Универсальный справочник прораба. Современная стройка в России от А до Я Казаков Юрий
увеличивают величину заглубления фундамента до отметки ниже просадочных грунтов;
устанавливают по периметру фундамента буронабивные сваи;
используют водозащитные меры для предотвращения возможных просадок.
В зависимости от состояния грунта может быть применен один из способов его укрепления (см. соответствующий раздел), предназначенный для увеличения несущей способности. Чаще всего такая надобность возникает при возведении зданий двух и более этажей.
Рекомендуются следующие основные типы фундаментов легких каркасных домов. Столбчатые фундаменты каркасных домов могут использоваться при отсутствии пучинистых грунтов. Экономическая целесообразность таких фундаментов очевидна. Конструктивная простота, небольшая стоимость снизят затраты нулевого цикла и сведут к минимуму стоимость одного квадратного метра жилья. Если учесть, что стоимость нулевого цикла в общем объеме строительных работ может достигать 25 % и более, то экономичные методы строительства целиком и полностью себя оправдывают. Кроме того, применение столбчатых фундаментов вдвое снижает продолжительность работ за счет использования средств малой механизации и сокращает построечную трудоемкость. Положительным свойством столбчатых фундаментов является то, что грунты основания под отдельно стоящими опорами работают лучше, чем под сплошными фундаментами. Вследствие этого уменьшается давление на грунт, отчего вероятность осадок снижается.
Рис. 2.4. Столбчатый круглый фундамент на песчаной подушке (размеры указаны в миллиметрах): 1 – круглый башмак; 2 – утрамбованный песок; 3 – кольцо фиксирующее
Однако и здесь часто допускают ошибки, которые сказываются на эксплуатационных характеристиках дома. Одной из таких ошибок является отсутствие связи столбчатого фундамента с каркасом здания. В результате замораживания и размораживания грунта при сезонных колебаниях температур наружного воздуха может произойти потеря устойчивости фундаментных столбов. При этом последние наклоняются, сдвигаются, а иногда и падают.
Столбы фундаментов устанавливают по всему периметру здания с интервалом 2–3 м, в зависимости от несущей способности основания. При этом обязательна установка столбов в углах здания и в местах пересечения несущих стен (рис. 2.5).
Рис. 2.5. Варианты расстановки столбчатых фундаментов
Конструкции столбчатых фундаментов могут быть различными, и зависят они от технологической оснащенности производите ля работ. Это могут быть деревянные столбчатые стулья (рис. 2.6 и 2.7), буронабивные сваи (рис. 2.8), свайные фундаменты (рис. 2.9) или одна из современных конструкций столбчатых фундаментов, которые разработаны специалистами ряда институтов для малоэтажного домостроения.
Рис. 2.6. Деревянный столбчатый фундамент. Вариант а: 1– столб из бревна; 2 – гидроизоляция; 3 – бетонная опора; 4 – песчаная подушка. Вариант б: 1– столб из бревна; 2– гидроизоляция; 3 – скоба; 4 – деревянная крестовина; 5– бетонная опора; 6 – песчаная подушка
Рис. 2.7. Это самый дешевый деревянный столбчатый фундамент (размеры указаны в миллиметрах): 1– антисептированное покрытие; 2– обшивка; 3 – деревянный стул; 4 – крестовина с подкосами; 5– гидроизоляция; 6 – забирка
Рис. 2.8. Буронабивной фундамент с чехлом из асбестоцементной трубы: 1– асбестоцементная труба; 2– арматура; 3– бетон; 4– буровая скважина
Рис. 2.9. Свайный фундамент
Схемы забивки свай для фундаментов даны на рис. 2.10. На участках с суглинистыми или глинистыми (связанными) грунтами под щитовые дома целесообразно делать столбчатые фундаменты на песчаной подушке (рис. 2.11). Кирпичные или бутобетонные столбы устанавливают в местах пересечения стен и под углами здания, преимущественно на однородных грунтах, где глубину заложения принимают минимальной, равной 0,6–0,8 м.
/i>Рис. 2.10. Схемы забивки свай: а – рядовая схема; б – спиральная; в – секционная
Рис. 2.11. Столбчатый фундамент на песчаной подушке: 1– цоколь; 2– подсыпка; 3 – слои щебня или кирпичного боя толщиной 20 см с проливкой раствором; 4 – песчаный фундамент; 5– ширина фундамента; 6– уровень заложения; 7– глиняный замок
Делают это следующим образом. В траншеи засыпают песок толщиной 40–60 см и уплотняют его. Затем укладывают жлезобетонные плиты толщиной 10 см размером 5050 или 6060 см с шагом 2,4–6 м, а на них устанавливают бетонные или кирпичные столбики сечением 3838 см. Высоту столбиков принимают из условия, что пол дома должен быть на 0,75-1,05 м выше планировочных отметок наружного грунта (рис. 2.12).
Рис. 2.12. Столбчатый фундамент на песчаной подушке (размеры указаны в миллиметрах): 1– кирпичный столб 380380; 2 – песчаная подушка; 3– уплотненная засыпка; 4– бетонная прослойка; 5– подкладка; 6 – отмостка; 7– каркасная стена; 8 – забирка из кирпича
Столбы связывают между со бой кирпичной за биркой, получая таким образом законченную конструкцию нулевого цикла. Общий вид ну левого цикла дома с кирпичными столбчатыми фундаментами показан на рис. 2.13. На всех четырех сторонах цокольной части нужно оставить отдушины, предназначенные для вентиляции подпольного пространства. Отдушины можно закрыть щелевым кирпичом или вентиляционными решетками, защищая подпольное пространство от нашествия грызунов.
Рис. 2.13. Нулевой цикл дома с кирпичными столбами внутри: 1– кирпичные столбы; 2 – основание печи (510865 мм); 3 – засыпка песком (200 мм); 4 – отмостка; 5– уступ (загладить раствором под углом 45°); 6– балка нижней обвязки каркаса дома; 7– вентиляционное отверстие; 8 – проем для использования в хозяйственных целях; 9 – цоколь
При слабых, неоднородных и сжимаемых грунтах рекомендуют ленточно-столбчатые фундаменты. Для этого по песчаной подушке толщиной 40–50 см, отсыпаемой с уплотнением в траншеи, выполняют монолитную железобетонную ленту сечением 20–40 см. Эта лента обеспечивает равномерные деформации здания, не допуская перекосов силовой схемы каркаса. По ней устанавливают бетонные или кирпичные столбики сечением 3838 см с шагом 2,4–3,6 м. Глубину траншеи принимают равной 0,5–0,6 м (рис. 2.14). Между столбиками выкладывают кирпичную забирку, закрывающую подполье дома от продувания и снежных заносов. Брусья нижней обвязки связывают между собой и фундаментными столбами в жесткую систему, что предотвращает боковые сдвиги каркаса.
Ленточные фундаменты мелкого заглубления устраивают на грунтах средней и высокой степени пучинистости. При этом лента под наружные и внутренние стены должна быть соединена в единую пространственную раму (рис. 2.15).
Рис. 2.14. Ленточно-столбчатый фундамент на песчаной подушке (размеры даны в миллиметрах): 1– кирпичные столбы; 2 – ж/б плиты столбов; 3 – ж/б ленточного фундамента; 4 – песчаные подушки столбов; 5 – песчаная подушка ленточного фундамента; 6– гидроизоляция; 7 – каркас стены
Рис. 2.15. Ленточный фундамент в готовом виде
Конструкция фундамента мелкого заложения, по существу, представляет собой жесткую раму, которая каждый год в зимне-весенний период «плавает» вместе с относительно легким домом. В качестве такой рамы выступает бетонный или железобетонный ленточный фундамент, уложенный на подушку из непучинистого материала, уменьшающего величину и неравномерность перемещений фундамента. При таком конструктивном исполнении сокращается расход бетона на 50–80 % по сравнению с заглубленным фундаментом. А трудозатраты по сооружению нулевого цикла сокращаются на 40–70 %. Варианты мелко-заглубленных фундаментов показаны на рис. 2.16. В зимне-весенний период фундамент вместе с грунтом поднимается вверх, а после оттаивания грунтов становится в исходное положение. Таким образом исключается накопление деформаций в конструктивных элементах здания. В этом заключается принципиальное различие взаимодействия с пучинистым грунтом мелкозаглубленных и заглубленных фундаментов.
Индивидуальные застройщики очень часто используют так называемый щелевой метод сооружения ленточных фундаментов Для этого в связанных грунтах прорывают траншею заданной ширины и глубины, армируют и заполняют бетоном. Такие фундаменты экономичны, так как не требуется опалубка, для сооружения которой затрачиваются средства и время. При этом также выполняется минимум земляных работ и не требуется обратная засыпка грунта.
Щелевой метод сооружения фундаментов эффективен в местах, где пучение грунта практически отсутствует. На пучинистых грунтах экономия может привести к тому, что при полном контакте ленты фундамента с грунтом силы морозного пучения неизбежно станут причиной деформаций фундамента, а вследствие этого и деформаций всей надземной части здания. Поэтому в последнем случае целесообразнее ленту фундамента бетонировать в опалубке, а пазухи между грунтом и фундаментом засыпать непучинистым грунтом. Опалубку для монолитного фундамента изготавливают из обрезных досок, чтобы между ними не было щелей. Если имеется возможность, то для опалубки лучше применять инвентарные щиты, использование которых сократит время на изготовление щитов и снизит трудовые затраты. Пиломатериалы, применяемые для изготовления опалубки, подбирают из хвойных пород. допускается использование лиственных пород древесины (осина, ольха и т. д.) для изготовления креплений и распорок.
Ширина досок – не более 150 мм, а их толщина должна быть одинаковой, и они должны быть сырыми. Сухие доски впитывают влагу из бетона, тем самым снижая его прочность. При необходимости лицевую сторону опалубки облицовывают металлическими листами или фанерой. Для уменьшения сцепления опалубки с бетоном ее лицевую поверхность рекомендуется покрывать смазкой, в качестве которой используют известковое молоко, водный раствор жидкой глины, отработанные минеральные масла ит. д. Внутренняя облицовка опалубки позволяет выполнить лицевые стороны фундамента с достаточно высокой чистотой поверхности.
Рис. 2.16. Мелкозаглубленные фундаменты: а – незаглубленный фундамент (цоколь); б– мелкозаглубленный фундамент: 1– фундаментный столб без заглубления; 2– мелкозаглубленный столб; 3– отмостка; 4– противопучинная подушка; 5 – обратная засыпка
При раскреплении опалубки нужно следить за тем, чтобы все крепежные элементы (колья, распорные планки и т. п.) располагались вне пространства, в которое должен укладываться бетон. Если этого не сделать, то извлечь крепежные элементы из тела фундамента после твердения бетона будет уже невозможно. И чем точнее будет установлена опалубка, тем ровнее будет тело фундамента. Ровные стороны фундамента особенно важны для надземной его части – цоколя, внешний вид которого играет не последнюю ро ль в архитектурном оформлении здания в целом.
Глава 3
Правила возведения традиционных несущих и ограждающих конструкций
Настоящая глава книги содержит правила производства и приемки работ, выполняемых при строительстве монолитных бетонных и железобетонных конструкций из тяжелого, на пористых заполнителях, жаростойкого и щелочестойкого бетона, а также работ по торкретированию и подводному бетонированию. Кроме того, в главу включены правила изготовления сборных бетонных и железобетонных конструкций на строительной площадке, монтажа сборных железобетонных, стальных, деревянных конструкций и конструкций из легких эффективных материалов. Также излагаются особенности сварочных работ при выполнении монтажных соединений строительных стальных и железобетонных конструкций, соединений арматуры и закладных изделий монолитных железобетонных онструкций. Даются рекомендации по возведению каменных и армокаменных конструкций из керамического и силикатного кирпича, керамических, силикатных, природных и бетонных камней, кирпичных и керамических пане лей и блоков, бетонных блоков.
Общие требования к возведению монолитных бетонных и железобетонных конструкций
Данные о строительно-монтажных работах следует ежедневно вносить в журналы работ по монтажу строительных конструкций, сварочных работ, антикоррозионной защиты сварных соединений, замоноличивания монтажных стыков и узлов, выполнения монтажных соединений на болтах с контролируемым натяжением (см. примеры оформления таких журналов в приложениях 1–5). Также по ходу монтажа конструкций их положение фиксируется на геодезических исполнительных схемах.
Перевозку и хранение изделий в зоне монтажа следует выполнять согласно государственным стандартам на эти изделия, а для нестандартизированных изделий необходимо соблюдать специальные требования.
Конструкции должны находиться в проектном положении и опираться на инвентарные подкладки и прокладки прямоугольного сечения толщиной не менее 30 мм и не менее чем на 20 мм превышать высоту строповочных петель.
Конструкции необходимо закреплять для защиты от опрокидывания, смещения, ударов, а офактуренные поверхности защищать от повреждения и загрязнения.
Мелкие детали для монтажных соединений крепятся к отправочным элементам и транспортируются с ними.
Крепежные изделия должны храниться в закрытом помещении рассортированными по видам и маркам, болты и гайки – по классам прочности и диаметрам, а высокопрочные болты, гайки и шайбы – и по партиям.
Для сохранности деревянных конструкций необходимо применять инвентарные устройства (ложементы, хомуты, контейнеры, мягкие стропы), а также предохранять их от воздействия солнечной радиации, увлажнения.
Перед подъемом каждого монтажного элемента следует проверять его соответствие проектной марке, состояние закладных изделий и установочных рисок, отсутствие грязи, повреждений отделки, грунтовки и окраски. Кроме того, проверяются наличие соединительных деталей и вспомогательных материалов, правильность и надежность закрепления грузозахватных устройств, оснастка средствами подмащивания, лестницами и ограждениями.
Монтируемые элементы следует поднимать плавно, без рывков, с применением оттяжек. При подъеме вертикально расположенных конструкций используется одна оттяжка, горизонтальных элементов и блоков – не менее двух.
Конструкции необходимо поднимать в два приема: сначала на высоту 20–30 м, затем, после проверки надежности строповки, производят дальнейший подъем.
Монтаж зданий следует начинать с пространственно-устойчивой части: связевой ячейки, ядра жесткости и т. п.
Бетонные работы
Материалы
Цементы для приготовления бетонных смесей рекомендуется выбирать в соответствии с данными табл.3.1 и ГОСТ 23464-79. Приемку цементов следует производить по ГОСТ 22236-85, транспортирование и хранение – по ГОСТ 22237-85.
Таблица 3.1. Область применения цементов в строительстве
Заполнители для бетонов следует применять фракционированными и мытыми. Запрещается применять природную смесь песка и гравия без рассева на фракции (табл. 3.2).
Таблица 3.2. Материалы для бетонов
Дозировать компоненты бетонных смесей необходимо по массе. Порядок загрузки компонентов, продолжительность перемешивания бетонной смеси устанавливаются для конкретных материалов и условий бетоносмесительного оборудования.
Транспортирование и подача бетонных смесей осуществляются средствами для сохранения свойств бетонной смеси. Запрещается добавлять воду на месте укладки бетонной смеси для увеличения ее подвижности.
Состав бетонной смеси, приготовление, правила приемки, методы контроля и транспортировки должны соответствовать ГОСТ 7473-85. Требования к составу, приготовлению и транспортированию бетонных смесей приведены в табл. 3.3.
Таблица 3.3. Требования к составу, приготовлению и транспортированию бетонных смесей
Требования к работам по укладке бетона
Работы по укладке бетона следует производить с соблюдением ряда правил.
Перед бетонированием скальные основания, горизонтальные и наклонные бетонные поверхности рабочих швов необходимо очищать, промывать водой и просушивать струей воздуха.
Бетонные смеси нужно укладывать горизонтальными слоями одинаковой толщины без разрывов.
Глубина погружения глубинного вибратора в бетонную смесь должна обеспечивать его углубление в уложенный слой на 5-10 см. Шаг перестановки глубинных вибраторов не должен превышать полуторный радиус их действия, поверхностных вибраторов – должен обеспечивать перекрытие на 100 мм площадкой вибратора границы уже провибрированного участка.
Возможна укладка следующего слоя бетонной смеси до начала схватывания бетона предыдущего слоя.
Поверхность рабочих швов, устраиваемых при укладке бетонной смеси с перерывами, должна быть перпендикулярна оси бетонируемых колонн и балок, поверхности плит и стен. Возобновление бетонирования возможно при прочности бетона не менее 1,5 МПа.
Рабочие швы допускается устраивать при бетонировании:
колонн – на отметке верха фундамента, низа прогонов, балок и подкрановых консолей, верха подкрановых балок, низа капителей колонн;
балок больших размеров, соединенных с плитами, – на 20–30 мм ниже отметки нижней поверхности плиты, а при наличии в плите вутов – на отметке низа вута плиты;
плоских плит – параллельно меньшей стороне плиты;
ребристых перекрытий – параллельно второстепенным балкам;
отдельных балок – в пределах средней трети пролета балок, параллельно главным балкам в пределах двух средних четвертей пролета прогонов и плит;
массивов, арок, сводов, резервуаров, бункеров, гидротехнических сооружений, мостов и других сложных инженерных сооружений и конструкций.
Требования к укладке и уплотнению бетонных смесей приведены в табл. 3.4.
Таблица 3.4. Требования к укладке и уплотнению бетонных смесей
Работы по уходу за бетоном
Данный вид работ выполняется в определенной последовательности.
В начале твердения бетон необходимо защищать от попадания осадков или потерь влаги, потом поддерживать температурно-влажностный режим для нарастания прочности бетона.
Движение людей по забетонированным конструкциям и установка опалубки разрешаются после достижения бетоном прочности не менее 1,5 МПа.
Прочность, морозостойкость, плотность, водонепроницаемость, деформативность бетона определяются согласно требованиям государственных стандартов.
Работы с бетонами на пористых заполнителях
Бетоны на пористых заполнителях должны удовлетворять требованиям ГОСТ 25820-83. Материалы для бетонов следует выбирать на основании данных, приведенных в табл. 3.2, а химические добавки – по табл. 3.5.
Таблица 3.5. Область применения добавок к бетонам
* Допускается до 1 % СН.
** Применение ХН не допускается.
*** Допускается к применению в конструкциях, армированных сталями, стойкими к коррозионному растрескиванию.
**** Допускается применение добавки ЛТМ.
Примечания
1. Знак «-» – запрещается введение добавки, знак «+» – допускается введение добавки, знак «(+)» – допускается введение добавки только в качестве ускорителя твердения бетона.
При применении добавок по п. 3 и 4 следует учитывать указания п. 2. Скращения, принятые в табл. 3.5:
НЖ – нитрит железа (ГОСТ 4111-74);
ХК – хлорид кальция (ГОСТ 450-77);
ХН – хлорид натрия (ГОСТ 13830-68);
СН – сульфат натрия (ГОСТ 6318-77);
НК – нитрит кальция (ТУ 6-03-367-79);
ННК – нитрит-нитрат кальция (ТУ 6-03-704-74);
М – мочевина (ГОСТ 2081-75);
НН – нитрит натрия (ГОСТ 18906-80*);
ННХК – нитрит-нитрат-хлорид кальция (ТУ 6-18-194-76);
ЛСТ – лигносульфонаты технические (ОСТ 13-183-83);
ХЖ – хлорид железа (ГОСТ 11159-76);
ПАЩ-1 – пластификатор адипиновый (ТУ 6-03-26-77);
ВДХК – омыленная растворимая смола (ТУ 61-05-34-75);
ГКЖ – метил (этил) силиконат натрия (ТУ 6-02-696-76);
НЧК – нейтрализованный черный контакт (натриевый) (ТУ 38-101615-76);
КЧНР – нейтрализованный черный контакт рафинированный (ТУ 383022-74);
СНВ – смола нейтрализованная воздухововлекающая (ТУ 81-05-7-80);
СПД – синтетическая поверхностно-активная добавка (ТУ 38-101253-77);
ЦНИПС-1 – омыленный древесный пек (ТУ 81-05-16-76);
ПГЭН – этилгидридсесквиоксан (ТУ 6-02-280-76);
ЛХД – лесохимическая добавка (ТУ 81-05-128-81);
УПБ – мелассная упаренная последрожжевая барда (ОСТ 18-126-73).
2. Рекомендуемые суперпластификаторы: С-3 – «разжижитель С-3» (ТУ 14652-81 с изм. № 1), ДФ – «Дофен» (ТУ 14-6-188-81), НККС 40–03 (ТУ 384-0258-82).
3. Рекомендуемые суперпластифицирующие добавки на основе модифицированных лигносульфонатов: ЛТМ (ТУ 65-08-74-86), МТС (ТУ 67-542-83), НИЛ-20 (ТУ 400-302-4-80), ЛСТМ-2 (ТУ 13-287-85).
Подбор состава бетона, бетонных смесей, их приготовление, доставку, укладку и уход за бетоном необходимо производить в соответствии с Г ОСТ 27006-86, ГОСТ 7473-85. Основные показатели качества бетонной смеси и бетона должны контролироваться в соответствии с табл. 3.6.
Таблица 3.6. Показатели качества бетонной смеси и бетона
Работы с кислотостойкими и щелочестойкими бетонами
Кислотостойкие и щелочестойкие бетоны должны соответствовать требованиям ГОСТ 25192-82. Составы кислотостойких бетонов и требования к материалам приведены в табл. 3.7.
Приготовление бетонных смесей на жидком стекле следует осуществлять в определенном порядке. Сначала в закрытом смесителе в сухом виде перемешивают просеянные через сито № 03 компоненты: инициатор твердения, наполнитель и другие порошкообразные вещества. После этого жидкое стекло перемешивают с модифицирующими добавками, в смеситель загружают щебень всех фракций и песок, затем – смесь порошкообразных материалов. Полученный состав перемешивают в течение 1 мин, затем добавляют жидкое стекло и перемешивают еще 1–2 мин. Требования к подвижности бетонных смесей приведены в табл. 3.8.
Таблица 3.7. Составы кислотостойких бетонов и требования к материалам
Таблица 3.8. Требования к подвижности бетонных смесей
Транспортирование, укладку и уплотнение бетонной смеси следует осуществлять при температуре воздуха не ниже 10 °C, причем укладка проводится непрерывно.
Влажность поверхности бетона или кирпича, защищаемых кислотоупорным бетоном, должна быть не более 5 % по массе на глубине до 10 мм.
Поверхность железобетонных конструкций из бетона на портландцементе перед укладкой на них кислотостойкого бетона обрабатывается горячим раствором кремнефтористого магния (3-5-процентный раствор с температурой 60 °C) или щавелевой кислоты (5-10-процентный раствор). Допускается также прогрунтовка полиизоцианатом или 50-процентным раствором полиизоцианата в ацетоне.
Бетонную смесь на жидком стекле следует уплотнять вибрированием каждого слоя толщиной не более 200 мм в течение 1–2 мин.
Твердение бетона в течение 28 суток должно происходить при температуре не ниже 15 °C. Для просушивания воздушными калориферами при температуре 60–80 °C достаточно суток. При этом скорость подъема температуры не должна превышать 20–30 °C/ч.
Кислотонепроницаемость кислотостойкого бетона обеспечивается введением в его состав полимерных добавок до 3–5 % массы жидкого стекла: фурилового спирта, фурфурола, фуритола, ацетоноформальдегидной смолы АЦФ-3М, тетра-фурфурилового эфира ортокремневой кислоты ТФС, компаунда из фурилового спирта с фенолформальдегидной смолой ФРВ-1 или ФРВ-4.
Водостойкость кислотостойкого бетона обеспечивается введением в его состав тонкомолотых добавок с кремнеземом (диатомит, трепел, аэросил, кремень, халцедон и др.) до 5-10 % массы жидкого стекла или полимерных добавок до 10–12 % массы жидкого стекла: по лиизоцианата, карбамидной смолы КФЖ или КФМТ, кремнийорганической гидрофобизирующей жидкости ГКЖ-10 или ГКЖ-11, эмульсии парафина.
Защитные свойства кислотостойкого бетона по отношению к стальной арматуре обеспечиваются введением в его состав ингибиторов коррозии до 0,1–0,3 % массы жидкого стекла: окиси свинца, комплексной добавки катапина и сульфонола, фенилантранилата натрия.
Повышение химической стойкости конструкций из кислотостойкого бетона обеспечивается двукратной обработкой раствором серной кислоты 25-40-процентной концентрации.
Материалы для щелочестойких бетонов, контактирующих с растворами щелочей при температуре до 50 °C, должны удовлетворять требованиям ГОСТ 10178-85. Не допускается применение цементов с активными минеральными добавками. Содержание гранулированных или электротермофосфорных шлаков должно быть не менее 10 и не белее 20 %. Содержание минерала СуА в портландцементе и шлакопортландцементе должно быть не более 8 %. Применение глиноземистого вяжущего запрещено.
Песок для щелочестойкого бетона, эксплуатируемого при темпера туре до 30 °C, следует применять в соответствии с требованиями ГОСТ 10268-80. При температуре выше 30 °C необходимо использовать дробленый заполнитель из щелочестойких пород – известняка, доломита, магнезита. Щебень для щелочестойких бетонов, эксплуатируемых при температуре до 30 °C, следует применять из плотных изверженных пород – гранита, диабаза, базальта. Щебень для щелочестойких бетонов, эксплуатируемых при температуре выше 30 °C, надлежит применять из плотных карбонатных осадочных или метаморфических пород – известняка, доломита, магнезита и т. п. Водонасыщение щебня не должно превышать 5 %.
Работы с жаростойким бетоном
Особенности применения материалов для приготовления обычного бетона, эксплуатируемого при температуре до 200 °C, и жаростойкого бетона приведены в табл. 3.1 и 3.2.
Дозирование материалов, приготовление и транспортировка бетонных смесей должны осуществляться в соответствии с требованиями ГОСТ 7473-85 и ГОСТ 20910-82.
Увеличение подвижности бетонных смесей для обычных бетонов, эксплуатируемых при температуре до 200 °C, возможно за счет применения пластификаторов и суперпластификаторов.
Применение химических ускорителей твердения в бетонах, эксплуатируемых при температуре выше 150 °C, запрещено.
Бетонные смеси следует укладывать непрерывно при температуре не ниже 15 °C.
Работы с особо тяжелыми бетонами и бетонами для радиационной защиты
Работы с этими видами бетонов производятся по обычной технологии.
Когда обычные способы бетонирования неприменимы из-за расслоения смеси либо сложности сооружения, следует применять метод раздельного бетонирования (способ восходящего раствора или способ втапливания крупного заполнителя в раствор).
При укладке бетонных смесей запрещается применение ленточных и вибрационных транспортеров, вибробункеров, виброхоботов. Сбрасывание особо тяжелой бетонной смеси допускается с высоты не более 1 м.
Бетонные работы при отрицательных температурах
При выполнении бетонных работ в условиях отрицательных температур (среднесуточная температура ниже 5 °C и минимальная суточная температура ниже 0 °C) должны соблюдаться определенные правила.
Пригоовление бетонной смеси необходимо производить в обогреваемых бетоносмесительных установках.
Состояние основания для укладки бетонной смеси, его температура и способ укладки должны исключать возможность замерзания смеси. При температуре ниже -10 °C бетонирование густоармированных конструкций с арматурой из жестких прокатных профилей или с крупными металлическими закладными частями следует выполнять с предварительным отогревом металла.
Выпуски арматуры забетонированных конструкций необходимо утеплять на высоту не менее чем 0,5 м. Перед укладкой бетонной смеси поверхности полостей стыков сборных железобетонных элементов должны быть очищены.
Ускорение твердения бетона при бетонировании монолитных буронабивных свай и замоноличивании буроопускных следует обеспечивать путем введения в бетонную смесь комплексных противоморозных добавок.
Выбор способа выдерживания бетона при зимнем бетонировании монолитных конструкций надлежит производить в соответствии с табл. 3.9.
Основные требования к зимним бетонным работам приведены в табл. 3.10.
Таблица 3.9. Выбор наиболее экономичного метода выдерживания бетона при бетонировании монолитных конструкций в условиях низких температур
* Противоморозные добавки, как правило, следует применять в комплексе с пластифицирующими.
Таблица 3.10. Требования к бетонным работам в условиях отрицательных температур
Выполнение бетонных работ при температуре воздуха выше 25 °C
При производстве бетонных работ при температуре воздуха выше 25 °C и влажности менее 50 % следует применять быстротвердеющие портландцементы, марка которых как минимум в 1,5 раза выше марочной прочности бетона. Для бетонов класса В22,5 и выше допускается использовать цементы, марка которых превышает марочную прочность бетона менее чем в 1,5 раза, при условии применения пластифицированных портландцементов или введения пластифицирующих добавок.
Температура бетонной смеси при бетонировании конструкций с модулем поверхности более 3 не должна превышать 30–35 °C, а для массивных конструкций с модулем поверхности менее 3 – 20 °C.
При появлении на уложенном бетоне трещин возможно его повторное вибрирование через 0,5–1 ч после окончания укладки. Также необходимо следить за увлажнением забетонированной поверхности.
Специальные методы бетонирования
Метод вертикально перемещаемой трубы (ВПТ) применяется при заглубленных конструкциях с глубиной от 1,5 м и более. При этом используется бетон проектного класса до В25.
Бетонирование методом восходящего раствора (ВР) с заливкой наброски из крупного камня цементно-песчаным раствором применяется при укладке под водой бетона на глубине до 20 м для получения прочности бетона, соответствующей прочности бутовой кладки. Метод ВР с заливкой наброски из щебня цементно-песчаным раствором применяется на глубинах до 20 м для возведения конструкций из бетона класса до В25.
Инъекционный и вибронагнетательный методы применяются для бетонирования подземных тонкостенных конструкций из бетона класса В25 на заполнителе максимальной фракции 10–20 мм.
Метод укладки бетонной смеси бункерами применяется при бетонировании конструкций из бетона класса В20 на глубине более 20 м.
Метод втрамбовывания бетонной смеси применяется на глубине менее 1,5 м для больших площадей, бетонируемых до отметки, расположенной выше уровня воды, при классе бетона до В25.
Метод напорного бетонирования путем непрерывного нагнетания бетонной смеси при избыточном давлении применяется при возведении подземных конструкций в обводненных грунтах и сложных гидрогеологических условиях при устройстве подводных конструкций на глубине более 10 м, а также при возведении сильноармированных конструкций.
Метод укатки малоцементной жесткой бетонной смеси применяется для возведения плоских протяженных конструкций из бетона класса до В20. Толщина укатываемого слоя при этом равна 20–50 см.
Для цементно-грунтовых конструкций нулевого цикла при глубине заложения до 0,5 м используется буросмесительная технология – смешивание расчетного количества цемента, грунта и воды в скважине буровым оборудованием.
При подводном бетонировании необходимо обеспечивать изоляцию бетонной смеси от воды в процессе ее транспортировки под воду и укладки, плотность опалубки, непрерывность бетонирования, контроль за состоянием опалубки при укладке бетонной смеси.
Бетонирование способом ВПТ после аварийного перерыва возобновляется только при условии достижения бетоном в оболочке прочности 2,0–2,5 МПа, удаления с поверхности подводного бетона шлама и слабого бетона, обеспечения надежной связи вновь укладываемого бетона с затвердевшим бетоном (штрабы, анкеры и т. д.).
При подаче бетонной смеси под воду бункерами запрещено свободное сбрасывание смеси в воду, а также разравнивание уложенного бетона горизонтальным перемещением бункера.
Втрамбовывание вновь поступающих порций бетонной смеси производится не ближе 200–300 мм от уреза воды, при этом не допускается сплыв смеси поверх откоса в воду.
В конструкциях типа «стена в грунте» бетонирование траншей следует выполнять секциями длиной не более 6 м с применением инвентарных межсекционных разделителей.
При наличии в траншее глинистого раствора бетонирование секции производится не позднее чем через 6 ч после заливки раствора в траншею. В противном случае следует заменить глинистый раствор с одновременной выработкой шлама, осевшего на дно траншеи.
Арматурный каркас перед погружением в глинистый раствор необходимо смачивать водой.
Расстояние от бетонолитной трубы до межсекционного разделителя должно быть не более 1,5 м при толщине стены до 40 см и не более 3 м при толщине стены более 40 см.
Требования к бетонным смесям при их укладке специальными методами приведены в табл. 3.11.
Таблица 3.11. Требования к бетонным смесям при их укладке специальными методами
Прорезка деформационных швов, технологических борозд, проемов, отверстий и обработка поверхности монолитных конструкций
Инструмент для механической обработки следует выбирать в зависимости от физико-механических свойств бетона и железобетона с учетом требований, предъявляемых к качеству обработки ГОСТ на алмазный инструмент (табл. 3.12).
Охлаждение инструмента следует предусматривать водой под давлением 0,15-0,2 МПа, для снижения энергоемкости обработки – растворами поверхностно-активных веществ концентрации 0,01-1 %.
Таблица 3.12. Рекомендуемые марки порошка и связки алмазного инструмента для обработки бетона и железобетона
Требования к режимам механической обработки бетона и железобетона приведены в табл. 3.13.
Таблица 3.13. Требования к режимам механической обработки бетона и железобетона
Цементация швов, торкретирование и устройство набрызг-бетона
Для цементации усадочных, температурных, деформационных и конструкционных швов следует применять портландцемент не ниже М400. До начала работ по цементации производятся промывка и гидравлическое опробование шва для определения его пропускной способности и герметичности.
Цементацию следует выполнять до поднятия уровня воды перед гидротехническим сооружением после затухания основной части температурно-усадочных деформаций.
Качество цементирования швов проверяется обследованием бетона посредством бурения скважин и гидравлического опробования их и кернов, взятых из мест пересечения швов, а также замером фильтрации воды через швы.
Заполнители для торкретирования и устройства набрызг-бетона должны отвечать требованиям ГОСТ 10268-80. Крупность заполнителей не должна превышать половины толщины каждого торкретируемого слоя и половины размера ячейки арматурных сеток.
Поверхность для торкретирования необходимо очистить, продуть сжатым воздухом и промыть. Торкретирование производится в один или несколько слоев толщиной 3–5 мм по неармированной или армированной поверхности согласно проекту.
Арматурные работы
Арматурная сталь (стержневая, проволочная) и сортовой прокат, арматурные изделия и закладные элементы должны соответствовать проекту.
Транспортирование и хранение арматурной стали необходимо выполнять с соблюдением требований ГОСТ 7566-81.
Пространственные крупногабаритные арматурные изделия изготавливаются в сборочных кондукторах. Заготовка (резка, сварка, образование анкерных устройств), установка и натяжение напрягаемой арматуры выполняются по проекту. Монтаж арматурных конструкций следует производить из крупноразмерных блоков или унифицированных сеток с фиксацией защитного слоя согласно табл. 3.14.
Таблица 3.14. Монтаж арматурных конструкций
Бессварочные стыковые соединения стержней следует производить внахлестку или обжимными гильзами и винтовыми муфтами с обеспечением равнопрочности стыка, а крестообразные – вязкой отожженной проволокой.
При устройстве арматурных конструкций необходимо соблюдать требования, приведенные в табл. 3.14.
Расчет нагрузок на опалубку
При расчете опалубки, лесов и креплений должны приниматься следующие нормативные нагрузки.
Вертикальные нагрузки:
а) собственная масса опалубки и лесов, которая определяется по чертежам. При устройстве деревянных опалубок и лесов объемную массу древесины следует принимать: для хвойных пород – 600 кг/м3, для лиственных пород – 800 кг/м3;
б) масса свежеуложенной бетонной смеси, принимаемая для бетона на гравии или щебне из камня твердых пород, – 2500 кг/м3, для бетонов прочих видов – по фактическому весу;
в) масса арматуры, принимаемая по проекту, а при отсутствии проектных данных – 100 кг/м3 железобетонной конструкции;
г) нагрузки от людей и транспортных средств при расчете палубы, настилов и непосредственно поддерживающих их элементов лесов– 2,5 кПа; палубы или настила при расчете конструктивных элементов – 1,5 кПа.
Примечания