Автомобильные присадки и добавки Балабанов Виктор

Предисловие

На земном шаре в эксплуатации находится более 500 млн автомобилей, имеющих возраст более 5 лет и пробег свыше 100 тыс. км. При таком пробеге, даже при использовании современных смазочных материалов, износ некоторых деталей основных агрегатов автомобиля достигает критического уровня, что снижает ресурс, увеличивает эксплуатационные расходы и, как правило, требует дорогостоящего ремонта автомобиля.

На сегодняшний день в России более 15 млн отечественных автомобилей имеют возраст старше трех лет. Если учитывать изначально невысокое качество изготовления, межремонтный ресурс этой техники очень не велик. Кроме того, использование масел и топлива низкого качества приводит к дополнительному износу пар трения, снижению мощности, повышенному расходу топлива, угару масла, снижению эффективности эксплуатации автомобиля в целом. Все это сопряжено с серьезными материальными издержками, так как требует частого обращения в автосервис.

Обращаем ваше внимание на то, что наряду с традиционными методами ремонта, связанными с заменой деталей, существуют более дешевые, но не менее эффективные методы решения проблем. Альтернативой классическому ремонту являются высокоэффективные средства безразборного технического сервиса узлов и агрегатов с помощью препаратов автохимии. Как правило, это высокотехнологичные составы, разработанные на основе последних достижений науки и техники, в том числе нанотехнологий.

Уважаемые автомобилисты, Вашему вниманию предлагается новая специализированная книга, посвященная известным присадкам и добавкам к различным автомобильным технологическим средам: смазочным материалам, топливу, охлаждающим, а также к стеклоочищающим жидкостям, получившим обобщенное название автохимия.

В зависимости от агрегатного состояния и растворимости в этих технологических средах препараты автохимии различают присадки и добавки. Органические маслорастворимые вещества называют присадками, они составляют самую распространенную группу. К ним можно отнести и появившиеся недавно на рынке автохимии кондиционеры поверхности. Твердые нерастворимые соединения, как правило, неорганического происхождения, называют антифрикционными добавками. К ним также относятся полимерсодержащие и некоторые другие композиции, например, на основе минералов, часто именуемые модификаторами.

В книге рассмотрены различные группы препаратов автохимии: очистители топливных систем, антигели, цетан— и октан — корректоры, ремонтно — восстановительные препараты (РВП) и технологии, в т. ч., реметаллизанты, геомодификаторы трения, кондиционеры поверхности, слоистые и нанодобавки, которые находят все более широкое применение и позволяют значительно повысить надежность автомобильной и другой техники.

Данная книга — это своего рода доступный справочник по современным автомобильным добавкам и присадкам, который подготовлен в результате обобщения (систематизации) накопленного нами опыта. Она содержит рекомендации по их применению и ответы на наиболее часто встречающиеся вопросы по рассматриваемой проблеме.

Для «глубоко копающих» читателей, готовых и желающих более подробно разобраться во всех нюансах автохимии, в конце книги приведен список литературных источников.

Книга предназначена для автомобилистов — любителей и профессионалов; может представлять интерес для инженерно — технических работников ремонтно — транспортных предприятий, а также для преподавателей, научных сотрудников и студентов технических вузов.

Нам искренне хочется поделиться своими знаниями и опытом, сделать Вашу жизнь легче и интересней, а эксплуатацию Вашей техники более безопасной, надежной и экономичной.

Авторы выражают признательность и благодарность сотрудникам компании «Эй-Джи-Эй» за предоставленные материалы и помощь при подготовке рукописи данной книги.

Авторы

Из истории автохимии

Человечество сталкивалось с решением проблем смазки деталей и приспособлений с давних времен.

Автохимия — препараты химической промышленности для обслуживания и ремонта систем транспортного средства, прежде всего двигателя, трансмиссии и кузова.

Еще в Древнем Египте, примерно в 2400 году до нашей эры, при транспортировке египетского каменного колосса на специальных деревянных салазках (рис. 1) между полозьями салазок и такими же деревянными болванами вводили особый смазочный материал на основе воды с добавлением оливкого масла (в качестве присадки) и ила из реки Нил (в качестве антифрикционной добавки).

Рис. 1. Изображение транспортировки египетского каменного колосса

Оливковое масло также применялось в опорах колодезных воротов времен бронзового века (V век до н. э.) для снижения силы трения и предотвращения неприятного скрипа при подъеме воды на поверхность.

Значительно позже, ориентировочно в 23…79 годах уже нашей эры Плиний Старший (С. Plinius Secundus) составил один из первых списков некоторых растительных и животных масел, пригодных к применению в качестве смазочных материалов. Так что «список Плиния» можно считать первым каталогом смазочных материалов в мире.

Как гласит китайская пословица XVII века, «…одна капля масла в подшипник делает повозку, а тысяча капель — корабль, готовым к эксплуатации».

Основоположником современной науки о трении считается известный французский ученый и военный инженер Кулон (Coulomb) Шарль Августин, в 1781 году опубликовавший свою знаменитую книгу «Теория простых машин», которую можно считать одним из первых изданий по трибологии.

Трибология (греч. tribos — трение, logos — наука) — наука о контактном взаимодействии твердых тел при их относительном движении, охватывающая весь комплекс вопросов трения, изнашивания, смазки и самоорганизации в машинах.

Однако еще до его рождения, в 1699 году, французский учёный Амонтон (Amontons) Гийом (Гильом) направил во Французскую академию письмо, в котором математически описал закон о прямой пропорциональности между нормальной силой (N), прижимающей одну трущуюся поверхность к другой, и силой трения (F) в виде:

F = N, где — коэффициент пропорциональности, названный впоследствии коэффициентом трения (рис. 2).

Рис. 2. Схема определения силы трения: F — сила трения; N — нормальная (прижимающая) сила

Сила трения сила сопротивления при относительном перемещении одного тела по поверхности другого под действием внешней силы, направленной по касательной к общей границе между этими телами.

Гийом Амонтон писал: «Теперь, установив в достаточной мере природу трения и его законы, остается только сказать коечто о правилах, по которым оно может быть сведено к расчету, дабы знать, каково трение в самых сложных машинах».

Трение — механическое сопротивление, возникающее в плоскости касания двух соприкасающихся, прижатых друг к другу тел при их относительном перемещении.

В опытах с медью, свинцом, железом и деревом Амонтон получил соотношение между силой трения F и силой нормального давления N равное 1/3. Во время своих опытов он покрывал все исследуемые образцы одним и тем же смазочным материалом — специальным жиром на основе свиного сала. С тех пор для смазывания трущихся деталей долгое время применяли искусственно производимые животные жиры, масла, древесный деготь и другие аналогичные препараты.

Великий итальянский художник, ученый, конструктор и т. д. — Леонардо да Винчи (Leonardo da Vinci) (1452–1519) также занимался вопросами трения. По результатам своих опытов он считал постоянным значение отношения F/N для всех материалов и равным 1/4.

Шарль Кулон, работавший на военных верфях Рошфор (западное побережье Франции), првый пришел к выводу о том, что сила трения F в подвижных соединениях зависит еще от одного параметра — адгезионной составляющей А, и переписал известную формулу в другом виде:

F = N + А.

В настоящее время этот закон носит наименование Амонтона — Кулона, или Леонардо да Винчи — Амонтона, который до начала XX века применялся в инженерной практике.

Адгезия (лат. adhaesio — прилипание) — соединение поверхностей двух разнородных твёрдых или жидких тел, связанное с межмолекулярным взаимодействием (вандерваальсовым, полярным, частично химическим или взаимной диффузией) в поверхностном слое.

Выдающийся российский механик — самоучка Иван Петрович Кулибин (1735–1818), состоя на службе при дворе российской императрицы Екатерины II, должен был изготовить плавный и бесшумный дворцовый лифт. Для этого лифта потребовались особые смазочные материалы, так как распространенные в то время смазки из растительного масла, сала и тем более дёгтя не могли быть использованы по причине неприятного, отдающего «деревней и мужиками» запаха. Применение Кулибиным твердой смазки из графита позволило оригинально решить эту деликатную проблему.

В 1763 году еще один гениальный русский механик — самоучка Иван Иванович Ползунов (1728–1766) выдвинул гениальную идею «огненной машины» (парового двигателя) и сумел собрать ее действующую модель. Он же впервые в мире изобрел двухцилиндровый двигатель.

Только через 20 лет, в 1784 году, шотландский изобретатель Джеймс Уатт (James Watt, 1736–1819) создал такой же паровой двигатель, который положил начало строительству серийной самодвижущейся транспортной техники. Трущиеся детали такой техники было необходимо регулярно смазывать, для чего применялись различные растительные и животные смазки.

Несколько позже, в 1812 году Генри Томас Хардакр запатентовал в Англии смесь графита и свиного жира в пропорции 1: 4 для получения пластичного смазочного материала.

Лауреат Ломоносовской премии Российской академии наук, один из самых первых и самых известных отечественных ученых — смазчиков — Николай Павлович Петров в 1883 году написал в своей ставшей классической книге «Трение в машинах и влияние на него смазывающей жидкости»: «Расходы на топливо для машин, считающихся у нас в России десятками миллионов, заслуживают самого серьёзного внимания. Увеличение расхода на топливо на 5 %, на 10 % может легко явиться вследствие неудовлетворительных условий смазывания, а это выразится в народном хозяйстве потерями миллионов рублей. Таковы теперь причины, заставляющие наших техников обратить свое внимание на правильный выбор смазочных материалов».

Работы Н. П. Петрова получили мировую известность. Независимо от зарубежных работ Б. Тауэра и О. Рейнольдса он разработал основы теории гидродинамической смазки, а также открыл законы трения концентрических радиальных подшипников.

В конце XIX — начале XX веков произошло постепенное замещение растительных и животных жиров минеральными маслами, получаемыми из нефти. В 1936 году У. Гарди выпустил работу «Избранные труды», посвященную преимуществам минеральных масел и анализу их отличий от органических масел в механизме влияния на процессы трения.

В далеком 1899 году в Англии сэр Ч. Вейкфилд основал маленькую компанию по исследованию и выпуску автомобильных масел. Спустя десять лет компания предложила автомобилистам новый уникальный смазочный материал на основе смеси минерального и касторового масел, давший впоследствии свое имя известной во всем мире фирме — Castrol .

Однако, несмотря на высокие функциональные свойства новых нефтяных масел, уже в то время эти обыкновенные минеральные масла не в полной мере удовлетворяли стремительно возраставшим эксплуатационным требованиям, предъявляемым к ним автомобилестроителями.

В 1909 году первому российскому шоферу — Василию Никитовичу Галактионову — было вручено особое свидетельство (аналог современного водительского удостоверения), где было указано, что его обладатель имеет право ездить по всей Российской Империи. Однако об автохимии он, пожалуй, на тот момент еще ничего не слышал, так как официальный отсчет её истории начался только в следующем году. Именно в начале 1910 года компания Castrol в первые стала добавлять к своим смазочным материалам дополнительные химические соединения и вещества (аддитивы — лат. additio — прибавление). Вначале это были обыкновенные соединения серы и молотый графит. Так что сейчас уже можно говорить о юбилее — вековой истории автохимической промышленности.

Начиная с 1920 года, практически все производители смазочных материалов начали разрабатывать и вводить в свою продукцию специальные присадки к маслам. В 1935 году фирма Castrol одной из первых в мире применила для повышения ресурса двигателя присадки на основе органических соединений хрома. Для разрабатываемых в те годы высокофорсированных (теплонагруженных) двигателей нефтяные масла оказались непригодны, так как они окислялись уже при 120 °C. Поэтому в 1949 году фирма одной из первых выпустила моторные масла с антикоррозионными и антиокислительными присадками.

Коррозионная активность нефтепродукта оценивается по коррозии на поверхности металлического образца после испытаний в этом нефтепродукте. Коррозия медных образцов оценивается изменением цвета, чугунных и стальных образцов — количеством очагов коррозии (пятен, точек, потускнений), а свинцовых образцов — потерей их веса.

Любительская автохимия зародилась в 1942 году в Чикаго (США), когда по заказу автомобильного концерна «General Motors» компания «CD-2» впервые разработала и выпустила в розничную продажу банку с антифрикционной присадкой к моторному маслу.

Ставший в настоящее время общепринятым термин «трибология» был впервые применен британскими учеными — экспертами в развернутом рапорте Парламенту Великобритании в 1966 году, когда рабочая группа под руководством профессора Питера Н. Джост (Jost H. Peter) — в настоящее время президента Международного трибологического совета (International Tribology Council, Лондон, Великобритания), и по поручению английского Министра образования и науки того времени лорда Франка П. Боудена (Bowden Frank Philip) (1903–1968) доложила о значении смазки для промышленности, экономики и государства в целом.

Рынок автохимии в Российской Федерации начал формироваться сравнительно недавно — в начале 90–х годов ХХ века. Динамика изменения ассортимента данного рынка по основным группам товаров (в самом общем виде) за последние двадцать лет представлена в табл. 1.

Таблица 1. Ассортимент рынка автохимии Российской Федерации в 1991–2010 годах

Согласно данным, приведенным в таблице 1, наибольшие изменения ассортимента товаров автохимии коснулись присадок и добавок к моторному маслу, присадок к бензину, клеев, адгезивов, герметиков, а также смазок и консервантов. Столь существенный рост свидетельствует о повышенном потребительском интересе к данным видам товаров.

Дизельное топливо — моторное топливо для дизельного двигателя внутреннего сгорания, а также газодизелей. Жидкий продукт желтоватого (соломенного) цвета с определенными физико — химическими характеристиками, получаемый из керосиново — газойлевых фракций прямой перегонки нефти (см. также «Солярка»).

В настоящее время на российском рынке автохимии в основном представлены препараты ведущих мировых производителей, а также некоторые образцы отечественного производства, которые набирают известность и популярность среди автомобилистов.

Были проведены опросы 550 респондентов на предмет степени известности среди автомобилистов средств автохимии, представленных на российском рынке, результаты которого представлены в табл. 2, с указанием страны — производителя и ценового сегмента.

Таблица 2. Известность марок автохмии, представленных на российском рынке

Согласно полученным данным, наибольшей известностью на рынке пользуется продукция американских фирм — производителей, а именно: HiGear, ER, K W, Preston и некоторые другие. Безусловное доминирование американской продукции на российском рынке легко объясняется развитостью этого рынка в самих Соединенных Штатах, накопленным в этой связи огромным опытом американских производителей и искушенностью маркетологов. Из российских препаратов, благодаря применению международных приемов при их выводе на российский рынок, немалым успехом пользуются торговые марки Fenom и AGA. В конце 1980 — начале 1990–х годов рынок автохимии в развитых странах переживал настоящий бум. Внедрение информационных технологий в химическую промышленность позволило создавать более эффективные препараты, а огромный автомобильный парк обеспечил устойчивый высокий спрос. В последующие десять лет тенденции развития данного рынка на Западе и в России имели противоположную направленность: если в развитых странах наметился определенный спад, обусловленный повышением качества производимых автомобилей, масел и технических жидкостей, то емкость российского рынка автохимии постоянно увеличивалась. В первую очередь это можно объяснить не менее, чем десятилетним технологическим отрывом автомобильной промышленности стран Запада от российской, последствия которого представлены в табл. 3.

Таблица 3. Особенности отечественного автомобильного рынка

В России 90–х годов прошлого века существовали внутренние условия для развития рынка автохимии. Наблюдался резкий рост парка частных и коммерческих автомобилей. Начиная с 1993 года, российский легковой автомобильный парк увеличивался примерно на 1 млн машин в год, достигнув уже к 2000 году 25 млн автомобилей.

Надежность — свойство объекта (прибора, инструмента, машины, агрегата, детали и т. д.) сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонта, хранения и транспортирования.

Надежность является комплексным свойством, которое в зависимости от назначения объекта и условий его применения включает безотказность, долговечность, ремонтопригодность и сохраняемость.

Сменилось поколение легковых отечественных автомобилей. Выход на рынок переднеприводных семейств ВАЗ и «Москвич» потребовал более качественных автомобильных масел и технических жидкостей для их должного обслуживания.

Существенный рост числа подержанных иномарок, эксплуатируемых на территории постсоветского пространства (табл. 4), неприспособленность к российским условиям эксплуатации и высокая стоимость ремонта этих автомобилей побуждали владельцев искать альтернативные способы продления безремонтного пробега и снижения эксплуатационных затрат.

Таблица 4. Примерное соответствие автомобилей экологическим классам выбросов, в зависимости от их года выпуска и страны происхождения

* В Европейский Союз входят: Австрия, Бельгия, Болгария, Великобритания, Венгрия, Германия, Греция, Дания, Ирландия, Испания, Италия, Кипр, Латвия, Литва, Люксембург, Мальта, Нидерланды, Польша, Португалия, Румыния, Словакия, Словения, Финляндия, Франция, Чехия, Швеция и Эстония.

К настоящему времени рынок автохимии в России можно считать в целом сформировавшимся. На нём представлены все основные группы товаров и большинство мировых производителей. Также началось развитие российского производства автохимии. За последние годы произошла профессионализация продавцов, в качестве которых выступают небольшие оптовые фирмы. Все вышесказанное позволяет сделать вывод о том, что автохимия в России в полной мере является отраслью «рыночной субэкономики».

Важнейшим блоком информации о внешней среде, необходимым для разработки стратегии, является маркетинговая информация о потребителях продукции. Для оценки финансовой привлекательности российского рынка присадок был проведен анализ потенциала российского рынка присадок. В основу метода анализа потенциала рынка была положена зависимость объема потребления от числа потребителей.

В целом сегодня емкость российского рынка автохимии оценивается примерно в 250–280 млн долларов в год, что делает этот рынок весьма привлекательным, особенно для компаний, ориентированных на инновации и обладающих эффективными уникальными ресурсосберегающими технологиями.

Ресурс — наработка (продолжительность или объём работ) объекта от начала эксплуатации или её возобновления после капитального ремонта до наступления предельного состояния.

По данным TNS Gallup, примерная численность покупателей автохимии в Москве — 1 120,8 тыс. человек, что составляет около 41 % от общего числа автовладельцев. По данным розничных торговых сетей, в среднем каждый из покупателей совершает покупку один раз в три месяца, затрачивая каждый раз около 350 р. (12 долларов США). Таким образом, емкость московского рынка автохимии оценивается в 40,3 млн долларов США в розничных ценах.

Если учесть, что московский парк автомобилей составляет 13 % от всего российского автопарка, а также соотношение московского и регионального платежеспособного спроса, то можно оценить емкость национального рынка автохимии на уровне 150–180 млн долларов США. При этом типовой портрет покупателя остается неизменным для всех регионов России — мужчина среднего возраста со средним или высоким достатком.

Стремительное развитие науки и техники, рост нагрузок и скоростей при эксплуатации автомобильного и других видов транспорта потребовали дальнейшего повышения качества применяемых смазочных материалов. Новое развитие автохимическая промышленность получила в конце XX века с приходом в эту отрасль ученых и практиков из фирм — разработчиков и производителей препаратов класса «HiTech» (высоких технологий), применяемых ранее только в военной и космической промышленности, например нанотехнологий.

Нанотехнология (греч. nanos — карлик, приставка для образования наименования дольных единиц, равных одной миллиардной доле исходных единиц. Обозначения: н, n. Пример: 1 нм = 10-9 м), процесс разделения, сборки и изменения свойств материалов путем воздействия на них одним атомом или одной молекулой вещества.

В настоящее время возникло и успешно развивается самостоятельное научно — техническое направление — безразборный технический сервис.

Безразборный сервис (англ. service — производить осмотр и текущий ремонт) — к омплекс технических и технологических мероприятий, направленных на проведение операций технического обслуживания и ремонта узлов и механизмов без проведения разборочно — сборочных операций. Безразборный сервис может включать операции обкатки, диагностики, профилактики, химмотологического тюнинга, очистки и восстановления, как отдельных трущихся соединений, так машин и механизмов в целом.

К безразборному сервису относятся не только сами присадки и добавки к различным автомобильным технологическим средам, но и в большой степени особые препараты и технологии по их применению, часто называемые «специальная обработка» (англ. Special Treatment). Изза особенностей применения и функционирования в одних условиях они могут проявлять свои самые положительные качества, в других будут менее эффективными, в — третьих, бесполезными, а иногда даже вредными. Что это за условия, и каковы особенности применения данных препаратов автохимии, раскрывается в следующих разделах данной книги.

Базовые присадки к смазочным материалам

Смазочные масла по их назначению классифицируют на следующие основные руппы: моторные, индустриальные, трансмиссионные, турбинные, компрессорные, приборные и некоторые другие более узкого специального назначения. Наиболее масштабной по объему производства и ассортименту является группа моторных масел: для бензиновых (карбюраторных) двигателей, дизелей и двигателей, работающих на газовом топливе. К этой же группе относятся универсальные масла, применяемые в двигателях разной конструкции. В группу индустриальных масел для промышленного оборудования входят масла для гидравлических систем (гидравлические жидкости), направляющих скольжения, шпинделей, зубчатых передач и др. Трансмиссионные масла подразделяются на масла, используемые для смазывания механических, гидромеханических и гидростатических передач.

Масла для двигателей внутреннего сгорания принято называть моторными маслами. Иногда их называют также картерными маслами. К этой группе относятся масла, предназначенные для смазывания карбюраторных, дизельных и авиационных поршневых двигателей, а также масла для двухтактных бензиновых двигателей.

Современные моторные масла представляют собой сбалансированный коллоидный раствор многих функциональных присадок в базовой минеральной (нефтяной) или синтетической основе, обеспечивающих основные функциональные свойства моторных, да и трансмиссионных масел.

В зависимости от вида базового масла (основы) моторные масла подразделяются на:

1. Минеральные масла, получаемые в процессе переработки (перегонки) нефти и состоящие из молекул разной длины (длина углеводородных цепочек — 20…35 атомов) и разного строения (рис. 3).

К основным примесям, присутствующим в минеральных основах, относятся:

— соединения серы (sulfur compounds) и органические кислоты (organic acids), способные вызывать коррозию металлов;

— непредельные углеводороды (unsaturated hydrocarbons), снижающие антиокислительную стойкость масла;

Рис. 3. Схема взаимодействия синтетического (вверху) и минерального (снизу) масел с поверхностями трения

— смолистые и асфальтеновые соединения (resins, bitumen), образующие при работе лаковые отложения и нагар на горячих поверхностях деталей, ухудшающие низкотемпературные свойства и подавляющие эффективность антиокислительных и антикоррозионных присадок;

Нагар — отложения на поверхности камеры сгорания, состоящие в основном из карбонов и карбоидов и способные вызывать интенсивное изнашивание деталей цилиндропоршневой группы.

— парафины (wax) — растворенные в масле твердые углеводороды, которые повышают температуру застывания масла и ухудшают его низкотемпературную фильтруемость;

Температура застывания — показатель способности масла или дистиллятного топлива оставаться текучим при низких температурах. Это наименьшая температура, при которой жидкость остается текучей после охлаждения в определенных условиях.

— полициклические соединения (polycyclic aromatics, PCA), также снижающие низкотемпературные свойства масла и способствующие образованию смолистых отложений и нагара.

Как видим, все эти соединения в той или иной степени снижают качество готового нефтехимического продукта. Вследствие неоднородности основы и наличия многих примесей наблюдается нестабильность вязкостно — температурных свойств, высокая испаряемость, низкая стойкость к окислению и другие отрицательные свойства. Индекс вязкости (ИВ) лучших минеральных основ не превышает 100 единиц. Повышение вязкостных характеристик минеральных масел достигается специальными загущающими присадками.

Индекс вязкости — эмпирическое число, которое указывает на степень изменения вязкости масла при изменении температуры. Масла с высоким индексом вязкости проявляют меньшую зависимость вязкости от температуры, чем масла с низким индексом вязкости. Для повышения индекса вязкости проводят глубокую гидроочистку базовых масел или используют вязкостные присадки (маслорастворимые полимеры) или синтетические (полимерные) масла.

2. Синтетические масла (Fully Synthetic, Voll Synthetic, 100 % synthetic), получаемые путем химических реакций, направленных на образование однотипных молекул органических веществ с заданными свойствами, в качестве которых выступают полиальфаолефины (ПАО), алкилбензолы или эфиры (эстеры).

Полиальфаолефины (ПАО) — углеводороды с длиной цепочки порядка 10…12 атомов, получаемые путем полимеризации коротких углеводородных цепочек — мономеров из 3…5 атомов. Служат основой для производства синтетических моторных масел.

Для производства ПАО обычно используются бензиновые молекулы или нефтяные газы — бутилен и этилен, из которых путем полимеризации (химического составления) получают короткие углеводородные цепочки — мономеры из 3…5 атомов. К достоинствам ПАО относятся: низкая температура застывания (до —60 °C), невысокая восприимчивость к перепадам температур, низкая испаряемость и окисление. В то же время стоимость такой основы моторного масла в 4,5 раза выше обычной минеральной.

Эстеры (греч. a ither — эфир) — сложные эфиры, получаемые нейтрализацией спиртами карбоновых кислот рапсового масла, смолы хвойных деревьев и кокосовой копры. Применяются в качестве присадок к моторным маслам. Молекулы эстеров обладают электрическим зарядом (полярны), притягивающим их к поверхности трения в зоне контакта.

Электрический заряд так распределен в молекулах эстеров, что полярная молекула притягивается к металлу одним концом, образуя плотный молекулярный ворс. Исходная вязкость эстеров задается еще на этапе производства основы, так как чем более тяжелые используются спирты, тем выше получается вязкость масляной основы. При этом можно вообще отказаться от загущающих присадок, которые в процессе работы двигателя постепенно «выгорают», приводя к окислению («старению») масла. В настоящее время существуют технологии изготовления полностью биологически разлагаемых масел (биомасел) на основе эстеров.

Кинематическая вязкость — основной показатель смазочных масел, показывает зависимость между динамической вязкостью и плотностью жидкости. Ее определяют в капиллярных вискозиметрах путем измерения времени протекания известного объема жидкости через небольшое калиброванное отверстие при заданной температуре. Единицы измерения кинематической вязкости — мм2/с или сантистоксы (сСт).

Моторное масло на основе эстеров обойдется потребителю примерно в 10 раз дороже, чем на минеральной основе. Например, литр эстеровой моторной «синтетики» стоит минимум 15–20 долларов США. Поэтому эстеры добавляют к другим масляным основам в качестве присадок (обычно 3…5 %).

Динамическая в язкость — внутреннее трение или свойство жидкости оказывать сопротивление перемещению ее частиц под влиянием действующих на них внешних сил. Она характеризует несущую способность и прокачиваемость жидкости, измеряется с помощью вискозиметров и обозначается в Па·с или пуазах.

Как уже отмечалось, синтетические моторные масла обладают более высокой вязкостно — температурной характеристикой (ВТХ) по сравнению с маслами на минеральной основе. Температура потери подвижности синтетических моторных масел может быть существенно ниже (до —650 °C), чем у минеральных, а вязкость при температурах 250…3000 °C в 2–3 раза выше, чем у равновязких им минеральных масел при 1000 °C.

Благодаря высокому индексу вязкости, синтетическое масло позволяет поддерживать оптимальную толщину масляного клина как при низких, так и при высоких температурах, что, в свою очередь, снижает износ деталей двигателя, особенно в условиях экстремальных температур.

Так, при низких температурах «синтетика» сохраняет свою текучесть, что обеспечивает максимально быстрое поступление масла к узлам трения и снижает износ деталей при пуске, а низкая испаряемость позволяет экономить на угаре масла.

Более равномерная молекулярная структура способствует снижению внутреннего трения, за счёт чего повышается эффективность работы двигателя и снижается температура масла.

Синтетические масла имеют лучшую термическую стабильность, низкую испаряемость и малую склонность к образованию высокотемпературных отложений. Они превосходят минеральные масла по антиокислительным свойствам, диспергирующей и механической стабильности, обладают равными или лучшими противозадирными и противоизносными свойствами. Поэтому синтетические масла с успехом применяются в высокофорсированных теплонапряженных ДВС.

Задир — катастрофический износ, наблюдаемый в парах трения изза местного сваривания и разрушения мест сварки. Его можно предотвратить использованием противоизносных, противозадирных присадок и модификаторов трения.

Благодаря своим свойствам синтетические масла могут эксплуатироваться 20 и более тысяч километров пробега автомобиля без замены. Расход синтетических моторных масел на угар на 30…40 % меньше по сравнению с минеральными.

Срок службы — календарная продолжительность эксплуатации изделия до наступления разрушения или другого предельного состояния. Предельное состояние устанавливается в соответствии с изменениями параметров, условий безопасности, экономических показателей, необходимости первого капитального ремонта и т. п.

В то же время, наряду с высокой ценой традиционных компонентов, таких как ПАО и эстеры, синтетические масла обладают более высокой, чем у «минералки», активностью по отношению к материалам уплотнений, в них хуже растворяются дополнительные присадки, которые используются при производстве современных моторных масел. При этом эстеры (эфиры) очень требовательны к отсутствию в масле влаги, в том числе водяного конденсата.

3. Частично синтетические (полусинтетические) масла (SemiSynthetic, Teil Synthetic, Synthetic, Synthetic Based, Synthetic Blend), состоящие из смесей минеральных и синтетических базовых масел.

Как показывает практика, большинство моторных масел, позиционируемых как полусинтетические, а частично и полностью синтетические масла, на самом деле являются гидрокрекинговыми (НС) маслами, которые достаточно успешно совмещают высокие качества синтетики с неагрессивностью «минералки» при более доступной цене.

Гидрокрекинг (греч. hydor — вода, англ. c racking — расщепление) — технология химического синтеза моторных масел, заключающаяся в воздействии (насыщении) водородом в присутствии специального катализатора на высококипящие (тяжелые) нефтяные фракции, а также на легкокипящие и среднедистиллятные прямогонные фракции и вторичные продукты их термокаталитической переработки для получения бензиновых фракций, реактивного и дизельных видов топлива, смазочных материалов и т. д.

В отличие от ПАО, гидрокрекинговые масла получают не из коротких бензиновых мономеров, а из тяжелых и длинных углеводородов. Длинные углеводородные цепочки разрушают (крекингом) на более короткие «масляные», но с однородной структурой. К местам разрыва в новых укороченных молекулах прикрепляют водород, т. е. происходит «гидрирование + крекинг = гидрокрекинг». В результате НС — синтеза получают базовое масло с очень высокими вязкостно — температурными характеристиками с индексом до 130…150 единиц.

Гидрокрекинговое масло — смазочное масло, полученное путем перегонки и глубокой очистки нефти на основе гидрокрекинга, улучшенное специальными синтетическими присадками, обладает лучшими свойствами, чем чисто минеральное масло, но большим нагарообразованием и коррозионной активностью, чем чисто синтетическое масло.

Одним из этапов изготовления гидрокрекинговых масел является введение специальных вязкостных присадок, в результате чего индекс вязкости еще больше увеличивается, и может достигать 180 единиц, что сопоставимо со 100 %-ным синтетическим маслом. К тому же, НС — масла не разрушают материал уплотнений, менее восприимчивы к наличию влаги, обладают лучшими синергетическими свойствами с дополнительными присадками, чем ПАО или эстеры.

Синергетика (греч. synergetikos — совместимый) — научное направление, изучающее общие закономерности, управляющие процессами самоорганизации в системах разного рода: биологических, технических, химических и т. д.

Нужно сказать, что реальное содержание ПАО в обычной полусинтетике не более 30…35 % (чаще 15…25 %), остальное — минеральная основа и специальные присадки. Как видно, основные компоненты синтетических масел — ПАО и эстеры — также являются своего рода присадками при изготовлении моторных масел. Гидрокрекинговые масла состоят из НС — компонента примерно на 80 %, остальные 20 % приходятся на пакет присадок (рис. 4).

Рис. 4. Примерное содержание присадок в моторном масле: 1 — базовое масло (80 %); 2 — вязкостные присадки (10 %); 3 — остальные присадки (10 %)

При аналогичном качестве стоимость гидрокрекинговой основы всего в 2 раза выше минеральной, но в 2,5 раза ниже стоимости ПАО и в 3–5 раз дешевле эстеров.

Современные моторные масла используются для уменьшения трения, снижения износа и предотвращения задира контактируемых поверхностей. Масло отводит теплоту от трущихся деталей и уплотняет зазоры, в первую очередь в зоне цилиндропоршневой группы двигателя.

Износ различных узлов и деталей двигателей внутреннего сгорания зависит от ряда факторов, определяемых особенностями конструкции и техническим состоянием двигателя, условиями его эксплуатации, качеством применяемого топлива и масла и т. п.

Интенсивность изнашивания увеличивается в случае:

— попадания абразива в смазочную систему (роль абразива могут играть также продукты разложения масла, образующие зольные отложения) или при переходе с нефтяного топлива на топливо не нефтяного происхождения (в частности спиртовое);

Интенсивность изнашивания — отношение величины износа поверхностей трения (в принятых единицах) к пути трения или объёму выполненной работы. Различают линейную, весовую, энергетическую интенсивности изнашивания.

— повышения содержания серы в топливе;

— накопления в масле воды или другой охлаждающей жидкости;

— повышения химической активности масла;

— увеличения расхода масла на угар вследствие повышенного пенообразования масла и т. д.

Абразивный материал — минерал естественного или искусственного происхождения, частицы которого имеют высокую твёрдость и обладают способностью микрорезания (царапания, скобления и т. д.). Разрушение поверхности детали в результате её взаимодействия с такими частицами называют абразивным изнашиванием.

Повышение надежности работы двигателя достигается и другими способами, приводящими к снижению износа. Например, наличие в масле воды снижает его способность противодействовать изнашиванию трущихся поверхностей. С целью удаления из масла воды, механических примесей, и других продуктов, присутствие которых может отразиться на работе двигателя в процессе эксплуатации, увеличивают эффективность работы средств очистки.

Условия работы моторного масла определяются различными рабочими температурными нагрузками на узлы и детали двигателя, смазываемые моторным маслом (цилиндропоршневая группа, подшипники, механизм газораспределения и т. д.). Для обеспечения надежной подачи моторного масла к различным агрегатам двигатели оснаены специальными приспособлениями (смазочной системой): емкостью для хранения масла, средствами очистки (фильтрами), масляной магистралью, насосами и т. п.

Функциональные свойства многих масел ранее оценивали, прежде всего, по их вязкостно — температурным характеристикам и смазочной способности. В настоящее время требования к эксплуатационным свойствам масел значительно расширились и ужесточились, что потребовало введения большого числа показателей свойств масел. В общем случае смазочные масла должны обладать следующими характеристиками:

1) оптимальными вязкостно — температурными свойствами, обеспечивающими подвижность при низких температурах, и создание прочной смазочной пленки на рабочих поверхностях в широком диапазоне температур;

2) смазывающими свойствами, обеспечивающими минимизацию трения и различных видов изнашивания;

3) высокой устойчивостью к окислению, предотвращающей значительные изменения химического состава смазочных масел в процессе их работы;

4) моющими свойствами, влияющими на снижение склонности масел к образованию различного состава смолистых отложений на рабочих поверхностях и в смазочной системе;

5) низкой коррозионной активностью;

6) удовлетворительными защитными свойствами, позволяющими маслу предохранять металл от атмосферной коррозии.

Смазочные масла также должны обладать низкой испаряемостью, пенообразующей способностью, не вступать в соединение с водой (эмульгироваться), не оказывать отрицательного влияния на уплотнительные материалы, не быть токсичными, не подвергаться биоповреждениям, не изменять своих свойств при хранении и регенерации, легко транспортироваться, не вызывать загрязнения окружающей среды и т. д.

Несомненно, к важным факторам обеспечения длительного и эффективного срока службы автомобильной техники относится не только высокое качество ее эксплуатации, технического обслуживания и ремонта, но и качество применяемых топливно — смазочных материалов (ТСМ) и других препаратов автохимии. Как уже неоднократно отмечалось, основным способом повышения функциональных свойств смазочных материалов является применение дополнительных присадок и добавок.

Различные препараты для применения в качестве какихлибо добавок к топливно — смазочным материалам изначально были созданы для повышения их противоизносных, антифрикционных, экономических и экологических свойств, т. е. для профилактики износа и поддержания техники в работоспособном состоянии. Большинство из них и сейчас выпускается для этих целей.

В настоящее время, наряду с принятыми и широко распространенными показателями (противоизносными, защитными, антикоррозионными, диспергирующими, стабилизирующими, вязкостно — температурными, антиокислительными, противопенными и др.), для моторных масел введены новые — демпфирующие, противопиттинговые и др. Для их обеспечения разрабатываются новые технологии производства базовых масел и присадок к ним.

Питтинг — (англ. p it — делать ямки) — местная коррозия металлической поверхности вследствие разрушения граничных слоев смазки, ограниченная точкой или малой областью, которая имеет форму каверны. Питтинг уменьшается в присутствии присадок, снижающих напряжения сдвига, таких как дисульфид молибдена или графит.

При эксплуатации машин и механизмов происходят значительные химические и физические изменения в маслах, т. е. изменяются их состав и свойства, что влияет на эксплуатационные свойства масел. Для предотвращения подобных изменений в большинство смазочных масел вводят специальные вещества и их композиции. В зависимости от состояния и растворимости в масле эти вещества получили разные названия. Органические маслорастворимые продукты составляют самую распространенную группу и называются присадками. Твердые нерастворимые вещества, как правило, неорганического происхождения, называются антифрикционными добавками, а полимерсодержащие композиции — модификаторами. Имеются также кондиционеры и рекондиционеры металла.

Кондиционер (рекондиционер) металла (поверхности) (англ. air — condition — состояние воздуха) — вещество и механизм воздействия на металл (поверхность), позволяющие восстанавливать структуру и состав металла (поверхности), на который он воздействует посредством доставки необходимых компонентов (среды и энергии) от внешних источников (препаратов), а также придавать трущимся поверхностям высокие антифрикционные и противоизносные свойства.

Существует более ста органических и металлоорганических присадок, предназначенных для повышения устойчивости масел к окислению, абсолютного значения их вязкости, а также смазочной способности. Одновременно они снижают зависимость вязкости масла от температуры, температуру застывания, замедляют коррозию металлических поверхностей, уменьшают нагары на деталях двигателей и т. д.

По своему действию присадки разделяют на: противоизносные, антифрикционные, антиокислительные, вязкостные (загущающие), депрессорные, противопенные и др. (табл. 5).

Таблица 5. Некоторые функциональные присадки, используемые в смазочных маслах

Дисперсант — присадка, которая способствует поддержанию твердых загрязнений в картерном масле в состоянии коллоидной суспензии, предотвращая образование шламов и лаков на деталях двигателя. Обычно это беззольные, не содержащие металла соединения, используемые в сочетании с детергентами.

В основном присадки вводят в масла в небольших количествах: от долей до нескольких процентов (в композициях их общая концентрация может доходить до 15 % и более). Исключение составляют вязкостные присадки, которых может добавляться до 20…30 %, что значительно изменяет свойства базовых масел. Высокий уровень концентрации присадок приводит к тому, что незначительное изменение баланса, например, вследствие попадания в масло топлива, влаги, а также окисления при работе существенно снижает его стабильность. Поверхностно — активные вещества (ПАВ) присадок теряют свои свойства, вступая в реакцию с влагой и топливом, в результате снижается не только эффективность их применения, но и ухудшаются трибологические свойства базовых смазочных материалов.

По химическому составу присадки к смазочным материалам представляют собой производные различных органических соединений — алкилфенолов, аминов, дитиофосфорных, дитиокарбаминовых, салициловых кислот и ряда других веществ.

Присадки состоят из молекул одной или нескольких полярных групп и одной или нескольких неполярных. Полярные группы обусловливают адсорбцию молекул ПАВ присадок на границе между маслом и металлом. По группе активной (полярной) составляющей присадки подразделяют на серо-, фосфор-, кислород-, хлор-, азот— и борсодержащие. Неполярные группы (алкильные радикалы, нафтеновые или ароматические кольца и их сочетания) определяют растворимость присадок в маслах.

Большинство базовых присадок являются техническими продуктами, представляющими собой раствор активного компонента в масле или другом растворителе. В таком виде под различными условными названиями и индексами выпускаются производные мочевины, сульфонаты, сукцинимиды, эфиры фосфорной кислоты и многие другие присадки.

Рассмотрим основные группы присадок к смазочным маслам.

Для предотвращения или уменьшения образования лаковых отложений и осадков на преимущественно горячих металлических рабочих поверхностях, предупреждения пригорания поршневых колец, а также повышения коллоидной стабильности масла (поддержание во взвешенном состоянии примесей органического и неорганического характера — сажи, нагара, частиц солей свинца размером 0,04 мкм, которых в масле может быть до 10 %) в моторные масла вводят моющие (детергенты) и диспергирующие (диспергенты) присадки.

Моющие присадки блокируют агломерацию асфальтенов в твердые частицы (нагар) размером 0,6…1,5 мкм. Таким образом они препятствуют возникновению и росту отложений на металлических пверхностях, повышению вязкости масла и возникновению шлама, чем значительно снижают абразивный износ деталей двигателя.

Шлам — темный осадок, по консистенции подобный гелю, который накапливается на неподвижных внутренних поверхностях двигателя. Обычно легко удаляется, если не превращается под действием нагрева в углеродистые отложения. Его образование связывают с перегрузкой масла нерастворимыми загрязнениями.

Моюще-диспергирующие присадки условно делят на зольные и беззольные. В молекуле зольных присадок содержатся полярные группы, которые адсорбируются на частицах — продуктах окисления масла, препятствуя их росту и предотвращая образование отложений и лаков на деталях двигателя. Зольные моющие присадки повышенной щелочности способствуют нейтрализации кислот, оксидов азота, ди- и триоксидов серы (что особенно важно в случае дизельных видов топлива), образовавшихся при окислении масла в процессе эксплуатации двигателя. Это достигается за счет протекания щелочной реакции. Моющие присадки выбирают в зависимости от условий работы масла, особенностей конструкции двигателя и специфики его эксплуатации. Концентрация моющих присадок в масле составляет 3…15% (иногда выше). Она не должна быть слишком большой, иначе может наблюдаться повышенное абразивное изнашивание изза высокой зольности масла.

Число нейтрализации — мера кислотности или щелочности масла. Число представляет собой массу в миллиграммах кислоты (НСl) или основания (КОН), требуемых для нейтрализации одного грамма масла.

При производстве отечественных моторных масел применяют детергенты трех классов: алкилфеноляты, сульфонаты и алкилсалицилаты щелочноземельных металлов. В нормальных солях содержатся стехиометрические соотношения количества металлов, соответствующие щелочности кислот, а щелочные (высокощелочные, суперщелочные, гиперщелочные) соли содержат значительное количество оксидов металлов, гидроксидов, карбонатов и т. д. в коллоидно — дисперсной форме. Моющие присадки, содержащие соли металлов, долгое время находили широкое применение. Однако в последнее время их применение стало ограничиваться в связи с повышением доли беззольных дисперсантов и антиокислительных присадок.

Практически одновременно с проблемой улучшения моющих свойств масел встала задача повышения их окислительной стабильности при повышенных рабочих температурах. При высоких температурах в присутствии атмосферного воздуха происходит окисление (старение) смазочного материала.

В оптимально очищенных минеральных маслах изначально содержатся природные сернистые и азотные ингибиторы, обеспечивающие стабильность и срок службы масел, достаточные для применения во многих областях, но они не отвечают всем необходимым требованиям в случае моторных и трансмиссионных масел. К тому же сера, являясь эффективным ингибитором окисления, оказывает коррозирующее действие. Соединения, в которых одновременно содержатся сера и фосфор, значительно эффективнее, чем ингибиторы, содержащие эти элементы по— отдельности, поэтому они применяются главным образом в виде ингибиторов для моторных масел.

Для предотвращения каталитического ускорения окисления углеводородных масел под действием ионов металлов и сплавов, особенно цветных (таких как медь, марганец, кобальт), они должны быть связаны в виде комплексов и осаждаться в виде нерастворимых соединений металлов. Для этих целей в смазочные масла добавляются антиокислительные присадки (до 2 %), которые отвечают за стабильность химического состава масла, особенно при высоких температурах.

Соединения селена (диалкилселенид) также могут применяться в качестве ингибиторов, имея хорошие антиокислительные свойства в синтетических маслах при температуре до +270 °C. Однако они применяются довольно редко изза коррозионной активности по отношению к меди, алюминию, серебру (иногда, к стали и чугуну), а также вследствие высокой стоимости.

С 1951 года для эксплуатации двигателя при высоких рабочих температурах, а также его запуска при низких температурах стали выпускать всесезонные масла. Оптимизация зависимости вязкости таких масел от окружающей температуры и рабочей температуры двигателя достигается сочетанием маловязкой базовой основы, которая обеспечивает пониженные вязкостные свойства масла при низких пусковых температурах, и специальных синтетических вязкостных присадок, создающих требуемую вязкость при повышенных рабочих температурах.

Известно, что в момент пуска трущиеся детали двигателя подвергаются значительному износу. Имеется термин — пусковой износ. При одном только пуске ДВС длительностью несколько секунд износ значительно больше, чем при работе двигателя на установившемся режиме в течение нескольких часов. Пусковой износ зависит от вязкости масла — малая вязкость обеспечивает более низкий пусковой износ вследствие лучшего поступления масла к узлам трения.

Изнашивание процесс разрушения и отделения материала с поверхности твердого тела и (или) накопления его остаточной деформации при трении, проявляющейся в постепенном изменении размеров и (или) формы тела.

В установившемся режиме, наоборот, лучше работают более вязкие масла.

Для уменьшения трения и изнашивания различных узлов и деталей двигателя масла должны обладать такими вязкостно-температурными свойствами, которые бы обеспечивали и быстрый пуск двигателей, и надежную работу в последующий период.

Для повышения вязкости смазочных масел и индекса вязкости при нагреве в них добавляют вязкостные (загущающие) присадки («модификаторы вязкости»). Такие масла называют загущенными. Загущающие присадки в сочетании с присадками, улучшающими трибологические свойства моторных масел, позволяют создавать энергосберегающие масла.

В то же время масла с загущающими присадками постепенно теряют свою вязкость (загустевают). Это не только результат испарения самых низкокипящих фракций, так как температура в картере двигателя может достигать 180 °C, но и механической, а также термохимической деструкции (окисления) полимерных молекул загущающих присадок на мелкие фрагменты, эффективность которых значительно снижается.

В отличие от незагущенных масел, вязкость которых зависит в основном от температуры смазочного материала и рабочего давления, загущенные масла обладают еще способностью изменять свою вязкость в зависимости от напряжения и градиента скорости сдвига. Они проявляют временное падение вязкости с увеличением скорости сдвига, например, между поршнем и стенками цилиндра двигателя. Такие вещества (резиновый клей, густотертая краска, битум и др.) называют «разжижаемые сдвигом», а их вязкость называют кажущейся, так как она снижается при определенном градиенте скорости сдвига, и тем больше, чем ниже температура базового масла.

Загущающие присадки на основе полиметакрилатов ПМА В-1, ПМА В-2, «Дизакрил» представляют собой масляные растворы эфиров метакрилатовой кислоты и масел синтетических жирных спиртов. При низкой температуре, когда масло достаточно вязкое, молекулы полиметакрилатов находятся в скрученном состоянии и мало влияют на вязкость. С ростом температуры они расправляются и повышают вязкость (рис. 5). Полимеры компенсируют значительную потерю вязкости самого масла при повышении температуры, таким образом, индекс вязкости масла повышается.

Рис. 5. Молекула полиметакрилата (вязкостной присадки) при различной температуре масла

Поэтому загущенные масла наряду с высоким индексом вязкости, обеспечивающим минимальные потери мощности на трение и экономию топлива при нагреве, обладают хорошей текучестью при низких температурах, способствуют легкому и быстрому пуску двигателя в холодное время года, не образуют большого количества нагара.

Чтобы выдерживать большие сдвиговые и нормальные нагрузки, смазочные материалы должны иметь высокую несущую способность. Для обеспечения этих свойствв моторные масла (для снижения износа пар трения кулачок — толкатель), в трансмиссионные масла (особенно для гипоидных передач, имеющих конические шестерни со спиральными зубьями), в гидравлические жидкости и смазочно — охлаждающие среды добавляют противозадирные присадки .

Вязкостные свойства масел в нормальных условиях эксплуатации не отражают их характеристик при высоких нагрузках и скоростях скольжения, когда толщина смазочного слоя не обеспечивает надежное разделение трущихся поверхностей и не предохраняет от непосредственного контакта микрошероховатостей. В этом случае наблюдается режим граничной смазки, происходит контакт микровыступов шероховатостей металлических поверхностей, резкий нагрев (температурные «вспышки») контактируемых участков (до 1500 °C), их сваривание и последующеe разрушение (скалывание).

Граничная смазка — смазка двух трущихся поверхностей без создания непрерывной смазочной пленки. Она имеет место при высоких нагрузках и требует использования противоизносных или противозадирных присадок для предотвращения непосредственного контакта металлов.

За счет выделяющейся в зоне контакта энергии противозадирные присадки вступают во взаимодействие с поверхностями трения, образуя защитные соединения с металлами. При нормальных режимах эксплуатации они находятся на поверхностях трения в виде твердых веществ, но при высоких температурах их предел текучести снижается и происходит скольжение металлических поверхностей относительно друг друга. Тем самым предотвращается сваривание микровыступров трущихся поверхностей и, следовательно, повышение интенсивности их изнашивания. При этом вязкость масла во многом определяет прочность масляной пленки.

Фосфор, сера и хлор — основные элементы многих противозадирных присадок, которые вступают в реакции с металлами в условиях повышенной температуры и давления с образованием на поверхностях защитных пленок химических соединений. Эти присадки оказывают противозадирное, антикоррозионное и антиокислительное действие и поэтому особенно широко применяются в моторных маслах. На их основе выпускаются ремонтно — восстановительные препараты любительской автохимии, получившие название кондиционеры металла, которые будут рассмотрены в дальнейшем.

Затраты на производство смазочных масел возрастают пропорционально обеспечению для них низкотемпературных свойств. Поэтому проводится депарафинизация масел, но лишь частично — до температуры застывания (около -15 °C). При отрицательных температурах из смазочного масла выделяются парафиновые углеводороды в виде игл и пластин, что приводит к потере текучести (подвижности) масла и затрудняет низкотемпературный запуск двигателя. Форма и размер образовавшихся кристаллов парафина зависят от вида масла и его фракционного состава. При этом из маловязких масел выделяются крупные кристаллы, а из высоковязких образуются микрокристаллические парафины. Наличие в масле парафиновых углеводородов обусловливает в первую очередь застывание масла. Подвижность масла теряется изза образования кристаллической структуры парафиновых углеводородов.

Для дальнейшего снижения температуры застывания и работоспособности масла предназначены депрессорные присадки, которые модифицируют кристаллические структуры твердых углеводородов с сохранением подвижности масла.

Наиболее распространены депрессорные присадки к моторным, трансмиссионным и гидравлическим маслам: марки АзНИИ (препарат алкилирования нафталина хлорированным парафином в присутствии хлорида алюминия); АзНИИ — ЦИАТИМ-1 (дисульфид алкилфенола с гидроксидом бария); АФК (алкилфенол с гидроксидом кальция); ПМА Д (30…40 %-ный раствор полимеров эфиров метакриловой кислоты и синтетических жирных первичных спиртов в индустриальном масле), а также Депрессал — модифицированный препарат алкилирования фенола хлорпарафинами.

Депрессорные присадки применяются при концентрациях 0,05…1,0 %, они наиболее эффективны в маслах парафинового основания.

Применение в качестве базовых масел высокоочищенных нефтяных основ — масел, полученных гидрогенизационными способами, а также ряда синтетических разработок, позволяет значительно улучшить низкотемпературные свойства выпускаемых масел (уверенный запуск двигателей при температурах —40…50 °C) и уменьшить потери на трение при гидродинамическом режиме смазывания. Однако такие масла имеют более низкие антифрикционные и противоизносные свойства.

Для повышения трибологических свойств (минимизации потерь на трение, снижения интенсивности изнашивания и температуры трущихся поверхностей) смазочных материалов в них, кроме противозадирных, вводят также антифрикционные и противоизносные присадки. Эффективность их действия зависит от химического строения присадки и химического состава масляной основы.

Антифрикционные присадки (модификаторы трения) входят в состав энергосберегающих моторных масел. Они обеспечивают гарантированную экономию топлива за счет снижения механических потерь на трение и соответствующего повышения коэффициента полезного действия двигателя. Такие присадки образуют на поверхностях трения многослойные адсорбционно — хемосорбционные пленки «сэндвичевой структуры» с диффузией легирующих металлов присадки в трущиеся поверхности деталей. Они наиболее эффективны при граничном режиме трения, например, между компрессионными поршневыми кольцами и цилиндрами вблизи верхних мертвых точек. Достоинством твердых нерастворимых добавок к смазочным материалам является также их эффективность, как при низких, так и при высоких температурах.

Под воздействием кислорода, влаги и агрессивных веществ металлические поверхности подвергаются коррозии (коррозионному изнашиванию). Следовательно, главное при защите от коррозии — предотвращение контакта металлических поверхностей с этими веществами. Существуют различия между атмосферной корро з ией (например, при хранении и транспортировке в условиях влажного и теплого климата) и коррозией под воздействием веществ, образующихся в двигателе (главным образом соединений хлора и брома при сжигании этилированного бензина или серы при сжигании дизельного топлива), а также других агрессивных веществ. К тому же, например, противозадирные присадки, содержащиеся в трансмиссионных маслах, при высоких температурах приобретают коррозионные свойства, вследствие чего в эти масла необходимо вводить противокоррозионные присадки (ингибиторы коррозии).

Ингибиторы коррозии существенно снижают несущую способность масел вследствие конкурентного взаимодействия обеих присадок с металлическими поверхностями. При этом, благодаря наличию природных ингибиторов, неочищенные масла или масла неглубокой очистки обеспечивают определенную защиту от атмосферной коррозии, тогда как антикоррозионные свойства чистых минеральных масел неэффективны при защите от атмосферной коррозии, кислород и влага свободно диффундируют через масляную пленку и взаимодействуют с металлом. Так как коррозия является, главным образом, следствием электрохимических реакций, то и предотвратить ее можно созданием (нанесения) специального защитного слоя, препятствующего непосредственному контакту влаги и кислорода с металлом.

Высокоэффективные ингибиторы должны обладать высокой адгезией к металлической поверхности и создавать пленку, непроницаемую для кислорода и влаги. Различают ингибиторы физического механизма действия, представляющие собой молекулы с длинными алкильными цепями и полярными группами, способные адсорбироваться на металлических поверхностях, создавая защитные слои. К другой группе относятся химические ингибиторы, реагирующие непосредственно с металлом поверхности с образованием защитных химических соединений, изменяющих её электрохимический потенциал.

Коррозия (лат. corrodo — грызу) — процесс разрушения поверхности металла в результате химического или электрохимического воздействия внешней среды.

Противопенные (антипнные) присадки предназначены для предупреждения образования пены и быстрого ее разрушения в масле, в особенности при аэрации в процессе эксплуатации. Механизм действия этих присадок основан на снижении поверхностного натяжения на границе раздела жидкость — воздух. К противопенным присадкам относятся фосфорсодержащие соединения, фторированные углеводороды, эфиры и соли жирных кислот, силоксановые полимеры. Наиболее известна противопенная присадка полиметилсипоксан ПМС-200А, которая широко применяется в различных маслах в концентрации 0,007…0,005 % (мас.).

Функции присадок к смазочным маслам не ограничиваются только какимто одним действием. Так, антифрикционные присадки оказывают влияние на противозадирные и противоизносные свойства масел, моющие — на антиокислительные, и наоборот. При этом в рамках каждой группы эффективность присадок может заметно изменяться как в зависимости от концентрации, состава присадки, так и от концентрации компонентов ее составляющих, а также типа и химического состава базового масла.

Возрастающие требования к качеству масел привели к необходимости создания композиций многофункциональных присадок, которые повышают многие эксплуатационные свойства масел. При составлении композиций присадки не просто механически смешиваются, а химически взаимодействуют. Поэтому усиливаются базовые или проявляются новые качества присадок.

Для упрощения хранения, транспортирования и облегчения смешивания базовых масел с присадками выпускают пакеты присадок, в состав которых не входят только вязкостные и депрессорные присадки. При необходимости их вводят в масло дополнительно. Изменяя дозировки пакета присадок, можно приготавливать масла с различным уровнем эксплуатационных свойств. Пакеты присадок обычно содержат до 15 компонентов. Их вводят в масло в концентрации до 12 % (мас.).

Характеристики некоторых отечественных пакетов приведены в табл. 6. Для моторных масел производятся пакеты присадок К-471, К-483, К-484.

Табл. 6. Характеристика некоторых пакетов масляных присадок

Щелочное число — количество кислоты (перхлорной или соляной), необходимое для нейтрализации всех компонентов основы масла, выраженное в эквивалентах КОН. Характеризует количество оснований щелочных элементов, которые могут нейтрализовать свободные кислоты в масле, например кислые продукты окисления масла или продукты горения сернистых топлив, попадающие в моторные масла. Для моторных масел — основной показатель, характеризующий запас качества или уровень эксплуатационных свойств. Щелочность измеряется в мг КОН на 1 г продукта.

От характера взаимодействия присадок друг с другом (в случае композиции) и с полярными компонентами масла зависит восприимчивость (или приемистость) масел к присадкам и взаимное ослабление (антагонизм) или усиление (синергизм) функционального действия присадок при их совместном применении. Антагонизм или синергизм действия смеси двух присадок зависит от их взаимодействия друг с другом, на которое влияют внешние факторы — температура, влажность и т. п. Так, например, на взаимодействие молекул присадок влияют продукты окисления масел, вода может вызывать гидролиз присадок.

Страницы: 12345678 »»

Читать бесплатно другие книги:

Конспект лекций предназначен для подготовки студентов медицинских вузов к сдаче экзаменов....
Настоящее издание представляет собой конспект лекций по дисциплине «Логика». Конспект лекций составл...
Конспект лекций соответствует требованиям Государственного образовательного стандарта высшего профес...
Издание предназначено для подготовки студентов экономических специальностей к сдаче экзаменов и заче...
Конспект лекций соответствует требованиям Государственного образовательного стандарта высшего профес...
Данное издание представляет собой конспект лекций по предмету «История мировой и отечественной культ...