Автомобильные присадки и добавки Балабанов Виктор
Антифриз должен соответствовать ряду требований, представленным в табл. 32, и обеспечивать следующие основные свойства:
— максимальный диапазон рабочих температур двигателя — от —65 °C до +135 °C;
— смазывание подшипника помпы водяного насоса для продления ее ресурса;
— защита сальника помпы и резинотехнических изделий системы охлаждения от высыхания, растрескивания и течей;
— отсутствие пенообразования за счет введения антипенных (антикавитационных) добавок;
— пассивация и защита металлических частей системы охлаждения от коррозии за счет наличия в составе антифрикционных присадок (ингибиторов коррозии);
— высокая теплопроводность и защита от возникновения перегретых («горячих») участков в системе охлаждения и образования накипи;
— безопасность пластика, резиновых деталей и лакокрасочных покрытий;
— длительное и надежное функционирование охлаждающей жидкости за счет наличия специальных стабилизаторов (например, на основе карбоксилат — комплекса).
Качество антифриза зависит от состава, качества и количества присадок, используемых при его изготовлении. Стандартный пакет присадок обычно не превышает 8 % объема антифриза (чаще всего около 2,5 %) и включает: ингибиторы коррозии, антинакипины, антивспенивающие и смазывающие составы (рис. 42).
Рис. 42. Примерный процентный состав антифриза:
2,5 % — функциональные присадки;
51,5 % — дистиллированная вода;
46 % — моноэтиленгликоль
Силикатсордержащие охлаждающие жидкости имеют ряд серьезных недостатков, таких как образование в процессе эксплуатации осадков, способных к забиванию узких каналов системы охлаждения. Кроме того, силикатные ингибиторы коррозии образуют на всей поверхности системы охлаждения защитный слой толщиной более 1000 Ангстрем, что ухудшает теплоотвод и увеличивает содержание абразивных частиц в системе охлаждения. Помимо этого, защитные свойства ингибиторов коррозии на основе силикатов имеют довольно ограниченный срок службы — около 1,5 лет.
Растворы этиленгликоля вызывают значительную коррозию конструкционных материалов системы охлаждения. Чтобы защитить детали системы охлаждения от коррозии, а попутно обеспечить теплоносителю ряд других полезных свойств — пониженную вспениваемость, антинакипиновые свойства и прочие — в водно — гликолевую смесь добавляют пакет специальных присадок, который и определяет основную часть эксплуатационных показателей залитого в систему антифриза.
В России наиболее распространены тосолы и антифризы на силикатной основе. Это определяется многолетним наследием ВАЗ и их относительно низкой стоимостью. Многие российские производители выпускают охлаждающие жидкости и по своим внутренним Техническим условиям (ТУ).
Однако постепено ситуация меняется. Происходит быстрый переход автопарка к автомобилям с современными форсированными двигателями, на которых в основном используются карбоксилатные антифризы, гарантирующие срок эксплуатации более 5 лет при пробеге свыше 250 000 км.
Карбоксилатные ингибиторы коррозии на основе органических кислот были разработаны в середине 90–х годов прошлого века. Исследования показали, что новые охлаждающие жидкости на основе карбоксилатных ингибиторов прекрасно защищают металлы и сплавы от коррозии, обладают высокой теплоемкостью и предохраняют систему охлаждения от кавитационных разрушений.
Если обобщить требования потребителя к современным антифризам, то они должны обладать следующими основными свойствами:
— большой теплоемкостью и хорошей теплопроводностью;
— высокой температурой кипения и теплотой испарения;
— низкой температурой кристаллизации;
— малым коэффициентом объемного расширения;
— подвижностью (вязкостью) в диапазоне температур от —70 °C до +1000 °C;
— термической стабильностью и отсутствием склонности к образованию отложений (накипи) в системе охлаждения;
— не вспениваться в процессе работы;
— быть безопасными в пожарном отношении, биологически и экологически нейтральными.
Одно из достоинств нового антифриза — он не образует защитного слоя на всех поверхностях системы охлаждения, поэтому узлы и детали остаются чистыми. Карбоксилатные ингибиторы концентрируются лишь там, где есть опасность возникновения коррозии, но даже в этом случае толщина защитного слоя не будет превышать 50 Ангстрем (сравните — 1000 Ангстрем у силикатных ингибиторов) (рис. 43).
Рис. 43. Схема защитного действия силикатного (слева) и карбоксилатного антифриза (справа)
Нельзя не сказать еще об одном достоинстве нового продукта — он обладает термоокислительной стабильностью в течение всего срока эксплуатации и не разрушает материалы уплотнений.
Современные зарубежные антифризы в основном соответствуют нормам ASTM (Американская ассоциация по испытанию материалов — общегосударственная система стандартов США) и SAE (Общество инженеров — механиков). Они регламентируют свойства антифризов, исходя из применяемой основы и условий эксплуатации. Например, для этиленгликолевых антифризов рекомендовано следующее применение:
ASTM D 3306 и ASTM D 4656 — для легковых автомобилей и малых грузовиков;
ASTM D 4985 и ASTM D 5345 — для двигателей, работающих в тяжелых условиях.
Кроме общих стандартов, многие производители автомобилей применяют свои спецификации с дополнительными требованиями. Например, нормы General motors USA — Antifreeze Concentrate GM 1899–M, GM 6038–M или система нормативов G концерна Volkswagen (G -12, G -11).
Одним из признаков качества антифриза является наличие официального допуска и соответствие одному из зарубежных стандартов. Например, американским — ASTM D 3306 и ASTM D 4556, бельгийскому — BTPS -606A, английскому — BS 6580, NATO S -759. Наличие на упаковке допусков BMW, DAF, Volvo, MercedesBenz, VW, GM, Ford также указывает на изначально высокое качество охлаждающей жидкости.
Охлаждающая жидкость требует замены новым антифризом в следующих случаях:
— охлаждающая жидкость используется свыше рекомендованного срока (обычно 1…3 года), базовые присадки и добавки в ней утратили свои свойства;
— частое добавление в систему охлаждения обычной (недистиллированной) воды, что могло привести к увеличению накипи и нейтрализации функциональных присадок;
— приобретение подержанного автомобиля с пробегом, и отсутствие уверенности в качестве используемой в нем охлаждающей жидкости;
— наступление холодного времени года, а в двигателе используется обыкновенная вода.
Примерно оценить качество уже используемого, а также приготовленного к применению антифриза можно простыми способами. Например, при температуре окружающей среды около 20 °C проверить плотность с помощью обыкновенного ареометра (денсиметра) и по ней определить возможную температуру замерзания.
Денсиметр (лат. densus (densi) — плотный, густой и греч. metr — измеряю) — прибор для измерения относительной плотности жидкостей и твердых тел (ареометр постоянного веса, шкала которого градуируется в единицах плотности).
Качественная охлаждающая жидкость должна иметь плотность не менее 1072 кг/м2, что должно обеспечить ее работоспособность до температуры —40 °C.
Водородный показатель (рН) антифриза можно оценить с помощью лакмусовой индикаторной бумаги (рис. 44).
Рис. 44. Определение водородного показателя охлаждающей жидкости при помощи индикаторной бумаги (показатель рН 8)
Окрашивание лакмусовой бумаги в розовый цвет указывает на значительное содержание кислоты (рН 1…5). Такой антифриз опасен для системы охлаждения вследствие проявления активных коррозионных свойств. Если ее цвет не изменяется, то рН 6…7, что указывает на возможность применения такой охлаждающей жидкости в летнее время (возможно в систему охлаждения залита обыкновенная вода). Зеленый цвет (рН 7…9) указывает на достаточно высокое качество антифриза, на нем можно эксплуатировать автомобиль (рис. 44). Синий (или фиолетовый) цвет лакмусовой бумаги объясняется высоким содержанием щелочи (рН 10…13), которая будет приводить к значительному образованию накипи и перегреву двигателя.
Для обеспечения длительной и надежной работы системы охлаждения необходимы регулярный ее осмотр и диагностика. Перед началом движения нужно внимательно осмотреть радиатор, двигатель, помпу, соединения шлангов системы охлаждения на предмет отсутствия течей и трещин трубопроводов, а также наличие хомутов и их затяжку. Если в местах соединительных хомутов или на радиаторе имеются белесые подтеки, то, возможно, в этих местах имеются незначительные течи. Также следует проверить крышку радиатора (расширительного бачка), так как встроенный в нее расширительный клапан может быть забит накипью или продуктами коррозии и не выполняет своих функций (регулировка давления в системе охлаждения) в заданных пределах. Рекомендуется осмотреть внутреннюю полость горловины радиатора на предмет наличия гелеобразных отложений и накипи. Если двигатель перегревается, а при сдавливании рукой верхнего патрубка системы охлаждения на работающем двигателе ощущается давление, как в шине велосипеда, то это указывает на возможное значительное образование накипи в полостях системы охлаждения. Наличие накипи требует очистки и герметизации всей системы охлаждения специальными моющими и ремонтно — профилактическими препаратами.
Присадки и добавки в систему охлаждения бывают моющего, профилактического и ремонтного назначения. Первую группу составляют препараты, предназначенные для очистки (промывки) системы охлаждения двигателя от различных загрязнений. Вторая группа препаратов применяется для стабилизации и восстановления свойств охлаждающей жидкости, защиты двигателя от образования накипи, появления коррозии и ржавчины. Третью группу составляют добавки, предназначенные для герметизации — устранения утечек жидкости из системы охлаждения.
При очистке (промывке) системы охлаждения двигателя, препарат — промывку надо залить в охлаждающую жидкость, пустить двигатель и оставить его в рабочем состоянии с открытыми крышкой радиатора и краном отопителя на указанное в инструкции время (3, 5, 7, 15 мин.). Во избежание ожога, нельзя открывать крышку радиатора (расширительного бачка) на горячем двигателе.
После охлаждения двигателя слить отработавшую и заправить систему новой охлаждающей жидкостью. Часть антифриза может не войти в радиатор в связи с наличием воздушных пробок в системе охлаждения. Поэтому надо вновь пустить двигатель и оставить его в рабочем состоянии с открытой крышкой радиатора на 10 мин. Затем заглушть двигатель и довести уровень антифриза до нормы.
При обнаружении течи охлаждающей жидкости необходимо применять соответствующие ремонтные препараты (антитечи). Антитечи заливаются в охлаждающую жидкость, и двигатель продолжает эксплуатацию на обычных режимах (рис. 45).
Рис. 45. Механизм работы препарата — антитечи охлаждающей жидкости: 1 — полимеризующееся вещество; 2 — полимерная пробка; 3 — охлаждающая жидкость; 4 — корпус системы охлаждения с отверстием
Большинство ремонтных препаратов — антитечей допускается использовать со всеми видами антифризов и любыми присадками в систему охлаждения двигателя. Они герметизируют, в том числе и те повреждения, которые достаточно трудно диагностировать (можно лишь отмечать падение уровня охлаждающей жидкости) и тем более локализовать. Применение антитечей быстро устраняет возможные внутренние утечки, защищая камеру сгорания от возможного попадания в нее охлаждающей жидкости. Если жидкость просто выкипает, то можно доливать только дистиллированную воду, так как моноэтиленгликоль почти не выкипает.
Вопрос. Можно ли смешивать антифризы разных цветов?
Ответ. Красители, которые применяют для окрашивания антифризов, выбираются производителями, как правило, произвольно. Наличие флуоресцентной добавки облегчает диагностику системы охлаждения с целью установления мест утечки охлаждающей жидкости. При этом один и тот же производитель может использовать разные красители для разных марок антифризов.
Цвет некоторых импортных антифризов не следует воспринимать как принадлежность к особой группе охлаждающих жидкостей. Это обозначение того, что препарат ядовит для человека.
В то же время, большинство антифризов с температурой замерзания —40 °C окрашены в синий (бирюзовый) цвет, а с температурой замерзания —65 °C чаще всего в красный (розовый) цвет. Флуоресцентные добавки, вводимые в современные антифризы, служат для быстрого и точного определения места течи при освещении двигателя специальными лампами с ультрафиолетовым светом.
Несмотря на все преимущества нового антифриза с карбоксилатными ингибиторами коррозии, у него есть один существенный недостаток — он не совместим с антифризом на основе силикатных антикоррозионных присадок. Если антифризы относятся к одной группе, то цвет не является препятствием для их совместного использования (смешивания). К сожалению, визуально отличить один тип антифриза от другого практически невозможно. Специальных классификаций по цвету не существует.
Вопрос. Как определить качественную охлаждающую жидкость и защититься от подделок?
Ответ. К сожалению, самостоятельно без специального оборудования этого сделать нельзя. Можно определить, например, плотность (качественная охлаждающая жидкость имеет более высокую плотность (не менее 1,072 г/cм3), чем вода (1 г/cм3)), и показатель кислотности (рН), но даже при наличии нормативной плотности и показателя кислотности нельзя быть в полной уверенности относительно качества охлаждающей жидкости. Производители некачественных охлаждающих жидкостей научились обходить эти критерии, точнее, их продукция по этим критериям полностью соответствует требованиям.
Некачественная охлаждающая жидкость быстро (порой после 10 000 км пробега) теряет свои свойства и становится коррозионно — агрессивной и небезопасной для узлов и деталей системы охлаждения и двигателя в целом, что можно определить только во время эксплуатации.
Чтобы удостовериться в подлинности, надо измерить температуру начала кристаллизации охлаждающей жидкости, но это может сделать только квалифицированный персонал в специальной лаборатории, при помощи специального оборудования.
Поэтому настоятельный совет всем владельцам транспортных средств — не покупать самые дешевые марки, а использовать охлаждающую жидкость только от известных производителей, имеющих допуски заводов — производителей, и приобретать ее только в проверенных специализированных местах продаж. Это в значительной мере убережет вас от серьезных проблем и дорогостоящих ремонтов.
Вопрос. Не оказывают ли присадки для системы охлаждения негативного влияния на резиновые патрубки и пластиковые детали системы?
Ответ. Препараты для системы охлаждения двигателя автомобиля, которые разработаны и выпускаются известными зарубежными и отечественными фирмами, не оказывают вредного воздействия на конструкционные материалы двигателя, в т. ч. на резиновые и пластиковые патрубки и уплотнительные устройства.
Вопрос. Для чего нужно промывать систему охлаждения и как это делать?
Ответ. С течением времени даже самый хороший антифриз теряет свои защитные и иные свойства, и если не предпринимать профилактических мер, то система охлаждения начинает загрязняться. На стенках радиатора и других местах появляются накипь, жироподобные отложения, ржавчина и т. п. Возникают локальные засорения радиатора, что ведет к снижению циркуляции охлаждающей жидкости, локальным разрушениям радиатора, течи охлаждающей жидкости, перегреву двигателя со всеми вытекающими отсюда последствиями.
Чтобы избежать перечисленных выше проблем и существенно увеличить срок эксплуатации транспортного средства, рекомендуем при смене антифриза проводить промывку системы охлаждения при помощи специальных составов.
Промывка системы охлаждения и смена охлаждающей жидкости рекомендуется также как превентивная мера при приобретении автомобиля на вторичном рынке с неизвестной или сомнительной «родословной», с пробегом более 100 000 км, а также в случаях, когда температура двигателя выше нормы, и на это нет видимых причин, при возобновлении эксплуатации транспортного средства после длительного простоя (более года).
Вопрос. Если оставить присадку — очиститель в системе охлаждения двигателя на несколько часов или даже суток, повысит ли это качество очистки?
Ответ. Обычно промывки системы охлаждения «работают» 7…15 мин., реже до 30 мин. Именно столько времени требуется большинству составов для качественной очистки системы. При этом они обычно содержат специальные компоненты, которые удерживают «отмытые» загрязнения и вредные отложения во взвешенном состоянии. После очистки охлаждающую жидкость нужно сливать. Держать «промывочный раствор» в системе охлаждения свыше указанного срока не рекомендуется.
Исключение составляют специальные антифризы — очистители, которые обеспечивают качественную мягкую промывку системы охлаждения и заливаются за 100…150 км до смены охлаждающей жидкости.
Вопрос. Как диагностировать течи в системе охлаждения и как с ними бороться?
Ответ. Диагностирование течей системы охлаждения требует определенного навыка и понимания устройства и назначения ряда узлов двигателя. В ряде случаев необходима консультация специалиста.
Как было сказано в начале раздела, течи в системе охлаждения двигателя могут возникать как вследствие заводских дефектов и механических проблем, так и в результате использования некачественной охлаждающей жидкости. Они, как правило, влекут за собой локальные разрушения, загрязнения и перегревы.
К более сложным случаям относятся течи, связанные с перегревом двигателя: трещины головок и блоков цилиндра, разрушение прокладок головок блока.
Течи, связанные с механическими проблемами, в основном возникают изза ослабления фиксирующих элементов — хомутов на патрубках радиатора. В этих случаях протечки обычно заметны по белесым подтекам в районе ослабшего хомута. Для их устранения достаточно аккуратно подтянуть хомуты.
Течи, связанные с заводскими дефектами, можно разделить на устранимые и неустранимые при помощи средств автохимии. Опыт авторов данной книги показывает, что до обращения в автосервис можно попытаться устранить течь при помощи специальных препаратов.
В случае если течи небольшого размера, то специальные составы добавлятся в охлаждающую жидкость, они быстро и эффективно устраняют течи по месту припайки медных радиаторов, стыка пластиковых бачков с алюминиевым теплообменником, течи через перебитые трубки радиатора, прокладку помпы, патрубки радиатора и кран отопителя, из радиатора отопителя и т. д. Препараты могут оставаться в охлаждающей жидкости и служить эффективным профилактическим средством возможных протечек.
Перегрев двигателя часто приводит к трещинам головок и блоков цилиндра и/или разрушению прокладок блока. Это очень серьезные неисправности, требующие больших затрат для их устранения при традиционном подходе. Современные средства автохимии позволяют заделывать течи подобного рода с высокой степенью эффективности и надежности. Для этих целей предназначены металлокерамические герметики. Эти составы способны устранять повреждения большого сечения, что позволяет их рекомендовать и для устранения ряда значительных заводских дефектов. Использование металлокерамики позволяет заделывать трещины в самых трудных местах, а прочность и температурные характеристики получаемого шва не уступают металлу.
Препараты для стеклоомывающих жидкостей
Для очистки ветровых стекол, фар, а иногда и зеркал автомобиля постоянно появляются новые конструкторские разработки: щетки новых конструкций, устройства для повышения прижима щеток к стеклу и т. д. Разрабатываются новые составы для полос самих щеток. Они уже не резиновые, а силиконовые или тефлоновые, или даже изготовленные из композитного материала на основе натурального каучука с добавлением различных неорганических добавок. Например, в состав материала ленты вводят графит для снижения шума и предотвращения образования царапин на стекле. Однако в наибольшей степени качество очистки зависит от специально разрабатываемых стеклоомывающих автомобилей жидкостей, которые подразделяются на летние и зимние.
Зимние жидкости представляют собой смесь спирта, моющих и ароматических добавок, красителя и воды. На каждый из этих компонентов возложена своя функция, но в совокупности они должны обеспечивать выполнение следующих основных требований:
— быть безопасными для здоровья водителя, пассажиров и окружающей среды;
— быстро и эффективно удалять загрязнения различного происхождения (дорожная грязь, снег, лед, жировые или масляные отложения, сажа, копоть, соли и др.) в широком спектре температур эксплуатации (в т. ч. отрицательных);
— не оставлять на стеклах бликов, подтеков, белых налетов и радужных пленок, затрудняющих водителю обзор;
— не оказывать разрушающего действия на лакокрасочные покрытия, резиновые, пластмассовые и хромированные детали автомобиля (в т. ч. не вызывать набухания резины, из которой изготавливаются уплотнители и щетки ветрового стекла, а также снижения эластичности полихлорвиниловых трубок, ведущих к форсункам распылителя);
— не загрязнять систему и форсунки омывателя.
Основным компонентом любой стеклоомывающей жидкости является вода. Для производства стеклоомывающих жидкостей используется только специально подготовленная вода высокой степени очистки. Из нее удаляются все примеси и элементы (соли), которые могут привести к загрязнению стеклоомывающей системы, вызвать коррозию металлических поверхностей, забивание форсунок и т. п. Качество воды следует учитывать и при самостоятельном разбавлении концентрата стеклоомывающей жидкости.
Главным компонентом, обеспечивающим функционирование (не замерзание) омывающей жидкости при отрицательной температуре, является одноатомные спирты. Они также обладают моющими (растворяющими) свойствами. Для производства стеклоомывающих жидкостей в настоящее время применяются этиловый (этанол), изопропиловый (изопропил) и метиловый (метанол) спирты.
Применение спиртов регулируется разрешительными документами органов здравоохранения, а также их стоимостью. Оказать негативное влияние на здоровье человека в принципе способен любой из этих спиртов. В то же время, их последствия зависят от концентрации и длительности воздействия спирта на организм, индивидуальной восприимчивости и способа интоксикации человека.
Самыми безопасными для человека и окружающей среды являются низкозамерзающие стеклоомывающие жидкости на основе этилового спирта. Этанол представляет собой жидкость с характерным «водочным» запахом. Даже при длительном вдыхании паров и пребывании в салоне автомобиля с концентрацией этилового спирта, в несколько раз превышающей допустимые значения, не считается опасным для здоровья человека.
Изопропиловый спирт более токсичен, чем этанол, а по отличительному резкому запаху напоминает ацетон. Применение стеклоомывающих жидкостей на основе изопропилового спирта может приводить к ухудшению самочувствия, появлению головокружения и даже головной боли. Особенно это проявляется при продолжительных поездках и отсутствии вентиляции воздуха в салоне автомобиля, что характерно для зимнего периода эксплуатации.
Метанол обладает лучшими по сравнению с предыдущими спиртами моющими свойствами. По запаху метиловый спирт можно перепутать с этанолом, но для организма человека он является очень токсичным и опасным веществом. Даже в незначительных концентрациях, например при испарении со стекла автомобиля, метанол обладает способностью накапливаться в организме и крайне негативно воздействовать на зрение, двигательную и нервную системы человека. Попадание внутрь всего 5…10 мл метанола приводит к тяжелому отравлению, а 30 мл — к смертельному исходу. В связи с этим стеклоомывающие жидкости, изготовленные на основе метанола, запрещены к использованию Постановлением главного санитарного врача РФ (№ 4 от 25.05.2000 г.).
Работоспособность низкозамерзающих жидкостей с одной и той же температурой замерзания обеспечивается различной концентрацией спиртовой основы. Для изготовления одного и того же количества низкозамерзающей жидкости больше всего требуется изопропилового спирта, а меньше всего метилового, что создает предпосылки для появления его на черном рынке автохимии. С наибольшей вероятностью можно приобрести зимнюю стеклоомывающую жидкость с метиловым спиртом на нелегальных торговых точках вдоль автотрасс. Для притупления запаха спирта в незамерзающие жидкости добавляют отдушки с ароматами лимона, апельсина, яблока и т. п., поэтому в ряде случаев определить, какой именно спирт применялся при их изготовлении, не всегда представляется возможным.
Повышение очищающих функций и обеспечение ряда функциональных свойств достигается введением в состав стеклоомывающих жидкостей специальных поверхностно — активных веществ (детергентов — дисперсантов). Благодаря ПАВ низкозамерзающие жидкости легко справляются с осевшими на стекло автомобиля самыми различными загрязнениями, такими как дорожная грязь, нефтепродукты, соль, помет и т. п.
Одним из важнейших свойств стеклоочищающих жидкостей является пенообразование. При распылении жидкости форсунками образуется пена, которая механическим способом воздействует на загрязнения, отделяя их от стекла и предохраняя его от микрошлифования абразивными частицами и образования матовости. ПАВ, входящие в состав жидкости, обволакивают частицы грязи, предотвращая их непосредственный контакт с поверхностью стекла. Одновременно за счет эффекта флотации, с помощью мельчайших пузырьков воздуха, из которых состоит пена, грязь всплывает и удаляется с очищаемой поверхности. При этом количество пены не должно быть чрезмерным, так как эффект флотации может негативно сказаться и на работе щеток, уменьшая их механическое воздействие на поверхность стекла и создавая трудности с удалением самой пены. С другой стороны, малое пенообразование не обеспечивает достаточное механическое воздействие на загрязнения и снижает эффективность, а также качество очистки стекла автомобиля.
Кроме спиртов, отдушек и ПАВ, в стеклоомывающие жидкости также добавляются различные колеры (красители), которые не должны чрезмерно «окрашивать» жидкость, так как, попадая на ветровое стекло, красители могут ухудшать видимость дороги.
Следует подчеркнуть, что применение специальных летних стеклоомывающих жидкостей, а не обычной воды, не только создает более комфортные условия для водителя, но и значительно повышает безопасность дорожного движения.
В мире производится огромный ассортимент стеклоомывающих жидкостей, рассмотреть которые не представляется возможным, да и не имеет никакого смысла.
Говоря о проблемах поддержания чистоты остекления автомобиля, фар и зеркал, следует кратко остановиться на технологиях, которые применяются для этих целей, но напрямую не связаны с качеством и составом стеклоомывающих жидкостей. Они применяются самостоятельно и выпускаются в виде аэрозолей или емкостей с распылителями. К таким препаратам автохимии относятся антидождь, антизапотеватели, специальные очистители стойких загрязнений стекол, а также препараты нанотехнологии, основанные на реализации «эффекта лотоса».
Вследствие высокой популярности и эффективности препаратов и разработок, основанных на нанотехнологиях, остановимся на одном из таких эффектов и способах его практического применения в автохимии.
В середине 70–х годов XX в. профессора ботаники Боннского университета (ФРГ) В. Бартхлотт (Barthlott) и К. Найнуис (Neinhuis) обнаружили, что листья и цветки некоторых растений почти не смачиваются водой и не загрязняются (рис. 46), а также то, что это удивительное явление происходит в наноструктурированных поверхностных областях. Впоследствии оно было ими запатентовано и названо в честь наиболее яркого представителя таких растений — «лотос — эффект» (Lotuseffect ®).
Рис. 46. Капли влаги на несмачиваемой поверхности листьев
С помощью электронного микроскопа учеными было обнаружено, что поверхности листьев, цветков и побегов покрыты тонкой внеклеточной мембраной — поверхностным слоем (эпидермисом, кожицей). Эпидермис листьев и цветков некоторых растений выделяет воскоподобное вещество кутин, представляющее собой смесь высших жирных кислот и их эфиров. Жиры и жироподобные вещества, входящие в состав липидов — природных органических соединений, являются одними из основных компонентов биологических мембранIt constitutes of an insoluble polymer (cutin) and soluble lipids, usually called» waxes». They are embedded into the polymer and are also present on the surface. (рис. 47).
Рис. 47. Несмачиваемая поверхность листа люпина под электронным микроскопом
На оптимизированных поверхностях (например, цветке лотоса) проявляются супергидрофобные качества, такие, что, например, мед и даже клей на водной основе не прилипают, а полностью стекают с таких поверхностей.
Материалы с высоким напряжением граничных поверхностей увлажняются лучше, чем даже, например, тефлон — материал с одним из самых низких напряжений граничных поверхностей. Поведение воды на поверхности зависит от состояния поверхности. Если относительно гладкую поверхность достаточно увлажнить, то самоочистка улучшится.
Так как «лотос-эффект» основан исключительно на физико — химических явлениях и свойствах растений и не привязан только к живой системе, то самоочищающиеся поверхности технически можно воспроизвести на всевозможных материалах и покрытиях. Именно поэтому в последнее время интенсивно развиваются исследования по разработке и производству устойчивых к загрязнению и самоочищающихся поверхностей и покрытий.
Технологии на основе «лотос-эффекта» получили наиболее широкое применение в автомобильной промышленности: при нанесении и полировке лакокрасочного покрытия; специальной обработке остекления автомобиля; защитной водоотталкивающей и антибактериальной пропитке внутренней обивки и тентов; модифицировании резинотехнических изделий и т. п.
Немецкая фирма «Дуалес Систем Дойчланд АГ» одной из первых представила на проходившей в Ганновере всемирной выставке «ЭКСПО-2000» новую краску для автомобилей, обладающую самоочищающимся эффектом, для мойки окрашенных поверхностей (даже сильно загрязненных) достаточно просто полить водой.
Более того, в настоящее время имеются разработки на основе нанотехнологий, позволяющие вообще обходиться без воды. На загрязненные поверхности автомобиля из баллона распыляется специальный состав, которой затем растирается салфеткой. В результате не только удаляются образовавшиеся загрязнения, но и наносится защитное самоочищающееся покрытие, которое затем остается на поверхности более полугода.
Автомобильная нанополироль, реализующая «лотос — эффект», — в большинстве случаев двухкомпонентный препарат автохимии, состоящий из подготовительной жидкости (растворителя) и собственно полироли, представляющий собой смесь частиц наноматериала (алмаз, оксиды титана, кремний, вольфрам и т. д.) в специальной среде из растворителей и наполнителей. Она предназначена для оптической маскировки локальных потертостей и царапин, восстановления первоначального цвета и свойств лакокрасочного покрытия или остекления автомобиля, а также придания им самоочищающихся свойств.
Эффективность использования нанополиролей для защиты обрабатываемых поверхностей отражена на рис. 48.
Рис. 48. Механизм образования защитного покрытия при использовании полиролей: обычной (слева) и нанополироли (справа)
Как видим на схеме, нанополироль полнее заполняет микротрещины, обеспечивает плавные переходы от поверхностей трещин к лицевой поверхности, что способствует нанесению более равномерного защитного покрытия.
Нанопрепараты для остекления автомобилей выпускаются нескольких видов: специальные защитные водоотталкивающие пленки, двухкомпонентные полироли, состоящие из эффективных растворителей, собственно нанопрепарат и специальные наноочистители.
Механизм «самоочищения» стекла автомобиля, обработанного специальными нанополиролями, представлен на рис. 49. Поверхность модифицирована таким образом, что капля воды катится по ней, собирая грязь, тогда как на гладкой поверхности, наоборот, капля воды, сползая, оставляет грязь на месте.
Рис. 49. Схема реализации «лотос — эффекта» на автомобильном стекле: 1 — нанопокрытие; 2 — капля жидкости (воды); 3 — загрязнение; 4 — поверхность (стекла, краски, керамики и т. д.)
При применении специальных нанопокрытий и нанополиролей на лобовом стекле автомобиля дождь, снег и грязь не удерживаются на его поверхности и при движении уносятся встречным потоком воздуха. При этом попавшие на стекло битум, растительные смолы, масляная пленка, прилипшие насекомые и т. п. легко удаляются дворниками — даже в самых тяжелых случаях. В результате создания водоотталкивающего эффекта и сохранения прозрачности стекла повышается безопасность на дороге.
Видимость в ночное время также существенно улучшается, а встречный транспорт ослепляет гораздо меньше. Вода, снег и грязь, которые брызжут изпод колес встречного транспорта, попадая на боковые стекла, также быстро удаляются с них, не ухудшая бокового обзора. То же касается и боковых зеркал, позволяющих беспрепятственно наблюдать за движением. Все это повышает безопасность при управлении автомобилем.
В плохую погоду становится особенно неприятно, когда дождь или снег мешают обзору через заднее стекло. Защитное водоотталкивающее нанопокрытие и здесь обеспечивает большую безопасность при управлении автомобилем, так как грязь, вода и снег хуже удерживаются на поверхности заднего стекла.
Для грузовых машин нанопокрытие также является оптимальным решением. Лобовое стекло грузовика испытывает большое сопротивление воздуха, поэтому водители таких машин уже при скорости 60 км/ч смогут оценить преимущества защитного водоотталкивающего нанопокрытия. Одновременно снизятся расходы на новые стеклоочистители, так как они будут использоваться меньше, в среднем на 50%. При этом неприятную работу по регулярному наполнению бака жидкостью для стеклоомывателя можно будет делать гораздо реже.
Нанесение защитных нанопокрытий необходимо проводить в сухую погоду при температуре не ниже +20 С и не выше +45 С.
Работа обыкновенных стеклоочистителей с обычными омывающими средами не снижает качества обработки и не влияет на долговеность нанопокрытия. Если водоотталкивающий эффект понизился, то причина, скорее всего, в его загрязнении. В этом случае поверхность нужно почистить при помощи мягкого очищающего средства (лучше всего чистящего нанопродукта), а в заключение — хорошо промыть проточной водой. После этой простой процедуры водоотталкивающий эффект будет восстановлен (у текстиля — после высыхания). Если же нанопленка повреждена, то ее можно без проблем восстановить, заново обработав соответствующим продуктом поврежденное место. При необходимости, после года эксплуатации или 20…30 тыс. км пробега обработку можно повторить.
Покрытие устойчиво к классическим моющим средствам на автомойках и пароочистителям.
В процессе эксплуатации внешним воздействиям также подвергаются фары, на них появляются микросколы, трещины, потертости. Фары мутнеют, и внешний вид автомобиля теряет привлекательность. Кроме этого, ухудшаются оптические свойства фар, свет становится блеклым, мутным, рассеянным, такие фары в большей степени ослепляют водителей встречных автомобилей. Применение для фар специальных нанополиролей позволяет восстановить внешний вид и оптические свойства стеклянных рассеивателей.
Препараты такого класса уже выпускаются некоторыми автохимическими предприятиями, например российской компанией «Автохимпроект» («Хрустальное стекло»), американскими компаниями Meguiar` s («Поколение NXT»), Hi-Gear Products, Inc (Rain Guard), Doctor Wax (Nanox) и некоторыми другими. Однако эти препараты предназначены для самостоятельного (автономного) применения, в качестве так называемых полиролей стекла, а не присадок к стеклоочищающим жидкостях, поэтому подробно в этой книге не рассматриваются.
Безразборное восстановление работоспособности двигателя
В настоящее время можно выделить две основные системы применения технологий безразборного сервиса, как и вообще проведения всего технического сервиса и ремонта транспортных средств:
— планово-предупредительная;
— в зависимости от технического состояния объекта.
Планово — предупредительная систем технического обслуживания и ремонта в зависимости от наработки (пробега автомобиля) долгое время существовала в Советском Союзе, затем ее использовала санкт-петербургская фирма «ИКС» при применении ремонтно — восстановительных препаратов (РВП).
Данная система обслуживания направлена в основном на профилактику и предупреждение высокой интенсивности изнашивания и возникновения отказов, но ее применение экономически не всегда обосновано.
Способы проведения технологических операций безразборного сервиса могут быть различными, они зависят как от механизмов действия препаратов, так и от их агрегатной формы. Например, маслорастворимые препараты, такие как металлоплакирующие присадки и кондиционеры, в основном вводятся в приготовленные к заправке или уже заправленные в автомобиль топливно — смазочные материалы. Порошковые препараты (реметаллизанты, геомодификаторы) могут вводиться непосредственно в зону трения (свечные отверстия, подшипники качения и т. д.). В случае применения полимерсодержащих препаратов иногда используют метод «специальной обработки» — введение аэрозолей в топливно — воздушные смеси.
Наиболее прогрессивна методика (система) безразборного сервиса в зависимости от технического состояния автомобиля, при которой необходимость того или иного воздействия оценивается на основании результатов технической диагностики. В этом случае можно выбирать либо профилактические препараты, более «мягкого» действия, либо препараты, обеспечивающие более интенсивное воздействие на трущиеся соединения и агрегаты автомобиля.
В отдельных случаях необходимость в применении РВП обусловлена и рядом других причин (принудительных), например, участием в соревнованиях, пробегах или какихто других нештатных испытаниях (автохимический тюнинг).
Ремонтно — восстановительные препараты могут также применяться в качестве вспомогательных безразборных средств при сезонном техническом обслуживании и в ряде других случаев.
В зависимости от решаемой задачи (технического состояния автомобиля, условий эксплуатации и ожидаемых результатов) современной наукой предлагается ряд эксклюзивных технологий безразборного сервиса, в том числе в процессе непрекращающейся эксплуатации, что не менее важно. Основными из них являются:
1. Безразборное диагностирование систем и узлов автомобиля.
2. Приработка (обкатка) агрегатов нового или капитально отремонтированного автомобиля.
3. Очистка систем автомобиля.
4. Профилактика износа и поддержание работоспособности узлов автомобиля.
5. Автохимический тюнинг двигателя.
6. Технологии безразборного восстановления поверхностей.
Все эти технологии, прежде всего, направлены на восстановление работоспособного состояния техники, в том числе и за счет восстановления изношенных поверхностей до номинальных или ремонтных размеров.
Весь процесс (цикл) изнашивания детали, как и вообще функционирования соединения или машины в целом между капитальными ремонтами, можно разделить во времени на три характерных этапа (периода):
— приработка изделия;
— нормативная работа (установившийся процесс изнашивания);
— аварийная эксплуатация (катастрофическое изнашивание).
Применение РВП позволяет восстановить ряд показателей обработанного объекта и тем самым повысить (продлить) его межремонтный ресурс (рис. 50).
Известно, что определённые группы восстановителей вследствие особенностей функционирования в одних условиях могут проявлять свои максимальные качества и быть менее эффективными в других, в третьих могут быть бесполезными, а иногда даже вредными. Особенно, если нарушаются рекомендации по их применению или если они используются не по назначению.
Рис. 50. Межремонтный цикл эксплуатации техники в условиях применения ремонтно — восстановительных технологий: W отк — показатели наступления неработоспособного состояния (отказа) объекта; Wв — показатели объекта после безразборного восстановления; Тв — точка безразборного восстановления; Т р — межремонтный ресурс объекта в обычных условиях эксплуатации; Т рв — межремонтный ресурс объекта после применения РВП
Ниже приведены некоторые общие требования к применению препаратов для безразборного восстановления работоспособности автомобильного двигателя.
Первый этап. Оценка технического состояния двигателя.
Диагностирование — один из важнейших элементов безразборного сервиса транспортных средств, которое включает определение технического состояния машины, выявление скрытых неисправностей в ее агрегатах и системах без их разборки, и на основании полученных результатов обоснование того или иного способа воздействия (применения тех или иных ремонтно — восстановительных технологий).
Для этих целей могут применяться стационарные, передвижные, переносные и встроенные бортовые средства диагностирования. Стационарные средства диагностирования предназначены для контроля большого числа параметров (до 150 и более) на станциях технического контроля (СТО), ремонтных предприятиях и в мастерских хозяйств.
Для общего диагностирования автомобилей, тракторов и других транспортных средств можно применять переносной комплект КИ-13901Ф, размещаемый в чемодане размерами 520 350 220 мм, массой 19 кг. Комплект КИ-13905 предназначен для безразборного диагностирования тракторов (при ТО-3) и комбайнов. Он размещается в кузове — фургоне автомобиля УАЗ-452. Стационарный комплект КИ-5308А служит для диагностирования тракторов и комбайнов в мастерских предприятий с большим парком и может располагаться на специально оборудованном участке.
В ходе диагностирования проверяется состояние свечей. Выявленные неисправные или вызывающие опасения свечи (с выгоранием или эрозией электродов, трещинами или разрушением изолятора), естественно, заменяются на новые.
Эрозия (лат. erosio — р азъедание) — процесс разрушения поверхности детали (конструкции) под действием вешней среды. Эрозию в зависимости от внешнего фактора, её вызывающего, принято подразделять на газовую, кавитационную, абразивную и электроэрозию, или электрокоррозию.
Состояние ЦПГ можно определять пневмотестером К-272М по расходу воздуха в диагностируемом цилиндре. Падение давления на дросселе характеризует техническое состояние цилиндра. Давление подводимого к прибору воздуха составляет 0,25…0,08 МПа, расход воздуха до 1,6 м3/ч.
Наиболее простым способом определения технического состояния цилиндропоршневой группы (ЦПГ) двигателя автомобиля является замер компрессии — максимального давления, развиваемого в цилиндре в конце такта сжатия (рис. 51).
Рис. 51. Замер компрессии в цилиндре двигателя: (показание компрессии К = 1,2 МПа)
Для того чтобы определить значение компрессии в автомобиле, необходимо приобрести компрессометр: марок МТП-1МБ, 179 УХЛ4, МТ-1, модели 88801 (для бензиновых двигателей) или модели КИ-5973 (для дизельных). Для бензиновых двигателей необходим компрессометр с пределами измерений компрессии К = 0…1,6 МПа, а для дизельных двигателей К = 0…4,0 МПа.
Нормативные значения компрессии представлены в табл. 33, при этом ее значения в разных цилиндрах не должны отличаться более чем на 0,1 МПа для бензиновых двигателей и 0,2 МПа для дизелей.
Табл. 33. Нормативные значения компрессии для разного типа двигателей
В настоящее время некоторыми отечественными и зарубежными компаниями выпускаются специальные индикаторные тесты, предназначенные для проведения экспресс — исследований моторного масла, например запатентованный в Германии продукт MOTOR check UP, с помощью которого можно установить наличие в масле сажи, воды, топлива или антифриза.
Индикатор изготовляется из особого типа бумаги, применяющейся при изготовлении электронных микросхем, которую дополнительно обрабатывают специальным неорганическим составом. Данная пропитка способствует более четкому формированию границ между кольцами.
Сама методика проведения такого исследования довольно проста. Двигатель автомобиля необходимо разогреть до рабочей температуры, а затем заглушить. Перед тестированием снять маркированную защитную полоску бумаги. Затем вынуть из картера контрольный масляный щуп и удерживая его на расстоянии в 3…5 см от тестовой пластины, нанести одну каплю моторного масла в её середину (рис. 52).
Положить тест на горизонтальную поверхность, защищенную от влаги и дать капле полностью впитаться, не допуская, чтобы она стекла с контрольного места. Полное время, необходимое для формирования изображения при комнатной температуре, составляет от 2 до 15 мин., в зависимости от состояния исследуемого моторного масла. Для более «старого» масла процесс полного формирования (проявления) изображения более длительный и может занять до 45 мин.
Рис. 52. Опытное применение индикаторного теста для моторного масла
Масляная смесь, попадая на фильтрующую хлопчатобумажную поверхность индикатора, замедляющую распространение масляного пятна между волокнами, разделяется на более простые составляющие, которые в зависимости от их летучести распределяются на различных расстояниях от места (эпицентра) нанесения капли.
После того как проба масла полностью растечется и впитается в бумагу, сформируется до четырех концентрических колец (рис. 53).
Рис. 53. Схема отпечатка масляной капельной пробы: 1 — сажа или механические примеси (антифрикционные добавки); 2 — базовая основа масла; 3 — вода (или гликоль); 4 — топливо
Главным этапом такого исследования является идентификация концентрических окружностей по интенсивности окраски, оценка их диаметров и сравнение полученного изображения с эталонной таблицей изображений.
По цвету внутреннего (самого темного) круга 1 с помощью специальной шкалы определяется содержание сажи и других загрязнений в масле. Чрезмерная концентрация сажи может быть вызвана неправильной регулировкой системы впрыска топлива, что приводит к его неполному сгоранию. Последствия этого — накопление сажи на клапанах и поршнях, что ухудшает теплообмен, увеличивает расход топлива и, как следствие, приводит к повышенному износу деталей двигателя. Кстати, большинство антифрикционных добавок и модификаторов, таких как графит, металлические порошки, алмазы, полимеры и т. п., также попадут в центральный круг и будут идентифицированы как загрязнения.
Второй круг на индикаторе 2 характеризует состояние базовой основы моторного масла — его окисление и старение. Эксплуатация двигателя с таким маслом приводит к повышенному расходу топлива, падению мощности двигателя, снижению компрессии.
Наружный контур второго круга характеризует наличие в масле конденсата или антифриза. Ровная линия свидетельствует об отсутствии воды в масле. Если же профиль 3 зигзагообразный (при этом снаружи контура может еще образоваться дополнительное желтое кольцо), то в масле присутствует влага. Если кольцо небольшого размера — то это простой конденсат влаги, что в целом не должно вызывать серьезного беспокойства, а если большого размера, то это означает наличие в масле антифриза. Его появление указывает на дефекты прокладки головки блока цилиндров и других уплотнителей, а также на возможную коррозию в системе охлаждения.
Попадание влаги в смазочные материалы приводит не только к значительному снижению их эксплуатационных свойств, но и к активизации коррозионных процессов в трущихся соединениях двигателя.
Наличие внешнего (самого светлого) кольца 4 указывает на присутствие в моторном масле топлива. Это говорит о неправильной регулировке системы впрыска, неверно выставленном зажигании и некоторых других дефектах. Наличие топлива в моторном масле приводит к снижению смазочных свойств масла, а значит, к повышенному износу деталей цилиндро-поршневой группы.
Таким образом, попадание в смазочные материалы топлива, влаги, а также протекание окислительных процессов при работе существенно снижают их стабильность. Поверхностно — активные вещества восстановителей теряют свои свойства, вступают в реакцию с влагой и топливом, в результате не только снижается эффективность их применения, но и ухудшаются трибологические свойства базовых смазочных материалов.
Так, на рис. 54 представлена проба полусинтетического моторного масла Лукойл Супер 10 W -40 SG/CD после пробега 6 000 км, взятого из автомобиля S hevrolet-Niva с общим пробегом 69 000 км.
Рис. 54. Отпечаток пробы моторного масла после пробега автомобилем 6 000 км
На отпечатке видны три характерных поля (концентрических окружностей). Внутреннее поле — равномерного цвета, без присутствия сажи и механических примесей. Наружная окружность с размытыми зигзагообразными краями, указывает на присутствие в пробе масла воды, но в небольшом количестве, скорее всего, это конденсат атмосферной влаги. При этом поле основы масла имеет коричневый цвет, что указывает на допустимый уровень качества моторного масла, т. е. оно еще может эксплуатироваться, ориентировочно 1500…2000 км пробега. Следов топлива в масле (наличия еще одной внешней окружности белого цвета) не обнаружено.
Для удобства контроля проб и систематизации полученных данных на индикаторном листе предусмотрены строки для внесения контрольных записей о диагностируемом автомобиле (пробеге автомобиля, сорте масла, сроках замены и др.) (см. рис. 55).
Рис. 55. Отпечаток капли моторного масла на тестовой бумаге с колонками для внесения контрольных записей
Оценочные таблицы составлены только для бензиновых и дизельных двигателей и не могут быть использованы для оценки качества биомоторного масла, а также в случае применения биотоплива (особенно биодизельного).
Перед введением восстановителей в смазочные материалы необходимо также проверить состояние уплотнений восстанавливаемого агрегата.
Главным условием длительной и надежной работы узлов является исправное состояние уплотнительных устройств (прокладок) и различных защитных кожухов. Значительные потери масла (течи) могут привести к выносу части компонентов восстановителя и снижению ожидаемых результатов воздействия.
Второй этап. Очистка систем автомобиля.
Провести очистку смазочной, топливной и охлаждающих систем специальными очистителями, заменить воздушный, топливный и масляный фильтры на новые, а затем заправить свежим моторным маслом до нижнего уровня (по щупу — указателю уровня), оставив часть масла на приготовление композиции с восстановителем и последующий долив, а также заменить антифриз, если это необходимо.
Не рекомендуется проводить очистку масляной системы двигателя автомобиля промывочными маслами, так как это ведет к снижению качества заливаемого затем моторного масла.
Третий этап. Подготовка и проведение обработки двигателя.
Операции безразборного восстановления двигателей внутреннего сгорания наиболее целесообразно проводить на станциях технического обслуживания автомобилей (СТОА), где специалисты контролируют процесс обработки с полным диагностированием двигателя и гарантируют правильное применение препарата. Однако, ввиду достаточной простоты, процесс обработки может быть осуществлен как на автотранспортном предприятии, так и в обыкновенном гараже (на автостоянке) и даже в пути.
Перед введением препараты должны иметь температуру не ниже +20 °C для полного их удаления из упаковки и легкости введения.
Категорически запрещается их подогрев на открытом огне, электроплитке и т. д. В этих целях их можно выдержать в теплом месте, под струей горячей воды или воздуха.
Непосредственно перед введением флакон (тубу, пузырек, канистру) с присадкой или добавкой необходимо тщательно встряхивать в течение 2…3 мин.
Полученную композицию смазочного материала (масла) и препарата тщательно перемешать в течение 3…4 мин. и только затем ввести в двигатель или приготовленный заранее необходимый объем моторного масла.
Операции по введению тефлоновых препаратов целесообразнее проводить на холодном двигателе, чтобы максимально уменьшить возможность преждевременной полимеризации ПТФЭ во время заливки.