Прикладные аспекты аварийных выбросов в атмосферу. Справочное пособие Романов Вадим

Последний показатель наиболее важен для оценки разрушающей способности ударной волны.

Параметры воздуха (газовой смеси) перед ударной волной и за ней определяются следующими уравнениями:

Здесь индекс «s» относится к параметрам воздуха непосредственно за ударной волной, а абсолютное давление Рs = Р+s + Р0.

Моделирование взрывов основано на закономерностях подобия, в основу которых может быть положен принцип «кубического корня» [1, 103]. Этот принцип заключается в том, что если два заряда одного и того же ВВ одинаковой формы, но разного размера взрываются в одной и той же атмосфере, то подобные взрывные волны будут наблюдаться при одинаковом значении параметров расстояния:

K = R/E1/3 ’ (2.5)

где

R — расстояние от центра заряда, Е — полная энергия взрыва.

Для количественной оценки разрушающей способности ударных волн от взрывов парогазовых сред может использоваться количественный показатель m — масса горючего вещества, приведенная к единой энергии сгорания 46000 кДж/кг, равной удельной теплоте сгорания большинства углеводородов.

На основании результатов исследований последствий крупномасштабных промышленных взрывов паров углеводородов в незамкнутом пространстве для определения безопасного для людей расстояния RB от источника взрыва в виде парового облака массой m выведена формула [1]:

RB=(30–50)m. (26)

которая соответствует принципу подобия взрывов неорганизованных паровых облаков в области низких давлений.

Разрушающая способность ударных волн в значительной мере зависит от скорости энерговыделения в источнике. Если в сферическую область конечного размера энергия подводится очень медленно по сравнению со временем распространения звука в сфере, то давление не повышается и взрывной волны не будет. Если же энергию подводят очень быстро, то это приводит к росту давления и взрыву. Причем способ и скорость энерговыделения в источнике оказывают существенное влияние на уровень избыточного давления АР и импульс взрыва / [103].

Далее рассматриваются наиболее часто встречающиеся и наиболее разрушительные типы взрывов, описанные в литературных источниках[1, 77, 103, 105, 106, 108].

Взрыв парового облака в ограниченном пространстве

Так характеризуют процесс быстрого химического превращения (горения) газа или пара, происходящий в пространстве, имеющем материальные границы (отдельные аппараты, помещения, здания) и сопровождающийся образованием ударной волны. Причиной взрыва может стать утечка газа, произошедшая внутри здания, или проникновение газового облака, образовавшегося вне здания.

Взрыв парового или газового облака является результатом быстрого выделения энергии в окислительно-восстановительной реакции. При этом газ нагревается, и в условиях ограниченного пространства происходит увеличение давления (в некоторых случаях восьмикратное) [1, 105].

Для взрыва газо-воздушной смеси необходимы следующие условия:

— присутствие горючего газа;

— присутствие кислорода, причем для любого газа существует определенный уровень концентрации кислорода;

— наличие источника инициации химической реакции.

При взрыве возникает фронт пламени, который продвигается под воздействием расширяющихся продуктов сгорания газа. Видимая скорость пламени зависит от геометрии системы, в которой происходит взрыв.

Взрыв парового облака в неограниченном пространстве

Определяется как процесс быстрого химического превращения (горения) облака горючего газа (пара), сопровождающийся возникновением взрывной волны в открытом (неограниченном) воздушном пространстве. Этот тип взрывов происходит, например, при разливе сжиженного горючего газа. Газ рассеиваетя и смешивается с воздухом, пока не происходит взаимодействие с источником возгорания. Взрывы такого типа происходят довольно редко, так как концентрация взрывоопасных веществ часто находится ниже нижнего предела возгорания из-за разбавления газовоздушной смеси и ее рассеивания. Однако они являются одними из наиболее разрушительных, поскольку в процесс вовлекаются большие объемы газа и большие площади.

Взрыв парового облака в неограниченном пространстве состоит из нескольких последовательных шагов:

1. Внезапный выброс огромного количества воспламеняемого пара. Обычно это происходит при разрушении емкостей, содержащих перегретые жидкости под давлением.

2. Распространение газа по территории и смешивание с воздухом.

3. Возгорание образовавшегося парового облака.

Классическим примером взрыва парового облака в неограниченном пространстве может служить авария в Фликсборо (Великобритания) [1, 103]. Внезапный разрыв трубопровода между реакторами привел к выбросу 30 тонн циклогексана. Паровое облако распространилось по территории завода и было подожжено неизвестным источником через 45 секунд после выброса. Завод был полностью разрушен, погибло 28 человек и еще 89 получили ранения.

Взрыв парового облака очень трудно охарактеризовать. В первую очередь из-за огромного числа параметров, необходимых для описания этого события. Аварии происходили при неконтролируемых обстоятельствах. Данные, собранные от различных аварий, большей частью ненадежны и плохо сопоставимы [1, 103, 105–108].

Некоторыми величинами, влияющими на поведение взрыва парового облака, являются:

• количество утекшего вещества,

• доля испарившегося вещества,

• вероятность возгорания облака,

• расстояние, которое прошло облако до возгорания,

• время задержки до возгорания облака,

• существование порогового количества вещества,

• эффективность взрыва,

• расположение источника возгорания по отношению к месту утечки.

Качественные исследования показали, что вероятность возгорания увеличивается с увеличением размера парового облака; паровое облако приводит к пожару намного чаще, чем ко взрыву; эффективность взрыва обычно мала — приблизительно 2 % энергии сгорания переходит в ударную волну; турбулентное перемешивание парового облака с воздухом и возгорание облака в точке, удаленной от места утечки, увеличивает влияние взрыва.

Почти не существует данных об уровне избыточного давления любого взрыва парового облака, полученных при помощи аппаратуры. Однако в ряде литературных источников доказывается, что хотя величина избыточного давления может быть невелика, но разрушающее воздействие ударной волны, по сравнению с взрывом обычного взрывчатого вещества, характеризующимся той же величиной избыточного давления, будет намного больше из-за гораздо большей длительности взрыва (или величины импульса).

Взрыв расширяющихся паров вскипающей жидкости

Это явление, происходящее при внезапном разрушении резервуара со сжиженным горючим газом и наличии источника воспламенения. Резкое падение давления (при разрушении резервуара) вызывает вскипание жидкости с образованием воздушной ударной волны, приводящей к разрушениям и появлению осколочного поля. Мгновенное воспламенение парового облака приводит к возникновению огневого шара.

Очень часто взрыв расширяющихся паров вскипающей жидкости происходит во время пожара и состоит из следующих стадий [105]:

1. Рядом с сосудом, содержащим сжиженный газ, начинается пожар.

2. Пламя накаляет стенки резервуара.

3. Стенки резервуара ниже уровня жидкости охлаждаются жидкостью, происходит увеличение температуры жидкости и давления в резервуаре.

4. Если пламя достигает стенок или крышки резервуара в том месте, где присутствует только газовая фракция и нет жидкости для отвода тепла, то происходит нагрев стенок сосуда, при котором происходит потеря их прочности.

5. Стенки сосуда разрушаются, происходит выброс сжиженного газа, который тут же испаряется.

6. Пары от мгновенного испарения жидкости зажигаются и образуют огневой шар.

Если взрыв паров расширяющейся жидкости произошел не в результате пожара, то после испарения сжиженного газа может произойти взрыв парового облака в неограниченном пространстве.

Объемный пылевой взрыв

Обычно возникает при воспламенении пылевоздушных смесей, содержащих мелкие горючие частички твердых веществ. Известны объемные взрывы на мукомольных, деревообрабатывающих, горнорудных предприятиях [1, 103, 105].

Для того, чтобы произошел взрыв пылевого облака внутри зданий и в оборудовании необходимо инициирующее внешнее воздействие при достаточно высокой, непереносимой человеком, концентрации пыли; эти объемы обычно непрозрачны. Такие облака могут сохранятся довольно длительное время внутри оборудования (например, элеватора и механизмов дробления), однако, они не могут существовать в течении длительного промежутка времени внутри зданий.

Взрывы пылевого облака опасны тем, что первоначальный инициирующий взрыв способствует возмущению и турбулизации пыли, что приводит к последующему более мощному взрыву. Поэтому взрыв, произошедший в оборудовании, может привести ко вторичному взрыву, который охватит все здание и вызовет намного больший ущерб.

Пылевые взрывы наиболее трудно классифицировать и привести к общей характеристике. Частички пыли сильно отличаются по величине и их размеры на несколько порядков больше, чем у молекул газа. К тому же на поведение частичек пыли большое влияние оказывает электростатическое притяжение.

Экспериментально установлено, что для того чтобы вызвать взрыв, пылевая взвесь должна обладать следующими характеристиками:

• частицы должны быть меньше определенного минимального размера (в литературе дается значение 76 мкм [105]);

• концентрация пыли должна находится в определенных границах. Верхние концентрационные пределы распространения пламени (ВКПР) обычно достаточно велики, и достичь их в производственных помещениях практически невозможно. Поэтому наиболее важен нижний предел, а также более высокие концентрации, при которых достигается максимальная объемная плотность энерговыделения;

• пыль должна быть примерно однородна.

Для большинства пылевых облаков нижний предел концентрации взрыва находится между 20 и 60 г/м3, а верхний предел между 2 и 6 кг/м3 [105].

Взрывы могут протекать в режиме детонации или в режиме дефлаграции; различие основано на скорости ударной волны, возникающей в результате взрыва. Если скорость распространения ударной волны выше, чем скорость звука в непрореагировавшей среде, то это детонация. Если же ниже, то — дефлаграция.

Взаимоотношения между фронтом ударной волны и фронтом реакции определяются режимом взрыва. При дефлаграции давление обычно увеличивается на несколько атмосфер. При детонации давление увеличивается в десятки раз. Существенно различаются и импульсные характеристики взрыва.

Существует два механизма, приводящих к детонации. В первом механизме — тепловом — происходит увеличение температуры реакционной смеси, приводящее к самоускорению скорости реакции. Во втором механизме — цепном разветвленном — происходит быстрое увеличение количества реагирующих свободных радикалов. Обычно этот процесс происходит, если в результате реакции от одного свободного радикала получается два.

Дефлаграция может переродится в детонацию. Это часто происходит в трубопроводах, но маловероятно в сосудах и на открытом пространстве.

В настоящее время не создана модель, позволяющая однозначно предсказать скорость взрывного превращения. В [106] рекомендуется для инженерной оценки использовать специальную экспертную таблицу института Химической Физики РАН.

В этой таблице представлены топлива, способные к образованию горючих смесей с воздухом, которые разделены на классы по чувствительности к инициированию взрывных процессов. Геометрические характеристики окружающего пространства также разделены на несколько классов в зависимости от степени их потенциальной опасности (степени загроможденности). В зависимости от типа вещества и степени загроможденности пространства можно определить наиболее вероятный режим взрывного превращения смеси.

Используя обобщенные экспериментальные исследования по взрыву определенных объемов газовоздушных смесей, как правило стехиометрического или близкого к нему состава, однородного по объему, с исходной геометрией, близкой к сферической и, в основном, с центральным поджиганием, получены [106] зависимости величины избыточного давления и импульса фазы сжатия для режима дефлаграции. Они записываются так:

где UF — скорость фронта пламени, v — степень расширения продуктов сгорания, а0 — скорость звука в воздухе.

EB — энергия взрывного превращения (количество реагирующего вещества умноженное на теплоту сгорания),

Ра — атмосферное давление,

R — расстояние от эпицентра взрыва,

I+а — импульс положительной фазы,

Р — избыточное давление.

Отметим, что использование этих данных для прогнозов эффектов поражения и разрушения при воспламенении плоских вытянутых углеводородных облаков и аварий на магистральных трубопроводах требует значительного уточнения.

2.2. Факторы рисков опасных воздействий взрывов

Горение парового облака, происходящее, как правило, в режиме дефлаграции со скоростью 250–300 м/с, формирует в окружающей среде воздушную волну избыточного давления. Ударная волна при производственных авариях может вызвать большие людские потери и разрушения элементов сооружений. Размеры зон поражения от взрывов возрастают с увеличением их мощности.

Действие ударной волны на здания и сооружения характеризуется сложным комплексом нагрузок: прямое давление, давление отражения, давление обтекания и давление затекания, нагрузка от сейсмовзрывных волн и т. д.

При моделировании уязвимости сооружений сопротивляемость их элементов воздействию ударной волны принято характеризовать величиной избыточного давления на фронте ударной волны (дРф). Степень и характер поражения сооружений при взрывах во время производственных аварий зависят от следующих параметров:

а) мощности (тротилового эквивалента) взрыва;

б) технической характеристики сооружений объекта (его конструкции, прочности, размеров, формы и др.);

в) планировки объекта (рассредоточенности сооружений) и характера застройки;

г) ландшафта местности (рельефа, грунта, растительности);

д) метеорологических условий (направления и силы ветра, влажности, температуры, наличия осадков) [109]. В Таблице № 2.1 представлены данные о избыточных давлениях на фронте ударной волны, вызывающих повреждение объекта разной тяжести.

Вероятность достижения того или иного уровня ущерба можно рассчитать с помощью пробит функции [106, 107, 110].

В общем случае одно и то же воздействие различной физической природы (доза термической радиации, значение избыточного давления, ударный импульс и т. п.) может вызвать последствия различной тяжести, т. е. эффект поражения носит вероятностный характер. Величина поражения (Р измеряется в долях единицы или процентах) выражается функцией Гаусса

Таблица № 2.1.

Избыточное давление, вызывающее разрушение, (Рф), КПа.

в которой верхний предел интегральной функции является пробит-функцией, отражающей связь между вероятностью поражения и поглощенной дозой. Пробит-функция может быть вычислена по уравнению вида:

Pr = а + b ln(D), (2.13)

где а и b — константы для каждого вещества или процесса, характеризующие специфику и меру опасности его воздействия,

D — поглощенная субъектом доза негативного воздействия.

Вероятность малых повреждений зданий и сооружений можно оценить по соотношению:

Рг1 = 5–0,26 In S1, (2.14)

где влияние перепада давления в волне импульса фазы сжатия отражено фактором

Вероятность трудно реставрируемых повреждений зданий и сооружений можно оценить по соотношению:

Рг2 = 5–0,26 In S2, (2.16)

В этом случае фактор

Вероятность невосстанавливаемых повреждений зданий и сооружений (обрушение несущих стен) можно оценить пользуясь соотношениями:

Рг3 = 5–0,26 In S3, (2.18)

Следует отметить, что последствия взрыва представляют прямую и потенциальную опасность для человека. Люди могут получить повреждения от прямого воздействия (включая повышенное давление и тепловое излучение) и от косвенного (осколочное поражение, падение фрагментов изделий и т. п.).

Прямое или первичное поражающее действие взрывной волны связано с изменением давления в окружающей среде в результате прихода воздушной взрывной волны. Люди особо чувствительны к таким факторам взрыва, как избыточное давление в падающей и отраженных волнах, динамическое давление, скорость повышения давления до пикового значения после прихода взрывной волны и ее длительность, а также удельный импульс взрывной волны. Из других факторов, которые определяют степень поражения, нанесенного взрывной волной, можно назвать внешнее атмосферное давление, размеры и возраст человека. Органы тела, отличающиеся наибольшей разницей в плотностях соседних тканей, обладают наиболее высокой чувствительностью к первичному поражающему воздействию взрывной волны. Таким образом, ткани легких, наполненные воздухом, и ухо страдают от действия взрывной волны больше всего.

Общая характеристика воздействия избыточного давления на человека приведена в Таблице 2.2.

Отметим, что в случае нахождения людей в момент внешнего взрыва в зданиях, их поражение может наступить от механического воздействия за счет разрушения зданий (обрушения перекрытий и т. п.) уже при давлениях 0,3–0,5 бар. Ниже приводятся данные, позволяющие оценить вероятностные характеристики повреждений человека от аварийных негативных воздействий.

Таблица № 2.2.

Воздействие избыточного давления на человека

Вероятность летального исхода от прямого воздействия на людей избыточного давления определяется с помощью пробит-функции:

Вероятность разрыва легких оценивается по формуле:

где

P0 — начальное давление, m — вес живого организма, кг.

Нижний уровень контузии связан с повреждением органов слуха и зависит только от перепада давления в волне. Он определяется пробит-функцией:

Рг6 = 12,6–1,524 lnР. (2.24)

Существенным фактором опасности представляется разлет осколков и фрагментов оборудования и стекла. К числу объектов, потенциально опасных по осколочному фактору поражения, можно отнести работающие при повышенном давлении оборудование для хранения и транспортировки горючего, помещения и емкости для сжатых газов, химических соединений и т. д. Обычно подобное оборудование изготавливается из особых сортов сталей и при разрыве образуется сравнительно малое число осколков. Однако разлет объемных удлиненных элементов оборудования может сопровождаться истечением жидкого или газообразного рабочего тела, что придает фрагментам дополнительный импульс. При разрыве сосудов и аппаратов высокого давления, при отрыве специализированных легко сбрасываемых конструкций или разрушении вышибных мембран также образуются дискообразные элементы. Полет таких элементов определяется не только силами тяжести и инерции, но и находится под влиянием подъемной силы. Это обстоятельство заметно влияет на дальность разброса фрагментов. Массивные фрагменты способны отлетать на весьма большие расстояния от места образования (на открытом воздухе до 100 м и более) и вызывать тяжелые вторичные разрушения при столкновении с объектами промышленной и жилой застройки.

Особого внимания требует вопрос об осколочном действии разрушающихся стеклянных перегородок и окон. Как правило, газовоздушный и пылевой взрыв сопровождается разрушенем остекления. Так при избыточном давлении 3 кПа будет разрушено 50 % оконных стекол. Основное значении при определении поражений имеет информация о скорости и дальности разлета стеклянных осколков. С учетом опытных данных скорость разлета осколков стекла при типичных внутрицеховых взрывах может быть оценена величиной 20 + 7 м/с [105]. Также на основе опытов считается, что масса кусков стекла после взрыва не превышает 100 г.

Для определения поражения людей осколки при авариях условно делят на две подгруппы [77, 107]:

— режущие осколки,

— ударные осколки.

Режущие осколки отличаются способностью пробивать кожный покров и проникать внутрь тела. Ударные осколки не пробивают кожный покров, а наносят удар по телу, так что основной фактор поражения связан с механическим повреждением внутренних органов от соударения. Различие этих подгрупп осколков связано с их скоростью полета и формой. При некоторой скорости полета осколка V > V50 его относят к режущим осколкам, а при V < V50 к ударным. Для оценки уровня V50 в м/с можно использовать выражение

V50 = 1247 (A/m) + 22, (2.25)

где А — площадь миделевого сечения осколка, м2, m — масса осколка, кг.

Вероятность тяжелых поражения людей разлетающимися режущими осколками с массой m < 0,1 кг оценивается по соотношению:

Рг7 = -29,15 + 2,1 In S7 (2.26)

где S7 = m V5115 ’ (2.27)

Вероятность тяжелых поражений персонала разлетающимися ударными осколками с массой 0,1 кг < m < 4,5 кг оценивается по соотношению

Рг8 = -17,56 + 5,3 In S8 (2.28)

где S8 = 0,5m V2. ’ (2.29)

Для массивных ударных осколков при m > 4,5 кг вероятность тяжелых повреждений определяется только скоростью осколка и оценивается по соотношению

Рг9 = -13,19 + 10,54 In V. (2.30)

Как правило взрывная волна действует на человека не только через перепад давления. Вызванное скачком давления кратковременное перемещение воздуха способно отбросить человека с большой скоростью в направлении движения волны. Вероятность подобного события оценивается как:

Повреждения могут возникать либо на стадии ускорения, либо во время тормозящего удара. Степень повреждения, обусловленная тормозящим ударом, намного более значительна и определяется изменением скорости при ударе, а также временем и расстоянием, на котором происходит торможение, типом ударяющей поверхности и площадью соударения.

2.3. Пожары

Приведем описания пожаров различных видов в терминологии работ [1,112,113]. По условиям газообмена и теплообмена с окружающей средой все пожары подразделяются на два обширных класса [114]:

— на открытом пространстве;

— в ограждениях.

Пожары на открытом пространстве условно могут быть разделены на три вида:

— распространяющиеся;

— не распространяющиеся (локальные);

— массовые.

Пожары в заграждениях бывают двух видов:

— открытые;

— закрытые.

Пожар развивается на определенной площади или в объеме и может быть условно разделен на три зоны, не имеющих, однако, четких границ:

— горения;

— теплового воздействия;

— задымления.

Зона горения занимает часть пространства, в котором протекают процессы термического разложения твердых горючих материалов или испарение жидкостей, горение газов и паров в объеме диффузионного факела пламени. Зона горения может ограничиваться ограждениями здания (сооружения), стенками различных технологических установок, аппаратов, резервуаров и т. п.

В зависимости от агрегатного состояния горючего вещества различают три вида горения:

1. гомогенное горение газов и парообразных горючих веществ в среде газообразного окислителя;

2. гетерогенное горение жидких и твердых горючих веществ в среде газообразного окислителя;

3. горение взрывчатых веществ.

По скорости распространения пламени горение, протекающее с дозвуковыми скоростями, подразделяют на ламинарное и турбулентное.

При развитии пожара в здании приток воздуха в зону горения и удаление из нее продуктов сгорания происходят через проемы. Давление продуктов сгорания в верхней части здания (помещения) больше, а в нижней части меньше давления наружного воздуха. На определенной высоте давление внутри помещения равно атмосферному, т. е. перепад давления равен нулю. Плоскость, где давление внутри здания равно атмосферному, называется плоскостью равных давлений или нейтральной зоной.

Зоной теплового воздействия называется прилегающая к зоне горения часть пространства, в пределах которого протекают процессы теплообмена между поверхностью пламени, окружающими строительными конструкциями и горючими материалами. При этом передача тепла осуществляется тремя способами:

— конвекцией;

— излучением;

— теплопроводностью.

В горящем помещении излучение является основным способом передачи тепла от поверхности пламени к окружающим поверхностям горючих материалов, внутреннего интерьера и строительных конструкций по всем направлениям до момента, когда дым становится ослабляющей световой поток средой в результате поглощения и рассеяния лучистой энергии.

На стадии развившегося пожара в зданиях конвекцией передается значительно больше теплоты, чем при пожарах на открытом пространстве. Нагретые до высокой температуры газы способны вызвать возгорание горючих материалов по пути своего движения в коридорах, лифтовых шахтах, вентиляционных каналах, лестничных пролетах и т. д.

При пожарах на открытых пространствах теплота передается окружающим объектам главным образом излучением. Несмотря на то, что доля теплоты, передаваемой конвекцией, достигает 75 %, значительная ее часть передается верхним слоям атмосферы и не изменяет обстановки при пожаре.

Зоны задымления при пожаре в зданиях (сооружениях), внутри помещения и на открытых пространствах имеют свои особенности.

Внутри помещений объем зоны задымления зависит от условий распространения потоков продуктов горения и газообмена с окружением, а также от свойств горящих веществ и материалов.

На открытом пространстве объем и площадь задымления зависят главным образом от мощности источника горения, скорости выгорания материалов, разности температур окружающего воздуха и зоны горения и скорости движения газовых потоков.

Дым представляет собой дисперсную систему, твердые частицы которой, как и ядовитые газы, вредны для человека.

Опасными факторами пожара для людей являются:

— открытый огонь и искры;

— повышенная температура воздуха и предметов;

— токсичные продукты горения;

— дым;

— пониженная концентрация кислорода;

— обрушение зданий, сооружений;

— возможность взрыва.

Продолжительность пожара зависит от скорости выгорания материалов и скорости распространения пламени. Эти же величины, в свою очередь, зависят от состояния окружающей среды, которое характеризуется:

— метеорологическими параметрами (температурой, влажностью, давлением, степенью прозрачности атмосферы, скоростью и направлением приземного ветра);

— пожарной нагрузкой (горючестью, температурой самовоспламенения и воспламенения, влажностью и плотностью веществ и материалов, содержанием летучих веществ, критическим тепловым потоком, вызывающим их воспламенение или самовоспламенение от лучистой теплоты, взрывоопасностью, удельной пожарной нагрузкой и ее высотой, плотностью распределения горючих материалов по площади и в объеме);

— условиями газообмена и распространения пожара (расположением объектов горения, назначением и особенностями объемно-планировочных и конструктивных

— решений зданий и сооружений, площадью и взаимным расположением проемов, высотой помещения, расстоянием между центрами вытяжных и приточных проемов, этажностью, характеристикой имеющихся систем противодымной защиты);

— параметрами местности и застройки (рельефом и особенностями примыкающего к зданиям почвенного покрова, огнестойкостью и этажностью зданий и сооружений, противопожарными разрывами, шириной улиц, плотностью застройки, пожаро— и взрывоопасностью производств).

В качестве основных типов техногенных пожаров можно выделить [113]:

— пожар пролива или разлития;

— вспышечный пожар;

— струйный пожар;

— огневой шар.

Под пожаром пролива или разлития понимают горение пролитого вещества, испаряющегося с поверхности жидкости. Пожар разлития может иметь место при горении жидкости в резервуаре для хранения, когда резервуар остается без крышки, например в результате взрыва. При этом стенки верхней части резервуара (до уровня жидкости) могут оплавляться. В подобном случае четко определены границы и форма пожара. Пожар разлития может возникнуть также и в случае, когда горючая жидкость в результате аварии выбрасывается на поверхность земли, в водостоки или непосредственно в реки, озера или моря, где возможность распространения не ограничена. Именно так представляется ситуация при горении нефти на поверхности моря.

Вспышечным пожаром называется такой режим сгорания парового облака, при котором скорость перемещения фронта пламени значительно меньше звуковой. Он характеризуется пренебрежимо малым значением возникающего при этом избыточного давления.

Струйным пожаром является пожар такого типа, который возникает в результате горения газа и/или жидкости, вытекающих из замкнутого пространства под давлением.

Огневым шаром называют пожар, при котором масса сгорающего топлива или парового облака поднимается вверх над поверхностью земли. Подобный пожар заметно отличается от обычных пожаров. Горящий паро-газовый поток вытягивается вверх, образуя восходящее конвективное течение (вследствие чего этот тип пожара также называют конвективной колонкой). Часто в верхней части выброса возникает грибовидное облако. Конвективная колонка способна втягивать и поднимать отдельные предметы, зажигать их и разбрасывать на большие расстояния.

Помимо указанных выше типов техногенных пожаров встречаются и другие типы:

Огневой шторм образуется в результате слияния больших пожаров, возникающих в насыщенной топливом среде, в один громадный пожар. Он может сопровождаться появлением ветра ураганной силы и образованием смерчевых структур.

Анаэробный пожар — это пожар, при котором горение происходит без доступа воздуха. Он возникает в том случае, когда некоторые вещества при повышении температуры выше определенного критического уровня начинают интенсивно разлагаться с образованием окислителя. К таким веществам относятся, как правило, конденсированные взрывчатые вещества, в которых горючее и окислитель перемешаны на мольном или молекулярном уровнях.

2.4. Расчеты физических характеристик пожара

а) Пожары пролива или разлития Модель пожара пролива формируется с учетом следующих факторов:

— скорость горения;

— размеры разлития;

— высота пламени;

— наклон и увеличение пламени по направлению ветра;

— мощность излучающей поверхности;

— геометрический фактор;

— атмосферная проводимость;

— тепловой поток, воспринимаемый объектом. Тепловое воздействие на окружающую природную среду при горении различных жидкостей на поверхности разлития рассматривается в работах [106, 115].

В методике МЧС [115] предложен порядок оценки последствий пожара разлития, вызванного аварийными ситуациями на объектах по хранению, переработке и транспортировке горючих жидкостей. Приведем его основные положения.

При разрушении трубопровода объем вытекшей жидкости определяется по формуле:

V = 0,79 D2L, (2.33)

где D — диаметр трубопровода, м;

L — длина отрезка между соседними отсека-телями, м.

Страницы: «« 12345678 »»

Читать бесплатно другие книги:

Знать историю двух русских революций, чтобы не допустить повторения.Мемуары Павла Милюкова, главы па...
Вот уже третий век, со времен склоки Ломоносова с «норманистами», легендарный КНЯЗЬ РЮРИК остается «...
Искусство – это воплощение и отражение Прекрасного. Искусство – это то, что без слов понятно всем, т...
Иван-чай или кипрей содержит в себе большое количество полезных веществ. Народная медицина применяет...
Иван-чай или кипрей – кладезь витаминов! Его используют в косметических целях, готовя из растения ма...
В листьях иван-чая или кипрея содержится большое количество витамина С, витамина группы В, а также м...