сколько данного вещества использует организм. Но это не все. Содержание питательных веществ в продуктах, которые мы едим, варьирует намного сильнее, чем мы можем себе представить. Посмотрите на исследования одного из витаминов-антиоксидантов — бета-каротина (или связанных с ним каротиноидов). Его содержание в разных образцах одного и того же продукта может различаться в 3–19 раз, а то и в 40 раз, как в персиках. Это правда. Вы можете держать в руках по персику, и в правой в 40 раз больше бета-каротина, чем в левой, в зависимости от сезона, состава почвы, условий хранения и обработки и даже расположения фрукта на дереве. И бета-каротин — далеко не единственный пример. «Относительно стабильное» содержание кальция в четырех видах отварной фасоли (черной, обыкновенной, турецкой и пинто) колеблется в 2,7 раза — от 46 до 126 мг в стакане.

Такие различия в содержании, всасывании и использовании организмом пищевых веществ взаимно усиливаются. Понять, о чем речь, поможет простое упражнение. Представьте, что количество бета-каротина в моркови варьирует примерно в 4 раза, а доля, всасываемая через стенку кишечника в кровоток, — в 2 раза. Это значит, что количество бета-каротина, которое теоретически поступает в кровоток из каждой конкретной моркови в данный день, может отличаться даже в 8 раз.

Колебания огромные и неопределенные, но независимо от значений вывод один: потребляя любой продукт в любой момент, нельзя точно сказать, сколько питательного вещества будет доступно организму и сколько он использует.

Изъян № 3. Сложность пищевых взаимодействий

Вообще-то неизвестных еще больше! Как ни странно, три упомянутых вещества могут влиять на активность друг друга. Кальций снижает биодоступность железа на 400%, а каротиноиды (например, бета-каротин) повышают его всасывание на 300%. Теоретически при сравнении диеты с высоким содержанием кальция и малым количеством каротиноидов с диетой, богатой каротиноидами и бедной кальцием, можно увидеть 800–1200%-ную разницу в абсорбции железа. Но даже если расхождение всего 100–200%, это все равно много. Изменение концентрации в тканях некоторых питательных веществ больше чем на 10–20% может оказаться губительным.

Взаимодействия между отдельными компонентами нашей пищи сильны, динамичны и имеют серьезные практические последствия. В замечательном обзоре, проведенном исследователями Карен Кубеной и Дэвидом Макмюрреем из Техасского университета A&M, обобщено действие многих питательных веществ на исключительно сложную иммунную систему6. К парам веществ с описанным влиянием друг на друга и элементы иммунной системы относятся: «витамин E — селен», «витамин E — витамин C», «витамин E — витамин A» и «витамин A — витамин D». Магний влияет на железо, марганец, витамин E, калий, кальций, фосфор и натрий, а через них — на активность сотен ферментов, которые их обрабатывают. Медь взаимодействует с железом, цинком, молибденом и селеном, влияя на иммунную систему. Пищевой белок по-разному воздействует на цинк, а витамин A и пищевые жиры меняют способность друг друга влиять на развитие экспериментально вызванного рака.

Сильно влиять друг на друга могут даже близкородственные химические вещества одного класса. Например, одни жирные кислоты модулируют влияние других на иммунную систему. Действие полиненасыщенных жиров (содержащихся в растительных маслах), например, на рак молочной железы значительно меняется в зависимости от содержания в диете общих и ненасыщенных жиров.

Тот факт, что магний, как говорилось выше, — важный фактор для более трехсот ферментов, выразительно свидетельствует о практически неограниченных возможностях взаимодействия нутриентов. Они влияют на ферменты, метаболизирующие лекарственные средства, иммунную систему и другие сложные системы, например гормональную, нервную и кислотно-щелочной баланс7.

Это только малая доля взаимодействий, происходящих в нашем организме ежесекундно. Очевидно, что вера в способность изучить действие отдельного питательного и лекарственного вещества без учета мощного влияния других химических факторов безрассудна. Все эти свидетельства призваны сделать нас исключительно осторожными к «ударным дозам» питательных веществ, изолированных из цельных продуктов. Наш организм эволюционировал, чтобы есть цельную пищу, и может справиться с комбинациями и взаимодействиями содержащихся в них элементов. Дайте организму 10 тыс. мг витамина C — и неизвестно, что из этого выйдет.

Бессмысленность редукционистской точности

Вы могли заметить, что даже при обсуждении различий в абсорбции нутриентов я придерживался редукционистского подхода. Я рассмотрел ее с точки зрения отдельных веществ, вариативности их количества в продукте и месте действия в организме. Одновременное потребление всего двух нутриентов обычно влияет на использование обоих. Различия становятся на несколько порядков сложнее и неопределеннее, когда в организм одновременно попадает очень много разных ингредиентов (то, что мы называем едой). Теперь речь не просто о трех разных веществах, влияющих друг на друга и системы организма, а о почти всех активных элементах цельной пищи. Мы не можем знать, сколько видов химических веществ съедено с одним укусом, блюдом, за обед или за день. Сотни тысяч? Миллионы? Пределов практически нет.

Если бы нам пришлось вычислять, что, сколько и в каких сочетаниях есть, а также риски недостаточности питания или заболевания, мы давно бы вымерли. К счастью, задача гораздо проще. Если питаться правильными продуктами в количествах, которые нас насыщают, но не перегружают, наш организм естественным образом метаболизирует их компоненты и даст нам именно то, что нужно в данный момент.

Организм тщательно отслеживает концентрацию питательных веществ и их метаболитов, поэтому их количество в конкретном органе часто остается в очень узких рамках. Иногда это необходимо: позволит избежать серьезных проблем со здоровьем и даже смерти. Короче говоря, организм способен сделать непостоянную концентрацию питательных веществ в продуктах намного более стабильной в тканях, отделяя необходимое от избыточного.

Чтобы лучше понять суть, изучите «референсные» показатели нескольких питательных веществ в плазме крови (табл. 5.1). Некоторые из них вы видели в лабораторных анализах на приеме у врача. Эти диапазоны обычно считают «нормальными» для здорового человека. Они очень узкие: верхние и нижние различаются всего в 1,1–2,3 раза по сравнению с 5–10-кратным (и большим) различием содержания питательных веществ в продуктах.

Таблица 5.1

Референсные значения при анализах крови8

Питательное вещество

Референсный диапазон

Кратность различий

Натрий

135–145 ммоль/л

1,07

Калий

3,5–5 ммоль/л

1,43

Хлор

340–370 мг/дл

1,09

Кальций (ионы)

2,1-2,55 ммоль/л

1,23

Железо

9–21 мкмоль/л

2,33

Медь

11–24 мкмоль/л

2,18

Магний

0,6–0,8 ммоль/л

1,33

Общий белок

60–78 г/л

1,30

Витамин A (ретинол)

30–65 мкг/дл

2,17

Организм постоянно отслеживает и сокращает концентрацию получаемых с пищей питательных веществ, чтобы свести вариабельность к более узкому, «здоровому» диапазону.

Поймайте мяч

Я знаю: это кажется сложным. Но для того организм и создан. Это ему удается лучше всего, и ему совершенно не нужно вмешательство сознания.

Подумайте о простом действии — поймать брошенный мяч. Представляете ли вы, насколько это сложный процесс? Во-первых, глаза должны заметить объект, определить, что это мяч, а не, скажем, осиный рой или банка вазелина. Затем глаза (работает бинокулярное зрение) начинают посылать огромный поток информации в мозг, чтобы определить размер и скорость предмета. Даже если вы прогуливали геометрию, мозг рассчитает траекторию. Даже если вы провалили экзамен по физике, он определит массу, ускорение и силу мяча. Обрабатывая всю эту информацию, мозг свяжется с нервами, которые контролируют руки, стабилизирующие мышцы спины, шеи и ног, а также парасимпатическую нервную систему, которая пригодится, чтобы успокоить вас после того, как вы увидели летящий предмет.

Организм имеет удивительную способность жонглировать этими входящими сигналами и дирижировать своевременной реакцией: рука вытягивается, кисть смыкается вокруг мяча. Но представьте, что кто-то сказал: чтобы научиться ловить мячик, нужно заняться математическими и физическими расчетами — измерять и рассчитывать скорость, дугу параболы, скорость ветра и все остальное. Школьная программа по «ловле мячей» будет разрастаться, педагоги станут спорить об эффективности подходов. Примерно 1% учеников добьется отличных результатов, но большинство будет бродить под летящими мячами и не сможет их поймать, даже если от этого зависит их жизнь. Сталкиваясь с культурами, в которых ловить мячи может каждый, мы, ученые, будем исследовать их психологию, материал, из которого сделаны мячи, и их политику в области ловли предметов в надежде открыть тайну и найти «лекарство» от пропущенных мячей.

Сосредоточиваясь на отдельных веществах, их особенностях, содержании в пище, концентрации в тканях и биологических механизмах, мы как будто занимаемся математикой и физикой ловли мячей. Не к тому вела эволюция, и это усложняет правильное питание. В организме есть множество механизмов, стратегически распределенных по всей системе пищеварения, абсорбции, транспорта и метаболических путей, чтобы обеспечивать полезную для здоровья концентрацию в тканях без необходимости сверяться с базами данных. Но пока мы позволяем редукционистам управлять исследованиями и восприятием питания, хорошее здоровье останется недостижимым.

Глава 6

Редукционизм и научные исследования

Не бойтесь сделать большой шаг.

Нельзя пересечь расселину в два прыжка.

Дэвид Ллойд Джордж

До сих пор мы выясняли, насколько укоренилась редукционистская парадигма в представлениях о питании ученых и чиновников и как это влияет на мнение простых людей. Мы увидели, что питание холистично и его нельзя полностью понять в рамках редукционизма. Оно слишком сложно, в нем очень много переменных.

В этой главе я расскажу о различиях между редукционистскими и холистическими научными исследованиями и покажу причины, по которым редукционистское мировоззрение обречено на провал, когда пытается объяснить и управлять удивительно сложной системой — организмом человека.

Редукционистская наука и причинные связи

Как я показал в главе 5, редукционизм видит в науке что-то вроде математического уравнения. Он ищет причины и следствия, и чем конкретнее исследование, тем лучше. Святой Грааль — способность уверенно заявить, что А вызывает Б. Когда вы это знаете и хотите устранить Б (например, рак печени), вы думаете, как уменьшить или убрать A (скажем, афлатоксин) или блокировать процесс, в рамках которого А ведет к Б.

От редукционистской науки неотделимо допущение, что мир устроен линейно и в нем действуют простые причинно-следственные связи. Что я имею в виду? Есть три классических условия, доказывающие, что А вызывает Б.

А всегда предшествует Б.

Б всегда следует за А.

Отсутствует В, также способное вызывать Б.

Особо не разгуляешься. Здесь нет места запутанным, непредсказуемым и сложным взаимодействиям. Нет места для систем, слишком сложных, чтобы нарисовать их схему. Или для неопределенности любого рода. Именно поэтому табачные кампании могут найти ученых, которые утверждают, что курение не вызывает рак легких: не у всех курильщиков он возникает, и не все случаи рака легких связаны с курением. В редукционизме утверждение «Курение не вызывает рак легких» правдиво. Но оно ложно, когда речь заходит о практических вопросах влияния табака на рак легких и убеждении людей бросить курить.

Для редукционистов, признающих только простые причинные связи, Вселенная, по сути, механистична, как часы. Некоторые философы утверждают, что никакой свободы воли не существует, поскольку все наши мысли, эмоции и порывы — результат химических реакций, которые вызваны другими химическими реакциями, и так вплоть до Большого взрыва.

Как мудро заметил психолог Абрахам Маслоу: «Когда в руках молоток, все вокруг кажется гвоздями». Если для вас мир может функционировать только благодаря простым причинным связям, вы начинаете видеть их везде, даже там, где их нет. Мы видим мир не таким, какой он есть, а каким ожидаем его увидеть. Редукционистские исследования закономерно дают редукционистские результаты — иначе и быть не может. Верно и обратное: поскольку в редукционистских исследованиях делается допущение, что мир основан на простых причинно-следственных связях, если мы не находим таковых в предмете исследования, то смотрим не туда или нам не хватает наблюдательной и вычислительной мощности, чтобы их выявить. Единственный способ увидеть сложность природы — смотреть внимательнее.

Но искать сложность намного труднее. Однофакторные причинные связи куда легче измерить, и они дают более удовлетворительные (если не дали эффекта) ответы: как бы ни были сложны система и ее взаимодействия в реальности, хороший ученый-редукционист считает: чтобы вызвать нужный результат, необходим и достаточен всего один фактор из сотен, тысяч и миллионов, присутствующих в системе. Курильщики чаще болеют раком? Это ничего не доказывает, пока вы не выделите из сигареты одно химическое вещество, которое всегда вызывает рак. Редукционистское исследование целенаправленно игнорирует такие сложности, как искажение эффекта курения образом жизни и питанием, как и частоту курения и уровень зависимости.

Тем не менее в чем-то поиск сложности легче, чем погоня за жесткими схемами. Редукционизм может исходить из простых моделей причинной зависимости, но они часто дают неожиданные и необъяснимые результаты, намекая на сложные и туманные (а иногда неправдоподобные) решения. Холизм же предполагает сложные причинные модели, но в известном смысле указывает на простые решения. (Что может быть проще, чем «Решите большинство проблем со здоровьем, перей­дя на цельную растительную пищу»!)

Иными словами, редукционистские исследования часто требуют изобретения новых сложностей — в особенности методов исследования и объяснений. Есть такой анекдот:

Миллиардер захотел разработать метод определения победителя на скачках. Позвал биолога, математика и физика, дал задание, миллион долларов и год времени. Через год приходит биолог: «Зная точную родословную лошади, успехи ее родителей, чем ее кормили, как лечили, я могу точно назвать максимальную скорость». Математик: «Имея точные статистические данные предыдущих забегов лошадей, я могу назвать приблизительные результаты…» Физик: «Мне нужно еще 10 лет, 50 млн долларов, несколько помощников и лаборатория, но я уже построил модель движения абсолютно упругого сферического коня в вакууме!»

Физики, как и редукционисты, занимающиеся питанием, потратили уйму времени на поиск решения, которое в реальном мире не работает. (Неудивительно, что одно из определений слова «академический» — «чисто теоретический»!) Поскольку я вырос на настоящей ферме, в моих исследованиях сферические животные не появлялись. Войдя в научное сообщество, я старался сделать сложность биохимии целью и центральной проблемой своей работы. Что вообще можно получить, пытаясь упростить ее и загнать в теоретические рамки?

Я не хочу, чтобы вы подумали, будто наука погрязла в редукционизме. Например, физика элементарных частиц в конце концов забросила редукционистскую мечту найти «монаду» — элементарную частицу, которую нельзя разделить на меньшие части.

Сначала физики открыли атомы. Затем — большие субатомные частицы, про которые рассказывают в школе: протоны, электроны и нейтроны. А потом начались странности. Нейтроны, кварки, мюоны, бозоны, фермионы были окрещены элементарными частицами, пока тео­рия или наблюдения не приводили к следующему делению. Чем ближе физики смотрели, тем больше твердое вещество напоминало практически пустое пространство с мельчайшей частицей внутри. Сейчас самые передовые ученые рассматривают материю просто как плотную форму энергии. И не случайно недавно открытый бозон Хиггса был прозван «божественной частицей». Специалисты понимают, что холизм создает фундамент даже для редукционистских принципов наблюдений. Многие физики с изумлением указывают на подобие между атомами, клетками, планетами, галактиками и Вселенной в целом (сходство между различными уровнями — один из характерных признаков холистической системы). Появление в XX веке квантовой теории нанесло сокрушительный удар по редукционистской парадигме, введя неопределенность туда, где должны были присутствовать только механистические события. Физик-теоретик и популярный писатель Стивен Хокинг пишет о субатомных частицах, способных путешествовать назад во времени. Этот эффект, известный как ретропричинность, указывает на то, что некоторые последствия предваряют свои причины. Гвоздь в крышку гроба причинно-следственного редукционизма!

Тем не менее многие ученые — особенно ответственные за исследование здоровья и болезней человека (например, диетологи) — по-прежнему живут в ньютоновской вселенной XVII века.

Откуда мы знаем то, что знаем?

Ученые могут спорить с философами круглые сутки, но на деле важны доказательства. Возникает вопрос: что считать таковыми? Какие методы поиска ответов признаются в науке плохими и хорошими? Какие пригодны для данного объекта исследования?

Ответы на эти вопросы субъективны, хотя наука и считается объективным, свободным от оценочных суждений поиском. Они зависят от самих вопросов и от способов поиска. Эпидемиологи — ученые, исследующие причины болезней и здоровья человека — называют способ рассмотрения научных вопросов более формально: «дизайн исследования». Рассмотрим несколько вариантов дизайна, от холистичных до редукционистских. Подробно изучим различия между ними, типы доказательств и их влияние на выводы из исследования, особенно касающиеся питания.

Источник холистических доказательств № 1: обсервационные (экологические) исследования

Один из способов определения оптимальной диеты человека, очевидный для всех, кроме фундаменталистски настроенных редукционистов, — изучение и сравнение существующих популяций: чем они питаются и насколько здоровы. Эпидемиологи называют такой вид исследований обсервационным. Его основные черты — наблюдение без вмешательства и внимание к определенным наблюдаемым фактам, например потреблению пищи и заболеваемости, без попыток доказать причинно-следственные связи. Исследователи просто фиксируют характеристики диеты и заболеваний в популяции. Если обсервационное исследование рассматривает диету и заболеваемость в группе людей примерно в одно и то же время — как фотография, — его называют кросс-секционным. Размер исследуемой популяции может варьировать от небольшого сообщества из нескольких сотен человек до большой страны.

Результатом становятся скорее взаимосвязи между переменными, чем доказательства, что конкретная причина дает конкретное следствие. Взаимосвязи часто представляют в виде корреляций, биологическую значимость которых определяют статистически, поэтому такие исследования также называют корреляционными.

Поскольку собранные данные — средние по популяции, сделать заключение о причинной зависимости для конкретного человека невозможно. Если мы попытаемся предположить в этих данных причинную связь, мы совершим так называемую ошибку уровня обобщения. Сравнивая популяции, мы можем заметить, что, например, большое число машин — признак богатого общества — коррелирует с высоким риском рака молочной железы, также характерного для богатых. Но делать вывод, что машины вызывают рак молочной железы, или призывать женщин, боящихся рака, избегать автомобилей, не имеет смысла. Результат указывает только на то, что у двух показателей есть что-то общее, требующее дальнейшего изучения. Сила обсервационного исследования — в его способности выявлять значимые закономерности и сравнивать успешность разных стилей жизни. Однако, поскольку здесь нельзя сделать выводы о конкретных причинах, редукционисты считают такой дизайн исследования слабым.

Наш проект, положенный в основу «Китайского исследования», имел такой кросс-секционный дизайн. Используя разные виды доказательств, мы открыли, что чем больше потребление продуктов животного происхождения в регионе, тем выше распространенность многих заболеваний, включая рак различных типов, болезни сердца, инсульты и многие другие, а также смертность от них. Тем не менее критики трубили, что на основе этой корреляции мы не можем утверждать, будто растительная диета как-то влияет на снижение заболеваемости, поскольку дизайн исследования был недостаточно убедительным для таких выводов.

Они одновременно правы и неправы. Согласно редукционистской философии, формально все верно. Мы не можем утверждать, что ЦРД снижает риск заболеваний, — как и говорить, что вождение машины вызывает рак груди. Однако при внимательном рассмотрении аналогия рушится. Мы не сравнивали одну причину (вождение) с одним результатом (рак). Нашим объектом было питание — сложный набор процессов и взаимодействий. На самом деле его невозможно свести к одному фактору. Я построил китайский проект на гипотезе, что влия­ние питания на здоровье холистично, а не подчиняется законам редукционизма. Меня не интересовало, предотвращает ли повышение потребления витамина C простуду. Я хотел определить с холистической точки зрения, дает ли конкретная диета явно лучшие результаты для здоровья по сравнению с другими. Единственный возможный метод — изучать людей в экосистеме, сельское население Китая, питание которого явно отличается от западного. Это позволило учесть много разных факторов образа жизни и состояния здоровья, чтобы увидеть общую картину: слона, а не хобот или бивень. Мы cмогли проверить гипотезу, что определенные группы продуктов связаны с конкретными заболеваниями, имеющими схожее биохимическое основание. Это позволило нам оценить, есть ли в этих группах продуктов нечто такое, что могло бы вызывать, предотвращать и лечить эти болезни.

Холистический источник доказательств № 2: биомимикрия

Другой холистический путь поиска «идеальной» диеты — посмотреть, что едят наши ближайшие родственники: гориллы и шимпанзе. Эта стратегия называется биомимикрией. Диета приматов, в отличие от нашей, мало изменилась за последние десятки тысяч лет, поэтому можно ожидать, что они инстинктивно будут выбирать пищу, полезную для здоровья. Кроме того, на диких приматов не повлияла реклама фастфуда и правительственная пропаганда, поэтому их инстинктам, наверное, стоит доверять больше, чем нашим. К тому же на воле им не выписывают лекарств и не делают операции, чтобы исправить действие плохой диеты, поэтому, если какая-то группа приматов начнет есть нездоровую пищу, у нее возникнут болезни и ожирение, она не сможет выжить и размножаться.

Джанин Бенюс, автор книги о биомимикрии[8], считает, что первые люди использовали стратегию холистического исследования, чтобы определить, какие растения безопасны, а какие ядовиты. В конце концов, с эволюционной точки зрения лучше, чтобы дегустатором был кто-то другой.

Не будучи решающими, наблюдения за животными могут стать отправной точкой диетологических изысканий. Например, тот факт, что у шимпанзе и горилл, несмотря на ЦРД, сильные кости и мышцы, опровергает убеждение, будто людям нужно много животного белка для роста и поддержания мышечной массы. И, конечно, можно вспомнить крупнейших наземных животных — слонов и бегемотов, — которые на растительной диете не стали хилыми и тощими.

В общем, биомимикрия переосмысливает вопрос питания так, что люди становятся лишь одним видом из многих. Наблюдение за похожими на нас животными позволяет получить информацию, которую не даст изучение пищевых привычек людей, чья жизнь подчинена технологиям — от сельского хозяйства до заморозки и обработки. Оно также определяет области, в которых мы можем ошибаться, и указывает направление дальнейших редукционистских изысканий.

Холистический источник доказательств № 3: эволюционная биология

Третий холистический подход — эволюционная биология. Мы рассмат­риваем нашу физиологию и определяем, что наш организм научился есть и обрабатывать в ходе эволюции. Например, можно посмотреть на длину пищеварительного тракта, число и форму зубов, прямохождение, форму челюстей, pH желудочного сока и многие другие характеристики и сравнить их с аналогами у хищников и травоядных (кстати, мы почти по всем параметрам схожи с травоядными и имеем мало общего с хищниками). После этого мы можем выяснить, какие виды пищи наш организм «приспособлен» есть.

Редукционистские доказательства первого типа: проспективные эксперименты

Самая уважаемая (и потому лучше и чаще всего финансируемая) форма редукционистского дизайна — проспективные исследования. Инфор­мация записывается в реальном времени, а эффекты наблюдают по мере их появления. В простейшей форме одной группе испытуемых (экспериментальной) проводят вмешательство, а другой (контрольной) — нет. Золотой стандарт редукционистских исследований — одна из разновидностей проспективного эксперимента, известная как рандомизированное контролируемое исследование (РКИ). Слово «рандомизированное» (случайное) описывает способ распределения участников между экспериментальной и контрольной группами. В теории оно исключает влияние потенциальных искажающих факторов, равномерно размывая их по всем группам. Если вас беспокоит влияние курения на результаты вмешательства, статистика равномерно распределит этот фактор, теоретически сделав его незначимым.

РКИ часто проводят «двойным слепым» методом: ни исследователи, ни участники не знают, кому именно назначено вмешательство. В частности, при изучении лекарств никто не будет знать, принимает пациент таблетку с настоящим лекарственным веществом или такое же с виду плацебо. Пациенту не станет лучше от мысли, что он получил волшебную пилюлю1, а исследователи не будут подсознательно иначе лечить людей, принимающих плацебо.

Проспективные эксперименты считают «чистыми» с точки зрения дизайна, потому что вылавливают подробности с большей точностью и минимизируют «шумы» реального мира. Это позволяет исследователям изолировать интересующий их эффект вмешательства. Выделение одной переменной (X) по идее дает ученому право говорить, что «X вызывает Y», где Y — результат, возникающий после X и не возникающий в его отсутствие.

Это как нельзя кстати, если нужно выделить один фактор: например, при оценке безопасности и эффективности нового препарата. Но даже в фармацевтических исследованиях неизбежен компромисс между уверенностью в контролируемых условиях и применимостью результата в запутанном мире. Чем лучше мы контролируем эксперимент, тем меньше он напоминает реальность.

Несмотря на неплохие результаты при исследовании отдельных химических веществ, эти методы не могут дать прогностических моделей сложных взаимодействий с многочисленными причинами и эффектами — иными словами, для жизни.

Редукционистские доказательства второго типа: исследования «случай-контроль»

Другой широко распространенный дизайн, который ученые-редукцио­нисты считают менее специфичным, чем проспективный, —исследования «случай-контроль». Людей с определенным заболеванием сравнивают с лицами того же пола, возраста и т. д., у которых этого заболевания нет. Исследователи смотрят на различия в образе жизни между группами, которые могут привести к разным результатам. С помощью таких экспериментов обычно тестируют воздействия, которые невозможно или неэтично применять на людях: диету, образ жизни, влияние токсинов. Вы не заставите половину участников питаться только в McDonald’s, но можно найти людей, которые выбрали такую диету сами, и посмотреть, что с ними произойдет.

Исследования «случай-контроль» могут быть ретроспективными, когда для объяснения исхода болезни используют предыдущие наблюдения, или проспективными, если берутся группы с разным образом жизни и диетой и выясняется, что с ними произойдет. В обоих случаях участников распределяют по группам не рандомизированно, поэтому невозможно доказать, что различия вызвали конкретные исходы. Проб­лема в том, что люди, схожие по одной характеристике, вероятно, будут похожи по многим другим. Невозможно сказать, какая из них была фактором, ведущим к разным результатам. Чтобы устранить проблему, обычно прибегают к ряду статистических процедур, именуемых «поправкой на вмешивающийся фактор».

Она работает следующим образом. Представьте, что вы изучаете связь между раком молочной железы и потреблением жиров. Вы берете две группы: в первую входят женщины с раком молочной железы (случаи), а во вторую — без этого диагноза (контроль). Вы задаете им вопросы о пищевом поведении и пытаетесь понять, потребляют ли «случаи» больше жиров. Но есть проблема: у женщин с раком выше содержание жира в организме. Где здесь причина и где следствие? Пищевые жиры вызвали рак молочной железы? Или женщины, склонные к ожирению, более подвержены раку?

Чем больше вопросов мы себе задаем и чем больше взаимодействий допускаем, тем глубже тонем в кошмаре редукциониста. Может быть, женщины с раком и более высоким содержанием жира в организме генетически предрасположены и к тому и к другому, поэтому можно не выяснять, сколько жиров потребляют женщины без этой склонности? А может, есть еще какая-то переменная, о которой мы пока не знаем? Может, полные женщины меньше тренируются и чаще впадают в депрессию из-за предрассудков, и именно это ведет к раку молочной железы? Или они полнее из-за депрессии, заставляющей их больше есть и меньше заниматься спортом? Или меньше знают о здоровом питании, что иногда коррелирует с худшим медицинским обслуживанием, а оно соотносится с меньшим доходом, который связан с меньшей доступностью свежих овощей и фруктов, а та — с проживанием в районах с повышенной концентрацией средовых токсинов?

Чтобы устранить эту неопределенность, редукционисты используют статистику. Она помогает удержать все потенциальные источники засорения данных на постоянном уровне и устранять их последствия. Иными словами, они сравнивают маленькие сегменты каждой группы, в которых вмешивающиеся факторы практически одинаковы. Конечно, это возможно только для тех факторов, которые мы представляем и способны измерить. Поскольку ни у кого нет неограниченного времени и денег, всегда будут оставаться факторы, которые не нейтрализуются с помощью статистики.

Но чем больше ученые пытаются распутать сеть воздействий вокруг конкретного исхода для здоровья, тем менее полезными становятся «результаты». Допустим, в случае рака молочной железы мы сделали «поправку» на все влияния, которые можем представить, и остались две переменные: уровень ожирения и заболеваемость раком. Если мы заявим, что женщины с ожирением чаще болеют раком, рецепт профилактики сведется к совету «сбросить вес». Все, что поможет избавиться от пары килограммов, станет формой профилактики рака. Питательные коктейли вместо еды, низкоуглеводные диеты, голодания с лимонным соком и всевозможные безумства будут привязаны к пользе для здоровья независимо от механизма связи между ожирением и болезнью. А теперь представьте, что оба состояния — зависимые переменные диеты с высоким содержанием переработанных животных продуктов и недостатком цельной растительной пищи. Для многих женщин, сидящих на диете, чтобы «любой ценой похудеть и избежать рака», это обернется выбором продуктов, которые повысят, а не снизят риск.

Это как заметить, что счастливые люди чаще улыбаются, и изобрести прибор, растягивающий губы для лечения депрессии. Безусловно, улыбка — признак радости. Несомненно, между ними существует корреляция. Конечно, если больше улыбаться, можно повлиять на настроение. Но выделение одной улыбки и игнорирование всех остальных факторов счастья и депрессии нелепо.

Думаете, эти примеры невероятны? В главе 11, посвященной шумихе вокруг пищевых добавок, мы поговорим о последствиях узости редукционистских исследований для реального мира. Там статистические поправки используются, чтобы доказать, что определенные питательные вещества — не только маркёры хорошего здоровья, но и его причина. При этом игнорируется множество факторов, окружающих эти нутриенты, как будто они не важны или вообще не существуют. Результат таких просчетов — не просто пустая трата денег покупателями витаминов; иногда это ведет к серьезным заболеваниям и даже преждевременной смерти.

Холистические исследования против редукционистских

Причина, по которой холистические методы познания реальности критикуются многими современными учеными, в том, что они расплывчаты и неточны. Они не сужают причины и следствия до точки, где все безуп­речно, повторяемо и измеримо до пятой цифры после запятой, как при редукционистском дизайне исследования.

Редукционизм стремится устранить все вмешивающиеся факторы: переменные, способные повлиять на исход в дополнение к основному рассматриваемому веществу. Но поскольку питание — феномен холистический, бессмысленно изучать его как переменную, ведь при этом не учитываются сложные взаимодействия.

Вся суть холизма в том, что нельзя исследовать один фактор, отбросив все остальные. Содержание жира в организме и пище, уровень образования, депрессии, социально-экономическое положение и многие другие характеристики явно связаны друг с другом и с системами нашего организма. Хотя кажется, что статистические поправки способны упаковать реальность в красивые коробочки, они не объясняют ее основ.

Нельзя исследовать холистические феномены исключительно редукционистски, не пожертвовав при этом реальностью и истиной.

Новая парадигма диетологических исследований

В своих лучших проявлениях эпидемиология делает выводы на основе многих дизайнов исследований, совсем как группа слепых ученых, которые объединили результаты, чтобы лучше понять слона. К сожалению, воспринимаются всерьез и щедро финансируются только редукционистские работы: до такой степени, что вся эпидемиология склонилась в сторону редукционистской философии. Вы дадите электронный мик­роскоп человеку для исследования слона, чтобы потом расспрашивать его о психологии и социальных структурах этих животных? Единственный способ найти холистические ответы — смотреть и видеть. Критики-редукционисты возражают: «Китайское исследование» было слабым экспериментом, потому что мы не показали независимые эффекты отдельных факторов, и результаты неприменимы на индивидуальном уровне. Надеюсь, вы уже поняли, что такая критика неуместна. Нам не надо знать действие отдельных факторов на здоровье, потому что природа устроена иначе. Питание действует на здоровье холистически; сосредоточиваясь на отдельных веществах, мы это упускаем и неправильно интерпретируем. В Китае оценка проводилась с холистической точки зрения по самому замыслу проекта и уникальной постановке эксперимента и были доказаны причинно-следственные связи между диетой и заболеваниями благодаря важным связям между потреблением пищи, клиническими маркёрами риска заболеваний и последствиями для здоровья.

При изучении лекарств больше всего информации дают РКИ. Но в диетологии самый информативный дизайн исследования — холистический. Он позволяет увидеть, как повлиять на невообразимо сложные взаимодействия и стать здоровым благодаря простому выбору пищи.

Глава 7

Редукционистская биология

Объяснения всегда идут в одном направлении, от сложного к простому. В частности, к менее человеческому.

Т. Х. Джонс

Выше я показал, как редукционистский дизайн ведет к редукционистским ответам, исключая истинную биологическую сложность. Теперь пора залезть в дебри умопомрачительной сложности питания.

Я хочу познакомить вас со старым другом: ферментом, име­нуемым оксидазой со смешанной функцией (ОСФ), окончательно превратившим меня из редукциониста в холиста1. Поделиться знаниями о функциях ферментов, этих удивительно сложных и мощных молекул, отвечающих за каждую химическую реакцию в нашем организме, — лучшее, что я смог придумать, чтобы показать сложность воздействия питания на здоровье и ее несоответствие редукционистской модели научного поиска.

История ОСФ: арахис и рак печени

Как уже упоминалось во введении, моим первым официальным исследовательским проектом в качестве профессора Виргинского политехнического института в далеком 1965 году был анализ образцов арахиса на предмет наличия афлатоксина2. Незадолго до этого было доказано, что афлатоксин, вырабатываемый плесневыми грибами Aspergillus flavus3, — очень сильный канцероген для лабораторных крыс4. В списке самых популярных в США продуктов арахис занимает почетное место рядом с молоком и стейками. Он помогает занять руки на светских приемах и входит в состав любимых школьниками бутербродов с арахисовым маслом и вареньем. Поэтому сама мысль, что в нем может быть плесневый канцероген, вселяла ужас. Беспокоило и то, что для развития рака печени у крыс достаточно незначительного количества афлатоксина, что делало его самым мощным химическим канцерогеном за всю историю, по крайней мере для крыc5.

Задачей моей команды было узнать что-то о климатических и географических условиях, благоприятных для роста Aspergillus flavus. Мы изучили несколько съедобных растений, но сосредоточились именно на арахисе.

Вскоре декан Чарли Энджел, пригласивший меня в Виргинский институт, предложил поучаствовать в разработке национальной программы детского питания на Филиппинах совместно с манильским Департаментом здравоохранения. Проект финансировался USAID[9]. Одной из наших главных целей было найти сравнительно недорогой источник белка для детей, который можно выращивать в местных условиях. Очевидным ответом, по крайней мере для нас, стал арахис. Он богат белком, его любят дети, и он растет как на дрожжах в самом разном климате. Была только одна проблема: афлатоксин.

Перед тем как начать выращивать арахис и восполнить недос­таток белка, надо было понять и решить проблему потенциального заражения. Поскольку раньше я занимался этим веществом, задача была поручена мне. Создав и оснастив аналитическую лабораторию в Маниле, мы с филиппинскими коллегами начали исследовать главный источник пищевого афлатоксина. Это арахис или что-то другое? Действительно ли люди, которые едят зараженные продукты, чаще болеют раком печени? Если да, можно ли убрать афлатоксин или нейтрализовать его действие, чтобы сделать арахис источником белка для бедняков?

Мы начали искать на рынке продукты с арахисом. Лущеные орехи — самая дорогая разновидность, которую могли позволить себе только состоятельные люди (образцы мы получили на приеме в американском посольстве!), — практически не содержали афлатоксина. А дешевое арахисовое масло, которое ели в городах вроде Манилы, было сильно загрязнено. Все 29 проб, которые мы собрали, содержали в среднем 500 частиц афлатоксина на миллиард (част/млрд)6, а иногда и 8600 част/млрд7. Эти результаты настораживали, поэтому FDA предложила установить верхнюю границу «безопасного» уровня 30 част/млрд (позже ее снизили, потому что даже такие концентрации вызывают серьезные отравления и рак у крыс, радужной форели и молодых утят)8.

Чтобы узнать причины огромной разницы в уровне афлатоксина в цельных орешках из посольства и арахисовом масле, я вместе с эмиссаром FDA на Филиппинах посетил маслодельный завод. Ответ был виден невооруженным глазом. Орехи в скорлупе попадали на конвейер, который проходил вдоль ряда рабочих, а затем в измельчитель и большой варочный котел. Рабочие отбирали лучшие орехи, а остальное шло в масло. Хорошие, красивые ядра оказывались в пакетах, плохие — в бочке с маслом. Под «плохими» я подразумеваю ядра неправильного цвета, часто сморщенные, то есть, скорее всего, пораженные грибком. Они, как мы потом выяснили, содержали до 2 млн частиц афлатоксина на миллиард; даже одно зараженное грибком ядрышко могло испортить всю партию масла и поднять уровень афлатоксина выше нормы9.

Благодаря дополнительному финансированию национальных институтов здравоохранения я провел быстрый поиск возможных потребителей афлатоксина и выяснил, что, как и в США, больше всего арахисового масла едят дети. Поскольку я предполагал, что практически все масло заражено, мы с сотрудниками посещали дома и спрашивали людей, едят ли они арахисовое масло, и если да, можно ли выкупить вскрытую баночку для анализа на афлатоксин. Мы просили матерей оценить, когда и сколько масла было съедено за предыдущие сутки и двое суток, и на основе этого оценивали фактическое потребление афлатоксина, а также собирали образцы мочи у всех членов семьи, чтобы в ходе дальнейших исследований измерить содержание продуктов распада афлатоксина в моче в качестве надежного маркера его потребления10.

Я получил оценки потребления и выведения афлатоксина и смог показать, что его метаболиты появляются только в образцах мочи лиц, потребляющих зараженное арахисовое масло11. Мы выяснили, что люди, потребляющие продукты с афлатоксином, выделяли с мочой метаболиты с доказанным канцерогенным12 действием в исследованиях на животных13.

ОСФ, афлатоксин и рак

В течение всего периода исследований я, как и другие ученые, считал, что афлатоксин может быть мощным канцерогеном не только для животных, но и для человека. Но я понимал и то, что пока это не доказано — по крайней мере, в независимых исследованиях. В то время мы знали, например, что мыши, в отличие от крыс, не подвержены его влиянию14, а если эти близкородственные виды реагируют по-разному, возникает мысль, что люди тоже могут быть к нему устойчивы. Надо было еще многое узнать о связи афлатоксина с раком: важен ли он для человека, и если да, каков причинный механизм?15

Изучая эти вопросы, я начал с допущения, что в процессе участвует фермент ОСФ, так как свидетельства его связи с афлатоксином и раком были опубликованы группой британских исследователей16. Они показали, что ОСФ отвечает за превращение афлатоксина не в один, а в несколько менее канцерогенных продуктов, выделяющихся с молоком и мочой. Чем эффективнее фермент (чем выше его «активность»), тем больше обезвреживается афлатоксина; повышение активности ОСФ может снизить риск рака печени.

Примерно тогда же исследователи выяснили, что активность ОСФ можно модифицировать — ускорять, замедлять, изменять — с помощью определенных факторов, например лекарств17. В нашей лаборатории мы открыли, что повышение содержания белка в пище усиливает активность ОСФ18. Наверное, белок можно использовать для повышения активности ОСФ и быстрой остановки рака.

Затем я наткнулся на вышедшую в 1968 году индийскую работу, которую упоминал в главе 3. В ней было показано противоположное: высокое содержание белка в пище усиливает вызванное афлатоксином развитие опухоли19. Но это невозможно! Всеми любимые белки вызывают рак? А ведь они использовали казеин — основной белок коровьего молока, самого полезного напитка в мире. Мне надо было узнать об этих результатах подробнее и либо воспроизвести их, либо забыть.

Одновременно я открыл не менее тревожный факт: рак печени на Филиппинах намного чаще возникал не у детей, потреблявших больше афлатоксина, а у ребят из богатых семей, которые ели больше белка вообще и «качественного» животного в частности. Индийское исследование связи белка с опухолями и связь животного белка с раком на Филиппинах заставило мой мир пошатнуться. Больше белка предотвращает или вызывает рак?

Возможным ключом к решению этой загадки был ОСФ — удивительный фермент, который оказался замешан и в инициации рака печени афлатоксином, и в его выведении из организма. Что происходит? Пищевой белок ускоряет преобразование афлатоксина ОСФ в нетоксичные водорастворимые производные? Или он активирует афлатоксин, создавая страшные канцерогенные метаболиты? Или и то и другое? Мы чувствовали, что приблизились не просто к способу нейтрализации или стимулирования спровоцированного афлатоксином рака печени, и строили теории, что ОСФ может быть ключевым фактором вызова и остановки рака не только в печени, но и, возможно, в других тканях.

Это парадоксальное действие белка намекало на причину, которую мы впоследствии нашли: ОСФ реагирует на обычную пищу. Некоторые виды питания превращают его в высокоэффективную противораковую машину, а другие заставляют вырабатывать канцерогенные побочные продукты.

Чтобы понять, как такое возможно, надо было изучить питание и его влияние на ферменты на общем уровне. Мы не только решили парадокс ОФА-афлатоксин, но и увидели, что диетологи-редукционисты не способны разобраться с этим вопросом и поэтому упускают самый мощный рычаг для борьбы с раком.

Биохимическая основа питания

Изучая биологию в школе, вы, наверное, некоторое время заучивали фрагменты схемы аэробного дыхания — цикл Кребса. Если вы не заснули сразу, она должна была оставить у вас впечатление, что питание — линейный процесс. На входе мы имеем углеводы, жиры и белки, а клетки тела предсказуемо извлекают из них энергию, вырабатывают полезные метаболиты и выделяют углекислый газ и воду. Стрелки кажутся непререкаемыми, как если бы этапы процесса происходили всегда одинаково. Хотя эта модель полезна для понимания основ, она слабо соответствует реальности. Питание — намного более сложный комплекс, чем может показаться при изу­чении статической диаграммы.

Попав в триллионы клеток нашего организма, питательные вещества, как правило, не следуют по одному предсказуемому пути. В большинстве случаев их дороги ветвятся, прямо или косвенно, на множество путей продуктов (метаболитов), каждый из которых может ветвиться дальше. Более того, они могут вести к различным действиям и функциям, например к мобилизации энергии и восстановлению поврежденных клеток. Доминирующий путь во многом определяет, здоровы мы или нет. Однако понимание метаболизма — не только отслеживание большого количества независимых путей, по которым проходит вещество. Когда они ветвятся, их комбинации выглядят бесконечными.

Карты этих лабиринтов метаболизма украшают стены многих исследовательских лабораторий. Школьный цикл Кребса — сильно упрощенная часть одной из них. Я долго занимался этим и мог наблюдать возникновение одной из самых сложных карт, зародившейся много лет назад как сеть реакций метаболизма глюкозы, которые ведут к выработке энергии. Самая ранняя версия этой карты мне очень пригодилась, когда в 1960–1970-е годы я преподавал биохимию в Виргинском политехническом институте. Чтобы описать серию реакций, ведущих от глюкозы к циклу Кребса внизу схемы (извлечение энергии из глюкозы), нужно было не меньше дюжины лекций по основам биохимии.

Сложно, правда? Но карта, которой я пользовался на занятиях, — ничтожная часть наших современных знаний о путях метаболизма глюкозы. Со временем в нее добавились новые кластеры реакций, включая метаболизм белков, жиров и нуклеиновых кислот. Вскоре реакций стало столько, а шрифт так уменьшился, что стало ясно: если добавить что-то еще, схему нельзя будет прочесть невооруженным глазом. Картографы стали создавать целые атласы метаболизма глюкозы, чтобы учесть новые открытия. То, что когда-то было простыми реакциями, сейчас занимает несколько страниц схем.

Эти карты делались все более детальными, пока не стали символом того, как редукционизм, в погоне за подробной и конкретной информацией, потерял из виду целое. Ученые годами и десятилетиями работали над одной-двумя реакциями. На карте появлялись вкладки, на вкладках — вклейки, и, по мере того как мы углублялись в клеточный метаболизм, все меньше сил оставалось на то, чтобы увидеть мудрость и мощь системы в целом (рис. 7.1).

Рис. 7.1. «Простая» схема путей метаболизма глюкозы

Слово «редукционизм» — одного корня с латинской фразой reductio ad absurdum, «доведение до абсурда». Помните простую, но в то же время сложную схему метаболизма глюкозы? Вот ее обновленная версия (рис. 7.2).

Рис. 7.2. Одна из последних карт метаболических путей глюкозы

Ученые, однако, пошли дальше. Оцените сложность очень маленького кусочка карты, увеличенного для разборчивости (рис. 7.3).

Рис. 7.3. Увеличенный фрагмент карты

А более полная метаболическая карта на рис. 7.2 — малая часть всех реакций в каждой из сотни триллионов клеток нашего организма.

Я подчеркиваю сложность метаболизма, чтобы вы увидели: невозможно до конца понять, как наш организм реагирует на продукты, которые мы едим, и содержащиеся в них нутриенты. Объяснение функции питательных веществ всего одной или даже парой этих реакций недостаточно. После потребления они взаимодействуют друг с другом и другими веществами в лабиринте метаболических реакций, происходящих в этой сотне триллионов клеток. За действие конкретного питательного вещества не отвечает какая-то отдельная реакция или механизм. Все они и многие другие связанные с ними вещества участвуют в клеточном метаболизме и преобразуются в многочисленные продукты высокоинтегрированными путями — не менее сложными, чем на рис. 7.1–7.3.

Каждое вещество проходит лабиринт реакций, поэтому оно может быть фактором влияния на самочувствие. Связь «одно вещество — одна болезнь», которую подразумевает редукционизм, популярна, но неверна. Каждое вещество, входящее в сложную систему реакций, оставляет «круги на воде», которые могут расходиться по озеру метаболизма. А в каждом кусочке пищи — десятки, а то и сотни тысяч веществ, которые попадают в организм более-менее одновременно.

Метаболизм и ферменты

Метаболизм — поддерживающая жизнь совокупность химических реакций организма. Вспомнив о миллиардах постоянно происходящих реакций, можно удивиться, как у нас остаются силы на что-то еще. А поскольку одна из главных целей метаболизма — обеспечение организма готовой к использованию энергией, очень важно, чтобы ее выработка превышала — и намного — затраты на производство. К счастью, в ходе эволюции мы получили молекулы, основной задачей которых стало уменьшение энергозатрат, необходимых для химических реакций в организме. Их называют ферментами.

Это крупные белковые молекулы, присутствующие во всех наших клетках и путем серии реакций превращающие одно (скажем, молекулу сахара), именуемое субстратом, в другое (например, связанное с глюкозой вещество, из которого организм синтезирует жиры) — продукт, или метаболит. Представьте себе ферменты как большие автоматизированные фабрики: с одной стороны огромного здания вы подаете бревно (субстрат), а на выходе получаете красивую салатницу (продукт). Конечно, можно сделать ее вручную, но на это уйдет намного больше сил и времени; фабрика сильно повышает эффективность. Ферменты делают то же внутри клетки, быстро превращая субстраты в продукты и потребляя при этом очень мало энергии. Реакции, которые они вызывают (биологи используют слово «катализируют»), редко или вовсе не происходят без помощи ферментов. Если это случается, скорость реакции составляет крохотную долю возможной при участии фермента, а затраты энергии намного выше.

Относительные размеры ферментов очень велики. Их молекулы могут быть в 10–20 тыс. раз больше молекул субстрата, который они обрабатывают. И правда похоже на фабрику и полено. На рис. 7.4 показан субстрат А, превращающийся в продукт Б. Однако большинство реакций не происходит изолированно: они сопряжены с последующими, где Б (теперь уже субстрат) превращается в В (новый продукт). Фермент 1 превращает А в Б, а фермент 2 — Б в В.

Рис. 7.4. Простая ферментативная реакция

Ферменты могут работать с разной силой в зависимости от запасов (количества субстрата) и потребностей (количества имеющегося в клетке продукта). Как конвейер, который движется быстрее или медленнее в зависимости от поставки сырья и спроса на готовую продукцию, ферменты меняют скорость превращения субстратов (на профессиональном языке — «активность»). Они могут катализировать даже обратные реакции, превращая продукт в субстрат. В общем, от ферментов зависит, произойдет ли реакция, а если да, то как быстро и в каком направлении.

Исходная форма ферментов напоминает цепочку аминокислот, расположенных в последовательности, которая закодирована в ДНК. Но, поскольку аминокислоты имеют химическое и физическое сродство, цепочка складывается и образует трехмерную форму, как очень длинная нить намагниченных бусин (рис. 7.5).

Рис. 7.5. Компьютерная модель фермента цАДФ-рибозы-гидролазы (CD38)

Один из способов корректировки ферментативной активности — изменение формы фермента. Это имеет серьезные последствия, потому что меняет его химические и физические свойства, а также способность модифицировать скорость реакции. Многие ученые-энзимологи поэтизируют быстроту, с которой ферменты меняют конфигурацию для выполнения своих задач. Вот показательная статья из New World Encyclopedia (http://www.newworldencyclopedia.org):

Чтобы фермент был функционален, он должен принять трехмерную форму. Как происходит этот сложный процесс, остается загадкой. Небольшая цепочка из 150 аминокислот образует фермент, имеющий невероятное число возможных конфигураций: если проверять по 1012 разных конфигураций в секунду, потребуется 1026 лет, чтобы найти верную... Но денатурировавший фермент может правильно сложиться за долю секунды, а затем участвовать в химических реак­циях… [Это] показывает ошеломляющую сложность и гармонию Вселенной20.

Пытаясь описать неописуемое, автор приводит пример сравнительно небольшой (для фермента) гипотетической молекулы. Скорость складывания фермента из линейной цепочки в готовую к работе сферу феноменальна. Не менее потрясает химическое разнообразие субстратов, которые может метаболизировать один активный фермент. И так же впечатляет огромное число факторов, способных модифицировать структуру ферментов, их число и активность.

Все это показывает глубокую связь между метаболизмом питательных веществ и миром ферментов. Катализируемые ими реакции, бесконечные числом и бесконечно переплетенные, контролируются нутриентами и связанными соединениями, число которых тоже бесконечно. Питательные вещества контролируют ферменты, и последние также действуют на питательные вещества, образуя нескончаемые продукты, которые затем своевременно используются для правильной работы организма.

Парадокс ОСФ

И мы наконец возвращаемся к ОСФ и его роли в образовании рака.

Здесь я вынужден подытожить, сократить и упростить наши исследования и открытия: тема слишком обширна и специфична, чтобы объяснить ее в одной главе. Моя цель — не сделать вас экспертом по ОСФ. Рассказывая о своем более чем пятидесятилетнем научном приключении с этим ферментом, я надеюсь, что вы лучше поймете, как животный белок влияет на образование рака, и глубже осознаете, что сложность ОСФ красноречиво подтверждает холистическое, а не редукционистское видение питания и здоровья.

ОСФ — исключительно сложный фермент, метаболизирующий многие субстраты, одни из которых обычно присутствуют в организме, а с другими он сталкивается впервые. ОСФ расположен в основном (но не только) в печени и метаболизирует стероидные гормоны (например, половые — эстрогены, андрогены и стрессовые), жирные кислоты (например, прекурсоры веществ, поддерживающих иммунную и нервную системы) и холестерин (вызывающий сердечно-сосудистые заболевания и являющийся частью клеточных мембран), а также другие соединения, образуя вещества, более близкие к тем, которые использует наш организм. ОСФ также обезвреживает инородные химические вещества, благодаря чему они легче выводятся из организма с мочой.

В начале моей научной карьеры меня учили, что афлатоксин (как и другие канцерогены) преобразуется ОСФ в менее токсичный метаболит, который выводится с мочой и калом. Это происходит следующим образом (рис. 7.6).

Рис. 7.6. Предполагаемая модель преобразования афлатоксина ОСФ

Однако модель явно упрощена. Во-первых, упомянутые индийские исследователи, опубликовавшие в 1968 году свои изыскания о высокобелковой (20% белка) диете, усиливающей афлатоксин-индуцированные опухоли у крыс21, показали, что та же диета уменьшает вред афлатоксина, если давать его в очень высоких дозах22. Это был парадокс, который традиционная модель метаболизма афлатоксина объяснить не могла.

Подозревая, что ключ к решению — ОСФ, мы с коллегами установили, что высокобелковая диета повышает активность данного фермента у крыс23. Это значило, что чем больше белка ели крысы, тем быстрее происходило обезвреживание афлатоксина (точнее, его исходного субстрата — AFB1). Это открытие имело смысл, но не согласовывалось с наблюдением индийских ученых24, что высокобелковая диета повышает заболеваемость раком.

Один из рассматриваемых нами вариантов — ОСФ может образовывать два вида метаболитов: один — менее токсичный, чем афлатоксин, и безопасно выводимый из организма, другой — более токсичный и ведущий к раку. Но почему фермент действует так противоречиво? На первый взгляд странно, но вполне возможно. Задолго до этого и до открытия ОСФ ученые полагали, что многие химические канцерогены вызывают рак только после «активации» ферментами, и то, что вещества вроде афлатоксина дают более токсичный метаболит, звучало вполне правдоподобно.

Другой ключ к загадке был найден в начале 1970-х, когда профессора Висконсинского университета, видные онкологи Джим и Бетти Миллер вместе с коллегой Колином Гарнером, получили интересные данные: образование ОСФ нетоксичного метаболита афлатоксина проходит с образованием исключительно реактивного канцерогенного промежуточного продукта25. Иными словами, из афлатоксина ОСФ вырабатывает два метаболита: один обезвреживается и выводится из организма, а другой активируется и вызывает рак. Это как если подать на фабрику полено и получить на долю секунды полицейскую дубинку, которая позже примет форму салатницы.

Этот промежуточный метаболит известен как эпоксид. Считается, что он существует всего несколько миллисекунд, но этого, к сожалению, достаточно, чтобы он успел связаться с клеточным ДНК и привести к мутации, способной вызвать каскад событий, ведущих к раку.

Обновленная схема реакций, на которой показан промежуточный эпоксид, показана на рис. 7.7.

Рис. 7.7. Преобразование афлатоксина ОСФ. Показан промежуточный продукт

Это открытие помогло нам понять, почему высокое содержание белка в диете увеличивает заболеваемость раком, но снижает токсичность афлатоксина. Увеличивая активность ОСФ, высокобелковая диета повышает выработку как промежуточного, канцерогенного, так и окончательного, менее токсичного метаболита.

Мы получили еще один ключевой результат, который помог объяснить парадокс. Оказалось, что афлатоксин токсичен сам по себе, без активации. Он блокирует клеточное дыхание, вызывая смерть клетки26. Высокобелковая диета повышает активность ОСФ, который, в свою очередь, обезвреживает афлатоксин, вызывающий клеточную смерть — что вне контекста выглядит положительным эффектом. Но одновременно повышается и продукция эпоксида, который может вызывать рак, — эффект очевидно отрицательный.

Наша схема реакций была еще раз скорректирована с учетом эффектов этих метаболитов афлатоксина (менее токсичного и канцерогенного) в условиях высокобелковой диеты (рис. 7.8).

Страницы: «« 12345678 »»

Читать бесплатно другие книги:

Эмили Дикинсон (1831–1886) родилась в Амхерсте (штат Массачусетс) и прожила там недлинную и малоприм...
Нерадивая журналистка Зина Рыкова зарабатывает на жизнь «информационным» бизнесом – шантажом, продаж...
Нет спокойной жизни попаданцу обыкновенному. Казалось бы, отбился от орочьей орды, сиди и живи споко...
Ей кажется, что она сходит с ума.Иногда Ада видит то, чего не видят другие.Всё меняется, когда в жиз...
«Солнечный ветер» восьмая книга серии «Концепция», состоящей из 11 книг, которые, я надеюсь, будут и...
«Явная доктрина» первая книга серии «Концепция», состоящей из 11 книг, которые, я надеюсь, будут инт...