Автомобильные присадки и добавки Балабанов Виктор

Так, компания «Shell» и спользует экологически чистый бензин, содержащий 5,5 % МТБЭ, углеводородную основу и моющую присадку, а фирма «Chevron» предложила добавлять в базовый бензин 4…15 % (объем.) алкилата (смесь 40…60 % МТБЭ, 20…30 % изопропилового спирта, 20…30 % МеОН). В этом случае удалось повысить октановое число до 129 пунктов по исследовательскому методу и до 117 — по моторному методу. В настоящее время ведется разработка экологически чистого бензина, основанного на использовании МТБЭ как основного компонента в производстве бензина с высоким октановым числом.

Тем не менее, производство МТБЭ будут сокращать, хотя он и не представляет непосредственную угрозу для здоровья людей. Причина в том, что МТБЭ легко проникает в грунтовые воды и имеет неприятный запах. Он обнаружен в малых количествах во многих источниках водоснабжения. В жаркую погоду эфир из бензина улетучивается, что приводит к снижению октанового числа.

В качестве компонентов высокооктанового бензина также применяют метил — трет — С4–С5–алкиловые эфиры. Синтез осуществляется за счет реакции МеОН с соответствующим изоолефином при молекулярном соотношении (0,3…0,5):1 в прямоточном реакторе при 40…800 °C и давлении 5…7 атм.

Метанол и этанол уже давно используются в качестве самостоятельного моторного топлива. Перспективы применения и способы синтеза синтетического жидкого топлива на их основе будут подробнее рассмотрены в последующих главах.

Ароматические амины (производные анилина) в промышленности известны достаточно давно как горючее для ракетного топлива. В чистом виде анилин (С6Н5NH2) это бесцветная маслянистая жидкость с темпераурой кипения +184 °C и температурой плавления —6 °C. Анилин сильно ядовит, ограниченно растворяется в бензинах, под действием кислорода воздуха окисляется и темнеет, поэтому в чистом виде как антидетонационная присадка к бензинам не используется.

Ароматические амины обладают высоким антидетонационным эффектом, но в качестве присадки используется только монометиланилин (ММА) или N — анилин (С6Н5NHСH3). Это тоже маслянистая прозрачная жидкость желтого цвета с плотностью 980 кг/м3, растворимая в бензинах, спиртах, эфирах. ММА имеет высокие антидетонационные (октановое число по исследовательскому методу 280), антиокислительные, стабилизирующие и антикоррозионные свойства.

Недостатками ароматических аминов являются: подверженность смесей бензина с анилином и другими аминами при низких температурах расслоению, а также их повышенная склонность к смолообразованию и увеличению износа деталей цилиндропоршневой группы двигателя.

Повышение эксплуатационных свойств различных видов топлива может быть достигнуто путем введения различных металлсодержащих антидетонаторов и промоторов. При этом большое значение имеет дисперсность частиц металла: чем они меньше, тем эффективнее их применение, что открывает большие перспективы в использовании металлических наноматериалов в качестве добавок к различным видам топлива. Полезный эффект достигается также при применении в составе добавок современных моющих компонентов, химических нанокатализаторов и регуляторов горения топлива. Чаще используют многокомпонентные композиции, при этом каждый компонент выполняет свою функцию.

Антидетонатор (бустер, октан-корректор) — присадка к бензину на основе металлоорганических соединений для повышения его антидетонационных свойств.

Известно, что для полного сгорания 1,0 кг бензина необходимо 14,8 кг воздуха (окислителя), а 1,0 кг дизтоплива — 14,3 кг воздуха. Эти соотношения называются стехиометрическими (L o). Состав топливно-воздушной смеси характеризуется коэффициентом избытка воздуха «, который определяется как отношение массы воздуха (М в), поданного в цилиндр на такте впуска, к теоретически необходимой для полного сгорания поданной в цилиндр массе топлива (М т):

a = М в /L o М т

Промотр (горения, восстановления пластичных металлов) (лат. promoveo — продвигаю) — активатор, вещество, добавление которого к катализатору (или какому-то другому активному компоненту вещества) увеличивает его активность, избирательность или устойчивость.

При нормальных условиях сгорание бензиновой ТВС происходит в диапазоне изменения коэффициента избытка воздуха а = 0,8…1,1. Дизельные двигатели верхнего предела «а» не имеют, а нижний предел составляет около 1,6. При этом изменение коэффициента избытка воздуха по различным причинам в сторону увеличения называется «обеднением», а в сторону уменьшения — «обогащением» ТВС.

У нормально работающей свечи (рис. 22а) юбка центрального электрода имеет светло — коричневый цвет, количество нагара и отложений на электродах минимальное, отсутствуют следы моторного масла. Все это говорит о нормальной работе данного цилиндра, экономичном расходе топлива и отсутствии выгорания масла из картера двигателя.

Рис. 22. Внешний вид свечей, эксплуатировавшихся: а) в нормальных условиях; б) на «бедной» ТВС; в) на «богатой» ТВС; г) на бензине с ферроценовыми добавками

Если цвет электрода от светло-серого до белого (рис. 22б), то это говорит о работе двигателя на «бедной» ТВС (недостаточном количестве подаваемого топлива). Эксплуатация двигателя на обедненной смеси может стать причиной значительного перегрева свечи и возможного ее оплавления. Это указывает также на перегрев камеры сгорания, что в дальнейшем может привести к прогару выпускных клапанов.

Обнаружение на центральном электроде бархатисто — черного нагара (рис. 22в), указывает на «богатую» ТВС (избыточную подачу топлива), что может являться следствием неправильной регулировки карбюратора или неисправности инжектора, а также засорения воздушного фильтра.

В первых двух случаях необходимо отрегулировать карбюратор или проверить работу инжектора, а во втором случае еще и заменить воздушный фильтр.

Если обнаружен красный (кирпичного цвета) налет на центральном электроде свечи (рис. 22 г), то это значит, что в бензине, которым заправлен автомобиль, содержится много железосодержащих (ферроценов и их производных) или марганецсодержащих антидетонационных добавок.

Ферроцен — железоорганическое соединение, в молекуле которого атом железа связан сразу со всеми атомами углерода — легковоспламеняющийся кристаллический порошок оранжевого цвета (температура плавления 174 °C, кипения 249 °C, разложения 474 °C; содержание железа 30 %), разработанный как катализатор процесса сгорания, полностью растворим в бензине.

Регулирование процесса горения соединениями ферроцена основано на образовании каталитически активных частиц при разложении «сэндвичевой» системы ферроцена (нуль — валентного железа, a-окиси железа, органических радикалов), что способствует дополнительному разветвлению цепных реакций горения и окислению молекул топлива атомарным кислородом. Наиболее известны присадки к топливу на базе ферроценов — ФК-4, ДАФ, ДАФ-2 и Феро3, разработанные на Ачинском нефтеперерабытывающем заводе.

Применение этих железосодержащих антидетонационных добавок к бензинам ограничивается концентрацией, соответствующей содержанию железа не более 37 мг/л. Высокие концентрации (в пересчете на железо), более 180 г/т бензина, приводят к износу деталей двигателя, снижению работоспособности свечей зажигания. В этом случае на электродах свечей образуются соединения оксидов железа, которые также отлагаются в камере сгорания в виде нагара, накапливаются в масле и на трущихся поверхностях, вызывая повышенный износ деталей двигателя.

Красный налет — не что иное, как соединения железа (токопроводящего материала). Результаты контроля качества бензина часто свидетельствуют о превышении допустимой концентрации (с целью увеличения октанового числа бензина в ущерб его другим эксплуатационным качествам). Когда слой (нагар) данного металла достигает определенных величин, свечи перестают нормально работать, так как наблюдается пробой изолятора. При этом следует отметить, что при комнатных температурах наличие токопроводящих соединений с помощью омметра не фиксируется изза того, что образующиеся на изоляторах при высоких температурах дорожки из чистого железа при выключенном двигателе быстро окисляются и создается впечатление, что свечи работоспособны.

Как известно из литературных источников, в 1920–х годах в Германии автомобильный парк в значительной степени стал неработоспособным вследствие применения соединений железа в качестве антидетонатора, так как они не выводятся из двигателя. Причиной стали оксиды железа, накапливавшиеся главным образом в камере сгорания, которые обладали абразивными свойствами. В результате быстро изнашивались цилиндры и поршни.

В настоящее время в качестве антидетонаторов исследованы и другие соединения железа: пентакарбонил железа (ПКЖ), диизобутиленовый комплекс пентакарбонила железа (ДИБ — ПКЖ) и дициклопентадиенилжелезо (ферроцен).

Антидетонационные свойства пентакарбонила железа Fе(СО)5 были обнаружены еще в 1924 году. В качестве антидетонатора он начал применяться в 1930–е годы в Германии в концентрации 2…2,5 мл/кг топлива. Однако через некоторое время его использование в этих целях было прекращено, так как при сгорании ПКЖ образовывались оксиды железа, нарушающие работу свечей зажигания; одновременно увеличивался износ стенок цилиндра двигателя и поршневых колец, о чем упоминалось несколько выше. Другой недостаток пентакарбонила железа — его склонность к быстрому разложению под действием света до нерастворимого нонкарбонила железа Fe(CO)9. ПК — светло — желтая жидкость с характерным запахом: плотность 1457 кг/м3; температура кипения 102,2 °C; температура плавления 20 °C. При добавлении пентакарбонила железа к топливу прирост октанового числа на 15…20 % ниже, чем при использовании этиловой жидкости.

По антидетонационной эффективности близок к ПКЖ диизобутиленовый комплекс пентакарбонила железа (ДИБ — ПКЖ), который имеет формулу [Fe(СО)5]38Н16]5 (соотношение пентакарбонила и диизобутилена равно 3:5). ДИБ — ПКЖ — жидкость (плотность 955 кг/м3, температура кипения 27…32 °C), хорошо растворимая в органических растворителях.

Длительное время в нашей стране наиболее используемыми антидетонаторами являлись тетраэтилсвинец (ТЭС) {Pb(C2H5)4} и тетраметилсвинец Pb(CH3)4. Антидетонационная способность ТЭС открыта в 1921 году, а уже с 1923 года началось массовое промышленное производство этой присадки. Её действие заключается в обрыве цепных реакций образования пероксидов с выделением активных радикалов:

Pb(C2H5)4ORPb(C2H5)3· + C2H5·.

Эти радикалы инициируют окисление углеводородов, обычно стабильных в отсутствие тетраэтилсвинца. Образующиеся гидроперекиси способствуют более мягкому горению. Тем самым предотвращается или значительно снижается детонационное сгорание рабочей смеси. Однако одновременно образуется ряд окислов, наносящих большой вред экологии, так как свинец и его соединения являются канцерогенными веществами:

(C2H5)2Pb(OH)2; (C2H5)2Pb(OR)2; (C2H5)2PbOROH; PbO.

В чистом виде тетраэтилсвинец (тетраметилсвинец) не применяют, поскольку он вызывает освинцовывание деталей двигателя, т. е. происходит отложение продуктов сгорания (свинца и его оксидов) в камере сгорания, на днище поршня, клапанах, свечах и др. Они добавляются в бензин в виде этиловой (метиловой) жидкости, состоящей из тетраэтилсвинца (тетраметилсвинца), выносителя, антиокислителя, наполнителя и красителя.

Этиловая жидкость представляет собой бесцветную маслянистую жидкость плотностью 1650 кг/м3. Она нерастворима в воде, но растворима в бензине и органических растворителях, кипит с разложением при температуре 200 °C, легко воспламеняется и горит. Бензин, в который добавлена этиловая жидкость, называют этилированным. Для этилирования бензина используют этиловые жидкости марок Р-9 и П-2, которые различаются выносителем. Содержание тетраэтилсвинца в этиловых жидкостях составляет 54…58 %, выносителя — 33…35 %, наполнитель — остальное (авиационный бензин Б-70). Выноситель добавляют для удержания соединений свинца в газообразном состоянии. В качестве выносителя свинца используют галоидные органические соединения углеводородов (бромистый этил, монохлорнафталин, дибромэтан).

Наиболее эффективно добавление ТЭС массой до 0,50…0,80 г на 1 кг бензина, что позволяет увеличить его октановое число на 5…10 пунктов.

Присадки, которые содержат свинец, обладают наивысшей токсичностью, причем последняя увеличивается с ростом эффективности. В связи с высокой токсичностью отработавших газов автомобилей, работающих на этилированных бензинах, применение их в крупных городах с интенсивным автомобильным движением и в курортных зонах запрещено.

В настоящее время антидетонаторы на основе ТЭС в России полностью запрещены, так как ГОСТ Р 51105—97 предусматривает выпуск только неэтилированных бензинов. По ТУ 38.401–58–285—01 промышленность выпускает противоизносную присадку для неэтилированного бензина, предназначенную для защиты седла клапана двигателя от износа.

В качестве альтернативы этиловой жидкости, ферроценам и марганцу для повышения детонационной стойкости бензинов также используют соединения магния, меди и других металлов (промотров), имеющих высокий энергетический потенциал (табл. 15).

Табл. 15 Энергетический потенциал металлов (промотров), применяемых в октан-корректорах

Длительное время ведутся работы по изысканию неядовитых, но эффективных антидетонаторов. Например, компанией «Лукойл» для этих целей разработаны марганцевые соединения, такие как — «Хайтек-3000 (циклопентадиенилтрикарбонил, метилЦМТ).

Из антидетонаторов этого класса наиболее эффективны такие марганцевые антидетонаторы, как циклопентадиенилтрикарбонилмарганец (ЦТМ) — кристаллический желтый порошок С5Н5Мn(СО)3, а также метилциклопентадиэтилтрикарбонилмарганца (МЦТМ) — прозрачная маловязкая жидкость СН3С5Н4Mn(СО)3 светло — янтарного цвета с травянистым запахом, температурой кипения 233 °C, плотностью 1,3884 г/см3 и температурой застывания 1,5 °C. МЦТМ хорошо растворяется в бензине и практически не растворяется в воде.

Оба эти антидетонатора обладают примерно одинаковой эффективностью и незначительно отличаются по эксплуатационным свойствам. Стендовые и эксплуатационные испытания антидетонационной эффективности МЦТМ на двигателях выявили более высокую эффективность данного антидетонатора, чем предполагалось по результатам определения октанового числа исследовательским и особенно моторным методами. В свою очередь, при равном содержании присадок их эффективность примерно одинакова со свинцовыми антидетонаторами, и даже превосходит их при равной концентрации свинца и марганца.

Марганецсодержащие присадки разлагаются на свету с потерей антидетонационных свойств. Оксиды марганца оседают на свечах зажигания и быстро приводят к их отказу. В то же время эти отложения менее стойки и могут быть удалены обыкновенными топливными очистителями.

Наряду с высокой эффективностью марганцевых антидетонаторов, применение их ограничено изза вредного влияния на окружающую среду и ресурс двигателя, так как сам марганец ядовит. Однако, если сравнивать тетраэтилсвинец и марганцевые антидетонаторы, то их токсичность ниже почти в 300 раз.

Что касается медьсодержащих присадок, то к их недостаткам следует отнести склонность к образованию отложений в двигателях, поскольку их производные окисляют компоненты топлива и загрязняют оксидами агрегаты топливной системы.

Для металлсодержащих присадок, используемых в различных видах топлива для дизелей и карбюраторных двигателей, подбираются соответствующие растворители — гели, которые обеспечивают полное смешивание компонентов.

В России и за рубежом при производстве высокооктановых бензинов широко применяют добавки на основе N — метил — анилина, такие как монометиланилин (ММА), АДА, Экстралин, разработанные на Комсомольском и Ачинском НПЗ.

Вследствие достаточно высокой агрессивности антидетонационных компонентов по отношению к уплотнительным устройствам, значительного нагарообразования в камере сгорания, особенно на свечах и выпускных клапанах, концентрация их в бензинах ограничена. При этом повышение октанового числа от концентрации антидетонатора не имеет линейной зависимости, поэтому для каждой присадки существует оптимальное значение концентрации.

Таблица 16. Характеристика основных видов антидетонационных компонентов

С применением антидетонаторов разрабатываются присадки в различных концентрациях и композициях, которые выпускаются на основании специальных технических условий и допускаются к применению Межведомственной комиссией после проведения соответствующих испытаний (табл. 17).

Таблица 17. Антидетонационные присадки и добавки к автомобильным бензинам

Во время второй мировой войны немецкие истребители Bf -109 E -7/ Z стали первыми самолетами, оснащенными системой форсажа на основе закиси азота (N2О). Закись азота впервые была получена химиком Джозефом Пресли. Этот бесцветный газ со слабым приятным запахом и сладковатым привкусом, который известен как «веселящий газ», более 150 лет использовался в медицине в качестве наркоза. При длительном вдыхании он вызывает чувства эйфории и веселья, которые позже переходят в тошноту и дезориентацию.

Известно, что в цилиндре сгорает не чистое топливо, а топливно — воздушная смесь. Для горения бензина необходим окислитель (кислород). Так вот, при температуре 300 °C закись азоа разлагается на составляющие (азот и кислород). При этом выделяется в 2,5 раза больше кислорода, чем его содержится в том же объёме подаваемого в камеру сгорания чистого воздуха. Это позволяет существенно увеличить количество высвобождаемой энергии, а следовательно, развиваемую двигателем мощность. Применение закиси азота может дать прирост мощности до 30 %.

Однако с приходом в авиацию реактивных двигателей надобность в подобных системах отпала. Впрочем, ещё долгое время после войны они оставались государственной тайной. Только лишь с 1970 года закись азота стала применяться в гоночных автомобилях, которая выпускалась в стационарных баллончиках, а они, в свою очередь, устанавливались на автомобиль как дополнительная система.

В условиях высоких нагрузок и скоростей гоночных трасс эти и другие подобные препараты проходили интенсивные эксплуатационные испытания, а затем, если они показывали хорошие результаты, попадали в розничную торговлю для широкой продажи уже в качестве профилактических или автотюнинговых средств.

Примером такой разработки может служить серия любительских препаратов под торговой маркой NOS (Nitrous Oxide Systems), выпускаемых американской химической компанией P ermatex Inc . Составы содержат новейшие разработки на основе соединений азота (Nitrometan — нитрометан, Powertane — закись азота).

Октан — корректоры рекомендуется иметь в химмотологической аптечке автомобиля и применять в качестве профилактического средства для двигателя и топливной системы через каждые 3000…5000 км, а также в случае применения топлива ненадлежащего качества или при подготовке автомобиля к техническому осмотру.

Содержимое флакона заливается в бак перед полной заправкой топливом. При этом октан — корректор бензина в режиме интенсивного городского движения автомобиля (область невысоких частот вращения вала двигателя и нагрузок, при которых двигатель работает 70….90 % времени) способствует: повышению эффективности горения топлива; увеличению крутящего момента двигателя; снижению расхода топлива (до 12 %); стабилизации холостого хода; снижению токсичности отработавших газов автомобиля (СО, СН) и т. д.

При относительно низких частотах вращения вала двигателя (до 2500…3000 мин-1 в диапазоне нагрузок 0,28…0,8 МПа) снижение удельного эффективного расхода топлива достигает 3…12 % при одновременном уменьшении выбросов углеводородов СН на 6…70 % и оксида углерода СО на 5…80 %.

На повышенных скоростных режимах работы двигателя (более 3500 мин-1) и при полностью открытой дроссельной заслонке влияние препарата на энергоэкономические показатели двигателя незначительно. Однако на этих режимах получено снижение эмиссии углеводородов СН на 50 % и более.

Можно прогнозировать (в связи с особенностями действия препарата на процесс горения) наибольшую их эффективность при работе автомобильного двигателя в условиях городского движения.

Графическое изображение необходимости в автохимической тюнинговой обработке и ее технической эффективности представлено на рис. 23. Необходимость проведения тюнинговой обработки чаще всего продиктована не столько низкими свойствами применяемого топлива или состоянием двигателя, сколько стремлением добиться высокого скоростного движения и повышения мощности двигателя, например, при спортивном стиле езды. Повышение (или сохранение) межремонтного ресурса двигателя и автомобиля в этих случаях чаще всего является не обязательным или вообще не рассматривающимся требованием, поэтому показанием к такой обработке чаще служит не техническое состояние двигателя или автомобиля в целом, а субъективный фактор. В связи с этим автохимический тюнинг осуществляется задолго до наступления состояния, характеризующегося положением W отк — показателем отказа, при котором объект становится неработоспособным.

Рис. 23. Графическая иллюстрация автохимического тюнинга автомобиля: W отк — показатель наступления неработоспособного состояния (отказа) объекта; Wт — показатель объекта после одноразового автохимического тюнинга; W — эффективность автохимического тюнинга; Тт — точка проведения операций автохимического тюнинга; Трт — межремонтный ресурс двигателя после автохимического тюнинга

Так, использование препарата NOS ® Octane Booster Racing Formula американской фирмы Permatex Inc., п о данным журнала «Потребитель», позволило повысить мощность двигателя на 5,6 кВт, а крутящий момент на 13 Нм. В настоящее время, в результате применения такого препарата, создающего в сочетании с бензином холодную, плотную, насыщенную кислородом топливно — воздушную смесь, достигается увеличение октанового числа топлива на 7 единиц, повышение мощности двигателя и продление его срока эксплуатации. Всё это позволяет использовать такие препараты, как высокоэффективное любительское средство автохимического тюнинга автомобиля.

В то же время, эффективность мероприятий автохимического тюнинга зависит от начального технического состояния автомобиля, применяемого препарата и технологии введения добавок, качества проведения ремонтно — восстановительных работ и ряда других причин.

В многофункциональные присадки и добавки вводят моющие, антиокислительные, антикоррозионные и другие компоненты.

Следует иметь в виду, что химический состав высокооктановых бензинов, поступающих в продажу и даже соответствующих отечественным стандартам, не обеспечивает сохранение их потребительских свойств в течение длительного срока хранения, в связи с чем октановое число таких бензинов постепенно снижается. Например, бензины с ферроценовыми добавками крайне нестабильны (после суток хранения начинается их выпадение в осадок), поэтому в пятницу или предпраздничные дни, когда наблюдается наибольший спрос, существует наибольшая вероятность заправиться таким бензином, чем и пользуются недобросовестные фирмы. Особенно это касается областных контейнерных заправок, имеющих малые объемы продажи топлива и выживающих за счет относительно низкой цены.

Вопрос. Когда и как следует применять октан — корректоры?

Ответ: Как уже не раз отмечалось, отечественные бензины в своем большинстве не соответствуют предъявляемым к ним требованиям. Следствием заправки некачественного бензина могут стать проблемы с запуском и резким снижением тяговых характеристик двигателя, перебои в его работе и т. п. Бывали случаи, когда машины не могли даже выехать с АЗС после заправки некачественным бензином.

В этих случаях в качестве «скорой помощи» могут выступить специальные присадки — антидетонаторы (бустеры или октан — корректоры). Эти препараты автохимии содержат различные высокооктановые компоненты, очищающие присадки, химические нанокатализаторы и регуляторы горения топлива. Они позволяют повысить эксплуатационные свойства бензина (увеличить октановое число на 5…6 единиц). Чаще всего в бустерах используются многокомпонентные композиции, в которых каждый компонент выполняет свою функцию. Содержимое флакона октан — корректора (лучше, если он будет в запасе) заливается в бак перед полной заправкой (или в уже заправленное топливо) и вырабатывается вместе с бензином.

Компания AGA для этих целей предлагает автомобилистам следующие высокотехнологичные препараты: SMT 2 Fuel System Cleaner and Octane Booster (Очиститель «Октан — плюс», синтетическая формула, с SMT2), F enom Street Racing (Нанотюнинг топлива), H i-Gear Octane Boost & Cleaner (Супероктан — корректор) и др.

Очистители бензиновых двигателей

Химическая стабильность бензина характеризуется его способностью длительно сохранять первоначальный химический состав без изменения при хранении, перекачке и транспортировании. Химическая стабильность бензинов определяется в основном их углеводородным составом. Окислению наиболее подвержены бензины, полученные термическим и каталитическим крекингами, коксованием, пиролизом с повышенным содержанием олефиновых и диолефиновых углеводородов. Наиболее химически стабильны бензиы, произведенные каталитическим реформингом или прямой перегонкой, а также алкилбензин.

Уже за время следования от производителя до бака потребителя происходит частичное автоокисление бензина, т. е. окисление его нестабильных соединений кислородом окружающего воздуха с образованием продуктов сложного состава. Длительное хранение бензина, наличие множества перекачек и перепадов температуры значительно повышают вероятность окисления части топлива с образованием смолистых соединений, органических кислот и других подобных веществ. Часть окислившихся соединений остается в бензине в растворенном виде, другая (меньшая часть) выпадает в осадок. Окисление бензина активизируется присутствием влаги, размножением микроорганизмов, накапливающихся в резервуарах, а также за счет каталитического воздействия цветных металлов и их сплавов. Неэтилированные бензины окрашиваются в различные оттенки желтого цвета. Наблюдается резкий специфический запах, а на дне резервуаров образуется масляный слой, слаборастворимый в бензине. Все это приводит к повышению кислотности топлива и увеличению его коррозионной активности.

Отложения и загрязнения в топливной системе двигателя, образующиеся при низких температурах, представляют собой липкие мазеобразные вещества коричневого цвета. Смолы откладываются на внутренних поверхностях топливных баков, фильтров, насосов; блокируют топливопроводы; покрывают лаковым слоем детали карбюратора, жиклёры, распылители, дроссельные заслонки. Повышенное содержание смолистых соединений в применяемом бензине приводит к различным отказам в системе питания двигателя. Отложения на деталях карбюратора (рис. 24) нарушают подачу топлива и процесс его смешивания с воздухом, а отложения на фильтрующих элементах приводят к прекращению подачи бензина к двигателю.

Фактические (промытые) смолы — нерастворимая в гептане часть остатка, полученная при выпаривании автомобильного бензина.

Непромытые смолы — остаток от выпаривания автомобильного бензина, состоящий из фактических смол и трудно испаряющихся компонентов присадок.

При эксплуатации двигателя неиспарившиеся высокотемпературные фракции бензина вместе с находящимися в них смолистыми веществами в виде пленки распределяются по впускному трубопроводу в направлении цилиндров. Уже в этот период начинается интенсивное окисление углеводородов бензина и оседание смолистых веществ на горячих стенках трубопровода. Выделившиеся соединения продолжают полимеризоваться и превращаются в твердые смолистые отложения, снижающие поперечное сечение трубопровода и значительно увеличивающие сопротивление движению горючей смеси, вызывая турбулентности. Вследствие этого уменьшается наполнение цилиндров топливно — воздушной смесью, что приводит к снижению мощности двигателя. В дальнейшем смолистые вещества, выпавшие на впускных клапанах, образуют твердые карбоновые отложения (нагар), которые нарушают правильность посадки клапанов и герметичность системы, что может привести к «зависанию» клапанов.

Рис. 24. Загрязнения на внутренних поверхностях карбюратора

Количество фактических смол, содержащихся в исследуемом бензине, измеряется в мг на 100 см3 топлива. При производстве автомобильных бензинов их может находиться не более 5 мг в 100 см3 топлива. Все бензины содержат определенное количество смолистых веществ, образующихся при хранении. Эти вещества имеют высокую кислотность. Они очень плохо растворяются в топливе, но легко откладываются на металлических поверхностях: стенках топливного бака, топливопроводов и на других деталях топливной системы. Изза малой испаряемости они не полностью сгорают в камере сгорания, а преобразуются в твердые отложения — нагар. Нагар образуется на свечах, камере сгорания, днище поршня и клапанах (рис. 25). Это вызывает закоксовывание форсунок и потерю подвижности поршневых колец, засорение карбюратора, топливопроводов, топливных баков и выпускного коллектора. Все это приводит к снижению мощности двигателя, увеличению расхода топлива и масла, повышению дымности и токсичности отработанных газов и т. д.

Рис. 25. Нагар на выпускном клапане двигателя

Повышенная концентрация смол значительно уменьшает пробег до появления отказов двигателя в результате интенсивного нагарообразования (табл. 18).

Таблица 18. Зависимость пробега автомобиля от содержания фактических смол в бензине

Образование нагара в двигателе — явление неизбежное, но интенсивность его протекания можно существенно снизить. Для этих целей разработаны и успешно применяются во всем мире специальные моющие присадки (очистители), как к бензину, так и к дизельному топливу.

Ведущим направлением в области комплексного улучшения эксплуатационных и экологических свойств топлива является использование моющих присадок.

Применение моющих присадок в мире достаточно мощно стимулируется двумя главными факторами.

1. Маркетинговый фактор.

Компании, продающие бензин на конкурентных рынках, в борьбе за потребителя стремятся улучшить качество своего топлива. Именно применение моющих присадок (фактически, повышение качества топлива) способствовало увеличению доли продаж бензина по всему миру у тех компаний, которые это делают.

2. Законодательный фактор.

В США, например, законодательно установлено обязательное применение моющих присадок.

Несмотря на отсутствие законодательного регламентирования применения моющих присадок в западноевропейском топливе, по статистике, более 95 % бензина компаундируется ими, что, несомненно, связано с маркетинговыми причинами.

Основными источниками отложений являются само топливо, моторное масло, а также картерные и отработавшие газы. Образование отложений на вышеуказанных деталях приводит к нарушению первоначальной регулировки двигателя и отклонениям от оптимального состава топлива.

Принцип действия моющих присадок следующий:

— образование внутри системы впуска двигателя защитной пленки, которая предотвращает накопление там лаковых отложений;

— очистка топливных форсунок за счет догорания на них топлива и смол;

— удаление существующего отложения (нагара) за счет его размягчения и сгорания.

Основным компонентом пакетов моющих присадок для бензина является комбинация детергента на основе полиизобутилена и масла — носителя. Кроме них, в присадку входят компоненты, позволяющие комплексно улучшать эксплуатационные и экологические свойства топлива, такие как ингибиторы коррозии и деэмульгаторы, красители, маркеры и отдушки, а также ингибитор коррозии, который предотвращает коррозию топливных баков, систем подачи топлива, емкостей для хранения и топливопроводов.

Эмульгатор — присадка, способствующая образованию стабильной смеси или эмульсии масла и воды.

Применение оптимальной концентрации очищающих присадок позволяет добиваться очистки системы впуска уже после нескольких тысяч километров пробега автомобиля. Достижение полной очистки клапанов практически невозможно, но образование отложений может быть снижено до допустимо малого уровня, при котором отрицательный эффект не проявляется.

Применение моющих присадок к бензинам и дизельному топливу предполагает несколько вариантов. При этом для очистки различных деталей двигателя выпускаются специальные препараты (рис. 26). В ряде случаев присадки — очистители могут добавляться в топливо непосредственно при производстве. Для нужд автосервисов и частных автовладельцев выпускаются специальные присадки в мелкой фасовке.

Рис. 26. Классификация и применение топливных очистителей

Присадки — очистители в основном предназначены для увеличения растворимости смол в топливе, снижения их дисперсности и устойчивости в растворенном виде (сидементационной устойчивости). При этом бензин с присадкой должен растворять уже образовавшиеся отложения, а также переводить воду, имеющуюся в топливном бае, в мелкодисперсное состояние. Существуют и универсальные комплексные присадки, действие которых направлено в основном на очистку всей топливной системы: камеры сгорания, топливопроводов, впускных клапанов и др. Они интенсифицируют процесс сгорания топливно — воздушной смеси и предотвращают возможное образование нагара на выпускных клапанах, но уже образовавшиеся на них отложения такие присадки не очищают.

Вопрос. Что нужно знать при покупке и применении очищающей присадки?

Ответ. 1. Выбирать надо известную нефтехимическую фирму, выпускающую широкий спектр различных очистителей топливной системы, в том числе не только для бензиновых двигателей с карбюраторами, но отдельно для систем с инжекторами, а также с непосредственным впрыском, типа GDi .

2. Первую очистку топливной системы (выработка первых двух баков бензина) нужно провести с половиной рекомендованной производителем концентрации присадки. Следующие один — два бака выработать с максимальной концентрацией очистителя, а затем снова перейти на профилактическую половинную концентрацию (для сохранения результатов очистки и поддержания минимального уровня отложений и загрязнений).

3. Не рекомендуется применять завышенных концентраций очистителя. В этом случае вместо «мягкого», послойного растворения отложений присадка начнет вымывать большие куски загрязнений. Их крупные частицы, а также отложения со дна бака быстро забьют топливный фильтр, что может даже привести к разрушению фильтрующего элемента и выносу всех скопившихся загрязнений в инжектор со всеми вытекающими для него негативными последствиями.

4. В профилактических целях, для содержания топливной системы в чистоте, очистители следует применять регулярно, то есть один раз в 5–6 полных заправок бака, ориентировочно через 2000…3000 км пробега.

5. Очистители (присадки) к бензину и дизельному топливу от передовых нефтехимических фирм — производителей, применяющих современные моющие компоненты, химические катализаторы и регуляторы горения топлива, достаточно эффективно очищают поверхности и каналы топливных систем; способствуют удалению лаковых отложений в инжекторе и карбюраторе; обеспечивают восстановление факела распыла топлива у форсунок; очищают свечи зажигания, а также нагар в камере сгорания и на впускных клапанах; предотвращают образование конденсата, обледенения и коррозии; повышают ресурс нейтрализатора отработавших газов и т. д. Все это способствует повышению технико — экономических и экологических показателей двигателей.

Если применение топливных очистителей, на взгляд потребителя, только усугубляет имеющиеся проблемы с топливной системой двигателя, оказывает отрицательное действие на свечи зажигания, в этом случае ему целесообразно обратиться в сервисный центр для очистки топливной системы на стационарных установках с применением специальных очищающих препаратов.

Вопрос. Можно ли для очистки карбюратора использовать топливные присадки для очистки инжекторов, и наоборот?

Ответ. Для очистки карбюратора можно использовать топливные присадки для очистки инжекторов. Природа возникновения отложений и их химический состав в карбюраторных и инжекторных двигателях весьма близки, хотя и отличаются в нюансах. Присадки для очистки инжекторов, как правило, являются более эффективными и концентрированными и, следовательно, стоят дороже.

Когда же нет возможности приобрести очиститель инжекторов, а их нужно очистить, можно использовать присадку для очистки карбюратора. В этом случае присадка будет работать как мягкий очиститель инжекторов начального уровня.

Вопрос. Не вредит ли использование топливных присадок каталитическим конверторам, кислородным датчикам и т. д.? Ответ. Современные качественные присадки безвредны для указанного оборудования. Более того, существуют специальные присадки, предназначенные для их очистки, в частности каталитических конверторов. Профилактический уход за каталитическим конвертором является важной процедурой, так как частицы несгоревшего топлива и иные отложения в системе выпуска постепенно загрязняют каталитический катализатор (конвертор), «забивают» его микропоры, тем самым снижая приемистость автомобиля, повышая расход топлива, уровень вредных выбросов и т. д. О серьезном загрязнении каталитического конвертора косвенно можно судить по выхлопным газам с характерным запахом «тухлых яиц».

Каталитический нейтрализатор (конвертор) — часть автомобильной системы выпуска, предназначенная для снижения токсичности отработавших газов. Окислительные нейтрализаторы удаляют из отработавших газов углеводороды и оксид углерода (СО). Понижающие нейтрализаторы воздействуют на содержание в газах оксидов азота (NOx). В обоих нейтрализаторах используются катализаторы, содержащие благородные металлы (платину, палладий или родий), которые разрушаются под действием свинца из соединений топлива или масла.

Ремонт, точнее замена каталитического конвертора стоит серьезных денег. Поэтому настоятельно рекомендуется один раз в 5 000 км использовать топливные присадки для очистки каталитических конверторов. Эти составы не только удаляют углеродистые отложения, осаждающиеся на рабочей поверхности катализатора, загрязнения из бензобака, впускного тракта, впускных клапанов, со стенок камер сгорания, но и обеспечивают снижение гидродинамического сопротивления системы выпуска, восстановление исходной мощности двигателя и снижение токсичности отработавших газов, восстановление каталитической активности нейтрализаторов выхлопных газов бензиновых двигателей, очистку электродов кислородного датчика (лямбда — зонда).

Присадки к дизельному топливу

Особенности эксплуатации современной дизельной техники в России вынуждают владельцев с особым вниманием относиться к состоянию топливной аппаратуры, так как не многие автопроизводители рекомендуют своим дилерам поставку новых автомобилей с дизельными агрегатами изза низкого качества дизтоплива, производимого в нашей стране.

Всемирная хартия производителей топлива (ВХПТ), принятая ведущими производителями топлива и автомобилей, предусматривает достаточно жесткие требования к дизельному топливу (табл. 19).

Таблица 19. Требования национальных и международных стандартов по отдельным показателям автомобильного дизельного топлива

В соответствии с ГОСТ 305—82 отечественные дизельные виды топлива подразделяются на летнее, зимнее и арктическое. Основными показателя качества дизельного топлива являются цетановое число, фракционный состав, низкотемпературные, смазывающие и антикоррозионные свойства. Следует отметить, что отечественное дизтопливо отличается недостаточным цетановым числом, высокой степенью загрязненности и очень часто не соответствует сезону эксплуатации.

Фракционный состав — количественное содержание фракций, выкипающих в определенных температурных пределах, остаток и потери при перегонке в заданных условиях.

В маркировке летнего дизельного топлива указывается массовая доля серы и приводится информация о температуре вспышки (Л-0,20–40: массовая доля серы 0,2 %, температура вспышки 400 °C). В обозначении зимнего дизельного топлива приводится массовая доля серы и информация о температуре застывания (3–0,4–35: массовая доля серы 0,4 %, температура застывания —350 °C), а в обозначении арктического дизельного топлива указывается только информация о массовом содержании серы.

Температура вспышки — минимальная температура, при которой жидкость поддерживает мгновенное сгорание (вспышка), но меньшая той, при которой наблюдается продолжительное горение (температура воспламенения). Температура вспышки является важным показателем пожаро— и взрывоопасности, связанной с нефтепродуктами.

Если сравнивать с бензинами, то в отечественных дизеьных топливах содержание серы выше в 5…10 раз. Наиболее агрессивными по коррозионной активности являются меркаптаны и сероводород. Содержание серы в дизельном топливе строго регламентируется по двум составляющим: по общей сере (не более 0,2…0,5 %) и по меркаптановой сере (не более 0,01 %). При отрицательных температурах оксиды серы легко растворяются в воде, присутствующей в дизтопливе даже в виде конденсата, образуя еще более активные сернистую и серную кислоты. От содержания в дизельном топливе соединений серы в большой мере зависит срок службы всего дизеля.

Чем выше концентрация серы в топливе, тем интенсивнее коррозионное изнашивание деталей дизеля, поэтому в западных странах содержание серы в дизельном топливе ограничено жесткими стандартами. Так, в штате Калифорния (США) содержание серы ограничено значением 0,05 %, что в 4…10 раз меньше по сравнению с отечественными марками дизельного топлива, а в Швеции требования к содержанию серы еще более строгие.

Эксплуатационные свойства дизельного топлива характеризуют его склонность к образованию нагара и лаковых отложений в двигателе. Содержание вредных отложений в двигателе повышается при увеличении содержания в дизтопливе серы и сернистых соединений, фактических смол, непредельных и ароматических углеводородов (йодного числа), несгораемых неорганических соединений (зольности). Повышение зольности топлива также увеличивает интенсивность изнашивания деталей ЦПГ и топливной аппаратуры дизеля.

Отечественные стандарты, так же как и западные, категорически не допускают наличия в дизельном топливе влаги и механических примесей. Однако на автозаправочных станциях этим требованиям дизтопливо соответствует крайне редко. Концентрация фактических смол в дизельном топливе отечественными стандартами также ограничена и для разных видов топлива не превышает значений 200…400 мг/л, т. е. в среднем она в 4 раза выше, чем в российских бензинах.

Содержание механических примесей определяют путем фильтрования 100 г нефтепродукта, разбавленного в бензине, через высушенный и взвешенный бумажный фильтр. Осадок на фильтре промывают бензином. Затем фильтр опять высушивают и взвешивают.

В связи с вышесказанным, российские требования к качеству дизтоплива требуют ужесточения, а промышленные технологии его изготовления — значительного усовершенствования. Основное преимущество дизеля — экономичность, может быть нивелировано при использовании отечественного дизельного топлива. Однако применение различных присадок и добавок, оптимизирующих процесс сгорания дизельного топлива, позволяет улучшить не только характеристики горючего, но и работу дизельного двигателя (табл. 20).

Таблица 20. Взаимосвязь физико — химических свойств дизельного топлива и условий работы дизеля

Сегодня трудно себе представить дизельное топливо высокого качества без присадок, имеющих разные функциональные назначения. Производятся и поставляются на рынок депрессорные, цетаноповышающие, диспергирующие, противоизносные, антиокислительные, антидымные, ингибиторы коррозии, моющие и другие любительские препараты.

Цетановое число (ЦЧ) — показатель воспламеняемости дизельного топлива, численно равный объемному проценту цетана в эталонной смеси, состоящей из смеси цетана и a — м етилнафталина. Определяется по формуле: ЦЧ = 1,5879[(V 20 + 17,8)/ p 20], где V20 — кинематическая вязкость при +20 °C; p20 — плотность топлива при температуре +20 °C.

Регулярное профилактическое использование препаратов автохимии позволяет значительно увеличить межремонтный ресурс дизельной автомобильной техники.

В последнее время передовые нефтехимические фирмы также начали выпускать дизельные виды топлива, соответствующие требованиям EN 590 (Евро-4), т. е. более высокого качества. Такое дизтопливо отличается от требований ДСТУ 3868—99 более низким содержанием серы (не более 50 мг/кг, в то время как у Л-0,20–62 — не более 2000 мг/кг) и полициклических ароматических углеводородов, а также более высоким цетановым числом (не менее 51 ед., в отличие от дизтоплива Л-0,20–62, у которого цетановое число не менее 45 ед.).

Высокое цетановое число и низкое содержание серы дизтоплива по Евро-4 оптимизируют процесс сгорания топлива, снижают шум и вибрации, облегчают запуск, особенно в холодное время года, значительно снижают коррозионные процессы, продлевают работу сажевых фильтров, а также уменьшают количество лаковых и карбоновых отложений на деталях цилиндропоршневой группы дизеля.

Наличие в составе дизтоплива специальных противоизносных присадок позволяет уменьшить износ деталей двигателя и топливной аппаратуры. При эксплуатации техники на таком топливе снижается дымность отработанных газов, а также выброс вредных соединений в атмосферу: сажи, оксидов азота и углерода, несгоревших углеводородов и т. д.

В настоящее время одним из наиболее важных направлений работ для нефтеперерабатывающей промышленности является десульфуризация (снижение содержания серы) дизельного топлива. В европейском стандарте EN 590 регламентируется допустимое содержание серы в дизельном топливе в количестве 50 ppm, а также 10 ppm для топлива с ультранизким содержанием серы. Следствием десульфуризации стало то, что в отличие от сернистого дизельного топлива (свыше 350 ppm серы), дизельные виды топлива с низким и ультранизким содержанием серы перестали обладать необходимой смазывающей способностью деталей топливной аппаратуры, особенно прецизионных деталей ТНВД и форсунок. Поэтому для снижения износа деталей дизеля в пакет присадок добавляют антифрикционные, противоизносные компоненты, например смесь жирных кислот и их производных.

ppm (англ. parts per million — частей на миллион) — единица измерения концентрации вещества (примеси), миллионная доля.

Вопрос: Как подобрать комплекс присадок в дизельное топливо для постоянного круглогодичного пользования, когда и как их использовать?

Ответ. Для надежной и эффективной эксплуатации дизеля рекомендуется использовать (иметь в химмотологической аптечке водителя) следующий набор препаратов топливной автохимии для безразборного сервиса:

· очиститель форсунок и системы питания дизеля — применяется в начале эксплуатации (если автомобиль имеет пробег), далее профилактически с периодичностью, указанной на упаковке;

· очиститель форсунок для дизеля — в случае явных перебоев в работе двигателя или при снижении его приемистости, но не реже одного раза в сезон (осень — зима, весна — лето) или одного раза в год (если годовой пробег менее 10 000 км);

· цетан — корректор для дизтоплива — регулярно при сомнительном качестве дизтоплива лучше применять постоянно, так как хорошие цетан — корректоры, как правило, содержат специальную смазку топливной аппаратуры, позволяющую значительно увеличивать ресурс дорогостоящих элементов топливной системы, в т. ч. ТНВД;

· суперантигель для дизтоплива — постоянно (осень, зима, ранняя весна).

Антигель — депрессорная присадка к дизельному топливу, препятствующая образованию кристаллов парафина и обеспечивающая работоспособность дизеля при отрицательных температурах.

Несомненно, это общие рекомендации, которые в каждом конкретном случае нужно корректировать.

Очистители дизельного двигателя

Одним из важнейших эксплуатационных качеств дизтоплива является его способность обеспечивать чистоту топливной аппаратуры и деталей цилиндропоршневой группы дизеля. При сгорании топлива на стенках камеры сгорания и впускных клапанах, а также на распылителях и иглах распылителей форсунок образуется нагар. При этом на днищах поршней, впускных клапанах и стенках камеры сгорания нагар плотный, твердый темного цвета, а на распылителях иглах форсунок — мягкий смолистый нагар желтоватого цвета или светло — коричневый, типа лаковой пленки. Нагарообразование в двигателе зависит от содержания в дизтопливе фактических смол и серы, фракционного состава, содержания непредельных и ароматических углеводородов, зольности и коксуемости.

Наличие нагара на стенках камеры сгорания и днище поршня (рис. 27) ухудшает отвод теплоты в систему охлаждения двигателя и приводит к уменьшению объема камеры сгорания. Образование нагара на впускных клапанах (см. рис. 26) приводит к их закоксовыванию, вследствие чего нарушается необходимая посадка соединения тарелка клапана — седло . В результате наблюдается прорыв раскаленных газов и обгорание посадочных поверхностей клапана и седла, а в отдельных случаях зависание клапана.

Рис. 27. Нагар на днище поршня

Наибольшее число параметрических отказов в работе дизелей приходится на отложения нагара на форсунках. Изза нагара на распылителях форсунок ухудшается качество распыления топлива и деформируется факел распыла. Закоксовывание сопел и зависание игл распылителей приводит к подтеканию топлива, так как в этом случае игла не садится на уплотняющий конус распылителя и полностью не перекрывает его канал. Изза загрязнений внутри форсунки в камеру сгорания впрыскивается недостаточное количество топлива (нарушается состав топливно — воздушной смеси), при этом оно плохо распыляется, что приводит к нарушению равномерности топливно — воздушной смеси и, как результат, — дымление, снижение мощности и экономичности работы дизеля (рис. 28).

Рис. 28. Распыление топлива форсункой: а) при наличии загрязнений (несколько струй); б) очищенной форсункой (тумановидное распыление)

Использование известных технологий безразборного сервиса автомобильной техники с применением препаратов автохимии позволяет достаточно эффективно проводить очистку (промывку) топливной системы на работающем двигателе.

Основными компонентами присадок для дизельного топлива служат детергенты на основе полиизобутилена. Специальные пакеты присадок включают также химические соединения для повышения эксплуатационных свойств дизеля, такие как пеногасители, деэмульгаторы, смазывающие и цетаноповышающие компоненты. Кроме этого, в присадки (пакеты присадок) для дизельного топлива на передовых нефтехимических предприятиях могут добавляться специальные красители, маркеры и отдушки.

Применение моющих присадок к дизельному топливу существенно снижает количество отложений в дизеле, в том числе на инжекторной игле, а распыление топлива осуществляется в оптимальном режиме, что значительно повышает эксплуатационные характеристики двигателя.

Среди очистителей можно выделить препараты, которые просто добавляются в топливный бак, и препараты, которые нужно заливать непосредственно в систему впрыска, т. е. не смешивая с дизтопливом. Несмотря на то, что второй способ также относится к технологиям безразборного сервиса двигателя, однако применяемые препараты формально уже не являются присадками к топливу.

Первый способ обеспечивает очистку всей топливной системы и предотвращает образование отложений в камере сгорания и системе впрыска, его рекомендуется применять через каждые 2000…3000 км, и особенных комментариев она не требует.

Очистка по второму способу заключается в том, что снимается топливный шланг, идущий к насосу, и помещается в банку с препаратом — очистителем. Затем пускается двигатель и вырабатывается содержимое банки на холостых оборотах коленчатого вала. Такие препараты не допускается заливать непосредственно в топливный бак, так как они могут разрушить его внутренний окрашенный слой. В то же время эффективность очистки таким методом, например, форсунок дизеля очень высока. При такой обработке с них удаляется не только нагар, но и лаковые отложения, которые даже после разборки с трудом поддаются даже ультразвуковой очистке. Не случайно, немецкий автомобильный концерн B MW для этих целей выпускает в фирменной упаковке собственный препарат, несмотря на отрицательное отношение ко всякого рода присадкам и добавкам.

Топливные очистители в общем случае предназначены для очистки распылителей форсунок, камеры сгорания от нагара и углеродистых отложений, а также очистки всей топливной аппаратуры. Они также способствуют легкому запуску двигателя; восстановлению распыла топлива, повышению мощности и динамики дизеля; снижению износа и защите от коррозии деталей топливного насоса высокого давления и форсунок дизеля; более полному и «чистому» горению топлива, снижению его расхода и уменьшению токсичности и дымности выхлопных газов.

Некоторые из вышеперечисленных проблем могут быть вызваны не только загрязнением топливной системы, но и рядом сопутствующих причин. Поэтому перед очистными работами следует провести минимальный объем диагностических и регулировочных работ. Для их проведения требуется специальное оборудование, которое в основном имеется только на специализированных сервисных предприятиях. Необходимо проверить работоспособность электромагнитных клапанов форсунок — пальцем на ощупь или с помощью стетоскопа (срабатывание клапана сопровождается характерными щелчками). Инициировать работу форсунок (отдельной форсунки) можно и на заглушенном двигателе, подав управляющее напряжение на форсунку от внешнего источника, или косвенно — программой — сканером через электронный блок управления. Электропараметры обмотки клапана форсунки можно проверить мультиметром также без ее демонтажа.

Следует помнить, что несоблюдение рекомендаций по проведению очистных мероприятий, инструкции по применению и концентрации используемых очистителей может привести к прямо противоположным результатам и даже к отказу системы питания и всего двигателя.

Вопрос. Как с помощью компрессометра определить техническое состояние двигателя, и какие препараты применять в том или ином случае?

Ответ. Значение компрессии ниже предельных значений или ее высокая неравномерность указывают на наличие какихто неисправностей в цилиндрах: значительный износ ЦПГ, неплотная посадка (деформация) или прогорание клапанов, повреждение прокладки головки цилиндров, поломка либо закоксовывание (залегание) колец.

Компрессометр — автомобильный прибор для замера компрессии в цилиндрах двигателя.

На первом этапе диагностирования ЦПГ необходимо в каждое свечное отверстие залить 20…30 мл моторного масла. Если это дизель, то масло проще заливать через отверстия для свечей подогрева топлива (свечей накаливания).

После этого надо закрыть свечные отверстия сверху ветошью и провернуть двигатель на 3…4 оборота — лишнее масло выбросит из цилиндров, иначе двигатель при ввёрнутых свечах не провернётся ихза образования гидравлического клина. В случае дизеля ввернуть свечи накаливания и попытаться пустить двигатель, а в случае бензинового двигателя снова замерить компрессию.

Если причиной низкой компрессии было плохое уплотнение («залегание») колец, то у бензинового двигателя компрессия сразу увеличится до 0,9…1,0 МПа, а дизель, если окружающая температура около 0 °C или выше, запустится даже со всеми неработающими свечами накаливания.

При «залегании» колец от нагара и необходимости их раскоксовки, можно применить ремонтно — эксплуатационные препараты для безразборного сервиса. Для этого нужно воспользоваться одним из двух способов.

Первый способ применяется в процессе непрерывной эксплуатации и заключается в следующем.

1. Залить в моторное масло мягкую моющую присадку (FN 093 на основе Fenom, HG 2207 «Мягкий очиститель двигателя»), которая способна за пробег в 150…200 км раскоксовать маслосъемные кольца и очистить их от нагара.

2. Вторая составляющая способа предусматривает добавление уже в топливный бак очищающей присадки (HG 3234 «Очиститель топливной системы», HG 3236 «Тотальный очиститель системы питания и впускного тракта»), которая, со своей стороны, в процесс эксплуатации будет раскоксовывать компрессионные кольца, удалять нагар с клапанов, очищать рабочую поверхность камеры сгорания.

Если же этот способ не принесет заметных результатов, следует применить второй, более радикальный, включающий следующие операции.

1. Вывернуть все свечи, выставить поршни приблизительно на одну высоту и залить через свечные отверстия в цилиндры один из следующих препаратов: FN 109 «Очиститель карбюратора» или HG 3207 от фирмы HiGear (допускается использовать аэрозоль HG 5512 «Проникающая защитная смазка»). После этого свечи установить на свои места, а жидкость выдержать в цилиндрах не менее трех часов.

2. По истечении этого времени свечи снова вывернуть и, после продувки цилиндров стартером, ввернуть обратно, а двигатель запустить. После пробега 10…15 км со скоростью около 80 км/ч необходимо сменить масло и фильтр, используя так называемые 5–минутные промывки (Р 023, FN 055, HG 2205).

3. Для дальнейшей очистки ЦПГ в топливный бак залить состав для мягкой очистки — H G 3222 «Очиститель инжекторов впрыска», а в моторное масло в профилактических целях добавить многофункциональную присадку HiGear Oil Treatment, способствующую снижению расхода масла на угар.

Эти меры в комплексе позволяют эффективно очистить ЦПГ от образовавшихся отложений и вернуть компрессию на нормативный уровень.

Вопрос: Следует ли вообще применять топливные очистители?

Ответ: Наверное, не станет откровением, что главной причиной широкого распространения топливных очистителей у нас в стране стало низкое качество отечественного топлива, как бензинов, так и солярки.

Солярка (соляревое масло) (лат. solaris — солнечный, араб. sol — солнце, англ. solar oil — буквально «солнечное масло» или англ. straw oil — «соломенное масло») — технический сленг, обозначающий фракцию нефти, прошедшую щелочную очистку. Служит топливом для тихоходных тракторных, стационарных и судовых дизелей, применяется для пропитки кож в кожевенном производстве, а также при механической и термической обработке металлов, в качестве охлаждающей и закалочной жидкости (см. также «Дизельное топливо»).

Как показывают исследования, топливо в процессе производства, транспортирования, хранения и заправки достаточно интенсивно загрязняется различными примесями, концентрация которых может достигать 630 г/т, но они в большинстве своем улавливаются топливным фильтром. Поэтому, на наш взгляд, проблема крупных загрязнений, накапливающихся в топливном баке, не столь актуальна, как смолистые отложения и нагар в инжекторе, форсунках, на клапанах и вообще в камере сгорания, и в этом случае уже без специальных препаратов не обойтись.

Для продления срока службы деталей топливной аппаратуры до 2…3 раз специалисты рекомендуют периодически использовать моющие присадки — очистители, такие как Injektor Cleaner, Disel TuneUp & Cetane Boost (HiGear Products, Inc), Fenom Injector Nanocleaner (ООО «Автохимпроект») и др.

Они эффективно восстанавливают мощность и экономичность двигателя, равномерность оборотов холостого хода. Безопасно очищают распылители инжекторов и другие элементы системы питания двигателей от смолистых углеродистых отложений. Облегчают пуск двигателя.

Для твердых углеродистых отложений в камере сгорания необходимы специальные препараты — очистители нагара (антикоксы), такие как Diesel Jet Clean (HiGear Products, Inc), Fast Decocer (ООО «Автохимпроект») и другие, которые позволяют очищать даже самые загрязненные распылители форсунок от нагара и смолистых отложений. Восстанавливают форму факела распыла топлива и динамику его сгорания. Предотвращают образование нагара в камере сгорания. Смазывают детали системы питания. Устраняют зависание игл форсунок, предотвращают задиры и изнашивание прецизионных плунжерных пар топливного насоса высокого давления (ТНВД). Препятствуют коррозии деталей системы питания и росту бактерий в баке. Значительно улучшают динамику автомобиля и приемистость двигателя.

Вопрос. Как влияют присадки для очистки инжекторов, клапанов и т. д. на топливный фильтр? Каковы сроки замены топливного фильтра при использовании данных присадок?

Ответ. Это зависит от состояния системы питания и, конкретно, топливного бака. Если их состояние удовлетворительное и серьезных проблем нет, а препарат применяется регулярно для профилактики, то срок замены фильтра у него стандартный, примерно через 30 000 км. При наличии проблем, после применения присадок фильтр желательно заменить.

Если после очередной заправки присадки выяснится, что бензин был неудовлетворительного качества, рекомендуется использовать сильнодействующие очистители. Они являются, как правило, сильными растворителями, и после них смена фильтра не требуется.

Вопрос. Можно ли одновременно использовать разные по назначению топливные присадки (очиститель инжекторов, очиститель клапанов, очиститель каталитического конвертора, антифриз — осушитель), чтобы максимально быстро и качественно провести очистку всей топливной системы?

Ответ. Данная операция не рекомендуется, так как синергизм присадок, а также их возможное усиливающее или ослабляющее воздействия недостаточно изучены, и предсказать возможные последствия весьма затруднительно. Лучше применять присадки поэтапно, в зависимости от возникающих проблем или отказов.

Если стоит задача провести комплексную очистку всей топливной системы, рекомендуем использовать высококачественную присадку — очиститель топливной системы.

Вопрос. Как правильно заливать топливные присадки: до заправки или после? Если добавлять после, что изменится?

Ответ. Согласно большинству инструкций по применению топливных присадок, они заливаются «в практически пустой бак», однако строго следовать данной рекомендации не советуем, так как это может привести к попаданию воздуха в топливную магистраль и работе топливного насоса «вхолостую», а также к неожиданной остановке двигателя изза полной выработки топлива.

Безопаснее заливать топливную присадку (очиститель, октан — корректор и т. д.) на АЗС, в примерно наполовину заполненный бак и обязательно сразу же заправлять топливом до полного бака. Это способствует равномерному распределению состава в топливном баке за счет струи топлива при заправке. В этом случае присадка начнет эффективно работать практически сразу же после заправки.

Вопрос. В чем отличие очистки инжекторов в автосервисе и применения специальных присадок «очистителей инжекторов» и «очистителей топливной системы»?

Ответ. Сервисные центры рекомендуют проводить очистку топливной системы на стационарных установках с применением специальных очищающих препаратов. Однако и там часто бывают случаи, когда после очистки инжектора на автомобиле с большим пробегом проблемы только усугубляются.

Профессиональная очистка инжекторов в автосервисе — процедура весьма дорогостоящая, однако если она делается правильно, то весьма эффективная. В то же время, часто после очистки инжекторов в автосервисе, буквально через короткое время, автовладелец зачастую вынужден обращаться туда повторно с той же проблемой — засорились инжекторы. Причина тому, как правило, отложения в баке и топливной системе. При прочистке инжекторов на сервисе отключается штатная система подачи топлива, и очищающая топливная смесь подается специальным оборудованием непосредственно на очищаемые инжекторы. После очистки подключается штатная топливная система, а значит, если бензобак и топливные магистрали не подвергались очистке, то углеродистые отложения, находящиеся в них, начинают снова поступать в инжекторы, засоряя их через достаточно короткий промежуток времени. Поэтому для реальной очистки топливной системы нужо начинать с промывки бензобака, а уже потом инжекторов.

Если говорить об ультразвуковой очистке инжекторов, то это дорогостоящая и скорее ремонтная операция для данного конкретного узла, нежели очистка топливной системы. При этой операции не подвергаются очистке основные элементы топливной системы, клапаны и т. д. Если они загрязнены, то очистка одних инжекторов ничего не даст. Нужно будет затем прочищать всю топливную систему, включая бензобак, а также менять топливный фильтр. В целом «процедура» обойдется очень дорого.

Специализированные очистители топливной системы работают, начиная с топливного бака, аккуратно растворяя отложения, которые вместе с топливом через инжекторы (форсунки в дизеле) поступают в камеру сгорания и дожигаются. Параллельно идет очистка всей топливной системы, клапанов и самих инжекторов.

Существуют специализированные присадки — очистители клапанов, но и они, как правило, имеют комплексное действие и очищают всю систему питания.

Поэтому, можно посоветовать: регулярно применять более мягкие очистители топливной системы, как для бензиновых, так и для дизельных двигателей, например препараты Fuel System & Valves Cleaner (HiGear Products, Inc), Fuel System Cleaner (Step Up Brends Inc .) или аналогичные, выбирать проверенные АЗС, а также чаще менять топливные фильтры.

Антигели (депрессорные присадки к дизтопливу)

На российском рынке среди всех присадок, применяемых к дизельному топливу, наибольшее распространение имеют депрессорные присадки и диспергаторы парафинов. Использование депрессорных присадок является наиболее эффективным и перспективным путем повышения низкотемпературных свойств дизельного топлива и более рациональным и безопасным методом, чем добавление в них керосина или тем более бензина. Депрессорные присадки позволяют снизить допустимую температуру эксплуатации любого дизельного топлива, лимитируемую предельной температурой фильтруемости, на 10…20 °C, а также повысить эффективность топлива за счет вовлечения в состав более тяжелых фракций.

Страницы: «« 12345678 »»

Читать бесплатно другие книги:

Конспект лекций предназначен для подготовки студентов медицинских вузов к сдаче экзаменов....
Настоящее издание представляет собой конспект лекций по дисциплине «Логика». Конспект лекций составл...
Конспект лекций соответствует требованиям Государственного образовательного стандарта высшего профес...
Издание предназначено для подготовки студентов экономических специальностей к сдаче экзаменов и заче...
Конспект лекций соответствует требованиям Государственного образовательного стандарта высшего профес...
Данное издание представляет собой конспект лекций по предмету «История мировой и отечественной культ...