Возвращение времени. От античной космогонии к космологии будущего Смолин Ли

Рис 8. Полет мяча, брошенного Дэнни, в пространстве и времени.

Со времен Ньютона некоторые физики усвоили мистический взгляд, согласно которому математическая кривая реальнее самого движения. Соблазн такого подхода в том, что он вневременной. Поддаваясь соблазну подменить реальность ее представлением и отождествить график движения с самим движением, эти ученые делают шаг в сторону устранения времени из картины мироздания.

Неразбериха становится еще заметнее, когда мы пытаемся представить время как ось (рис. 5). На рис. 8 информация о траектории мяча Дэнни, включая показания часов. Это можно назвать опространенным временем.

Математическое сочетание представления пространства и времени, отложенных каждое по своей оси, можно назвать пространством-временем. Прагматик будет настаивать на том, что пространство-время – это еще не реальный мир. Это человеческое изобретение, другое представление данных о процессе бросания мяча. Если мы спутаем пространство-время и реальность, мы впадем в заблуждение спатиализации (опространивания) времени. Это прямое следствие того, что мы забыли о различии между данными и самим временем.

В этом случае вы вольны фантазировать, что во Вселенной время отсутствует, даже что в ней нет ничего, кроме математики. Но прагматик скажет, что отсутствие времени и математика – лишь свойства представления данных наблюдения за движением тела. Они не являются и не могут являться свойствами движения. В самом деле, абсурдно называть движение вневременным, поскольку движение и есть выражение времени.

Существует простая причина, в силу которой для полного представления истории Вселенной математические объекты не подходят. У нее есть свойство, отсутствующее у любого математического объекта: в мире всегда присутствует время. Математические объекты им не обладают[26]. Кто прав: прагматик или мистик? Это вопрос к физике и космологии будущего.

Глава 4

Физика “в ящике”

Школьником я попробовал сыграть роль в пьесе Сартра “За закрытыми дверями”. Я играл Гарсэна, запертого в комнате с двумя женщинами. Все трое на самом деле уже умерли. Сцена являла собой крайний вариант замкнутого общества. Это позволило драматургу изучить последствия нашего нравственного выбора. В кульминационный момент я должен был ломиться в дверь класса, крича знаменитое: “Ад – это другие!” Но стекло в двери разбилось, обдав меня градом осколков. Так окончилась моя актерская карьера.

Музыка, как и театр, позволяет изучать эмоции в контролируемой среде. Подростком я слушал леденящее душу произведение в исполнении группы “Суицид” моего двоюродного брата в подвале центра “Мерсер” в Гринвич-виллидже. Музыканты заперли двери и буквально загипнотизировали слушателей, до отупения повторяя классику гаражного рока 96 Tears, песню о бессмысленном убийстве. Ощущение клаустрофобии усиливалось: как и в пьесе Сартра, мы сидели взаперти. Совсем недавно этот метод взяли на вооружение художники-концептуалисты. Они закрывали на сутки в комнате двух очень непохожих людей, например художника и ученого, и снимали на видео все, что происходило[27].

И в том спектакле, и на концерте изоляция не являлась настоящей. Можно было уйти в любое время. Но аудитория этого не делала, потому что есть многое, чему нужно научиться. Ограничение превращается в благо. Искусство ищет общее в частном[28], и чтобы добиться успеха, нередко приходится накладывать ограничения. То же и в физике. Большинство из того, что мы знаем о природе, мы знаем благодаря экспериментам, во время которых мы изолируем явление от круговорота Вселенной. Метод этот обусловил успех физики со времен Галилея. Я называю его физикой “в ящике”. У него есть и преимущества, и недостатки, причем и те, и другие играют важнейшую роль в истории изгнания времени из физики и его возвращения.

Мы живем во Вселенной, в которой материя находится в вечном движении. Декарт, Галилей, Кеплер и Ньютон научились изолировать малые части мира, изучать их и описывать наблюдаемые изменения. Они показали, как нужно представлять записи этого движения в виде графиков, оси которых соответствуют положению в пространстве и времени. Графики можно изучать в любое время.

Для применения математики к физической системе мы в первую очередь должны изолировать последнюю. Мы недалеко ушли бы в исследовании движения, если бы беспокоились, как все сущее во Вселенной влияет на предмет нашего исследования. Основоположники физики добились успеха лишь потому, что умели изолировать простые подсистемы вроде полета мяча. В реальности, однако, мяч в полете подвержен влиянию мириада факторов вне выделенной подсистемы. Простое описание игры в мяч как замкнутой системы – грубое приближение, которое, однако, помогло открыть принципы, регулирующие, как выяснилось, движение в нашей Вселенной[29].

Для изучения системы мы должны определить, что она содержит и что мы из нее исключаем. Мы рассматриваем систему, как если бы она была изолирована от остальной Вселенной, и эта изоляция сама является сильным приближением. Мы не можем отделить систему от Вселенной. В эксперименте мы можем лишь уменьшить, но не устранить внешнее влияние на нашу систему. Тем не менее, во многих случаях мы можем сделать это достаточно аккуратно, чтобы идеализация замкнутой системы стала полезной конструкцией.

Частью определения подсистемы является перечисление всех переменных, которые необходимо измерить, чтобы узнать о системе все, что мы хотим знать о ней в определенный момент времени. Список этих переменных – абстракция, которую мы называем конфигурацией системы. Чтобы представить набор всех возможных конфигураций, мы определяем абстрактное пространство, называемое конфигурационным. Каждая точка в конфигурационном пространстве представляет собой одну из возможных конфигураций системы. Конфигурационное пространство – это всегда приближение к более полному описанию. И конфигурация, и ее представление в конфигурационном пространстве являются абстракцией, человеческим изобретением, полезным для занятий физикой “в ящике”.

Для описания бильярда мы можем выбрать для записи расположение 16 шаров на двумерном столе. Чтобы локализовать шар на столе (его положение относительно длины и ширины стола), потребуются два числа, поэтому полная конфигурация потребует 32 числа. В конфигурационном пространстве имеется одно измерение для каждого числа, которое должно быть измерено, так что в случае с бильярдом оно представляет собой 32-мерное пространство.

Но настоящий бильярдный шар представляет собой чрезвычайно сложную систему, так что представление о нем как об объекте с определенным положением является сильным приближением. Если вы желаете получить более точное описание игры на бильярде, придется фиксировать позиции не только шаров, но и каждого атома в каждом шаре. Это потребует по меньшей мере 1024 чисел и, следовательно, конфигурационного пространства более высокой размерности. Но зачем останавливаться на достигнутом? Если описание на уровне атомов – это то, что вы хотели, вы должны учесть положение всех атомов бильярдного стола, всех атомов воздуха, которые барабанят по шару, всех квантов света в комнате… Или даже всех атомов, из которых состоят Земля, Солнце и Луна, действующих на шары посредством гравитации. Любое описание меньше космологического будет приблизительным.

Вне подсистемы остаются еще часы. Они не считаются ее частью, поскольку предполагается, что время течет равномерно, независимо от того, что происходит в подсистеме. Часы задают стандарт, в сравнении с которым мы измеряем движение подсистемы.

Использование внешних часов нарушает концепцию относительности времени. Изменения в системе измеряются по отношению к ходу внешних часов, но мы предполагаем, что ничто в системе не может повлиять на ход внешних часов. Это удобно, но возможно лишь потому, что мы пренебрегаем всеми взаимодействиями между системой и всем, что находится вне ее, в том числе часами.

Если мы принимаем этот подход слишком серьезно, может возникнуть искушение представить внешние по отношению к Вселенной часы, с помощью которых мы можем измерять изменения во Вселенной. Это приведет нас к концептуальной ошибке, основанной на вере в то, что Вселенная в целом эволюционирует по отношению к некоему абсолютному времени. Ньютон совершил эту ошибку, потому что считал свою физическую картину мира в целом устроенной Богом. Эта ошибка сохранялась, пока Эйнштейн не нашел способ перенести часы внутрь Вселенной.

Тем не менее, если мы не принимаем эту концепцию слишком серьезно, картина небольшой подсистемы, эволюционирующей в сопоставлении с показаниями внешних часов, является весьма полезным приближением. В каждый момент измерения мы получаем ряд чисел, характеризующих конфигурацию подсистемы в это время, и, следовательно, определяем точки в конфигурационном пространстве. Мы можем идеализировать эту последовательность точек с помощью кривой в конфигурационном пространстве (рис. 9). Она представляет собой историю эволюции подсистемы в виде записанной последовательности измерений ее конфигурации. Как и в случае игры Дэнни и Джанет, в этой картине время не присутствует. Осталась траектория в пространстве возможных конфигураций, несущая информацию о прошлом. После эксперимента у нас остается представление о движении подсистемы, которое разворачивалось во времени всего раз – посредством математического объекта, которым является кривая в пространстве возможных конфигураций подсистемы.

Рис. 9. Конфигурационное пространство и проходящая через него кривая истории.

Конфигурационное пространство существует вне времени – предполагается, что всегда. Когда я говорю о “пространстве возможных конфигураций”, я имею в виду, что если бы я пожелал, то поместил бы подсистему в любую из этих конфигураций в любое время. История системы в представлении такой кривой начинается с ее первой точки. Эта кривая, однажды построенная, существует вне времени. Это возвращает нас к ключевому вопросу: является ли исчезновение времени в таком представлении отражением реальности – или это заблуждение, непредвиденное следствие метода приблизительного описания малых частей Вселенной?

Ньютон сделал больше, нежели открыл способ описать движение. Он смог предсказывать его. Галилей обнаружил, что мяч летит по параболе. Ньютон дал нам метод определения формы траектории для множества случаев. Этот метод и есть содержание его трех законов движения. Они могут быть резюмированы следующим образом. Чтобы предсказать траекторию мяча, необходимо знать:

а) Исходное положение мяча;

б) Начальную скорость мяча (как быстро и в каком направлении он движется);

в) Силы, которые будут действовать на мяч во время движения.

Располагая этой информацией и опираясь на законы Ньютона, можно предсказать траекторию. Мы можем запрограммировать компьютер, чтобы он сделал это вместо нас. Задайте три начальных условия, и компьютер выдаст траекторию. Решение уравнений Ньютона представляет собой кривую в конфигурационном пространстве, историю системы с момента, в который приготовлена система или начаты наблюдения. Конфигурация системы в этот момент называется начальным условием. Вы описываете исходное состояние, когда задаете исходное положение и начальную скорость. Затем подключаются законы движения и довершают дело.

Один закон имеет бесконечное множество решений, и каждое из них описывает возможное поведение системы, удовлетворяющее этому закону. Когда вы задаете начальные условия, то указываете, какое из множества решений описывает конкретный эксперимент. Таким образом, чтобы предсказать будущее или что-либо объяснить, недостаточно знания законов. Вы должны знать начальные условия. В лабораторных экспериментах это легко, потому что экспериментатор подготавливает систему, задавая ее исходное состояние.

Закон падения тел Галилея определяет, что мяч Дэнни полетит по параболе. Но по какой? Ответ зависит от того, как быстро, под каким углом и из какого положения Дэнни бросил мяч, то есть от начальных условий.

Оказывается, этот метод применим к любой системе, которая может быть описана с помощью конфигурационного пространства. После того, как система определена, нам необходима все та же исходная информация:

а) Начальная конфигурация системы;

б) Первоначальное направление и скорость изменения системы;

в) Силы, действующие на систему во время ее эволюции.

Законы Ньютона предсказывают точную кривую в конфигурационном пространстве, которой система будет следовать.

Нельзя недооценивать универсальность и мощь метода Ньютона. Он применим к звездам, планетам и их спутникам, к галактикам, звездным скоплениям, скоплениям галактик, к темной материи, атомам, электронам, фотонам, к газам, твердым телам и жидкостям, к мостам, небоскребам, автомобилям, самолетам, искусственным спутникам и ракетам. Его успешно применяют и к системам с одним, двумя, тремя телами, и к системам, состоящим из 1023 или 1060 частиц, а также к полям, например электромагнитным, определение которых требует измерения бесконечного числа переменных (электрического и магнитного поля в каждой точке пространства). С его помощью описано огромное количество сил или взаимодействий, также представляющих собой переменные, которые определяют систему.

Этот метод может быть применен и в области компьютерных наук, где он называется моделью клеточных автоматов. Модифицированный, он стал основой квантовой механики. Имея в виду могущество этого метода, его можно назвать парадигмой. В сущности, ньютонова парадигма выстраивается из ответов на два вопроса:

а) Каковы возможные конфигурации системы?

б) Какие силы действуют на систему в каждой из конфигураций?

Возможные конфигурации называются начальными условиями, потому что с их помощью мы указываем начальное состояние системы. Правила, согласно которым описываются силы и их действие, называются законами движения. Эти законы представлены уравнениями. Когда вы задаете начальные условия, уравнения определяют будущую эволюцию системы. Существует бесконечное количество таких решений уравнений, поскольку существует бесконечное число возможных начальных условий.

Следует знать, что этот метод основан на нескольких предположениях. Во-первых, что конфигурация пространства существует вне времени. Предполагается, что метод может дать набор всех возможных конфигураций, прежде чем мы сможем наблюдать действительную эволюцию системы. Возможные конфигурации не эволюционируют, а просто существуют. Второе предположение состоит в том, что силы и, следовательно, законы, которым подчиняется система, существуют вне времени. Предположительно, они также могут быть указаны до фактического исследования системы.

Этот урок столь же прост, сколь и страшен. В рамках ньютоновой парадигмы время не имеет значения и может быть устранено из описания мира. Если пространство возможных конфигураций, как и законы движения, может быть определено без привлечения времени, нет необходимости рассматривать историю любой системы как развивающуюся. Для ответов на любые вопросы физики достаточно представлять историю системы с помощью одной из застывших кривых в конфигурационном пространстве. Самый, казалось бы, важный аспект обыденного познания мира, данный нам в ощущении последовательности мгновений, в наиболее успешной модели описания природы отсутствует.

Мы начали с теннисного мяча с номером телефона, брошенного Дэнни Джанет в Хай-парке 4 октября 2010 года. И мяч этот привел нас к вечности.

Глава 5

Изгнание новизны и неожиданности

Предложение ньютоновой парадигмы в качестве универсального метода занятий физикой “в ящике” стало ключевым событием в истории изгнания времени. Эта парадигма предоставила аргумент в пользу детерминизма, сформулированный Пьером Симоном Лапласом. Он утверждал, что если задать точное положение и движение всех атомов во Вселенной и точно описать силы, которые на них действуют, он смог бы в точности предсказать будущее Вселенной. Это убедило многих, что настоящее целиком определяет будущее.

Здесь есть серьезное допущение. Можно экстраполировать метод Ньютона на Вселенную и поместить все сущее в ней в экспериментальный “ящик”. Но физика “в ящике” начинается с изоляции небольшой подсистемы Вселенной.

Вернемся в парк. 14 августа 2062 года, 3.15 пополудни. Лора, внучка Дэнни и Джанет, бросает фрисби Франческе, дочери Билли и Роксаны. В тот момент, когда Лора бросает фрисби, Франческа отвлекается на флэш-сообщение в своем микромобильнике, имплантированном в сетчатку. Поймает ли она фрисби?

Если вы считаете, что ньютонова парадигма непосредственно применима к описанию нашего мира, придется признать: уже в 2010 году было предопределено, что Дэнни и Джанет поженятся (а кто мог об этом знать?), и время, когда будет зачат их сын, и на ком он женится, и когда будет зачата его дочь, и станет ли она играть с фрисби. Вам придется согласиться с тем, что каждое движение, мысль, эмоция этих людей предопределены, а также что полный список жителей планеты уже составлен, даже если невозможно представить, как его расшифровать.

Вы должны верить в то, что Лора и Франческа в тот день станут играть в фрисби, хотя они росли, не зная друг друга, и встретились всего за пять минут до игры. И в то, что нельзя предотвратить ни появление имплантируемых в сетчатку микротелефонов, ни отправку сообщения, отвлекшего Франческу. Итак, сможет ли она поймать фрисби? Никто из наблюдателей не мог это знать, но если будущее предопределено, то, в принципе, существуют некоторые измерения, которые могут уже сейчас поведать о будущем.

Утверждение, что законы физики вместе с начальными условиями определяют грядущее вплоть до деталей, поразительно потому, что даже в долгосрочной перспективе эти детали играют большую роль. Так, при зачатии один сперматозоид из около 100 миллионов оплодотворяет яйцеклетку. Это происходило в истории человечества около 100 миллиардов раз и триллионы раз раньше, в ходе эволюции наших предков. Выбор, сделанный триллионы раз – это огромный объем информации, но мы должны считать, что все это (и многое другое) учтено в начальных условиях Вселенной в очень далеком прошлом. И это лишь одна деталь.

Итак, в рамках ньютоновой парадигмы время исчезает. Все события в прошлом, и все, что происходит сейчас, и все, что случится в будущем, являются точками на траектории в конфигурационном пространстве Вселенной, на кривой, которая уже проведена. Ход времени не привносит никакой новизны, никаких сюрпризов. Изменения – просто перетасовывание одних и тех же фактов.

И если в мире есть место для сюрпризов, то что-то не так с ньютоновой парадигмой – по крайней мере с распространением этого метода от малых подсистем Вселенной к точному описанию всей Вселенной. Один из парадоксов заключается в том, что если будущее определяется учетом начальных условий, вы должны знать, что определяет начальные условия. По мере того, как вы ищете причины, почему события именно таковы, вы углубляетесь в минувшее.

При этом следует принимать во внимание все большие области пространства, содержащие события, которые, возможно, повлияли на предков Дэнни и Джанет. Если заглянуть на миллионы лет в прошлое, когда случайно встретились два Homo erectus из разных кочевых групп, вам придется обследовать район в 2 миллиона световых лет, чтобы убедиться, что во всей истории не было вспышки достаточно близко расположенной к нам сверхновой, способной уничтожить жизнь на Земле. Если мы отправимся еще глубже в прошлое, к времени зарождения жизни, нам придется обозреть существенную часть наблюдаемой Вселенной.

Таким образом, если мы ищем не только необходимые, но и достаточные причины, мы обязаны учесть все достаточные причины встречи Дэнни и Джанет, включая начальные условия на космологических расстояниях и временных промежутках. Двигаясь по цепочке причин назад во времени, мы обнаружим, что в решение этой проблемы вовлечена вся Вселенная. И прежде чем мы доберемся до причины, мы дойдем до Большого взрыва. Достаточная первопричина встречи Дэнни и Джанет кроется в начальных условиях для Вселенной в момент Большого взрыва. Вопрос о применимости довода в пользу детерминизма, следовательно, лежит в области космологии. Если мы желаем знать, как встретились Дэнни и Джанет, нам нужна теория мироздания.

Метод физических экспериментов “в ящике” хорош для малых подсистем. Прежде чем мы сможем ответить на вопрос, насколько события нашей жизни определяются условиями в далеком прошлом, мы должны знать, могут ли наши теории быть расширены до масштабов Вселенной.

Мы живем в мире, в котором взмах крыльев бабочки может повлиять на то, какая погода установится на противоположном берегу океана через несколько месяцев. Изменения начальных условий усиливаются экспоненциально и в конце концов приводят к заметным изменениям. Поэтому физика “в ящике” допускает ряд приближений: выбор наблюдаемых величин, чтобы смоделировать конфигурационное пространство, и пренебрежение влиянием всего остального в мире.

Если вы знаете законы физики, применимые к мельчайшим частям подсистемы, то можете представить точное описание всех переменных, необходимых для описания подсистемы, и все силы, посредством которых эти переменные взаимодействуют. Наиболее точное описание законов природы и элементарных частиц, которое мы имеем сейчас, – стандартная модель физики элементарных частиц, которая вписывается в рамки ньютоновой парадигмы. Эта модель содержит все, что мы знаем о природе, кроме гравитации, и неоднократно была проверена экспериментально.

Почему бы не применить этот подход к остальной Вселенной? Можно представить, как применить его к более крупной подсистеме, которая содержит рассматриваемую, то есть не только теннисный мяч Дэнни, но и все и всех в тот день в парке. Следом можно расширить этот подход на все и всех в Торонто, далее – на все, что на поверхности и внутри Земли и на миллион километров окрест. Каждый раз, когда вы расширяете подсистему, вы можете руководствоваться одними и теми же законами и следовать ньютоновой парадигме. С каждым расширением приближение становится все лучше, значит, усиливается довод в пользу детерминизма.

Но нечто всегда остается снаружи системы. Например, у границ Солнечной системы может оказаться большое черное облако, которое через год поглотит Солнце, или комета, которая столкнется с Землей через 10 лет. Эти события могут сорвать брак Дэнни и Джанет. Возмущение не обязательно должно быть большим или действовать непосредственно на Землю. Дэнни могла отвлечь новость о комете вблизи Юпитера, он вышел бы в парк минутой позже и не встретил бы Джанет. И миллионы людей не стали бы их потомками. Мелкие происшествия, приводящие к грандиозным последствиям, – обычное дело.

Детерминистическую физическую теорию можно уподобить компьютеру. Конфигурационное пространство – это память, в которую помещаются данные. Закон аналогичен программам. Вы запускаете программу, и она преобразует входные данные в выходные. При заданных входных данных и программах выход будет полностью определен. Каждый раз, когда компьютер работает с одинаковыми входными данными, вы получите тот же результат. Но следует подумать вот о чем: результат работы компьютера определяется входными данными и программами двумя различными способами.

Рассмотрим компьютер с точки зрения физики. Он подчиняется ее законам. С этой точки зрения выход причинно определяется входными данными. Это результат действия законов физики на начальные условия. Этот процесс требует времени, поскольку причинный процесс, подчиняющийся законам физики, протекает во времени.

Но результат работы компьютера определяется и иначе. Входные данные и программы подразумевают выход. Входные и выходные данные представляют собой математические объекты. Программа – также математический объект. Можно логически доказать, что результат работы компьютера представляет собой математическое следствие сочетания входных данных и программы. Это логическое определение не требует учета времени, потому что физики здесь нет. Доказательство логической связи между комбинацией программ и входных данных с выходом – математический факт.

В этом смысле время устраняется из описания физики в рамках ньютоновой парадигмы. Нет нужды включать компьютер, чтобы узнать результат его работы: этот результат можно получить с помощью умозаключений. Не имеет значения, как эти умозаключения сделаны. Компьютер – лишь средство использования законов физики для моделирования причинно-следственного процесса. Но есть бесконечно много способов построить и запрограммировать компьютер. И все они приведут к тем же результатам.

Дело в том, что компьютер не выдаст информацию, которой не было на входе. Выход – просто преобразование входной информации согласно некоторым логическим правилам. В этом смысле не может быть произведено ничего нового. Также нет необходимости в причинно-следственной эволюции во времени, чтобы просто воспроизвести логику событий. То же справедливо для любой системы, описанной в рамках ньютоновой парадигмы. Во всех таких случаях конечная конфигурация – лишь результат работы физических законов, действующих на начальные условия. Как только законы выражены в виде уравнений, эволюция начальных условий в окончательную конфигурацию за определенное время становится математическим фактом. Это может быть доказано как теорема. Ньютонова парадигма заменила причинные процессы, протекающие во времени, на логическую последовательность, в которой время не играет никакой роли.

Полезно также рассмотреть законы физики, действующие в обратном во времени направлении. Если провести аналогию между законами физики и компьютером или машиной, которая преобразует начальные условия в окончательную конфигурацию, вы сможете представить, как закон, имея гипотетический переключатель, может быть приложен в обратном направлении. Для этого надо щелкнуть переключателем и заменить конечную конфигурацию начальной. Закон проработает столько же, но в обратном направлении. Такой закон называется обратимым во времени.

Вот пример: движение Земли вокруг своей оси и Солнца. Изменение направления времени изменяет орбиту и вращение Земли, но законами Ньютона это допускается. Предположим, вы сняли фильм о движении Земли и показали его инопланетянам. Они сказали бы (если бы имели хоть малейшее представление о законах), что законы Ньютона определяют это движение. Но если бы вы прокрутили фильм в обратную сторону, они также решили бы, что орбита удовлетворяет законам Ньютона. Они не смогли бы отличить оригинальный фильм от вывернутого наизнанку. То же и в случае движения Солнечной системы (8 планет), и в случае миллиарда других тел.

Многие из нас видели фильмы, прокрученные наоборот, и смотреть их странно или смешно. Часто это происходит не потому, что обратное движение противоречит законам физики. Такое движение возможно, но очень маловероятно. Как правило, это справедливо в сложных системах, содержащих большое число элементов вроде атомов. Придется разобраться с законами термодинамики, которые не являются обратимыми во времени (см. главы 16 и 17)[30]. А сейчас рассмотрим два простых примера.

Многие законы физики обратимы. Таковы, например, законы ньютоновой механики, теории относительности и квантовой механики. Стандартная модель (СМ) физики элементарных частиц почти обратима во времени. Если рассмотреть ситуацию, которая развивалась согласно СМ, обратите ось времени в обратном направлении и одновременно проведите два других изменения: вы получите новую историю, новые ситуации. Эти два изменения – замена частиц на античастицы и замена левого на правый. Полностью эта операция называется CPT-преобразованием (С – зарядовая, Р – пространственная, Т – временная четности). Вы подумаете, что кто-то прокручивает пленку назад. Любая теория, не противоречащая квантовой механике и специальной теории относительности, позволяет изменять направление времени.

Эти обращения времени являются еще одним доводом в пользу его нереальности. Если законы природы могут быть обращены во времени, то не может быть разницы между прошлым и будущим, и то, что мы по-разному воспринимаем прошлое и будущее, не играет фундаментальной роли в картине мира. Кажущееся различие между будущим и прошлым должно быть или иллюзией, или следствием особых начальных условий.

Людвиг Больцман, хорошо понимавший природу энтропии и сделавший больше, чем кто-либо, для понимания связи мира атомов с макромиром, однажды сказал: “Для Вселенной два направления времени неотличимы друг от друга так же, как в космосе нет верха и низа”[31]. И если нет различия между прошлым и будущим, то есть если они имеют одинаковое содержание, логически заменены, не нужно верить в реальность ни настоящего, ни прошлого. Обратимость законов физики во времени часто воспринимается как еще один шаг в устранении времени из физической картины мира.

Нам осталось лишь несколько шагов, прежде чем время уйдет. Следующий связан с теорией относительности, дающей наиболее убедительный довод в пользу нереальности времени.

Глава 6

Относительность и безвременность

Когда мне было 9 лет, отец принес домой (мы жили в Манхэттене) книгу Линкольна Барнетта “Вселенная и д-р Эйнштейн”. Мы вместе думали над объяснениями теории относительности. Я и сейчас помню рисунки мчащихся поездов и искривления света. То было мое первое знакомство с физикой.

Примерно в 16 лет (мы поехали на метро в гости к моей двоюродной сестре, которая играла в рок-группе) я прочитал первую статью Эйнштейна по общей теории относительности (ОТО). Классические работы Эйнштейна и тогда издавали в мягкой обложке[32]. Его статьи, которые я, к счастью, прочитал прежде учебников, сыграли главную роль в моем решении посвятить себя физике. Тогда я и понятия не имел, что эйнштейновские статьи – лучший пример ясного выражения мыслей о природе. Это как если после посещения пятизвездочного французского ресторана вам оставили лишь кукурузные хлопья, арахисовое масло и желе.

Позднее я обнаружил, что в физике мало концептуальных идей, способных соперничать с ясностью и стройностью теории Эйнштейна. Ни квантовая механика, ни современная квантовая теория поля, ни даже ньютонова механика не смогли внести ясность в путаницу определений основных понятий, таких как масса и сила. Но поскольку я начал с Эйнштейна, его работа стала моим научным стандартом, а его теория – критерием в науке.

Эйнштейновская теория относительности предоставляет сильнейшие на данный момент доводы в пользу того, что иллюзия маскирует истинную реальность. Тогда, когда я считал, что время – это иллюзия, мой главный довод был связан с теорией относительности.

Эйнштейн предложил две теории относительности. Первая, специальная (СТО), трактует о мире без гравитации. Она изложена в двух статьях, которые Эйнштейн опубликовал в 1905 году, своем annus mirabilis [году чудес][33]. ОТО, открытая им в следующее десятилетие, включала также гравитацию.

Две теории относительности Эйнштейна являются теориями времени или, лучше сказать, теориями отсутствия времени. Они незаслуженно считаются сложными. Я нахожу их элегантными и простыми для объяснения. Принцип относительности на первый взгляд парадоксален, поскольку он заменяет ошибочный интуитивный подход на более глубокий, подтвержденный экспериментами. Понять теорию относительности – значит перейти от одной картины мира к другой. Стоит отказаться от некоторых бессознательных предположений, и основные положения этой теории покажутся логичными.

В этой главе я расскажу лишь о тех постулатах и результатах теории относительности, которые непосредственно касаются природы времени. Я не буду следовать логике изложения теории, принятой в учебниках, которая связывает простые положения теории Эйнштейна с парадоксальными результатами[34]. Мы познакомимся с двумя концепциями в СТО. Первая – относительность понятия одновременности. Вторая следует из первой – это блочная Вселенная. Каждая из этих концепций сыграла важную роль в устранении времени из физики.

При разработке СТО Эйнштейн следовал двум стратегиям решения проблемы природы времени. Во-первых, в споре о том, является время относительным или абсолютным, он принял относительную точку зрения. Время связано с переменами, значит, с восприятием соотношений. Абсолютного времени нет. В ранних работах Эйнштейн также прибегал к операционализму. Согласно этому подходу, единственным разумным способом определения такого количественного понятия, как время, является определение, как его измерять. Если желаете говорить о времени, вы должны сначала описать, что такое часы в вашей теории, как они работают. В рамках операционалистического подхода вы спрашиваете не о том, что реально, а что нет, а интересуетесь, что именно наблюдатель может наблюдать. Вы также должны учитывать положение наблюдателя во Вселенной, то есть где он находится и как движется. Это дает возможность спросить у различных наблюдателей – а согласны ли они между собой в том, что видят? Одно из самых интересных открытий Эйнштейна состоит в следующем: наблюдатели могут расходиться во мнениях.

А как насчет реальности? Разве физиков интересует, что реально, в меньшей степени, чем то, что наблюдаемо? Да, большинство сторонников операционализма верят в реальность и полагают, что единственный способ испытать эту реальность в ощущении состоит в наблюдении. Проверка на реальность заключается в том, чтобы все наблюдатели пришли к единому мнению.

Великое открытие, которое Эйнштейн сделал в СТО касательно понятия времени, связано с относительностью одновременности. Будут ли два события, отдаленные друг от друга, рассматриваться как происходящие в одно и то же время? Эйнштейн обнаружил, что для удаленных друг от друга в пространстве событий отмечается неопределенность касательно понятия одновременности. Наблюдатели, находящиеся в движении друг относительно друга, могут прийти к разным выводам, являются два события одновременными или нет.

Для женщины, проснувшейся в Торонто, совершенно естественно поинтересоваться тем, что ее любовник делает в тот же момент в Сингапуре. Если этот вопрос имеет смысл, должен иметь смысл и вопрос, что происходит в этот момент на Плутоне, в туманности Андромеды или еще где бы то ни было во Вселенной. Эйнштейн показал, что, несмотря на то, что нам подсказывает интуиция, бессмысленно говорить о том, что происходит прямо сейчас. Два наблюдателя, перемещающиеся друг относительно друга, разойдутся во мнениях, являются ли два далеких события одновременными.

Относительность одновременности зависит от ряда предположений. Одно из них таково: скорость света универсальна. Это означает, что любой из двух наблюдателей, пожелавших измерить скорость фотона, получит один и тот же результат вне зависимости от того, как они движутся относительно друг друга или относительно фотона. Мы также можем предположить, что ничто не может перемещаться со скоростью большей, чем универсальная скорость фотона[35]. Поэтому одно событие может повлиять на другое, лишь если они могут обменяться сигналом, распространяющимся со скоростью света либо медленнее. В этом случае мы скажем, что два события причинно связаны, то есть первое событие может являться причиной второго.

Но два события могут произойти настолько далеко друг от друга в пространстве и так близко во времени, что сигнал не успеет дойти. Ни одно из двух событий не может быть причиной другого. Два события не взаимосвязаны. Эйнштейн показал, что в таких случаях невозможно указать, произошли они одновременно или поочередно. Оба варианта ответа будут верны – в зависимости от движения наблюдателей и, соответственно, часов, с помощью которых они измеряют время.

Наблюдателям важно договориться о порядке причинно-связанных событий, чтобы избежать путаницы в отношении определения причины. Но нет причин договариваться о порядке возникновения событий, которые, возможно, не влияют друг на друга. В СТО наблюдатели не могут прийти к согласию.

Так что женщине в Торонто нет смысла интересоваться тем, что ее любовник в Сингапуре делает сию секунду[36], но есть смысл поинтересоваться тем, что он делал несколько секунд назад. Этих секунд более чем достаточно для того, чтобы он успел отправить ей эс-эм-эс. Отправка эс-эм-эс и его прочтение – пример причинно-связанных событий. Все наблюдатели согласятся с тем, что сообщение, которое он посылает, изменит ее жизнь.

Кроме существования универсального ограничения скорости, насчет которого все наблюдатели между собой согласны, СТО зависит еще от одной гипотезы. Это сам принцип относительности: любая скорость, кроме скорости света, – сугубо относительная величина, и нет способа определить, какой наблюдатель находится в движении, а какой покоится. Предположим, два наблюдателя движутся друг навстречу другу, каждый с постоянной скоростью. Согласно принципу относительности, каждый может обоснованно объявить себя находящимся в покое и объяснить сближение перемещением второго.

Таким образом, нет верного ответа на вопросы, о которых наблюдатели не могут прийти к единому мнению, например, являются ли два события, отдаленные друг от друга, одновременными. Следовательно, ничто не может быть объективно одновременным, а понятие “сейчас” не имеет смысла. Относительность одновременности стала ударом по понятию времени как чему-либо реальному.

То, о чем наблюдатели могут согласиться, можно назвать причинно-следственной структурой. Выберите любые два события в истории Вселенной и обозначьте их Х и Y. Один из трех вариантов будет истинным. Либо X может быть причиной Y, либо Y может быть причиной X, либо ни один из них не может быть причиной второго. Эти причинно-следственные связи и есть то, насчет чего согласятся все наблюдатели. Причинно-следственная структура – это список всех отношений для всех событий во Вселенной. Таким образом, физическая реальность в истории Вселенной включает ее причинно-следственную структуру.

В этой картине мира время отсутствует, потому что она относится ко всей истории Вселенной разом. Нет выделенного момента времени, нет определения, какое сейчас время во Вселенной, нет отсылки вообще ни к чему, соответствующему нашему ощущению настоящего момента. Не имеют смысла “будущее”, “прошлое” и “настоящее”.

Если вы удалите из описания СТО природы все, что может вызвать разногласия у наблюдателей, в ней останется лишь причинно-следственная структура. А так как это единственное, что не зависит от наблюдателя, то, если теория верна, это и есть физическая реальность. Следовательно, в той степени, в которой СТО основана на истинных законах мироздания, Вселенная не обладает временем. Время не играет никакой роли по двум причинам: нет ничего, соответствующего переживанию момента, и наиболее полным описанием истории является одновременное представление всех причинно-следственных связей. Эта картина истории на языке причинно-следственных связей созвучна представлениям Лейбница о Вселенной, согласно которым время полностью определяется соотношением между событиями. Причинно-следственные отношения – вот единственная реальность, соответствующая времени.

Есть еще один аспект, в отношении которого соглашаются все наблюдатели. Рассмотрим свободно парящие в пространстве физические часы, которые отмеряют секунды. Часы пробили полдень, а минутой позднее – минуту пополудни. Первое событие можно считать причиной второго. Между ними часы тикали 60 раз. То, сколько раз он тикали между двумя событиями – это и есть информация, о которой все наблюдатели придут к единому мнению независимо от их относительного движения. Это собственное время[37].

Картина истории Вселенной, представленной как одна система событий, связанных причинно-следственными отношениями, называется блочной Вселенной. Это название, возможно, объясняется тем, что оно предполагает реальной всю историю Вселенной сразу, массивом, вызывая аллюзию с каменным блоком, из которого можно вырезать нечто твердое, неизменное.

Блочная Вселенная – это кульминация развития идеи, первоначально высказанной Галилеем и Декартом: рассматривать время как дополнительное измерение пространства. Это сводит описание истории Вселенной к математическому объекту (см. главу 1) вне времени. Если вы считаете, что это соответствует объективно реальному, то вы утверждаете, что во Вселенной принципиально отсутствует время. Блочная картина является вторым шагом к устранению понятия времени в СТО Эйнштейна.

В блочной Вселенной пространство и время едины. Это можно изобразить в виде пространства-времени, в котором к трем измерениям пространства добавляется четвертое измерение – для времени (рис. 10). Событие, происходящее в определенный момент времени, характеризуется как точка в пространстве-времени, а история частицы в пространстве-времени представляется кривой, называемой мировой линией. Таким образом, время категоризируется геометрией, и мы говорим, что время стало пространственным или геометрическим. Физические законы также представлены геометрически, например мировые линии свободных частиц являются прямыми линиями в пространстве-времени. Линия фотона имеет наклон 45° (что соответствует измерению пространства в единицах времени, как мы обычно делаем, когда говорим о световых годах). Любая обычная частица должна перемещаться медленнее, чем фотон, следовательно, ее мировая линия будет располагаться под более крутым углом.

В – будущее относительно А.

С – прошлое относительно А.

D причинно не связано с А.

Рис. 10. Пространственно-временная картина блочной Вселенной. Пространство-время с одним пространственным измерением и одним временным измерением. Мы выбрали единицы измерения времени и пространства так, чтобы лучи света располагались под углом 45°. Причинно-следственная структура тогда определяется геометрически. Два события могут быть причинно-связанными, если они лежат на линии под углом 45° или круче. Мы видим мировую линию частицы, идущую от прошлого к будущему через событие А. Показаны также два луча света, проходящие через точку А. Заштрихованная область содержит события, которые причинно не связаны с А.

Это элегантное геометрическое представление СТО предложил в 1909 году Герман Минковский, один из преподавателей, обучавших Эйнштейна математике. В нем каждый физический факт движения представляется в виде теоремы о геометрии пространства-времени. То, что мы называем пространством Минковского, стало решающим шагом к ликвидации понятия времени, потому что убедительно доказывало: любое движение во времени может быть переведено на язык теоремы о вневременной геометрии. По словам Германа Вейля, одного из крупнейших математиков XX века, “в объективном мире просто ничего не происходит. Лишь в моем сознании… мир оживает как мимолетный образ пространства, которое постоянно меняется во времени”[38].

Чтобы проиллюстрировать мощь блочной картины, можно привести следующий философский довод в ее пользу. Он зависит лишь от относительности одновременности. Давайте для начала согласимся с тем, что настоящее реально. Мы не можем быть уверены, что будущее или прошлое также реальны (смысл как раз в том, чтобы выяснить, насколько они реальны), но мы не сомневаемся, что настоящее реально. Оно складывается из множества событий, ни одно из которых не реальнее остальных. Мы не знаем, являются ли два события в будущем реальными, но согласимся с тем, что если два события происходят в одно и то же время, они реальны в равной степени, независимо от того, происходят ли они в настоящем, прошлом или в будущем.

Если мы операционалисты, то должны говорить лишь о том, что видят наблюдатели. Поэтому мы утверждаем, что два события одинаково реальны, если они, по мнению некоторых наблюдателей, происходят одновременно. Мы также будем предполагать, что быть в равной степени реальным является транзитивным свойством. То есть если A и B, B и C в равной степени реальны, то A и C в равной степени реальны. Этот довод опирается на факт, что в СТО настоящее время зависит от наблюдателя. Выберите любые два события в истории Вселенной, одно из которых (А) является причиной второго (В). Всегда существует событие X, которое обладает следующим свойством. Предположим, наблюдатель Мария видит, что события А и Х происходят одновременно. Второй наблюдатель, Фредди, видит X одновременно с B (рис. 11).

Чтобы понять, почему событие X должно существовать, необходимо знать не только то, что одновременность относительна, но и что она относительна настолько, насколько это возможно. Одно из следствий постулатов Эйнштейна заключается в том, что если два события с точки зрения некоторых наблюдателей происходят одновременно, для всех остальных эти два события не являются причинно-связанными. Верно и обратное: если два события не связаны причиной, найдется наблюдатель, который видит их как синхронные. Таким образом, относительная одновременность является относительной настолько, насколько это возможно, но при условии сохранения причинно-следственных связей.

Если B – далекое будущее относительно А, то X должно быть достаточно далеко и от А, и от B, так что световой сигнал не успел бы пройти расстояние от X до А либо от X до B. Это не является проблемой, так как Вселенная, описанная Минковским, бесконечна[39].

Мы может рассуждать так. Согласно принятому нами критерию, событие А столь же реально, как X. Но В столь же реально, как X. Поэтому A и B одинаково реальны. А и B – любые причинно-связанные события в истории Вселенной. Так, если в каком-то смысле одно событие во Вселенной реально, эта реальность справедлива и для всех остальных событий. Поэтому нет разницы между настоящим, прошлым и будущим. Реальность – это совокупность всех событий во Вселенной, взятых одномоментно вместе. Нет никакой реальности в отдельных моментах времени или в их потоке.

Забавно, что в рамках блочной картины Вселенной нужно лишь верить, что настоящее реально. Рассуждения, приведенные выше, заставляют поверить, что прошлое и будущее столь же реальны, как настоящее. Но если нет различия между настоящим, прошлым и будущим, если рождение Земли или рождение моей праправнучки так же реальны, как тот момент, когда я пишу эти слова, настоящее время не имеет особых привилегий реальности, и реальна вообще вся история Вселенной.

Рис. 11. Довод в пользу блочной модели Вселенной, основанный на одновременности. Для любых двух причинно связанных событий A и B всегда есть событие X, которое одним наблюдателем может интерпретироваться как одновременное с А, а другим – как одновременное с B.

Современный философ Хилари Патнэм высказался на этот счет так:

Проблема реальности и предопределенности будущих событий решена. Кроме того, она решена в физике, а не в философии… Не думаю, что в философии еще существует проблема времени. Существуют лишь физические проблемы определения точной физической геометрии четырехмерного континуума, который мы населяем[40].

Блочная картина Вселенной называется также этернализмом. На эту тему есть обширная философская литература. Одним из обсуждаемых там вопросов является согласованность указанной концепции со сложившимся у нас образом времени. Мы часто говорим: “сейчас”, “будущее”, “прошлое”. Имеют ли эти слова смысл, если реальность состоит в одномоментном взгляде на всю историю мира? Что мы подразумеваем, когда говорим: “Сейчас я в поезде в туннеле под Ла-Маншем”, если настоящее не реальнее любого другого момента времени?

Концепция компатибилизма предполагает, что с обыденным языком нет никаких проблем, пока мы понимаем слова наподобие “сейчас” и “завтра” как обозначающие точку зрения, дающую непосредственный доступ к некоторым фактам о вневременной реальности и делающую доступ к другим фактам затруднительным. Мы с легкостью произносим “здесь” и “там”, верим в то, что и близкие, и далекие объекты одинаково реальны. Поэтому некоторые философы утверждают, что “сейчас” и “будущее” на самом деле не очень отличаются от “здесь” и “там”, что те и другие обозначают определенную перспективу и относятся к тому, что мы видим вокруг, но не влияют на то, что реально. Когда я говорю “сейчас”, я не имею в виду, что “сейчас” – это нечто особенное, а лишь описываю мир таким, каким вижу. Из подтекста всегда ясно, о каком “сейчас” я говорю, и мой собеседник понимает это.

Это прекрасно, но имеет значение, лишь если блочная Вселенная есть верное описание природы. Некоторые философы в этом сомневаются. Так, Джон Р. Лукас пишет: “Блочная Вселенная дает глубоко неадекватный взгляд на время. При этом не учитывается течение времени, выделенное положение настоящего времени, направленность времени и различие между прошлым и будущим”[41].

В моей книге я привожу доводы, относящиеся к этому спору. Я привожу их не так, как любят делать философы, нередко связывающие их с лингвистическим анализом. Я исхожу из физических посылок, и одна из них гласит, что СТО может быть применена ко всей истории Вселенной. Однако СТО не может быть применена ко всей Вселенной, потому что неполна (она, в частности, не учитывает гравитацию). В лучшем случае она может быть лишь приближением к теории с гравитацией. Проблема расширения теории относительности и включения в нее гравитации была решена в рамках общей теории относительности (ОТО). Работа над ней заняла у Эйнштейна десять лет. Однако интересные с философской точки зрения элементы СТО уже распространяются на ОТО. Относительность одновременности остается верной. Поэтому философский аргумент, который я только что изложил, остается в силе и приводит к выводу: единственная реальность – это вся история Вселенной, целостная и одномоментная.

В ОТО осталось положение о том, что не зависящая от наблюдателя информация сводится к причинно-следственной структуре Вселенной и собственному времени. Если история Вселенной описывается на языке ОТО, блочная картина сохраняется.

ОТО не только сохраняет элементы СТО, утверждая, что время нереально, но и вводит новые элементы, приводящие к следующим выводам. Во-первых, есть немало способов разделения пространства-времени на пространство и время (рис. 12). Вы можете определить время с помощью сети часов, распределенных по Вселенной, но часы в различных местах могут идти с разной скоростью. То есть получается, что в ОТО время может быть неоднородным. Во-вторых, геометрия пространства и пространства-времени перестает быть простой, или регулярной. Она становится более общей, как любая криволинейная поверхность по отношению к плоской или сферической. Геометрия становится динамической. В такой геометрии пространства-времени распространяются гравитационные волны. Черные дыры могут формироваться и вращаться друг вокруг друга. Конфигурация мира больше не определяется лишь расположением частиц в пространстве, а включает в себя геометрию пространства как такового.

Но что геометрия пространства и пространства-времени имеет общего с гравитацией? ОТО основана на самой простой из научных идей: падение тел – естественное их состояние.

Рис. 12. Мы противопоставляем привычное представление о времени более произвольному понятию времени в ОТО. Обычно мы думаем, что время везде идет с одной и той же скоростью. Так, поверхности одновременных событий расположены с равными интервалами (в верхней части рисунка). В ОТО время может измеряться в каждой точке разными часами, каждые из которых идут сколь угодно быстро по сравнению с другими до тех пор, пока поверхности равного времени причинно не связаны друг с другом. Мы называем это свободой для времени принимать складчатую структуру (в нижней части рисунка).

Великие революции в физике изменяют наши представления о том, что такое естественное движение (то есть такое, которое не нуждается в объяснении). Для Аристотеля естественным движением было состояние покоя по отношению к центру Земли. Любое другое движение было неестественным, насильственным, и его необходимо было объяснить, например, силой, действующей на тело и заставляющей его двигаться. Для Галилея и Ньютона естественным было движение по прямой с постоянной скоростью, и привлечение силы требовалось только тогда, когда скорость или направление движения менялось (ускорение). Вот почему вы не чувствуете движения в самолете или поезде, пока они движутся без ускорения.

Но если движение относительно, спросите вы, то разве важно, относительно чего ускоряются самолет или поезд? Да, это важно: другие наблюдатели тоже перемещаются без ускорения. Тавтология? Нет, если оговориться, что существует большой класс наблюдателей, которые не чувствуют движения, и объединяет их то, что все они движутся с постоянными скоростью и направлением один по отношению к другому. Такие наблюдатели называются инерциальными, и законы Ньютона определяются по отношению к ним. Первый закон Ньютона гласит: свободные частицы (то есть нет действующих на них сил) перемещаются относительно инерциальных наблюдателей с постоянной скоростью и в неизменном направлении.

Это, кстати, объясняет, почему важно, вращается Солнце вокруг Земли или наоборот. По отношению к любым инерциальным наблюдателям направление движения Земли постоянно меняется, так как она вращается вокруг Солнца. Это ускорение объясняется гравитационным влиянием Солнца.

Для Ньютона сила притяжения была такой же силой, как и другие. Эйнштейн, однако, понял, что есть нечто особенное в движении, вызванном силой притяжения: все тела падают с одинаковым ускорением независимо от их массы или других свойств. Это следствие из законов Ньютона. Ускорение тела обратно пропорционально его массе, но Ньютон утверждал, что сила притяжения, действующая на тело, пропорциональна массе тела. Поэтому эффект массы сокращается, ускорение, вызванное силой притяжения, не зависит от массы тела, и все тела падают с одинаковым ускорением.

Эйнштейн отразил естественность падения в самом красивом принципе своей теории (и физики вообще): принципе эквивалентности сил гравитации и инерции. Он гласит: когда вы падаете, вы не можете почувствовать движение. Ощущения, испытываемые обывателем в падающем лифте, не отличаются от ощущений космонавта, вышедшего в открытый космос. Сила, воздействие которой мы испытываем, когда сидим или стоим – не гравитация, тянущая нас вниз, а пол или стул, действующие снизу и удерживающие нас от падения. Когда я сижу за письменным столом, я двигаюсь неестественно.

Эйнштейн был гением не из-за математической сложности своей ОТО (с этой стороной его теории справится большинство нынешних математиков и физиков): ему удалось изменить наш взгляд на один из простейших аспектов бытия. Прежде, до Эйнштейна, мы думали, что ежедневно и круглосуточно испытываем действие гравитации. Эйнштейн указал, что это не так: мы ощущаем пол. Эйнштейн эту очень физическую идею с помощью своего друга, математика Марселя Гроссмана, превратил в гипотезу о геометрии мира. Гипотеза основывалась на одном из исходных геометрических понятий – прямой.

Прямая определяется в школьном курсе геометрии как путь, соединяющий две точки по кратчайшему расстоянию. Это определение применимо для маршрута самолета, но может быть распространено и на криволинейные поверхности. Представьте сферу, например, поверхность Земли. Можно подумать, что на поверхности сферы нет прямых линий, потому что поверхность искривлена, но это не так, когда мы подразумеваем под прямой путь, который ведет из одной точки в другую по кратчайшему расстоянию. Мы называем кривые, удовлетворяющие этому определению, геодезическими. На плоскости геодезическими являются прямые. Но когда мы имеем дело со сферой, геодезическими являются сегменты больших окружностей. Именно они являются маршрутами самолетов, совершающих полет между двумя городами по кратчайшему пути[42].

Если траектория тел, падающих в гравитационном поле, является естественной, необходимо обобщить их на прямые линии, вдоль которых, согласно Ньютону, тела двигаются, если на них не действуют внешние силы. Но теперь у нас есть выбор: как свободные частицы движутся вдоль прямых в пространстве, так они движутся по прямой в пространстве-времени Минковского. Хотим ли мы представить гравитацию путем искривления пространства или искривления пространства-времени?

Исходя из блочной модели, ответ очевиден: изгибаться должно пространство-время. Из-за относительности одновременности различные наблюдатели расходятся во мнении о том, какие события происходят одновременно. Не существует простого, объективного, независимого от наблюдателя способа описать, как искривлено пространство.

Когда Эйнштейн выбрал для реализации своего принципа эквивалентности искривленное пространство-время, идея состояла в том, что кривизна будет передавать воздействие силы притяжения так, что объекты, падающие в гравитационном поле, будут двигаться вдоль геодезических линий. Свободно падающие тела упадут на Землю не потому, что на них действует сила, а потому, что пространство-время искривлено таким образом, что геодезические направлены к центру Земли. Планеты вращаются вокруг Солнца не потому, что Солнце их притягивает, а потому, что оно своей огромной массой искривило геометрию пространства-времени, и геодезические замкнулись в орбиты.

Эйнштейн объяснил гравитацию как свойство геометрии пространства-времени. Геометрия действует на материю, направляя ее вдоль геодезических. Но прекраснее всего в теории относительности вот что: геометрия и материя взаимосвязаны. Эйнштейн утверждал, что масса является причиной искривления и что геодезические устремляются в направлении массивных тел. Он предложил уравнения, описывающие искривление пространства-времени, чтобы сымитировать эффект всемирного тяготения.

Многочисленные следствия из этих уравнений с высокой точностью подтвердились наблюдениями. Уравнения Эйнштейна, в частности, описывают расширение Вселенной. Они предсказывают небольшое отличие формы орбит планет, обращающихся вокруг Солнца, и Луны, обращающейся вокруг Земли, от формы, которую предсказывает ньютонова физика (эти эффекты наблюдались). Они предсказывают, что пространство-время вокруг чрезвычайно компактных тяжелых объектов – черных дыр – столь сильно искривлено, что свет не может вырваться из их плена. Такие чрезвычайно массивные черные дыры с массой, равной массе миллионов звезд, имеются в центре большинства галактик.

Но, пожалуй, самое замечательное следствие из уравнений ОТО таково: геометрия пространства-времени искажается при прохождении через него волн. Это похоже на искажения на поверхности воды. Гравитационные волны вызваны быстрым изменением движения очень массивных тел, например, двух нейтронных звезд, вращающихся одна вокруг другой, и переносят изображение этих событий на большое расстояние. В настоящее время ученые прилагают огромные усилия для обнаружения таких волн. Это позволит оценить внутреннюю динамику коллапсирующих сверхновых, получить информацию о первых мгновениях после Большого взрыва и, возможно, даже прежде него.

Эффект гравитационных волн зарегистрирован лишь косвенно. Когда две нейтронные звезды быстро вращаются одна вокруг другой, гравитационные волны забирают часть энергии и заставляют звезды двигаться по спирали, приближаясь друг к другу. Такие спиральные траектории наблюдаются и с высокой точностью согласуются с предсказаниями ОТО.

После ОТО начались преобразования концепции пространства и времени.

В ньютоновой физике геометрия пространства определена раз и навсегда. Предполагается, что пространство трехмерно и евклидово. Неприятным моментом в ньютоновом представлении является очевидная асимметрия между пространством и материей. Пространство задает правила, согласно которым движется материя, но само не меняется. В такой картине мира отсутствует обратная связь. Ни движение материи, ни само ее существование не влияют на пространство. Пространство, кажется, будет точно таким же даже и в отсутствие материи.

Эта ситуация исправлена в ОТО, где пространство становится динамическим. Материя влияет на изменения в геометрии точно так же, как геометрия влияет на движение материи. Геометрия становится аспектом физики, как и электромагнитное поле. Уравнения Эйнштейна определяют динамику пространства-времени, как и другие гипотезы: они рассматривают свойства физических явлений и их отношения друг с другом.

Если бы геометрия пространства-времени была фиксированной, мы сказали бы, что пространство и время абсолютны: лишь детали отличаются от ньютоновой концепции пространства вне времени. Гипотеза о том, что геометрия пространства динамична и зависит от распределения материи, подтверждает мысль Лейбница об относительности пространства и времени.

Эйнштейн в своей формулировке реляционной теории пространства и времени следовал Эрнсту Маху. Принцип Маха гласит: есть лишь относительное движение, и если мы вертимся и у нас кружится голова, то это оттого, что мы вращаемся относительно далеких галактик. Отсюда следует, что мы испытывали бы головокружение, если бы стояли на месте, а вся Вселенная вращалась вокруг нас.

Несмотря на свою радикальность, ОТО вписывается в рамки ньютоновой парадигмы. Существует множество возможных конфигураций геометрии и материи. При заданных начальных условиях уравнения Эйнштейна определяют всю дальнейшую геометрию пространства-времени и всего, что в нем находится, включая вещество и излучения.

Вся история мира в ОТО остается математическим объектом. Пространство-время в ОТО – гораздо более сложный математический объект, чем в трехмерном евклидовом пространстве теории Ньютона. Но, как и в блочной картине, оно вне времени, в нем нет различия между будущим и прошлым, и наше понимание настоящего не играет никакой роли.

ОТО нанесла еще один удар по времени как фундаментальному физическому понятию. Мы считаем, что время является реальным и фундаментальным понятием и, значит, не может иметь начала. Если время имеет начало, то его происхождение должно быть объяснено через то, что не является временем. А если так, оно непринципиально и должно вытекать из чего-то более фундаментального. Но в любой правдоподобной модели Вселенной, описанной с помощью уравнений ОТО, у времени всегда есть начало.

В 1916 году, в год публикации ОТО, Эйнштейн применил ее для описания Вселенной. Он предполагал, что Вселенная конечна в объеме, но, подобно поверхности сферы, не имеет границ. Это стало важным шагом к пониманию мира: впервые Вселенная рассматривалась как замкнутая и конечная система. Несмотря на то, что Вселенная велика, нет способа выйти за ее пределы. Выражение “за пределами Вселенной” бессмысленно.

Эйнштейн должен был предполагать, что в замкнутой Вселенной любые часы находятся внутри системы. С позиций его теории неважно, какие часы использованы для измерения времени и какие устройства – для измерения пространства. Новая теория не привязана к измерениям, проведенным с помощью специальных часов вне системы[43]. Избавляя от необходимости иметь часы за пределами системы, ОТО делает шаг в направлении относительности в физической теории. Но она по-прежнему основана на ньютоновой парадигме вечных законов, действующих во вневременном пространстве.

Сначала Эйнштейн стремился создать модель Вселенной, которая была не только конечна в пространстве, но вечна и неизменна во времени. Проблема заключалась в том, что силы гравитации всегда действуют на тела, стремясь собрать их вместе. Это означает, что гравитация действует на всю Вселенную, вызывая ее сжатие. Если Вселенная расширяется, гравитация будет замедлять расширение. Если Вселенная не расширяется и не сжимается, сила притяжения приведет к сжатию. Эйнштейн, таким образом, мог предсказать, что Вселенная должна изменяться во времени: либо расширяться, либо сжиматься. Вместо этого он изменил свою теорию, пытаясь удержать Вселенную в статическом равновесии, и, таким образом, сделал другое неожиданное открытие, которое лишь недавно получило экспериментальное подтверждение. Эйнштейн изменил уравнения, добавив в них член, работающий против сил гравитации и заставляющий Вселенную расширяться. В результате появилась новая константа, представляющая собой энергетическую плотность пустого пространства. Эйнштейн назвал ее космологической постоянной. Сегодня есть достаточно доказательств того, что Вселенная расширяется, и расширение Вселенной происходит с ускорением. Более общим названием причины ускоренного расширения является термин темная энергия, но если ее плотность постоянна во времени и пространстве, она может быть описана космологической постоянной Эйнштейна. До сих пор все наблюдения находятся в согласии с этой гипотезой, но некоторые космологические сценарии требуют, чтобы величина темной энергии менялась.

Не думаю, что Эйнштейн предполагал, будто величина этой константы когда-либо будет измерена, но ее все же удалось измерить. Она имеет невероятно крошечную величину и при этом вызывает колоссальные последствия. Эффект суммируется по всей Вселенной. Таким образом, во Вселенной две противодействующие силы: гравитация, вызывающая сжатие, и космологическая постоянная, ускоряющая расширение.

Эйнштейн предложил статическую модель Вселенной, в которой эти силы точно сбалансированы. Но у такой модели проблема: баланс нестабилен. При малейшем возмущении Вселенной одна из тенденций возьмет верх, так что Вселенная должна либо вечно расширяться, либо сжиматься. Вселенная наполнена движущимися звездами, черными дырами и гравитационными волнами. Этого достаточно, чтобы навсегда нарушить баланс сил.

Итак, Вселенная должна иметь историю. Она может расширяться и сжиматься, но не может оставаться стабильной. В 20-х годах XX века несколько астрономов и физиков нашли решение уравнения ОТО, описывающее расширение Вселенной. Им повезло, потому что к 1927 году астроном Эдвин П. Хаббл обнаружил доказательства того, что Вселенная расширяется и, следовательно, должна иметь начало. И действительно, каждое из этих новых нестабильных решений подразумевает существование первого момента времени. Эта модель Вселенной связана с именами Александра Фридмана, Жоржа Леметра, Г. П. Робертсона, Артура Уокера и названа в их честь. Это очень простая модель, предполагающая, что Вселенная однородна в пространстве: в любой ее точке плотность материи и плотность излучения, соответственно, принимают одни и те же значения. В момент рождения Вселенной Фридмана – Леметра – Робертсона – Уокера плотности вещества и излучения и сила гравитационного поля принимают бесконечные значения и представляют собой начальную сингулярность. В этот момент ОТО перестает работать, потому что уравнения перестают описывать эволюцию Вселенной.

Большинство физиков считает, что уравнения Эйнштейна перестают быть применимы, потому что изучаемые модели слишком просты. Они утверждают: если учесть, что во Вселенной могут существовать локальные особенности, такие как звезды, галактики и гравитационные волны, то сингулярность была бы устранена и вы могли бы продолжить экстраполировать время назад за эту точку. Эту гипотезу было трудно подтвердить или опровергнуть, потому что до изобретения суперкомпьютеров было невозможно в полной мере изучить общие решения уравнений теории Эйнштейна. В конце концов эта гипотеза оказалась неверна. В 60-х годах Стивен Хокинг и Роджер Пенроуз доказали теорему о том, что существуют особенности во всех решениях уравнений ОТО, которые могут быть применимы к описанию нашей Вселенной.

Если ОТО верна, нельзя не прийти к заключению, что время не может быть фундаментальным. В противном случае придется отвечать на ряд трудных вопросов, например, что было до того, как начался отсчет времени, из чего родилась Вселенная? А если законы вечны, то какими они были прежде, чем возникла Вселенная, которая управляется ими? Очевидно, что прежде возникновения Вселенной не было никакого времени, а это означает, что законы природы более фундаментальны, чем время.

В одних из этих решений ход времени, однажды начавшись, будет продолжаться вечно, пока Вселенная расширяется. В других решениях Вселенная достигает максимального расширения и затем сжимается в точку (Большое сжатие), где многие наблюдаемые величины снова становятся бесконечными. Такие решения описывают Вселенные, в которых время имеет конец. Запуск и остановка времени не являются проблемой в блочной модели, в которой история Вселенной – единое целое вне времени.

В этой картине мира реальность не пострадает, если время начинается или заканчивается. Тот факт, что решения уравнений ОТО предполагают момент начала, укрепляет позиции блочной модели: он ослабляет доводы в пользу времени как понятия более фундаментального, чем законы природы.

Итак, мы совершили экскурс в историю устранения времени из физической картины мира. Как Галилей и Декарт, мы начали с фиксации движения и времени с помощью метода построения графиков, в которых время представлено в качестве координатной оси измерения пространства. В теории относительности эти графики стали основой построения пространства-времени, вневременной картины истории Вселенной, в которой настоящее не соответствует ничему реальному. Вследствие относительности одновременности мы не можем отделить время от пространства. Мы можем лишь описать Вселенную в виде блочной модели. С СТО и ОТО, предсказания которых подтверждены экспериментально, физики получили основания принять картину реальности, в которой времени нет.

Глава 7

Квантовая космология и конец времени

После первого семестра в колледже я приехал на рождественские каникулы в Нью-Йорк и остановился у двоюродной сестры в Гринвич-виллидже. Утром я отправился на метро на свою первую конференцию по физике, громко называвшуюся “VI Техасский симпозиум по релятивистской астрофизике”. Конференция проходила в одном из шикарных отелей Манхэттена. Меня туда, конечно, не звали (и не припоминаю, чтобы я регистрировался): просто мой профессор физики Герб Бернштейн посоветовал туда заглянуть. Разумеется, я никого не знал, но мне повезло. Я познакомился с Кипом Торном из Калифорнийского технологического института (он порекомендовал мне для ознакомления с общей теорией относительности учебник, который сам недавно написал вместе с Чарльзом Мизнером и Джоном А. Уилером)[44], а также с Лейном Хьюстоном, молодым американцем-математиком, учившимся в Оксфорде. Хьюстон долго пытался объяснить мне новейшую теорию твисторов, а после представил меня ее автору – Роджеру Пенроузу.

На одной из сессий я пристроился в проходе. Мимо проехал человек в инвалидной коляске. Стивен Хокинг был уже знаменит своими работами по ОТО, а еще год спустя он сделал открытие, что черные дыры – горячие. С Хокингом остановился поболтать высокий бородатый мужчина с хорошими манерами. Затем его (а это был Брайс С. Девитт) вызвали делать доклад. Не помню, о чем говорил Девитт, но я уже слышал о нем и его уравнениях, описывающих квантовые Вселенные. У меня не хватило смелости подойти. И уж конечно я не думал, что 7 лет спустя, когда я закончу кандидатскую, эти два гиганта современной физики пригласят меня работать с ними.

Девитт, Уилер, Мизнер и Хокинг стали первооткрывателями квантовой космологии, связавшей ОТО с квантовой физикой. Квантовая космология – это последняя вершина, на которую нам предстоит подняться. В описанной Девиттом, Уилером, Мизнером и Хокингом Вселенной нет времени. Квантовый космос не развивается и не меняется, не расширяется и не сжимается: он просто-напросто есть.

Следует подчеркнуть, что квантовая космология в высшей степени спекулятивная область теоретической физики, и пока она не располагает надежными экспериментальными подтверждениями. Ей не хватает весомости теории относительности, многократно подтвержденной экспериментами и продолжающей удивлять точностью своих предсказаний.

Начнем с квантовой механики. Для начала придется объяснить, как в квантовой механике моделируются подсистемы Вселенной. Чтобы получить квантовую теорию гравитации, мы должны объединить квантовую механику с ОТО. Есть разные подходы, и, хотя известно, как сформулировать такую теорию, эксперименты пока не позволяют определить, какой подход удачнее. Поэтому сразу перейдем к включению всей Вселенной в квантовую теорию. Результатом этого явится вневременная картина природы.

Квантовая механика успешно описывает микроскопические системы вроде атомов и молекул. Но неясно вот что. После неоднократных попыток уяснить смысл квантовой механики сложилось несколько ее интерпретаций, сильно друг от друга отличающихся (в том числе и по отношению к вопросу о времени) и по-разному отвечающих на вопрос, применима ли квантовая теория ко всей Вселенной. Это в высшей степени важные проблемы[45].

Мне кажется, объяснение квантовой механики следует начать с вопроса, для чего нужна наука. Многие думают, что ее цель – описывать природу, предложить картину мира, которая была бы истинной даже в случае, если бы нас не было. И если вы тоже так считаете, квантовая механика вас разочарует: она не дает картину того, что происходит в каждом эксперименте.

Нильс Бор, один из основоположников квантовой теории, утверждал, что такие люди неверно представляют себе, что такое наука. Проблема не в теории, а в том, чего мы ожидаем от нее. Бор объявил, что теория должна не описывать природу, а давать правила работы с ее объектами и язык, на котором мы можем изложить результаты.

Язык квантовой теории предполагает активное вмешательство в природу. Он описывает, как экспериментатор ставит опыты с микроскопическими системами. Экспериментатор может изолировать систему и подготовить ее; преобразовать систему, подвергая ее внешним воздействиям; измерить систему путем внедрения в нее устройств, позволяющих считывать ответы на вопросы, которые он, возможно, хотел бы задать системе. Математический язык квантовой механики описывает каждый шаг подготовки, преобразования и измерения. Из-за особого внимания к манипуляциям с системой этот подход к квантовой физике можно назвать операциональным.

Центральным математическим понятием в квантовом описании системы является квантовое состояние. Оно содержит всю информацию, которую наблюдатель может узнать о квантовой системе в результате ее подготовки и измерения. Эта информация ограничена и в большинстве случаев не позволяет достаточно точно сказать, где находятся образующие систему частицы. Квантовое состояние – это вероятное положение частиц, если бы мы взялись измерить их положение.

Рассмотрим атом, состоящий из ядра и нескольких электронов. Наиболее точное описание атома включало бы информацию о положении каждого электрона. Совокупность расположения электронов представляет собой конфигурацию. В квантовой механике лучшим является описание, которое вместо этого дает вероятность для каждой возможной конфигурации, в каковой могут быть обнаружены электроны[46].

Как проверить предсказания теории, если они имеют вероятностный характер? Например, мы подбрасываем монету и желаем проверить следующее предсказание: орел выпадет в 50 % случаев. Для этого недостаточно бросить монету один раз: результатом – в соответствии с предсказанием – окажется либо орел, либо решка. Необходимо многократно подбросить монету и записать, в скольких случаях выпал орел. По мере того, как вы бросаете монету, доля выпадения орла будет стремиться к 50 %. То же и с вероятностными прогнозами квантовой механики: чтобы их подтвердить, необходимо многократно повторить эксперимент[47]. Однократное измерение квантовой системы сродни подбрасыванию монеты: любой результат согласуется с предсказанием теории.

Этот метод имеет смысл лишь применительно к маленькой замкнутой системе, например к атому водорода. Чтобы проверить предсказания, нам необходимо иметь большое количество идентичных копий системы. Если у нас лишь одна система, мы не можем проверить предсказания: они ведь вероятностные. Кроме того, мы должны уметь работать с коллекцией копий: сначала приводить их в интересующее нас квантовое состояние, а после осуществлять измерение. Но если у нас много копий системы, то каждая из них представляет собой малую часть всего сущего. При этом инструменты и оси координат, которыми мы пользуемся для измерения конфигураций системы, не являются ее частью.

Поэтому применение квантовой механики, очевидно, ограничивается замкнутыми системами. Это расширение ньютоновой парадигмы – физики “в ящике”. Чтобы убедиться в том, что метод квантовой механики основан на изучении замкнутых систем, рассмотрим, как квантовая механика описывает изменение времени.

Законы ньютоновой физики – детерминистические, и способность теории к прогнозам о том, как система изменяется со временем, ограничена. Аналогично, закон квантовой механики определяет, как со временем меняется квантовое состояние системы. Этот закон также детерминистический, поскольку при заданном начальном квантовом состоянии вы можете точно предсказать квантовое состояние системы в будущем.

Закон эволюции квантовых состояний выражается уравнением Шредингера. Он работает, как и законы Ньютона, однако описывает, как изменяется со временем состояние частиц, а не их положение. Если определить начальное квантовое состояние, уравнение Шредингера позволит узнать, какое квантовое состояние наступит в любой момент в будущем.

Как и в ньютоновой физике, наблюдатель, часы и инструменты измерения должны пребывать вне системы. При этом, хотя эволюция квантовых состояний детерминирована, конфигурация атомов лишь вероятностна: сама связь квантового состояния и конфигурации системы носит вероятностный характер.

Требование квантовой механики об исключении из системы часов приобретает особенное значение, если мы пытаемся применить квантовую теорию к Вселенной в целом. По определению, ничто (и часы тоже) не может находиться вне Вселенной. А как квантовое состояние Вселенной изменяется по отношению к часам за пределами Вселенной? Поскольку таких часов нет, единственный ответ гласит: оно не меняется. Квантовое состояние Вселенной, если смотреть с точки зрения мифического наблюдателя за пределами Вселенной, застыло.

Это, правда, скорее риторика, которая, как может показаться, может привести к ошибке. Однако математика дает нам тот же результат. Когда мы применяем уравнение Шредингера, квантовое состояние Вселенной во времени не изменяется.

В квантовой теории изменение во времени связано с энергией. Это следствие основной черты квантовой физики – корпускулярно-волнового дуализма. Ньютон полагал, что свет состоит из частиц. Позднее, когда были изучены явления дифракции и интерференции, пришлось предположить, что свет – это волна. В 1905 году Эйнштейн представил, что свет является и волной, и частицей. Почти 20 лет спустя Луи де Бройль предположил, что этот дуализм волн и частиц универсален: все, что движется, имеет некоторые свойства волны и некоторые – частицы.

Конечно, трудно представить себе нечто, являющееся одновременно волной и частицей. Но, как я отметил, квантовая механика описывает явления, которые нельзя визуализировать. Мы можем манипулировать частицами и рассуждать, как они реагируют на процесс измерения, но не можем наглядно представить, что происходит в мире в отсутствие наших манипуляций.

Одно из свойств света как волны – частота (сколько раз в секунду он колеблется). Свойство света как частицы – его энергия. Каждая частица несет в себе определенное количество энергии. В квантовой механике энергия частицы всегда пропорциональна частоте волны[48]. Вооружившись этим пониманием корпускулярно-волнового дуализма, вернемся к квантовому состоянию Вселенной. Поскольку вне Вселенной часов нет, ее квантовое состояние не может изменяться во времени, и частота его колебаний должна быть равна нулю. Если оно застыло, то не может колебаться. Но поскольку частота пропорциональна энергии, энергия Вселенной также должна быть равна нулю.

В любой системе, которая удерживается под воздействием гравитации, существует отрицательная энергия. Рассмотрим Солнечную систему. Если бы вы захотели столкнуть Венеру с орбиты, изгнать ее из Солнечной системы, это потребовало бы энергии. Поскольку требуется затратить энергию, чтобы перенести Венеру в состояние, в котором она не имеет энергии связи с Солнцем, Венера, находясь на своей орбите, обладает отрицательной энергией. Эта отрицательная энергия называется гравитационной потенциальной энергией.

Вселенная может иметь нулевую полную энергию, если суммарная гравитационная потенциальная энергия, необходимая для удержания всех частей Вселенной вместе, компенсирует сумму всех положительных энергий, связанных с массами и движениями всех тел во Вселенной.

Вселенная с нулевой энергией и частотой находится в застывшем состоянии. Квантовая Вселенная не расширяется и не сжимается. В ней не распространяются гравитационные волны. Не образуются галактики, планеты не вращаются вокруг звезд. Квантовая Вселенная просто есть[49].

Эти следствия применения квантовой механики к Вселенной были открыты в середине 60-х годов XX века родоначальниками квантовой гравитации Брайсом С. Девиттом, Джоном А. Уилером и Питером Бергманом. Модификация уравнения Шредингера для застывшего квантового состояния, о котором мы упоминали, была названа уравнением Уилера – Девитта. Довольно скоро отсутствие в уравнении времени было замечено, и ученые стали спорить о последствиях (и спорят до сих пор). Каждые несколько лет проходит конференция, посвященная проблеме времени в квантовой космологии. Поскольку человеческая изобретательность беспредельна, со временем был предложен широкий спектр решений проблемы.

Застывшее состояние Вселенной – не единственное неприятное следствие попыток применить квантовую теорию в космологии[50]. Существует лишь одна Вселенная, и вы не можете построить набор систем, находящихся в одинаковых квантовых состояниях, и сравнить их измерения с вероятностями, предсказанными квантовой механикой. Возможности для сравнения теории и эксперимента (или наблюдения) резко сужаются.

Вообще-то ситуация гораздо хуже. Подготовить Вселенную в исходном квантовом состоянии нельзя. Остается лишь оценивать последствия различного выбора исходного состояния. Но Вселенная родилась всего однажды, и у нас нет выбора. Мы не присутствовали при ее рождении и не выбирали начальное состояние. Но даже если бы мы присутствовали при ее рождении, мы не смогли бы манипулировать Вселенной, потому что мы и есть часть Вселенной.

Список неудач квантовой космологии внушителен. Мы не можем подготовить первоначальное состояние квантовой Вселенной и не можем воздействовать на него из-за пределов Вселенной, чтобы трансформировать его. Мы не имеем доступа к коллекции копий Вселенных, чтобы придать смысл вероятностным предсказаниям квантового формализма. К тому же вне Вселенной некуда было бы поместить измерительные инструменты. Поэтому не существует понятия измерения изменений в системе с помощью внешних часов. С прагматической точки зрения идея применения квантовой механики к Вселенной была сумасшествием. Она потерпела крах потому, что мы применили теорию в контексте, в котором ни одно из рабочих определений не имело смысла. Это расплата за распространение на всю Вселенную метода, хорошо приспособленного к небольшой ее части.

Если говорить начистоту, то проблема еще сложнее. Как мы видели, выбор временных координат в общей теории относительности (ОТО) произволен. Поэтому уместно спросить: “Если бы имелись часы за пределами Вселенной, то какому понятию времени, текущему во Вселенной, это соответствовало бы?” или “Если бы там были осциллирующие квантовые состояния, то какие часы во Вселенной были бы синхронизированы с этими колебаниями?” И вот ответ: “Все возможные понятия времени и все возможные часы”. Как следствие, существует не одно уравнение Уилера – Девитта, а бесконечное их число. Они утверждают, что частота, с которой колеблется квантовое состояние, равна нулю для всех возможных понятий времени и для любых часов во Вселенной. С точки зрения любого возможного наблюдателя в квантовой Вселенной ничего не происходит.

Два десятилетия никто не мог решить уравнения Уилера – Девитта. Так было до открытия петлевой квантовой гравитации, в контексте которой эти уравнения могут быть сформулированы достаточно точно – и решены. Революция началась в 1985 году с открытия Абэя (Абхаи) Аштекара, касавшегося новой формулировки ОТО[51]. Несколько месяцев спустя мне посчастливилось работать в Институте теоретической физики (ныне Институт теоретической физики им. Кавли) Калифорнийского университета в Санта-Барбаре с Тедом Джекобсоном (сейчас он работает в Мэрилендском университете), и вместе мы обнаружили первые точные решения уравнений Уилера – Девитта, точнее – бесконечное число таких решений[52]. Чтобы описать полное квантовое состояние гравитационного поля, необходимо было решить и другие уравнения. Это было сделано два года спустя вместе с Карло Ровелли, работавшим тогда в Национальном институте ядерной физики Римского университета[53]. Эта область физики быстро прогрессировала, и гораздо больший набор решений нашел Томас Тиман в начале 90-х годов в Гарварде[54]. С тех пор разработаны еще более мощные методы поиска решений, основанные на модели спиновой пены[55]. Эти результаты требовали быстрейшего решения проблемы времени во Вселенной, чтобы придать физический смысл математическим решениям в теории квантовой гравитации.

Вот суть проблемы: можно ли сказать, что время возникло из Вселенной, существующей вне времени, так, чтобы теория не вступала в вопиющее противоречие с обыденным понятием времени? Некоторые из моих коллег полагают, что время является частью приблизительного описания Вселенной, которое полезно на больших масштабах, но не на микроскопическом уровне. Это аналогично понятию температуры: макроскопические тела (но не отдельные частицы) имеют температуру, потому что температура тела – это средняя энергия его атомов. Некоторые физики предположили, что время, как и температура, имеет смысл лишь в макромире, но не на планковских масштабах. В рамках других подходов время определялось через корреляции между различными подсистемами Вселенной.

Я долго думал обо всем этом. Как время может возникнуть из вневременного мира? Я по-прежнему не уверен, что какой-либо из этих подходов работает. В некоторых случаях причины, по которым они не годятся, имеют чисто технический характер и не могут быть описаны здесь. О своих сомнениях в отношении квантовой космологии я расскажу в части II.

Мои друзья-оппоненты утверждают, что предположения, приводящие к уравнениям Уилера – Девитта, содержат принципы квантовой механики и ОТО вместе. Учитывая, что эти принципы проверены экспериментально, целесообразно рассмотреть их следствия серьезно, понять и развить их.

Когда я был аспирантом у Брайса С. Девитта, он убеждал не навязывать свои метафизические предрассудки теории, а позволить ей диктовать собственную интерпретацию. Я до сих пор слышу его голос: “Пусть говорит теория”.

Наиболее обдуманный подход к квантовой космологии, описываемой уравнениями Уилера – Девитта, предложен британским физиком, философом и историком науки Джулианом Барбуром. Мысль Барбура радикальна, но ее нетрудно объяснить. В книге “Конец времени” (1999) он утверждает: все, что существует – это огромная коллекция застывших мгновений. Каждый момент – конфигурация Вселенной. Каждая конфигурация существует (и это следует из опыта любого существа, находящегося в такой конфигурации) как момент времени. Барбур называет это “массивом” (heap) мгновений. Они не следуют одно за другим. В массиве нет порядка. Мгновения просто есть. В метафизической картине Барбура вообще ничего не существует, кроме этих чистых моментов времени.

Вы можете возразить: “Я ощущаю ход времени”. Это не так, утверждает Барбур. Мы переживаем мгновения, моментальные снимки жизни. Щелкните пальцами – один снимок, мгновение из массива. Щелкните снова – еще снимок. Складывается впечатление, что второй щелчок последовал за первым, однако это иллюзия. Вы думаете так потому, что в момент второго щелчка в памяти уже запечатлено первое мгновение. Но память – это не ощущение хода времени (которого, как говорит Барбур, нет). Просто память о первом мгновении есть часть опыта проживания второго. Все, что мы переживаем (и все это, по Барбуру, реально), – лишь мгновения из массива.

Однако моменты в массиве могут быть представлены более одного раза и можно говорить об относительной частоте моментов (например, один момент может случиться в миллиард раз чаще, чем другой). К этим относительным частотам и относятся вероятности квантового состояния. Две конфигурации имеют относительную вероятность появиться в массиве, который соответствует относительной вероятности в квантовом состоянии. И все. Есть одна квантовая Вселенная, описываемая одним квантовым состоянием. Вселенная из очень большого набора мгновений. Некоторые встречаются чаще остальных. Некоторые значительно чаще других.

Некоторые типичные конфигурации в массиве тривиальны. Они описывают момент времени во Вселенной, заполненной газом из фотонов или газом, состоящим из атомов водорода. Барбур утверждает, что в реальном квантовом состоянии Вселенной большинство этих тривиальных конфигураций занимает небольшие объемы, и предсказывает корреляции между малым объемом, занимаемым Вселенной, и тривиальностью момента. Если предположить наличие времени, мы могли бы сказать, что когда Вселенная была тривиальной, она была небольшой. По Барбуру, свойства моментов в массиве иметь небольшой размер и тривиальность высоко коррелированны.

Другие конфигурации в массиве более интересны, сложны, населены живыми существами вроде нас, живущих на планетах, вращающихся вокруг звезд в галактиках, которые самоорганизуются в “блины” и скопления. Барбур утверждает, что правильным квантовым состоянием является такое, при котором сложность и существование жизни коррелирует с большим объемом. Таким образом, многие (возможно, даже все) конфигурации в массиве с большим объемом населены живыми существами.

Кроме того, Барбур утверждает, что в правильном квантовом состоянии наиболее распространенные конфигурации обладают структурой, которая неявно соотносится с другими моментами. Эти “капсулы времени” (воспоминания, книги, памятники материальной культуры, окаменелости, ДНК и так далее) рассказывают историю, открытую для интерпретации с точки зрения последовательности моментов, в которые что-либо происходило, наслаивалось и в итоге привело к сложности. “Капсулы” создают иллюзию хода времени. В теории Барбура причинность тоже иллюзорна. Ничто не может быть причиной чего-либо, потому что в действительности ничего во Вселенной не происходит. Просто есть огромный массив мгновений, и существа вроде нас переживают некоторые из них. В реальности ощущение каждого момента существует само по себе и не имеет отношения к остальным. Мгновения идут без последовательности, а значит, ход времени отсутствует. Но уравнения Уилера – Девитта допускают существование приблизительного порядка и причинности, так что между наиболее общими моментами существуют корреляции. На первый взгляд они кажутся последовательностью моментов, связанных причинными процессами. В грубом приближении история последовательных моментов может быть полезна для объяснения структуры самих моментов. Но это не реальная история, и можно убедиться, что порядка нет, как нет и причинности.

В теории Барбура есть элегантность. Она легко отвечает на вопрос, чему соответствуют вероятности в квантовой космологии. Есть одна-единственная Вселенная, но она содержит много мгновений. Квантовые вероятности соответствуют реальным относительным частотам вероятностей появления моментов. В той степени, в которой теория Барбура остается верной в деталях, она объясняет, как возникает впечатление, будто есть история, в течение которой причинные процессы выстраиваются и способствуют построению сложных структур. Это предположение также объясняет очевидную направленность времени. Приоритетным в конфигурационном пространстве является то направление, которое осуществляет переход от конфигураций малого объема к увеличению объемов. Когда возникает время, увеличение объемов успешно коррелирует с увеличением времени. Таким образом, эта теория объясняет, почему во Вселенной существует стрела времени.

Версия бесконечной квантовой космологии Барбура предлагает нам утешение. Но мне жаль, что я не смог в нее поверить. Вы живете в массиве мгновений. Моменты вечны. Прошлое, настоящее и будущее с нами всегда. Ваш жизненный опыт может относиться к конечному множеству моментов, но они не проходят. Так что когда приходит ваш последний день, ничто не заканчивается. Это просто момент, в котором существуют все воспоминания, которые вы когда-либо могли иметь. Ничего не исчезает, потому что ничего и не начиналось. Страх смерти основан на иллюзии, которая, в свою очередь, вытекает из заблуждения. Время не уходит, потому что нет течения времени. Просто существуют, и всегда будут существовать, моменты жизни.

Не буду вдаваться в рассуждения о том, что подумал бы Эйнштейн о квантовой космологии Барбура. Но есть свидетельства того, что он утешался осознанием исчезновения времени в блочной картине. Еще в подростковом возрасте Эйнштейн стремился сбежать из грязного мира в созерцание вечных законов природы. В письме к вдове своего друга Микеле Бессо Эйнштейн писал: “Он немного опередил меня, покидая этот странный мир. Это не имеет значения. Для нас, убежденных физиков, различие между прошлым, настоящим и будущим имеет только ценность иллюзии, как бы цепко за нее ни держались”.

Интерлюдия

Страницы: «« 123456 »»

Читать бесплатно другие книги:

История противостояния медведя-гомофоба и организации людей нетрадиционной ориентации, поселившихся ...
В монографии определена система требований к осуществлению комплексной жилой застройки в городах.Рас...
Городское фэнтези-антиутопия о простом парне, который попал в перипетии судьбы и понял, что это вещь...
Эта книга продолжает серию таких сборников рассказов как «Рыбьи яйца», «Осина дерево смерти», «Аэроп...
Уважаемый читатель!Анализ запросов пользователей сети Интернет к поисковым системам Яндекс, Google и...
Книга предназначена для школьников младших и средних классов, но будет интересна и для людей более с...