Почему наука не отрицает существование Бога? О науке, хаосе и пределах человеческого знания Ацель Амир
Глава 3
Бунт науки
Шли века, и религия постепенно приняла на себя роль моральной и духовной наставницы человечества, все больше и больше опираясь при этом на веру в сверхъестественное. Это на много столетий затормозило развитие наук о природе. Греческая цивилизация отличалась передовым взглядом на природный мир – достаточно вспомнить проницательную идею Демокрита об атомах или новую гипотезу о вращении Земли, высказанную в IV веке до новой эры философом Филолаем[6]. Когда великая греко-римская культура пала, западный мир погрузился в темные времена. Объяснение истины было найдено в Писании, начались гонения на свободомыслие. Это продолжалось вплоть до позднего Средневековья, когда, помимо отдельных грубых и примитивных идей, касающихся медицины (большинство из которых были неверными, как, например, уверенность в том, что кровопусканием можно лечить большинство болезней), не было практически никаких попыток поиска научной истины. В культуре, где господствовала католическая церковь и правили покровительствующие ей короли, отклонения от существующей веры попросту не допускались. Проще говоря, установленный порядок вещей нельзя было даже обсуждать.
Такая логика привела к геоцентризму. Вера в то, что Земля является центром Вселенной, стала ключевым, не подлежащим опровержению принципом. Эта теория нашла «научное» объяснение движения всех видимых небесных тел нашей солнечной системы не в Библии, а в работах Клавдия Птолемея (90–168), астронома и математика, жившего в Александрии в эпоху долгих сумерек классической греческой цивилизации. В своем трактате «Великое построение» («Almagest»)[7] Птолемей предложил модель Солнечной системы, в которой Земля занимает центральное положение, и при этом с математической точностью объяснил особенности движения планет, Луны и Солнца вокруг Земли (рис. 5). В Средние века система мироздания Птолемея стала такой же частью церковной догмы, как Евангелие.
Рис. 5. Ошибочная модель Солнечной системы, созданная Птолемеем. Для объяснения формы движения планет Птолемею пришлось ввести понятие об эпициклах
Как работала система Птолемея? Планеты по небу периодически перемещаются ретроградно, то есть время от времени каждая видимая на небе планета начинает двигаться вспять. Как мы теперь знаем, это движение наблюдается, потому что наша планета, как и все остальные, следует по орбите вокруг Солнца и периодически то приближается к другим планетам, то удаляется от них. Для объяснения этого феномена Птолемей выдвинул гипотезу эпициклов (вращение около точки орбиты, дополнительное к вращению вокруг Земли). Таким образом, Птолемею удалось логически объяснить наблюдаемое на ночном небе ретроградное движение планет.
Однако самое интересное здесь то, что система Птолемея работает! Она превосходно «объясняет» движение всех видимых небесных тел. К сожалению, система это абсолютно неверна. Система Птолемея – наглядное доказательство того, что для объяснения любого феномена можно придумать невероятно сложное и логически безупречное, но не имеющее никакого отношения к реальности толкование. Истинную модель Солнечной системы предложил в середине XVI века польский астроном, математик и юрист Николай Коперник (1473–1543) (рис. 6).
Рис. 6. Модель строения Солнечной системы, предложенная Коперником. Его система проще системы Птолемея и тем не менее верно описывает форму движения планет
В чем разница между этими двумя математическими объяснениями устройства Солнечной системы? Помимо того факта, что непосредственные наблюдения подтверждают центральное положение Солнца в Солнечной системе, где все остальные планеты, включая Землю, вращаются вокруг него, система Коперника проще и изящнее, так как требует меньше допущений и предпосылок. Согласно принципу «бритвы Оккама», самое простое объяснение феномена является, вероятно, единственно верным. Хорошая модель объясняет мир без использования лишних допущений (например, эпициклов) и не требует чрезмерно сложных рассуждений и дополнительных идей. Такую модель создал, например, Эйнштейн, который однажды сказал: «Научная теория должна быть максимально простой, но не проще того». Система должна включать все самое существенное, но в ней не должно быть ничего слишком сложного, если эти сложности не оправдываются отчетливой и понятной целью. Общая и частная теория относительности Эйнштейна – это гениальные модели. Они не просты, но каждый их элемент является существенной, значимой и незаменимой частью модели. Эти теории скупы: каждый символ, уравнение, элемент необходим и не может быть удален из системы объяснения мира.
Теория Коперника знаменовала конец модели Солнечной системы Птолемея, которая в течение полутора тысяч лет навязывала людям картину мироздания. Модель Коперника оказалась проще и при этом лучше, чем модель Птолемея, объясняла движение планет, Луны и Солнца по небосводу.
В 1543 году незадолго до смерти Коперник опубликовал свою великую книгу «Об обращении небесных сфер» («De Revolutionibus Orbium Coelestium»). Коперник учился сначала в Кракове, а потом в Болонье (в старейшем университете мира, основанном в 1088 году), а также в Падуе. В Падуе он проводил астрономические наблюдения звезд и планет и изучал труды греческих математиков и философов, уделяя особое внимание теории Птолемея. Постепенно Коперник утвердился в мнении, что система Птолемея не может быть верной. Более простой и лаконичной, учитывающей все астрономические наблюдения, оказалась модель, согласно которой Солнце находится в центре системы.
Убедившись в своей правоте, Коперник написал 40-страничный комментарий, посвященный гелиоцентрической модели Вселенной. После этого ученик Коперника, австрийский математик Георг Иоахим Ретик, убедил учителя опубликовать новую теорию в виде отдельной книги. Так появилось сочинение «Об обращении небесных сфер». Сам Коперник не дожил до выхода книги в свет, хотя есть легенда, согласно которой он перед смертью подержал в руках только что отпечатанный экземпляр, после чего мирно скончался в своей постели. Вероятно, ученый и не подозревал, что его произведение ознаменует собой рождение современной науки.
Коперник не собирался воевать с религией и ее адептами. Он просто понял, что Солнце является центром мироздания, и захотел, чтобы об этом узнали все. Близкие родственники Коперника были высокопоставленными прелатами католической церкви, а публикацию книги готовил протестантский богослов Андреас Осиандер, который написал к ней предисловие.
Книга «Об обращении небесных сфер» после выхода в свет не привлекла к себе особого внимания, оставшись практически незамеченной, она не вызвала острого конфликта между религией и наукой, тем более что автор ее был уже мертв. Революционная идея Коперника стала всеобщим достоянием только после того, как ее взял на вооружение другой величайший гений.
Думаю, Галилео Галилей (1564–1642), гений, совершивший массу открытий, касающихся физической картины мира, как ни один другой ученый в истории человечества, олицетворяет собой острый конфликт, возникший между религией и наукой. Галилей, как и Коперник, был далек от борьбы с религией. Более того, одна из его дочерей была монахиней, а сам Галилей охотно вращался в церковных кругах и даже симпатизировал папе, живо интересовавшемуся математикой.
Галилей обладал на редкость острым, проницательным и любознательным умом, всю жизнь побуждавшим его разгадывать законы природы, независимо от того, что думали об этом люди или что говорилось об этом в книгах и даже в Библии и что думало по этому поводу духовенство. Галилей экспериментировал с падающими и катящимися телами, бросая их, как утверждает легенда, с наклонной башни своей родной Пизы.
Своими экспериментами Галилей легко опроверг утверждение Аристотеля о том, что тела падают на землю со скоростями, пропорциональными их весу. На самом деле, в отсутствие воздуха перышко падает на землю с такой же быстротой, как и кусок свинца (сопротивление воздуха сильно замедляет падение перышка, что, кстати, используют птицы для полета).
В 1609 году, вскоре после того, как в Голландии был изобретен телескоп, Галилей приобрел один такой прибор, а затем внес в него некоторые усовершенствования. Поначалу Галилей хотел продавать телескопы в независимую Венецианскую республику, так как с помощью телескопа венецианцы могли с колокольни на площади Святого Марка издалека видеть приближавшиеся вражеские корабли. Однако покупателей Галилей не нашел и направил телескоп на ночное небо. Вскоре он сделал одно из самых важных своих открытий, благодаря которому заслужил славу отца астрономии. (Галилей, кроме того, известен как отец современной науки.)
7 января 1610 года, наблюдая Юпитер, Галилей открыл четыре гигантских спутника этой планеты, называемых ныне лунами Галилея (Ганимед, Каллисто, Европа и Ио). Эти небесные тела, несомненно, вращались не вокруг Земли. Галилей пришел к такому выводу, потратив несколько ночей на наблюдения. Спутники периодически появлялись по разные стороны от планеты. Это открытие противоречило основанным на модели Птолемея утверждениям католической церкви о том, что все небесные тела вращаются вокруг Земли.
Однако последний удар по всем сомнениям был нанесен восемь месяцев спустя, в сентябре 1610 года, когда Галилей, наблюдая планету Венеру, заметил, что она, подобно Луне, проходит все фазы. Согласно модели Птолемея, основанной на концепции эпициклов, мы можем наблюдать лишь некоторые из фаз Венеры: либо тонкий серп (если планета находится на внутренней стороне орбиты Солнца, вращающегося вокруг Земли), либо растущую или полную фазу (если планета находится снаружи от орбиты Солнца). Наблюдать все фазы Венеры одну за другой в этой ситуации невозможно. То, что наблюдать все фазы Венеры можно, убедило Галилея в том, что система Птолемея не может быть верной, и модель Коперника способна объяснить наблюдаемые явления. Галилей начал публиковать свои данные, чем вызвал немалое раздражение церкви. Не раз вызывал он недовольство и у римской инквизиции, особенно после того, как в 1632 году вышла в свет его книга «Диалог о двух главнейших системах мира»[8]. В этой книге Галилей высмеял церковь и ее приверженность к геоцентрической модели мира, вложив аргументы в ее защиту в уста Простеца – невежественного и наивного участника диалога. Галилею предложили бежать от гнева церкви в независимую Венецию, но он предпочел остаться в Тоскане, герцоги которой были близкими союзниками Рима и находились под его влиянием.
Но даже тосканские правители не смогли защитить Галилея от вызова ученого на суд страшной инквизиции в Рим. Суд инквизиции уже приговорил к смерти многих мыслителей за противоречившее церковным догмам мнение о строении мироздания. Даже папа Урбан VIII, бывший близким другом Галилея, не смог уберечь его от инквизиции. Позорный процесс начался в феврале 1633 года. Под угрозой пыток Галилей отрекся от своей гелиоцентрической «ереси», пробормотав, как утверждает легенда, свое знаменитое «И все-таки она вертится» (Eppur si muov). Инквизиция осудила Галилея на пожизненный домашний арест на его вилле в Арчетри близ Флоренции. Суд над Галилеем больше, нежели любое другое историческое событие, стал символом раскола между наукой и верой, конфликта, который (в разнообразных формах и в разной степени) продолжается и в наши дни.
Помимо этого, Галилей совершил и еще один научный подвиг: он выковал несокрушимый союз между математикой и наукой. Знаменитое изречение Галилея «книга природы написана языком математики» актуально до настоящего времени, и это сохранится в обозримом будущем.
Однако Галилей сделал одно важное открытие и в области чистой математики. Находясь в домашнем заключении в Арчетри, Галилей задумался о бесконечности и понял, что бесконечные величины обладают одним странным свойством. Галилей рассмотрел бесконечное множество всех положительных целых чисел (1, 2, 3, 4, 5…) и бесконечное множество всех квадратов целых чисел (1, 4, 9, 16, 25…). Оба множества являются бесконечными, однако каждому элементу первого множества можно поставить во взаимно однозначное соответствие один элемент второго множества. Итак, Галилей поставил в соответствие числу 1 – 1, числу 2 – 4, числу 3 – 9, числу 4 – 16, числу 5 – 25 и т. д. Поскольку в обоих множествах содержится бесконечное количество чисел и поскольку множество квадратов целых чисел является подмножеством целых чисел, так как каждый квадрат, в свою очередь, является целым числом, постольку взаимно однозначное соответствие целых чисел их квадратам говорит о том, что количество положительных целых чисел равно количеству их квадратов. Сейчас мы говорим, что оба эти бесконечные множества имеют одинаковый размер. К этому открытию Галилея мы вернемся позже.
После великих астрономических открытий Галилея серьезные астрономы уже не могли придерживаться геоцентрических взглядов, но ученые согласились на компромисс. Для того чтобы не раздражать церковь и не вступать с нею в конфликт, было решено, что все планеты, кроме Земли, вращаются вокруг Солнца, но само Солнце вместе с другими планетами вращается вокруг Земли. Этой гибридной модели придерживался, например, датский астроном Тихо Браге, наблюдавший множество планет и звезд – сначала на подаренном ему датским королем острове Вен, а потом в Праге, куда он переехал по приглашению императора Рудольфа II.
Масса фактических данных о положении на небе звезд и планет, собранных Тихо Браге, была использована его помощником, блестящим немецким математиком Иоганнесом Кеплером, который вывел из этих данных законы движения планет, полностью согласующиеся с чисто гелиоцентрической моделью. Законы Кеплера настолько точны, что используются и теперь, через 400 лет после их открытия, даже для определения орбит новых, находящихся вне Солнечной системы небесных тел, а также для управления космическими кораблями при их приближении к планетам Солнечной системы, переходе на орбиту вокруг них и посадке на их поверхность.
Подобно Копернику и Галилею, не желавшим порывать с религией и на всю жизнь оставшимся верующими людьми, Кеплер тоже занимался научной работой без намерения бросить вызов вере. Напротив, нападающей стороной в этом углубляющемся конфликте была именно католическая церковь с ее буквалистским подходом к Писанию и приверженностью к философии Аристотеля.
Работы Кеплера подготовили почву для изобретения в следующем веке Ньютоном и Лейбницем математического анализа. В том, что касается науки, Кеплер был одновременно астрономом и астрологом – наука и оккультные течения пребывали в XVI и XVII веках в странном симбиозе. Ту же смесь науки, духовности и оккультизма мы находим в трудах Рене Декарта, внесшего неоценимый вклад в математику, естественные науки и философию XVII века.
Декарт родился 31 марта 1596 года в богатой семье французских аристократов, в городе Лаэ (ныне в его честь переименованном в Декарт), во французской провинции Турень, но семья жила в районе Пуату. В детстве Декарт попеременно жил в обеих областях.
Между Туренью и Пуату было одно весьма значительное различие. Пуату был оплотом протестантов, а Турень – католическая провинция, как и бльшая часть Франции и в наши дни. Знакомство с обеими сторонами религиозного конфликта наложило глубокий отпечаток на отношение Декарта к религии и обществу. Выражением этого отношения был страх философа перед инквизицией и опасения за свою судьбу, если он осмелится публиковать научные сочинения, противоречащие доктринам католической церкви. Показательна также почти наивная вера Декарта в то, что никакая опасность не грозит ему со стороны протестантов.
Начальное образование Декарт получил в иезуитском колледже Лафлеш в центральной части Западной Франции. Декарт никогда не выступал против религии. Его ближайшим другом всю жизнь был монах ордена минимов Марен Мерсенн, клирик, живо интересовавшийся математикой и наукой. С Мерсенном Декарт познакомился во время учебы в Лафлеше. По мнению биографа Декарта Стивена Гокроджера, Декарт оставался верующим католиком до конца своих дней.
В молодости Декарт много путешествовал и воевал. Он принимал участие во многих военных кампаниях (например, в осаде Праги) то на стороне католиков, то на стороне протестантов во время страшной Тридцатилетней войны. Скитаясь по Южной Германии, Декарт познакомился с математиком и мистиком Иоганном Фаульхабером, который открыл Декарту свои способы решения уравнений, а Декарт впоследствии перенял мистическую математическую символику Фаульхабера. Например, в своих алгебраических вычислениях Декат пользовался знаком Юпитера – .
Другом Декарта был также философ и математик Блез Паскаль, который вместе с математиком Пьером Ферма создал теорию вероятности. Паскаль внес огромный вклад в физику и математику, будучи при этом глубоко религиозным человеком. Он известен своим «пари Паскаля» – знаменитым (хотя и несколько циничным) обоснованием необходимости веры в Бога: если вы верите, но Бога не существует, то, согласно логике Паскаля, вы ничего не теряете (или теряете очень немного). Но если вы не верите в Бога, а он тем не менее существует, то вы заплатите за это вечным проклятием.
И Ферма, и Декарт читали переведенные на латинский язык сочинения Евклида и знали о великой мудрости древних греков. С таким же усердием оба штудировали труды Галилея. Они оба развили физико-математические учения Древней Греции и усовершенствовали до уровня XVII века достижения своих старших современников Коперника, Кеплера и Галилея, проторив новые пути, по которым рука об руку шествовали физика и математика.
Начав исследовать реальный мир, Декарт стал испытывать навязчивый страх перед инквизицией. Он знал о преследовании Галилея и ни за что не хотел разделить судьбу великого итальянца. Во всех своих письмах к другу монаху Марену Мерсену он говорил о том, что если опубликует сочинение, в котором станет утверждать, что Земля вращается вокруг Солнца, а не наоборот, как учит церковь, то инквизиция начнет за ним охотиться. Написав книгу под названием «Мир, или Трактат о свете»[9], Декарт отказался от намерения ее напечатать, так как высказывал в ней крамольные с точки зрения католической церкви взгляды. Чтобы уберечься от реальных и мнимых опасностей, Декарт во время своих путешествий сообщался только с Марсеном и из предосторожности посылал ему письма из близлежащих городов и деревень, а не из мест, где он действительно в тот момент проживал.
Наконец в 1628 году страх перед инквизицией заставил Декарта переехать в Голландию, несмотря на то что французский король в знак признания его научных достижений буквально осыпал Декарта разнообразными привилегиями. Встревоженный известиями о суде над Галилеем Декарт с 1633 года стал (из навязчивого страха перед инквизицией) часто менять свои адреса и в Голландии.
В 1637 году Декарт публикует эпохальное «Рассуждение о методе»[10], в котором излагает суть своей философии. У этой классической книги есть приложение – «Геометрия», в котором автор, соединяя геометрию с алгеброй, предлагает свой гениальный метод координат, названных в его честь декартовыми.
Эти идеи прославили имя Декарта по всей Европе, но одновременно привлекли к нему внимание врагов. В 1647 году протестантские богословы совершенно безосновательно обвинили Декарта в атеизме. Когда Декарт попытался публично оправдаться, его обвинили в клевете, и он был вынужден принести унизительные письменные извинения обвинявшему его богослову. Оскорбленный Декарт принял решение уехать в Швецию, где в 1650 году умер от простуды (или был отравлен религиозными противниками). Причина смерти ученого до сих пор неизвестна. После смерти Декарта шведская королева Кристина перешла в католичество.
Декарт был блестящим математиком и физиком, сохранившим веру в Бога и не видевшим внутреннего конфликта между наукой и религией, невзирая на все связанные с этим конфликтом перипетии его биографии. Декарт поднял физические исследования Галилея на качественно новый уровень. Он понимал, что Земля вращается вокруг Солнца, и знал, что не мы являемся центром Вселенной. Таким образом, он поставил под вопрос буквализм церкви и осознал, что реальность не согласуется с церковной верой. Путем, начертанным Декартом, пошли следующие поколения ученых.
В возрасте двенадцати лет немецкий философ, государственный деятель и математик Готфрид Вильгельм Лейбниц (1646–1716) бегло говорил и читал по-гречески, самостоятельно освоив этот язык. Он изучал Платона и Аристотеля, познакомивших его с логикой и вдохновивших на поиски оснований чистого разума. Кроме того, у Лейбница рано проснулся интерес к изучению теологии.
В 1661 году Лейбниц поступил в Лейпцигский университет, где познакомился с трудами своих современников Гоббса, Бэкона и Галилея. В 1663 году Лейбниц представил диссертацию «О принципе индивидуации» («De Principio Individui»), в которой автор разобрал идеи индивидуальности и всеобщности. Рассуждения привели его к концепции монады. В своей работе Лейбниц попытался ответить на основной вопрос, заданный еще древними греками: что есть пространство? Попытка ответить на него привела к новым вопросам. Что такое точки? Что такое линии? Что такое плоскости? Что такое трехмерные объекты? Создание концепции монады стало попыткой ответить на эти вопросы абстрактным определением основного, простейшего элемента пространства древних греков. Монада, подобно точке греческой геометрии, есть нечто, лишенное содержания. Монада не обладает длиной, шириной, высотой; в ней нет никакого внутреннего содержания. Монада есть абстрактное понятие, относящееся к метафизике и в самом общем виде определяющее идеи. Монада – это абсолютно абстрактный основной элемент всего сущего как в физическом, так и в духовном мире.
Верующий протестант, испытавший влияние католицизма в общении с католическими государями, Лейбниц был захвачен идеей примирения европейских религий как способа объединения всех народов. В 1668 году Лейбниц написал статью, в которой отстаивал существование Бога и бессмертие души. Она называлась «Свидетельство природы против атеистов» и была призвана примирить народы Европы, погрязшие в религиозных войнах друг с другом.
Независимо от Ньютона Лейбниц разработал дифференциальное и интегральное исчисление. Однако Лейбниц каждую свою работу рассматривал в контексте единого целого и страстно желал приложить свою новую математику к теологии. Бесконечно малые величины, которые он изобрел в процессе работы над исчислением или, скорее, позаимствовал из сочинений древних греков, обладали в его глазах мистическими свойствами, и он надеялся использовать их в метафизических исследованиях. В отличие от Лейбница, Ньютон также, будучи религиозным человеком, занимался созданием дифференциального исчисления, имея в виду потребности физики, а не метафизики. В конечном итоге, математический анализ бесконечно малых величин, созданный Лейбницем и Ньютоном независимо друг от друга, стал одним из главных и незаменимых инструментов, каким физики пользуются для исследования природы и открытия ее законов.
Исаак Ньютон (1642–1727) родился на Рождество того года, когда умер Галилей, в семье богатого фермера, в деревне Вулсторп в графстве Линкольншир в Англии. Он был недоношенным, и мать вспоминала, что он вполне мог уместиться в пивную кружку.
Описывая свои величайшие научные достижения, Ньютон произнес известные слова: «Я видел дальше других только потому, что стоял на плечах гигантов». Вероятно, этими гигантами, на труды которых опирался Ньютон, были Декарт, Кеплер и Галилей. Картезианская логика вдохновляла Ньютона, и, кроме того, в своих идеях Декарт был близок к открытию дифференциального и интегрального исчисления. Исследования Галилеем падающих тел и других физических феноменов пробудили интерес Ньютона к физике; законы движения планет, сформулированные Кеплером, являлись прямым следствием ньютоновского закона всемирного тяготения. Интересы Ньютона не отличались такой широтой, как у Лейбница, но в физике и математике Ньютон превосходил его интеллектом.
В 1664 году Англию поразила эпидемия бубонной чумы, и Кембриджский университет, в котором тогда учился Ньютон, был временно закрыт. Ньютон уехал в Вулсторп, где в уединении провел два года, размышляя о Вселенной и ее законах. Именно в Вулсторпе Ньютон создал дифференциальное и интегральное исчисление. Он назвал математический анализ бесконечно малых методом флюксий (от латинского слова, означающего «поток»). Ньютон рассматривал переменные величины как поток, и для того чтобы описать его движение (скорость изменения величины по времени), изобрел дифференциальное исчисление.
Сформулированный Ньютоном закон всемирного тяготения гласит, что две обладающие массой частицы материи притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними. Коэффициент пропорциональности в этом уравнении известен как постоянная Ньютона и обозначается буквой G. Кроме того, Ньютон сформулировал законы движения, согласно которым тело сохраняет состояние покоя или равномерного и прямолинейного движения, если на него не действуют силы; скорость изменения количества движения (в ньютонианской физике – это произведение массы тела на его скорость) пропорциональна силе, действующей на тело; силы действия и противодействия равны между собой и направлены в противоположные стороны – то есть для каждого действия существует равное ему и направленное противоположно противодействие.
По своим религиозным взглядам Ньютон был унитарианцем и во время вынужденного двухлетнего пребывания в Вулсторпе пытался вникнуть в смысл предсказаний библейского пророка Даниила и понять суть Апокалипсиса. Склонный к анализу великих идей, Ньютон не видел конфликта между занятиями большой наукой и проникновением в великие религиозные идеи.
Несмотря на то что в эпоху Ньютона наметился серьезный раскол между учением католической церкви и целями науки, многие крупные ученые того времени оставались глубоко верующими людьми. Это может показаться парадоксальным, но истина заключается в том, что расхождение между наукой и церковью произошло по вине церкви, а не ученых. Самым драматическим свидетельством этого разрыва стал суд над Галилеем, хотя это был далеко не единственный пример преследования инквизицией ученых и мыслителей. В ХIХ веке науке удалось доказать многие утверждения, которые церковь считала противоречившими Библии.
Благодаря достижениям Ньютона, опиравшимся во многом на труды его великих предшественников, цивилизация достигла чрезвычайно высокого уровня познания Вселенной. Механика Ньютона, так же как оптика, астрономия и математика, в развитие которых Ньютон внес неоценимый вклад, помогли человеку понять окружающий великий и сложный мир. Прогресс, ставший возможным благодаря Ньютону и другим ученым того времени, объяснил, как движутся планеты и действует во вселенной закон всемирного тяготения. Теория гравитации настолько глубока и всеобъемлюща, что ее законы управляют буквально всем – от падения яблока с дерева до вращения Луны вокруг Земли; от обращения планет до действия пружин и траекторий пушечных ядер; от поведения биллиардного шара на столе до энергии ускорения современного автомобиля. Механика Ньютона невероятно точно объясняет мир. В ХХ веке Эйнштейн усовершенствует теории Ньютона для случаев субсветовых скоростей и очень больших масс, но в XVIII веке свершения Ньютона открыли для физической науки поистине новый мир. В последующие два столетия наука консолидирует свои достижения, а церковь начнет сдавать свои позиции единственного источника знаний о мире.
Глава 4
Триумф науки в XIX веке
Со временем пути науки и религии расходились все дальше, и в XIX веке наука одержала ряд важных побед над самыми вопиющими заблуждениями во взглядах на Вселенную, характерными для иудеохристианской традиции. Вероятно, это был последний раз в истории, когда наука могла с легкостью развенчивать взгляд на мир, порожденный организованной религией.
Ричард Докинз и Кристофер Хитченс охотно цитируют диалог между императором Наполеоном и великим французским математиком Пьером-Симоном де Лапласом. Лаплас воспринял работы Ньютона и распространил их выводы на всю Солнечную систему, создав, в результате «Небесную механику», опубликованную в 1799 году. В ней Лаплас показал, что ньютоновская механика управляет сложными взаимодействиями планет. Через некоторое время Лаплас преподнес свой труд Наполеону. Император прочитал ее, а потом сказал Лапласу: «Вы написали целую книгу о мире, но ни словом не упомянули его творца». Лаплас ответил: «Сир, я не нуждался в этой гипотезе».
К сожалению, Докинз и Хитченс оставляют за скобками эффектный конец этой истории: Наполеон повторил подобный диалог с другим великим французским математиком, Жозефом-Луи Лагранжем, который тоже прославился своими трудами в астрономии и математике. Ответ Лагранжа гласил: «Ах, да! Но это прекрасная гипотеза; она объясняет множество вещей (Ah! Mais c’est une belle hypothse; a explique beaucoup de choses)». Для нас здесь важно то, что даже среди великих математиков и астрономов того времени не было единодушия в отношении к религии и Богу.
В эпоху Лапласа и Лагранжа, на рубеже XVIII и XIX веков наука добилась поразительных успехов. Еще в XVIII веке шотландский геолог, химик, врач и натуралист Джеймс Хаттон дал объяснение геологическим процессам, происходящим на Земле. Работы Хаттона указывали на то, что силы, определяющие строение Земли, действуют в масштабах геологического времени, а это время намного превышает несколько тысяч лет, за которые якобы образовалась Земля, по мнению людей, пытавшихся составить ее хронологию на основании библейских текстов. Образование гор и эрозия почв, хорошо видная в области Северошотландского нагорья, помогли Хаттону создать геологическую теорию, проложившую путь к современному пониманию процессов, происходящих в земной коре.
Почти на два века раньше Хаттона ирландский священник Ашшер воспользовался библейской хронологией и генеалогией (вычислив даты жизни библейских персонажей вплоть до Адама) для того, чтобы выяснить дату сотворения мира, и пришел к выводу, что это событие имело место в 4004 году до Рождества Христова. Ашшер был лишь одним из многих толкователей Библии, которые на основании Священного Писания пытались различными способами вычислить возраст Земли. Все исследователи определили его в 5–10 тысяч лет.
В 1799 году английский топограф и геолог Вильям Смит составил первую геологическую карту Британии, и эта карта впоследствии помогла понять, что Земля гораздо старше, чем считали те, кто пытался установить ее возраст по Библии. Анализом геологических слоев, выполненным Смитом, наряду с результатами изучения древних окаменелостей, воспользовался в середине XIX века племянник Смита Джон Филлипс, который пришел к выводу, что Земля возникла около 96 миллионов лет назад.
Через 30 лет Вильям Томпсон, лорд Кельвин, проанализировав физические свойства камней и геологических отложений и рассчитав, сколько времени потребовалось бы Земле для того, чтобы остыть и превратиться из сгустка расплавленных пород в твердое тело, пришел к заключению, что возраст Земли не может быть меньше нескольких сотен миллионов лет. К настоящему времени (в результате использования датировки по изотопам урана) доказано, что старейшие каменные породы Земли имеют возраст около 4,5 миллиарда лет. Этот возраст принят сейчас учеными не только для Земли, но и для всей Солнечной системы.
Труды геологов вдохновили еще одну научную революцию XIX века – теорию эволюции Дарвина. В промежутке между этими двумя революциями ранняя гипотеза возраста Земли окончательно рухнула под тяжестью научных доказательств (хотя некоторые христиане продолжают в нее верить).
Даже просто глядя на поверхность Земли, нельзя себе представить, что наша планета сформировалась пять, десять тысяч и даже миллион лет назад. Проведя раскопки на возвышенностях материков, можно отыскать на довольно большой высоте раковины древних морских организмов. Однако для того, чтобы морское дно смогло подняться на значительную высоту над уровнем моря, требуются многие миллионы лет.
Точно так же такие древние горы, как Аппалачи, имеют плавные очертания в результате эрозии, происшедшей за миллионы лет под влиянием ветров, дождей и снегов. Особенно наглядно это видно в сравнении с такими молодыми горами, как Альпы, скалы которых имеют острые края, крутые склоны и обрывы, что говорит о меньшей степени выветривания и эрозии. Над поверхностью Земли поднимаются горные хребты, на линиях сброса происходят землетрясения, плиты емной коры наползают одна на другую, вызывая возвышения гор и извержения вулканов. И все это происходит в течение долгих миллионов лет. Каждый, кто бывал в Альпах, на Аляске, в Кордильерах Эквадора, видел прорезанные ледниками морены, имеющие U-образную форму, отражающую пути наступления и отступления ледников. Эти перемещения тоже потребовали миллионов лет. Обнаружение ископаемых остатков древних, ныне давно вымерших животных, включая динозавров, которые когда-то бродили по Земле, окончательно похоронили раннюю гипотезу возраста Земли.
Таким образом, библейскую историю сотворения мира за шесть дней мы смело можем считать литературным приемом. Нет нужды говорить, что вычисление возрастов персонажей Писания вплоть до Адама – не самый лучший способ вычисления возраста нашей планеты. Писание – это аллегория, которую нельзя понимать буквально, и, естественно, Библия не согласуется с тем, что говорят нам результаты научных наблюдений. То же самое касается утверждений о том, что Солнце, восходя и садясь за горизонт, обращается вокруг неподвижной Земли.
Если вы ночью поднимете голову и будете долго смотреть в небо, то в конце поймете, что вращается Земля, а не небо. Почему? Потому что созвездия и звезды движутся с востока на запад с одинаковой скоростью. Если вы сидите в движущемся автомобиле, не зная, что он едет, и видите – деревья на обочине дороги с одинаковой скоростью удаляются от вас, то скоро станет ясно, что движетесь как раз вы. Не могут же все деревья вдруг сорваться с места и опрометью броситься прочь от вас с одинаковой скоростью. То же самое касается звезд ночного неба при однократном наблюдении. Планеты иногда пересекают небо «вспять» – с запада на восток, но заметить это при одном наблюдении невозможно. Если мы направим в небо фотокамеру, то уже через несколько минут на пленке появятся светлые полосы, подтверждающие движение звезд. Таким образом, то, что мы видим на ночном небе, должно означать, что движемся мы, а не небосвод кружится вокруг нас.
В 1851 году физик-самоучка, француз Леон Фуко нанес последний удар по вере в неподвижность Земли. Астрономы и образованные люди того времени уже хорошо понимали, что Земля вращается, но эта идея не имела доказательств, которые могли бы убедить всех и каждого. Люди ждали земного доказательства вращения нашей планеты, они требовали: «Покажите нам, что мы кружимся!»
Фуко был проницательным наблюдателем и талантливым экспериментатором, сделавшим множество изобретений и даже довольно точно измерившим скорость света. Размышляя о вращении Земли вокруг оси, он убедился в том, что сможет представить нужное доказательство, если сумеет подвесить маятник «над Землей» – то есть так прикрепить его к потолку, чтобы плоскость качаний маятника могла свободно вращаться вокруг вертикальной оси. Фуко понял, что если сможет показать, что маятник колеблется в одной плоскости независимо от Земли, то наблюдателю покажется, что эта плоскость опишет относительно поверхности земли круг. Этим опытом можно будет доказать факт вращения Земли вокруг своей оси.
Фуко был не женат и жил с матерью. Она была состоятельной женщиной и владела домом на пересечении улиц Асса и Вожирар в фешенебельном шестом округе на левом берегу Сены (изящная табличка на этом месте указывает место, где находился дом Фуко). Свою лабораторию он устроил в подвале материнского дома. К потолку подвала он прикрепил особое устройство, позволяющее маятнику практически без трения колебаться в одной плоскости независимо от движения потолка. Фуко был не только выдающимся ученым и инженером, но и обладал отменным художественным вкусом. Он изготовил красивый бронзовый маятник, которым сегодня можно полюбоваться в парижском Музее искусств и ремесел.
Рис. 7. Современная реконструкция проведенного Леоном Фуко в Париже в 1851 году опыта, доказавшего факт вращения Земли (город Исскуств и Наук в Валенсии)
6 января 1851 года, ровно в два часа ночи, поэкспериментировав с маятником несколько часов, Фуко наконец увидел то, что ожидал. Он заметил, что земля медленно, но верно поворачивается под качающимся маятником (рис. 7). Затем последовали публичные эксперименты: сначала в парижской обсерватории, куда были приглашены ученые и специалисты, а потом в самом большом публичном здании Парижа – в Пантеоне, где собрался цвет французской аристократии во главе с императором Наполеоном III. Фуко, умевший наблюдать не только физические феномены, но и человеческую природу, так описал впечатление, произведенное его опытом:
Феномен развивается неспешно, но неотвратимо и неизбежно. Люди чувствуют, видят, как он зарождается и неуклонно растет; никто не в силах ни ускорить, ни замедлить его. Каждый, кто видит этот феномен хотя бы несколько мгновений, застывает в глубокой задумчивости. Уходя, зритель навсегда уносит с собой острое ощущение нашего непрестанного движения в мировом пространстве.
Демонстрация 1851 года в Пантеоне оказалась весьма убедительной, а сам опыт Фуко был после этого успешно повторен множество раз во всем мире. В 1913 году католическая церковь признала корректность опыта Фуко и сам факт вращения Земли. Церкви потребовалось 62 года на то, чтобы согласиться с очевидным: мы живем на подвижной вращающейся планете. С большим трудом наука преодолевала буквальное толкование Священного Писания.
Через восемь лет после того, как Фуко окончательно доказал вращение Земли, навсегда рухнул еще один столп традиционной религии: буквальное толкование библейской истории о сотворении Адама и Евы. В 1859 году Чарльз Дарвин опубликовал свою книгу «О происхождении видов», заложив основы революционной теории эволюции. Анализ окаменевших остатков древних живых существ и наблюдения живой природы, сделанные Дарвином во время пятилетней экспедиции на фрегате «Бигль», привели автора к созданию концепции естественного отбора. (Подобные мысли возникли у Альфреда Рассела Уоллеса незадолго до выхода в свет сочинения Дарвина, а опубликованы обе идеи были почти одновременно.) Теория эволюции показала, что люди произошли от более ранних предшественников, а все биологические виды – от древних, более простых форм.
Исследования современных генетиков пролили свет на суть дарвиновской эволюции и представили множество доказательств ее истинности. Сегодня теория эволюции является одним из столпов современной биологической науки, так как позволяет объяснить множество феноменов. Открытия ископаемых останков, сделанные в XIX веке, отчетливо показали, что Земля некогда была домом для давно вымерших существ. Кости мастодонтов, обнаруженные в Северной и Южной Америке, и кости мамонтов, найденные в Европе, убедили ученых в том, что Земля – очень древняя планета и биологические виды появлялись и исчезали на ней в течение сотен тысяч и миллионов лет. Обнаруженные в XIX веке в Европе останки неандертальцев позволили понять, что нашу планету некогда населял еще один вид человеческих существ, оставивший после себя значительный след, включая удивительно эффективные каменные орудия, использовавшиеся для охоты и разделки убитых животных. Неандертальцы исчезли вскоре после того, как Евразию 30–40 тысяч лет назад заселили люди, принадлежавшие к нашему виду человека разумного.
Открытие ископаемых останков живых существ, теория эволюции, геологическая периодизация естественной истории Земли, факт вращения Земли вокруг Солнца и своей оси убедительно показали, что нельзя буквально толковать Священное Писание. Важно, однако, отметить, что отказ от буквального толкования Библии не означает, что Писание всегда ошибается. Например, описанный в книге Бытия порядок появления живых существ не противоречит теории эволюции: сначала возникли низшие растительные виды, потом простейшие животные, а затем более развитые животные и, наконец, человек. Порядок появления абсолютно верен, хотя, конечно, новые виды возникли не в течение одного дня.
Глава 5
Эйнштейн, Бог и Большой взрыв
В Библии речь идет о сотворении мира. Космология – это отрасль науки, занимающаяся началом Вселенной и использующая при этом теорию относительности и квантовую механику. В этой главе мы разберемся со взглядами науки и религии на зарождение космоса.
Современная теоретическая физика родилась в 1905 году, когда Альберт Эйнштейн впервые разбил наши привычные представления о времени, пространстве и скорости, создав специальную теорию относительности. Теория Эйнштейна показала, что время не является константой, время и пространство должны «искривляться», сокращаться и расширяться для того, чтобы соответствовать настоящей константе мироздания – скорости света. Ничто в мире не может двигаться быстрее света. По мере приближения к скорости света масса тела увеличивается до бесконечности, а время (по отношению к стороннему неподвижному наблюдателю) замедляется.
Кроме того, в 1905 году Эйнштейн показал: масса эквивалентна энергии, что следует из знаменитого уравнения E = mc2. Этот принцип положен в основу работы Большого адронного коллайдера (БАК), построенного в международной физической лаборатории Европейской организации по ядерным исследованиям (ЦЕРН, CERN), расположенной близ Женевы в Швейцарии. БАК – это гигантский ускоритель элементарных частиц. Коллайдер создан, исходя из представления о том, что эффективная масса разогнанных до высоких скоростей частиц становится огромной и выделяет колоссальную энергию при их столкновении.
Выделившаяся энергия преобразуется в новые, не существовавшие ранее частицы, например в «божественную частицу», так называемый бозон Хиггса, об обнаружении которого было недавно объявлено. Считают, что именно эта частица появилась вскоре после Большого взрыва, приобретя конечную массу и породив обладающие массой другие частицы во Вселенной.
Согласно современным космологическим теориям, Большой взрыв создал лишь чистую энергию. Обладающие конечной массой покоя частицы – такие, как электроны и кварки, из которых возникли протоны и нейтроны (то есть ядра всех атомов, составляющих материю), получили свою массу от бозона Хиггса. Лишенной массы покоя осталась лишь одна частица – фотон, вездесущая частица света.
Важно, однако, понять, что эксперименты на Большом адронном коллайдере, имитирующие события, происшедшие в ходе Большого взрыва, не создают материю «из ничего». Протоны разгоняются в туннеле под действием мощного магнитного поля, которое заставляет их лететь по кругу. Установка потребляет электроэнергию в количествах, достаточных для обеспечения крупного города.
Существующим частицам придается кинетическая энергия (энергия движения) за счет электрической, преобразованной в электромагнитные поля. При столкновении частиц выделяется столько же энергии, сколько они ее получили в результате разгона (плюс их энергия покоя, рассчитанная по формуле Эйнштейна), и эта энергия порождает новые частицы. Помимо всего прочего, эти процессы демонстрируют один из основополагающих физических законов – закон сохранения энергии: энергия (в форме массы, излучения или движения) просто меняет форму, но ее нельзя ни создать, ни уничтожить. В этом процессе энергия не возникает «из ничего».
Эйнштейн понял, что новый взгляд на физику, раскрытый им в частной теории относительности, повлияет на понимание природы гравитации и механизмов ее действия. Понимал Эйнштейн и то, что его принцип относительности поколеблет величественное здание теории механики, возведенное Ньютоном. Когда объекты начинают двигаться очень быстро, их массы резко увеличиваются, и для таких случаев необходимо вводить поправки в механику Ньютона.
Для того чтобы создать Общую теорию относительности, которая включала бы в себя как частный случай систему Ньютона, потребовалось несколько лет напряженной работы в области математики. Наконец, на исходе 1915 года, через десять лет после создания частной теории относительности, Эйнштейн представил полную релятивистскую теорию тяготения: Общую теорию относительности. Она была опубликована в 1916 году. Уравнения Эйнштейна, созданные для этой теории, отличаются математически четкой симметрией и структурой, то есть качеством, каковое математики и физики-теоретики называют изяществом. Уравнения эти точны и лаконичны: они содержат все, что необходимо для модели сложной физической системы, но ничего лишнего. Выражаясь словами самого Эйнштейна, они были «просты, насколько это возможно, но не более того». Во всяком случае, они послужили своей цели – релятивистскому объяснению всемирного тяготения.
В Общей теории относительности Эйнштейн утверждает, что пространство искривляется вокруг массивных объектов; и в этом смысле Общая теория относительности является геометрической теорией, так как показывает, что под влиянием гравитации изменяется геометрия пространства-времени. Массивные объекты искривляют пространство вокруг себя. Пространство и время объединяются в новое понятие – пространство-время.
Эйнштейну было нужно физическое доказательство справедливости теории, и оно было представлено английским астрономом и физиком Артуром Эддингтоном, секретарем Королевского астрономического общества. Во время Первой мировой войны Эйнштейн не мог посылать письма в Британию, так как она была вражеской страной, и тогда он передал Эддингтону ряд своих статей через друга, нидерландского физика Виллема де Ситтера, жившего в нейтральной Голландии. Таким образом, Эддингтон познакомился с Общей теорией относительности намного раньше, чем остальные ученые, жившие за пределами Германии.
Будучи убежденным пацифистом, Эддингтон отказался служить в армии во время войны. Учитывая, что он был известным ученым, создавшим важные теории происходящих внутри звезд процессов, Британия дала ему разрешение не вступать в ряды вооруженных сил. Эддингтон продолжал заниматься наукой. Он организовал экспедицию на расположенный в Атлантическом океане остров Принсипи для наблюдения за солнечным затмением, которое должно было произойти 29 мая 1919 года. Другая группа ученых отправлялась в Бразилию наблюдать то же самое затмение. Обе группы должны были исследовать поведение света звезд, глядя на Солнце – точнее, на то место, где Солнце пряталось за Луной во время полного затмения. Задача заключалась в том, чтобы выявить отклонения лучей звездного света, которые должны происходить, если справедлива Общая теория относительности.
Несмотря на риск заболеть малярией, на обилие ядовитых змей и отвратительный климат, экспедиция увенчалась успехом: обеим группам, на Принсипи и в Собрале, удалось сделать фотографии, подтверждавшие, что вокруг Солнца происходит именно такое искривление звездного света, какое предсказывала Общая теория относительности (в пределах статистической погрешности). После того как экспедиции вернулись в Британию и представили научному сообществу свои результаты, Эйнштейн в один день стал всемирной знаменитостью.
С тех пор Общая теория относительности подтверждалась многими экспериментами, в которых были верифицированы ее предсказания. Общая теория относительности помогла разрешить загадку смещений перигелия Меркурия – ближайшей к Солнцу точки его орбиты. До тех пор никому не удавалось объяснить эти смещения с точки зрения механики Ньютона. Было подтверждено существование предсказанных Общей теорией относительности черных дыр при помощи наблюдения материи, которая исчезает в них, испуская при этом рентгеновские лучи. Ученые наблюдали множество других феноменов, которые теперь можно было объяснить исходя из Общей теории относительности. Один из таких феноменов – гравитационное красное смещение: длина волны света увеличивается под воздействием гравитации.
Общая теория относительности Эйнштейна изменила наш взгляд на природу. Еще до подтверждения справедливости этой теории Эддингтоном Эйнштейн попытался приложить выводы своей теории к Вселенной как целому. Он решил построить общую релятивистскую модель всей Вселенной, то есть решить задачу, которая казалась ученым непосильной. Всем, но не Эйнштейну.
К 1917 году Эйнштейн разработал космологическую модель всей вселенной. Основываясь на астрономических знаниях своего времени, он допустил, что «Вселенная» – это наша Галактика, Млечный Путь. Андромеда, ближайшая к нам другая галактика, видимая в безлунную ночь невооруженным глазом, считалась в то время туманностью в пределах Млечного Пути. Согласно уравнению Эйнштейна, Вселенная не может быть статичной. Однако поскольку Эйнштейн был уверен в том, что наша Галактика не расширяется и не сокращается, ему пришлось «остановить» свою теоретическую Вселенную, и он добавил в уравнение коэффициент, названный им «космологической постоянной». Таким образом, он получил формулу, в которой Вселенная стала застывшей и статичной, и у такой Вселенной не было начала и не будет конца.
Космологическая константа продержалась в уравнении Эйнштейна до начала 1930-х годов, до поездки ученого в Калифорнию, где он познакомился с Эдвином Хабблом. Хаббл рассказал Эйнштейну о своем открытии, сделанном в 1929 году. Хаббл обнаружил, что Вселенная расширяется. К такому выводу он пришел на основании движения отдаленных галактик, которое он со своими сотрудниками Весто Слифером и Милтоном Хьюмасоном наблюдал в обсерватории Маунт-Вилсон с помощью двухсотпятидесятисантиметрового телескопа-рефлектора. В то время Хаббл, возможно, еще не понимал, что сам факт расширения Вселенной говорит о том, что изначально она была очень мала. Теперь это начало называют Большим взрывом.
Совершенно по-иному начало Вселенной (и это естественно) изложено в библейской книге Бытия, написанной отнюдь не учеными около трех тысяч лет назад: вначале не было ничего, а потом Бог создал Вселенную. Авторы книги Бытия понимали, что космос должен иметь начало. Напротив, многие великие ученые начала XX века верили в то, что Вселенная существовала всегда. Эйнштейн был среди них с 1917 по 1932 год. Однако в данном случае Библия оказалась права.
Я далек от мысли прибегать к Библии как к источнику информации о возникновении Вселенной, но хочу подчеркнуть этот пункт, чтобы показать читателю, что наука, основанная на неверных предпосылках, приводит к неверным выводам. Прежде чем говорить, что мы точно знаем, как возникла вселенная, нам следует хорошенько проанализировать научные данные.
Интересно, что теорию Большого взрыва разработали не астрономы, открывшие расширение Вселенной (Слифер, Хьюмасон и Хаббл). Теорию эту предложил бельгийский католический священник. В 1927 году Жорж Леметр, посвященный в духовный сан католический священник, поступил в Массачусетский технологический институт, чтобы изучать математику. Впоследствии он экстраполировал данные, полученные Хабблом, Слифером и Хьюмасоном, назад по шкале времени и пришел к выводу, что если Вселенная расширяется, то в прошлом она была тем меньше, чем более ранние отрезки времени мы будем рассматривать. Пользуясь математическим аппаратом, Жорж Леметр смог отмотать назад пленку исторического кинофильма о развитии Вселенной до ее возникновения и показал, что она, как об этом написано в Библии, и в самом деле имеет начало.
Зародыш Вселенной Леметр назвал «первозданным атомом». Свою теорию Большого взрыва он представил в безупречно написанной математической статье, которая и сегодня удивляет читателя своей непротиворечивостью и точностью. Однако Эйнштейн, убежденный в правильности своих выводов относительно «статичности» Вселенной, поначалу выступил с критикой священника, сказав ему: «Ваши расчеты корректны, но физика – ужасна». Это был первый из нескольких споров, проигранных Эйнштейном. Священник, руководствовавшийся безупречной математикой, оказался прав.
Этот спор отражает главную проблему науки: уравнения не могут быть лучше своих предпосылок и допущений. Если допущение неверно и не соответствует природным фактам, то уравнения приведут к неправильным выводам, даже если эти уравнения будут выведены величайшими умами человечества.
Теперь мы знаем, что у Вселенной было начало – Большой взрыв. С помощью телескопов, наблюдений со спутников и таких ускорителей, как Большой адронный коллайдер, мы убедились, что можем понять, как развивалась Вселенная спустя доли секунды после взрыва ее «сингулярности» («первозданного атома» Леметра: места, где не действовали ныне известные нам законы физики) до ее нынешнего состояния. Но мы не знаем и, вероятно, никогда не сможем узнать, какая причина вызвала Большой взрыв и что было (если вообще было) до того, как он произошел.
Когда я в 2010 году брал интервью у нобелевского лауреата физика Стивена Вайнберга для статьи о нем в журнале Scientific American, я спросил ученого: «Какая причина вызвала Большой взрыв и что происходило в природе до него?» Ответ был на удивление прост: «Этого мы не знаем, и у нас нет никакого способа это выяснить». Этот ответ, данный одним из ведущих физиков и мыслителей нашего времени, убеждает меня в том, что наука не может опровергнуть существование «творца». Если наука не может привести нас к реальному моменту творения и к событиям, ему предшествовавшим, то как можем мы опровергать некую предвечную сущность и силу, направлявшую развитие Вселенной?
Как мы увидим ниже, некоторые физики занимались построением гипотетических моделей, ибо нет данных о том, что повлияло на Большой взрыв или на то, что происходило до него, – первоначальное возникновение Вселенной. Однако все эти модели не возникают «из ничего»: в них всегда присутствует некая предсуществующая субстанция, среда, из которой и возникла Вселенная. (Часто эту среду называют квантовой пеной — плотной совокупностью пузырьков пространства и времени, в которой они тесно переплетены между собой благодаря эффектам, постулированным теорией относительности и квантовой механикой.) На самом деле, нет никаких логических оснований принимать, что Вселенная возникла из ничего; должно было существовать что-то, из чего она образовалась.
Труды физиков последнего столетия привели к созданию теории «унификации сил». Сейчас мы выделяем в природе четыре вида сил: силу тяготения, электромагнетизм, а также слабое и сильное внутриядерное взаимодействие. Однако теоретический прогресс (в частности, создание теории суперсимметрии) привел физиков к убеждению в том, что четыре силы природы были когда-то объединены в одну силу, а именно сразу после Большого взрыва. Эта сила была названа сверхсилой. Ее существование вытекает из экстраполяции уравнений физики назад по времени. Но что это за сверхсила, единая, невероятно могущественная сила природы, управлявшая нашей Вселенной, когда она была еще очень молода? Природа этой силы неизвестна и загадочна, но именно благодаря ей мы существуем. Эту силу можно назвать Богом.
Прежде чем продолжить рассуждения о науке и ее отношении к религии, я считаю необходимым коснуться некоторых высказываний новых атеистов об Эйнштейне как о личности. Некоторые биографы рисуют Эйнштейна как законченного атеиста, «неверующего», как «непрактикующего еврея». Эйнштейн действительно не придерживался догм какой-то одной институциональной религии, включая и родной ему иудаизм, но, вероятно, он не был неверующим в том смысле, в каком нас пытаются убедить новые атеисты.
Известно, что в 1913 году, будучи в Праге, Эйнштейн посещал синагогу, а это был период его самой плодотворной научной работы. По-видимому, он все же верил в Бога: в некую сущность, создавшую законы природы, которые Эйнштейн познавал всю свою жизнь.
Эйнштейн всегда говорил о «Боге», утверждая: «Господь неуловим, но не злобен» (он говорил это, когда его внимание привлекали к вздорным возражениям против теории относительности) и «Хотелось бы мне знать мысли Бога, все остальное – детали». Едва ли такие слова мог бы произнести Ричард Докинз. Однако их произносил Эйнштейн, у которого много подобных высказываний о Боге, причем звучащих весьма отчетливо и убежденно.
Однажды маленькая девочка прислала Эйнштейну письмо, в котором просила рассказать о его религиозных взглядах. Краткий ответ ученого говорит о его вере больше, чем могли бы сказать толстые тома.
Дорогая Филлис.
Я постараюсь как можно проще и понятнее ответить на твой вопрос. Вот мой ответ.
Ученые верят в то, что все, что происходит в мире, в том числе и с человеческими существами, подчиняется законам природы. Поэтому ученый не может быть склонен к вере в то, что на ход событий можно повлиять молитвой, то есть каким-то сверхъестественным способом.
Тем не менее мы должны признать, что слишком мало знаем об этих силах, и поэтому в конечном счете убеждение в существовании окончательного вечного духа зиждется на какой-то вере. Эта вера остается распространенной в мире, несмотря на современные достижения науки.
Однако каждый, кто серьезно занимается наукой, убеждается в том, что в законах природы незримо присутствует дух, намного превосходящий дух человека. Таким образом, занятия наукой приводят к религиозному чувству особого рода, к чувству, которое, несомненно, сильно отличается от религиозности менее искушенных и более наивных людей.
С сердечным приветом,
твой А. Эйнштейн.
В свете всего этого утверждать, что Эйнштейн был самым выдающимся ученым атеистом современности, – это искажение его истинных взглядов. Он считал себя, возможно, аллегорически, особо одаренным человеческим существом, наделенным миссией раскрыть «мысли Бога» или, по крайней мере, божественные законы природы. Таким образом, Эйнштейн не был в действительности тем человеком, которого в качестве герба могли бы взять на свои щиты рыцари атеистического «крестового похода».
В своей книге «Вселенная из ничего»[11] Лоуренс Краусс цитирует Эйнштейна: «На самом деле, я хочу знать, был ли у Бога [sic!] какой-либо выбор при сотворении Вселенной». Уточнитель [sic] вставляют в текст, когда хотят обратить внимание читателя на грамматическую или синтаксическую ошибку в цитате или на содержательное недоразумение в ней. Но Эйнштейн не нуждался в интерпретациях Лоуренса Краусса для того, чтобы быть правильно понятым.
Мало того, Краусс пытается «объяснить», что, на самом деле, имел в виду Эйнштейн:
Я прибегнул к этому комментарию, потому что Бог Эйнштейна – это не Бог Библии. Существование удивительного порядка в строении Вселенной внушало Эйнштейну ощущение такого великого чуда, что вызывало ощущение духовной привязанности к нему, которое он, следуя Спинозе, определил именем «Бога».
Учитывая, что Эйнштейн не один раз ссылался на Бога в своих сочинениях, нам следовало бы поинтересоваться, на каком основании Краусс толкует его слова так, как будто Эйнштейн был неграмотным и сам не понимал, что говорил.
Ясно, что Краусс следует примеру Ричарда Докинза и, несомненно, был так встревожен высказываниями о Боге, сделанными одним из величайших умов XX века, что начал свою книгу толкованием слов Эйнштейна для неразумных читателей. В главе 1 своего труда «Бог как иллюзия», названной «Глубоко религиозный неверующий человек», Докинз утверждает, что Эйнштейн «имел в виду совсем другое», когда говорил о Боге. Докинз цитирует Эйнштейна: «Наука без религии хромает, а религия без науки слепнет». Далее Докинз говорит, что люди склонны вырывать из контекста высказывания Эйнштейна о Боге; впрочем, этим в немалой степени грешит и сам Докинз.
Отношение Эйнштейна к Богу, или к тому, что он называл Богом, было неоднозначным и сложным. В книге «Эйнштейн: его жизнь и время» Филипп Франк, одаренный физик и близкий друг Эйнштейна, писал: «Приехав в Прагу на должность профессора, Эйнштейн стал членом пражской религиозной еврейской общины». Правда, Франк подчеркивает, что отношения Эйнштейна с общиной были не особенно тесными. Помимо этого, Эйнштейна радушно принимали в круг еврейских интеллектуалов довоенной Праги: «В то время там уже существовала еврейская группа, собиравшаяся наладить независимую интеллектуальную жизнь среди евреев… Членов этой группы вдохновляли полумистические идеи еврейского философа Мартина Бубера… Эйнштейн был представлен членам группы, познакомился с Францем Кафкой, но особенно сдружился с Хуго Бергманом и Максом Бродом». Франк далее поясняет, что эта группа хотела создать еврейскую культурную среду, не основанную на ортодоксальном иудаизме, но тем не менее еврейскую по своей природе.
Описывая этот период жизни Эйнштейна, его пражские годы, Альбрехт Фёльзинг в книге «Альберт Эйнштейн» (1993 год) пишет и об отношении Эйнштейна к религии. Согласно Фёльзингу, Эйнштейн, сравнивая чехов и немцев с еврейскими интеллектуалами Праги, говорил, имея в виду первых, о «бедности идей, лишенных веры». Далее Фёльзинг говорит, что в Праге Эйнштейн вернулся в лоно своей еврейской религии. Он цитирует самого Эйнштейна: «Я снова открыл в себе еврея». И комментирует: «Вероятно, пребывание в Праге задело в его душе какие-то струны, ибо через два года – то есть всего через пять лет после своего приезда в Берлин – Эйнштейн впервые и весьма решительно заявил о своей принадлежности к еврейству». Далее Фёльзинг снова цитирует Эйнштейна: «Это была чисто эмоциональная реакция, она не являлась результатом того, что на меня снизошла какая-то часть нашего духовного наследия».
Мы знаем, что Эйнштейн не верил в персонифицированного Бога, который следит за поступками людей и активно вмешивается в их жизнь. Однако приведенные выше высказывания Эйнштейна и эпизоды его жизни, ссылки ученого на Бога при описаниях физических явлений ясно говорят о том, что он верил в некую высшую силу, создавшую законы природы, которые Эйнштейн был призван открыть. Таким образом, Эйнштейна нельзя считать атеистом, и совершенно неуместно говорить, что, ссылаясь на Бога, он имел в виду нечто другое.
Глава 6
Бог и квант
Слово «революция» – слишком мягкое выражение для описания возникновения квантовой теории, нового взгляда на природные процессы, протекающие в мире атомов и элементарных частиц. Квантовая теория была создана в 20-е годы прошлого века группой молодых физиков, главную роль в которой играли Эрвин Шредингер, Вернер Гейзенберг, Поль Дирак, Вольфганг Паули, Нильс Бор и Макс Борн.
Эти молодые революционеры перевернули физику с ног на голову: были поставлены под вопрос причинно-следственные связи, пространственное расположение частиц и одновременность. В мире квантов все происходит не так, как в привычном для нас мире. В 1935 году Эрвин Шредингер придумал знаменитый пример с котом, который может быть одновременно живым и мертвым, для того чтобы проиллюстрировать таинственный мир квантов и показать, что в квантовой механике существует понятие суперпозиции состояний частиц. Квантовые частицы могут одновременно находиться здесь и там, точно так же как гипотетический кот может быть одновременно живым и мертвым.
Мысленный эксперимент Шредингера заключался в том, что кота помещают в закрытый ящик. В ящике находится стеклянный флакон с синильной кислотой, соединенный с механизмом, который разбивает флакон, высвобождает пары синильной кислоты и убивает кота, если расщепляется атом радиоактивного вещества, небольшое количество которого тоже находится в ящике. Идея Шредингера заключалась в том, что расщепление атома является квантовым событием, то есть подчиняющимся законам квантовой механики. Радиоактивный атом находится в смешанном состоянии, и это состояние передается коту с помощью макроскопического механизма, соединенного с флаконом цианида, пары которого действуют на кота. Так как мы не знаем, расщепился атом или нет, кот, следовательно, находится в суперпозиции двух состояний: живом и мертвом – до тех пор, пока мы не откроем ящик и не свернем волновую функцию (одна из характеристик кванта – это волна; свертывание волновой функции превращает квантовую суперпозицию в определенное конечное состояние), и кот впадет в одно из двух состояний – живое или мертвое (рис. 8).
Рис. 8. Квантовое чудо – частица может находиться в суперпозиции двух состояний, как кот Шредингера, который может быть одновременно и живым, и мертвым
Помимо суперпозиции состояний, возможной благодаря волновой природе материи на микроскопическом уровне, существует множество других явлений, заставляющих квантовые частицы вести себя очень странно. Две или более частицы могут быть настолько глубоко связаны друг с другом, что ведут себя как одна частица, даже если находятся на расстоянии полутора километров друг от друга. Эта идея принадлежит Эйнштейну, использовавшему ее для нападок на квантовую теорию, которую он не любил, хотя сам явился одним из ее создателей, когда открыл фотоэлектрический эффект, показывающий, что свет ведет себя как поток частиц. (До этого свет считали волной; сегодня мы знаем, что свет одновременно проявляет и волновые, и корпускулярные свойства.)
В 1935 году Эйнштейн и двое его коллег предложили «парадокс» квантовой механики, названный по их именам (Эйнштейн, Подольский, Розен) парадоксом ЭПР. Эйнштейн пытался использовать ЭПР-парадокс для того, чтобы дискредитировать только что созданную квантовую теорию (в этом отношении он потерпел неудачу, поскольку квантовая теория сумела доказать свою состоятельность). Парадокс заключается в том, что если принять всерьез волновое строение материи, то частицы, взаимодействующие в прошлом, останутся связанными между собой, и если волновая функция, которая ими управляет, вдруг свернется (даже если в настоящий момент частицы находятся в разных местах), то подобным образом будут вынуждены поступить и другие частицы. Много лет никто из физиков не знал, как быть с головоломкой парадокса ЭПР: если частицы и в самом деле ведут себя именно так, то этот феномен может опрокинуть все наши представления о локальности – любой находящийся здесь объект может подвергнуться влиянию события, происшедшего на большом удалении от него.
Работавший в Европейском центре по ядерным исследованиям североирландский специалист по квантовой теории Джон Белл спустя 30 лет принял всерьез парадокс Эйнштейна и в 1960-е годах опубликовал статьи, содержавшие так называемые теоремы Белла, которыми можно воспользоваться для выявления подобной взаимозависимости в реальном мире. Серия экспериментов, проведенных в Калифорнии Джоном Клаузером и в парижском Университете Орсэ Аленом Аспектом, действительно подтвердила наличие такой зависимости: частица одной локальности ведет себя согласованно с частицами, находящимися на другом конце помещения или на другом конце Вселенной. Мало того, эти изменения в состоянии частиц происходят мгновенно, то есть быстрее, чем световой сигнал смог бы доставить информацию от одной частицы к другой.
Но это не единственная странность мира квантовой механики. В этом мире невозможно отличить причину от следствия, то есть сказать, загорелся ли лес от непотушенной спички, или спичка вспыхнула в результате лесного пожара. Для того чтобы решить проблему причинно-следственных отношений в квантовой механике, ученым пришлось прибегнуть к теории вероятностей.
За странные вероятностные законы квантовой механики немедленно ухватились «научные атеисты», используя их как аргумент в своих утверждениях об отсутствии Бога. По их мнению, эти вероятностные правила и законы каким-то образом заменяют Бога. Научные атеисты считают, что поскольку у нас есть квантовые законы, нам самим еще не вполне понятные, постольку у нас нет нужды в «творце». Согласно Лоуренсу Крауссу, «все мы (в буквально смысле этого слова) возникли из квантового ничто». Но ведь сами по себе правила квантовой механики не подразумевают того, что наша Вселенная обязательно возникла из пустоты.
Помимо того что мы не вполне понимаем саму квантовую теорию, мы еще и не знаем границ ее применимости: неизвестно, где на шкале размерностей находится та точка, в которой объекты перестают вести себя по законам привычной классической механики и начинают действовать в соответствии со странными законами квантовой физики.
Хорошая научная теория позволяет делать достоверные предсказания относительно результатов будущих наблюдений. Однако законы квантовой механики настолько своеобразны, что могут предсказывать лишь вероятности возможных результатов наблюдений. Квантовая механика опирается на представление, согласно которому частица является одновременно и волной. Волновые процессы приводят к распределению вероятностей возможных исходов любого эксперимента. В соответствии со стандартной или копенгагенской интерпретацией (немецкий физик Вернер Гейзенберг, предложивший такую интерпретацию, работал в то время в Копенгагене под руководством пионера квантовой механики, датского физика Нильса Бора), мы можем предсказать лишь вероятность исхода данного эксперимента, а не его конкретный результат. Согласно Гейзенбергу и Бору, волновые свойства частицы исчезают, когда мы ее регистрируем и измеряем. В результате измерения мы получаем конкретную величину из распределения вероятностей (которая представляет собой квадрат амплитуды волновой функции в данной точке).
Есть и альтернативная, хотя и менее правдоподобная, интерпретация квантовой механики, предложенная Хью Эвереттом, – теория «множества миров». Это предположение еще более фантастическое, нежели вероятностный подход: то, что не происходит здесь и в данный момент, на самом деле происходит в другом мире. Мы проводим опыт и получаем один из множества возможных результатов, заложенных в волновой функции любой частицы. Поскольку другие исходы опыта тоже возможны, постольку, согласно теории Эверетта, они действительно происходят, но в других мирах.
Но если теория не может предсказать действительный результат, то она не дает нам совершенного знания. Таким образом, вызывает большие подозрения попытка использовать квантовую физику для опровержения существования Бога. Это сильный аргумент против позиции «новых атеистов», которые утверждают, будто квантовая механика «говорит нам», что Вселенная возникла из пустоты. К этому аргументу «новых атеистов» мы еще вернемся.
Один из самых волнующих эпизодов моей карьеры математика и ученого имел место осенью 1972 года, когда мне выпало счастье познакомиться с одним из отцов квантовой теории Гейзенбергом, который в том году посетил физический факультет Калифорнийского университета в Беркли, где я изучал физику. Гейзенберг провел с нами незабываемую беседу, описав свое открытие принципа неопределенности, управляющего поведением квантов.
Принцип неопределенности Гейзенберга утверждает, что произведение неопределенностей в моменте движения и положения частицы не может быть меньше некоторой постоянной (связанной с постоянной Планка – числом, определенным немецким физиком Максом Планком). Если мы измерим положение частицы, то тем самым нарушим ее состояние, и, следовательно, если мы после этого измерим момент ее движения, то получим значение, отличное от того, какое бы мы получили, если бы измерили сначала момент. Измерение же момента сначала нарушит его, и определенное затем положение будет отличаться от того, какое бы мы получили, если бы сначала измерили положение.
Принцип неопределенности управляет всеми событиями в квантовом мире: значения переменных точно неизвестны. В наиболее распространенной форме принцип неопределенности Гейзенберга расширяют за область нахождения момента и положения частиц и применяют к двум самым важным физическим понятиям – энергии и времени.
Принцип неопределенности утверждает, что на микроскопическом уровне атомов, молекул и более мелких частиц невозможно ничего знать с полной определенностью, любое утверждение будет иметь лишь бльшую или меньшую вероятность в пределах статистического приближения. Если мы точно знаем значение энергии, то не можем точно знать время, связанное с этим уровнем энергии; если мы точно знаем время протекания процесса, то не можем точно знать количество выделившейся или поглощенной энергии.
Квантовая теория позволяет нам делать вероятностные или статистические предсказания, хотя та же квантовая теория дает возможность точно предсказывать значения природных констант. Вероятностные предсказания квантовой механики относительно результатов экспериментов отличаются беспрецедентной точностью. Если, например, для какого-то эксперимента квантовая теория говорит нам, что имеет место вероятность, равная 0,5 того, что спин данной частицы будет направлен «вверх», и 0,5 – что «вниз», то если в опыте мы измерим спины одного миллиона частиц, то спины практически половины из них будут направлены «вверх», аполовины – «вниз».
Квантовая теория, кроме того, весьма успешно предсказывает значения энергетических уровней атома водорода (включая феномен, называемый лэмбовским сдвигом, который объясняют взаимодействием электрона с виртуальными частицами в «вакууме»).
В уравнении, выведенном Эрвином Шредингером в 1925-м и опубликованном 1 января 1926 года (известно как уравнение Шредингера), были использованы волновые свойства материи, открытые за несколько лет до этого Луи де Бройлем. Это «волновое уравнение» является дифференциальным уравнением, задающим поведение квантовых частиц, если рассматривать их как волны. Неопределенность квантового мира проявляется в этом уравнении так же, как и в работах Гейзенберга, так как волна колеблется и ее колебания можно интерпретировать (если возвести их амплитуду в квадрат) как распределение вероятностей состояния частиц, обладающих волновой функцией. То есть можно считать, что поведением малых частиц управляют законы квантовой механики.
Мы знаем, что волны обладают свойством аддитивности. Можно сложить две волны конструктивно (представьте себе две волны в океане, из которых вторая превосходит по амплитуде предшествующую, и их наложение дает в результате волну большей амплитуды, чем у каждой из этих волн) или деструктивно, когда впадина одной волны накладывается на пик другой. В результате мы получаем плоскую сумму двух волн – амплитуды их взаимно уничтожают друг друга.
Именно волновая природа частиц делает квантовый мир таким, какой он есть, и является причиной его странных свойств: волновая природа частиц допускает суперпозицию состояний (Кот в упомянутом выше мысленном эксперименте находится в суперпозиции, являясь одновременно живым и мертвым.) (рис. 9).
Рис. 9. Волновые функции в квантовой механике можно складывать и вычитать точно так же, как две океанские волны, которые, складываясь, образуют большую волну (или меньшую, если они взаимно нивелируют друг друга)
Ричард Фейнман расширил идею суперпозиции, разработав теорию, согласно которой частицы переходят из одного положения в другое, используя «все возможные пути». Так, для того чтобы перейти из точки А в точку Б, частица может воспользоваться не только прямым путем АБ, но «может по дороге заглянуть в ресторан, где подают восхитительные креветки, потом несколько раз облететь Юпитер и только после этого вернуться домой», как пишут Хокинг и Млодинов в своей книге «Высший замысел»[12]. Каждый путь из А в Б характеризуется своей вероятностью, и в окончательных вычислениях используют тот, который характеризуется наибольшей вероятностью.
Однако, согласно этой курьезной теории (предсказания которой тем не менее великолепно подтверждаются в экспериментах, и она, таким образом, «работает»), ни у одного процесса не существует определенной «истории»: частица в упомянутом процессе использует все пути из А в Б, но с различной вероятностью. Хокинг и Млодинов опираются на идею Фейнмана для того, чтобы прийти к заключению: у Вселенной нет определенной и точной истории.
Иными словами, авторы имеют в виду, что точно так же, как частица, переходящая из одного положения в другое по всем возможным путям (что бы это ни значило), ведет себя и вся Вселенная. Авторы рассуждают так: во время Большого взрыва или в первые доли секунды после него, пока она была крошечной и компактной (размером с атом или меньше), Вселенная подчинялась законам квантовой механики. Если Вселенная прошла по «всем возможным» путям, прежде чем достигла размера, скажем, песчинки (то есть макроскопического объекта), то до этого момента она не имеет определенной и точной истории. Хокинг и Млодинов пишут:
Квантовая физика говорит нам, что не важно, насколько тщательно наше наблюдение настоящего, так как не поддающееся наблюдению прошлое и скрытое от нас будущее являются неопределенными и существуют лишь как спектр возможностей. Вселенная, согласно законам квантовой физики, не имеет единого прошлого или, иначе говоря, истории.
Итак, никакого единого прошлого и окончательной истории? Это удивительное с точки зрения науки теоретическое утверждение. Оно показывает нам, что в сверхъестественном мире квантовой механики могут твориться весьма странные вещи, опрокидывающие нашу концепцию «истории». Поскольку мы считаем, что некогда Вселенная имела размер квантовой частицы, постольку можно высказывать сколь угодно фантастические гипотезы относительно ее прошлого. Метод «всех возможных путей» Ричарда Фейнмана берет свое начало в одном из самых старых квантовых экспериментов, названном опытом с двумя щелями. Этот опыт был проведен в 1803 году британским врачом Томасом Юнгом, который интересовался очень многими вещами и даже пытался расшифровать египетские иероглифы. В своем эксперименте Юнг пропускал свет сквозь две прорези в непрозрачном экране и проецировал его на второй экран, где становились видны признаки интерференции света. Это опыт доказывает волновую природу света, и эти волны подобны волнам на поверхности воды (кстати, Юнг демонстрировал для сравнения интерференцию и этих волн). Однако то, что в этом случае происходит, стало величайшей загадкой для квантовой физики, и Фейнман назвал ее «Загадкой» с большой буквы.
Ален Аспект говорил мне, когда я посетил его лабораторию в Париже: «Пользуясь современными источниками света, мы можем так контролировать эмиссию света, чтобы прибор излучал за один раз один фотон». Когда источник света испускает единственный фотон и он направляется к экрану с двумя прорезями, интерференция все равно имеет место. Это означает, что каким-то образом фотон проходит через обе прорези, а потом интерферирует сам с собой. Это, кстати, простейший пример суперпозиции состояний: фотон находится в двух местах сразу, одновременно проходя сквозь прорезь 1 и прорезь 2. Фейнман был прав, считая этот феномен воплощением всех загадок квантовой механики.
Описывая, как Фейнман мог прийти к своей идее всех возможных путей, специалист по теоретической физике Зи Энтони пишет в своей книге «Квантовая теория поля в двух словах»[13]:
Когда-то давно, на лекции по квантовой механике, профессор монотонно описывал студентам эксперимент с двумя прорезями, давая этому феномену стандартное объяснение… Вдруг один студент-ботаник – назовем его Фейнманом – задал вопрос: «Профессор, а что будет, если мы просверлим в экране третье отверстие?» Профессор ответил: «Понятно, что амплитуда частицы, обнаруживаемой в точке 0, будет представлять собой сумму трех амплитуд». Профессор хотел было продолжить лекцию, но Фейнман снова заговорил: «Но что будет, если просверлить в экране четвертое и пятое отверстие?» Профессор начал терять терпение: «Послушайте, умник, по-моему, всей аудитории уже ясно, что нам придется просуммировать свет, проникающий сквозь все отверстия…» Но Фейнман не отставал: «Что будет, если мы добавим еще один экран с просверленными в нем отверстиями?» Профессор окончательно вышел в себя, но Фейнман не унимался: «Но что, если поставить третий, четвертый экран? Что, если я поставлю экран и просверлю в нем столько отверстий, что экран практически перестанет существовать?» Профессор тяжело вздохнул: «Давайте двигаться дальше, у нас еще много материала».
Зи затем соглашается с Фейнманом в том, что эксперимент с двумя прорезями можно расширить и сделать в экране бесчисленное множество таких прорезей. Далее Зи добавляет: «Несомненно, вы поняли, куда клонил этот умный мальчик Фейнман. Особенно мне нравится его замечание о том, что если добавить третий экран и просверлить в нем бесконечное число отверстий, то экран просто перестанет существовать. Это же настоящий дзен!» Фейнману удалось показать, что даже если между источником и детектором будет пустота (не будет никакого барьера с прорезями), то частица все равно пройдет от источника к детектору «всеми возможными путями». Проведенные расчеты подтвердили экспериментальные данные, но важно при этом отметить, что самые «экзотичекие» пути имеют очень низкую вероятность осуществления. Тем не менее это очень странный взгляд на реальность, и, возможно, правы те, кто утверждает, что квантовая механика не дает действительного представления о реальности.
Знаменитый французский философ и специалист по квантовой теории Бернар д‘Эспанья приходит к выводу о том, что квантовая теория ввиду ее малопонятности не является «реальной» теорией. Д’Эспанья называет ее теорией завуалированной реальности. Таким образом, то, что мы видим в квантовом мире, является «завуалированной» версией того, что в действительности происходит «внутри» черного ящика реальности на микроскопическом уровне. Д’Эспанья поясняет:
Концепция завуалированной реальности… предполагает, что наши великие математические законы являются сильно искаженными отражениями (контурами, которые невозможно точно расшифровать) великих структур «Реального».
В связи с тем что существуют огромные концептуальные трудности в достижении глубокого, фундаментального понимания реальности, скрытой за квантовыми наблюдениями и расчетами, д’Эспанья попытался решить проблему, используя интересную аналогию, перифразировав труды французского физика Эрве Звирна:
Согласно всем объективным данным, наша способность к образованию понятий превосходит таковую у собак, обезьян и других животных. Он [Звирн] задумался над интересным вопросом: можно ли представить себе способность к концептуализации, превышающую нашу так же, как наше мышление превосходит таковое у собак и обезьян. Звирн считает, что с ходу отвечать «нет» было бы с нашей стороны величайшей самонадеянностью… Таким образом, мы остаемся с другой альтернативой и вынуждены признать, что, в конечном счете, нет ничего абсурдного в идее о том, что есть «нечто», не поддающееся понятийному определению.
По мнению д’Эспанья, даже «космическое время» нельзя назвать абсолютным в каком бы то ни было смысле. Он утверждает, что физик может следующим образом интерпретировать идею бессмертия:
Термин «бессмертие»… стал чем-то загадочным, так как неявно постулирует существование абсолютного времени, концептуально предшествующего человеческому разуму. Следовательно, вопрос заключается в том, что не следует ли нам понимать этот термин (в наглядном стиле, к которому вынуждены прибегать религии) как обозначение другой идеи, также принадлежащей к религиозной сфере, – идеи «вечности», каковую следует понимать как уход от времени. По этим же причинам мы должны (а это еще большая дерзость!) разобраться, возможно ли, сосредоточившись на одном Высшем Существе, сделать идею «творения», «акта творения» независимой от времени – по крайней мере от времени, переживаемого человеком, от времени эмпирической реальности.
Д’Эспанья, размышляя, подобно многим другим ученым и философам, о квантовой странности Вселенной, пришел к совершенно иному выводу – он склонен верить в творение и вечность. Возможно, размышления о загадках квантовой механики привели д’Эспанья к мысли повенчать веру с наукой.
Странности квантовой теории вынудили не только д’Эспанья, но и некоторых других ее первопроходцев, например Джона Белла, прийти к заключению, что она не может сказать, что есть, но способна лишь показать нам тень реальности, до сути которой человеку не дано добраться. Физик-теоретик Белл объяснил и истолковал концепцию дальнего взаимодействия – «сверхъестественного действия на расстоянии» Эйнштейна, которое он сам считал невозможным и существование которого Белл тем не менее смог доказать.
В своей книге «Выразимое и невыразимое в квантовой механике» (1987)[14] Белл рассуждает о ее глубоких истинах и об их отношении к чувственно воспринимаемой нами реальности. Ученый рассматривает различные категории сущностей, играющих важную роль в квантовой теории: наблюдаемые объекты, экспериментальный аппарат, который мы используем в квантовых опытах, переменные величины – управляемые человеком и неуправляемые и т. д. Исходя из этого, Белл предлагает концепцию «бытийности». Бытийным он считает любой реальный элемент теории, отличный от тех элементов, реальное существование которых не поддается доказательству. Исследователь называет реальные для нас вещи «бытийными» (в отличие от вещей нереальных, представляющих собой одни лишь математические артефакты). Согласно Беллу, поля (например, магнитное поле Земли) являются бытийностями, так как для нас они реальны, а потенциалы (например, электромагнитный потенциал, используемый для физических расчетов) – нет. Потенциала как такового «в реальности, здесь и сейчас не существует. Он существует только для упрощения математических расчетов». Далее Белл продолжает:
Одной из очевидных не-локальностей квантовой механики является мгновенное в любом, сколь угодно большом пространстве «уничтожение волновой функции» при «измерении». Но это уничтожение не будет нас волновать, если мы лишим волновую функцию статуса бытийности. Мы можем рассматривать волновую функцию как удобный, но несущественный математический инструмент, созданный для обозначения корреляций между процедурой эксперимента и его результатами, то есть между двумя наборами бытийностей.
Как Белл, так и д’Эспанья проводят разграничительную линию между тем, что мы можем понять, имея дело с квантовым миром, и тем, чего мы понять не в состоянии. Оба считают, что «реальность», лежащая в основе квантовой механики, недоступна нашему пониманию. Вполне возможно, что квантовая теория – это одна из тех вещей, постичь которую может лишь сверхчеловеческое существо, которое в сравнении с нами выглядит так же, как мы сами выглядим в сравнении с собаками и обезьянами.
Мы просто не понимаем, что происходит в микроскопическом наномире. Герард’т Хоофт, голландский физик, лауреат Нобелевской премии, решивший одну из самых сложных теоретических задач квантовой теории поля, недавно сказал мне, что в своих новых исследованиях он решил вернуться к основам, чтобы попытаться достичь «лучшего понимания сути квантовой механики». Это еще раз подтверждает: мы до сих пор не понимаем, что на самом деле происходит в микромире. Все, что мы видим, возможно, является лишь тенями на стене пещеры, отбрасываемыми «завуалированной реальностью».
Следовательно, утверждения о том, что квантовая механика каким-то образом «говорит нам», что Вселенная возникла из ничего, не нуждаясь в сотворении (как утверждает, например, Краусс), представляются совершенно безосновательными. Эти утверждения отчасти основаны на неверной интерпретации научных взглядов на то, как во Вселенной образовались частицы. Этот вопрос мы обсудим в следующей главе.
Глава 7
Иллюзия «Вселенной из ничего»
В 1928 году Поль Дирак повенчал квантовую механику с частной теорией относительности Эйнштейна, создав нечто, названное релятивистской квантовой теорией поля. Уравнение Дирака привело его к заключению о существовании антиматерии, которая действительно спустя несколько лет была обнаружена экспериментально. Идея об антиматерии позволяет показать, как частицы могут создаваться парами из чистой энергии. Экспериментально доказано, что пустое пространство пронизано энергией, которая непрерывно превращается в «виртуальные пары частиц». Пустого пространства в чистом виде не существует, ибо оно в любом месте занято полями различных видов; пространство изобилует парами электронов и антиэлектронов (называемых позитронами). Эти пары то появляются, то исчезают, когда энергия превращается в пары частиц, а затем эти пары аннигилируют с образованием гамма-лучей – формы чистой энергии.
Предсказание Дираком антиматерии и ее экспериментальное обнаружение стали монументальным достижением физики. Существование антиматерии выявляется в контексте знаменитой формулы Эйнштейна E = mc2, которая уравнивает понятия массы и энергии. Теория антиматерии Дирака создает реальный механизм «творения».
Каким образом? Эйнштейн учил, что масса является энергией, а энергия – массой. Согласно теории относительности, энергия и масса едины и тождественны друг другу. Однако до Дирака мы не знали, как превратить одну сущность в другую – массу в энергию, а энергию в массу. Если, как говорит Эйнштейн, энергия и масса – одно и то же, то они должны быть взаимозаменяемы. Знаменитое уравнение Дирака, включающее в себя условия частной теории относительности Эйнштейна, дает нам реальный механизм, с помощью которого масса становится энергией, а энергия – массой. Такой механизм называют рождением пар. Этот термин означает, что из данного количества энергии природа может творить пары соответствующих друг другу частиц.
Природа обладает изумительной симметрией, заложенной в саму систему ее строения, и пары частиц, рождающиеся согласно механизму Дирака из небольших количеств энергии, представляют собой пары превосходно дополняющих друг друга элементов. Они во всех отношениях являются зеркальными отражениями друг друга: одна частица состоит из материи, а другая – из антиматерии. Так как фотон (квант энергии), из которого создается пара, не имеет электрического заряда, одна из созданных частиц несет положительный, а другая – отрицательный заряд. Эти частицы символизируют инь и ян: одна дополняет другую, а их общий заряд при суммировании становится равным нулю – заряду фотона, из которого они возникли.
Итак, если в вашем распоряжении есть какая-то энергия, то вы, используя правила квантовой механики и уравнение Дирака, сможете реально создавать пары частиц и античастиц, а значит, сможете создать (при достаточном количестве частиц) и Вселенную – по видимости, из ничего. Конечно, это не есть подлинное «ничто» – для создания Вселенной вам потребуется (согласно механизму Дирака) энергия. Допускают, что энергия возникает вследствие некой «квантовой флуктуации», то есть продуцируется вследствие квантовых колебаний в чем-то. Понятно, что в абсолютной пустоте никаких колебаний быть не может.
Лоуренс Краусс некорректно использует идею «пустого пространства» для того, чтобы утверждать, будто сама Вселенная возникла из чистой «пустоты». Но мы теперь знаем, что пространство, в котором могут рождаться частицы, никогда не было и не является «ничем» – оно всегда содержит энергию, пронизано силовыми линиями, представляющими поля (электромагнитное, гравитационное и т. д.). Именно энергия, производимая этими полями, приводит к сотворению пар частиц. Таким образом, эти частицы никогда не рождаются из ничего – они возникают из предсуществующего пространства, наполненного энергией. Эта энергия и поля, пронизывающие мировое пространство, должны были откуда-то взяться. Но с самой теорией есть множество других проблем. Во-первых, что происходит с антиматерией? Куда она исчезает? Почему она не аннигилирует материю и не производит снова энергию? Квантовые флуктуации, порождающие энергию, производящую пары частиц, должны происходить в какой-то среде, в чем-то. Что представляет собой это нечто, в котором происходят флуктуации? Оно, по необходимости, должно было предсуществовать.
В книге «Вселенная из ничего» Лоуренс Краусс утверждает, что Вселенная возникла из чистой пустоты, то есть из пространства, в котором не было ничего предсуществующего. В доказательство он ссылается на написанную физиком Александром Виленкиным статью (при этом Краусс ошибся даже при ссылке) «Квантовое происхождение Вселенной». В статье обсуждается теоретическая физика, включая Общую теорию относительности и квантовую механику, и предпринимается попытка проследить пути происхождения нашей Вселенной.
В заключение статьи Виленкин пишет следующее:
Большинство проблем, обсуждаемых в этой статье, относится к «метафизической космологии», к той ветви космологии, которая не может опираться на непосредственные наблюдения. Это не означает, однако, что такие проблемы не поддаются рациональному анализу: идеи можно проверять по тому, насколько они вписываются в общую картину Вселенной.
Картина Вселенной, используемая Виленкиным, состоит из того, что мы о ней знаем на основании теории и наблюдений. Исходным пунктом его космологической модели является, на самом деле, нечто «более раннее», то есть существовавший до возникновения Вселенной фрагмент пространства-времени, который затем заполнился полями, потом частицами и после этого превратился в известную нам Вселенную. Пустое «ничто» Виленкина и в самом деле более пусто, чем все, о чем мы говорили до этого. Однако внимательный ученый (а Виленкин настоящий ученый) всегда проявляет в таких вещах известную осторожность, и Виленкин, употребляя термины «ничто» и «пустота», неизменно помещает их в кавычки.
Пустота Виленкина – это не некое протяженное пространство-время. Это единичная точка, не имеющая протяженности. Но тем не менее эта точка включена в предсуществующую среду: в квантовую пену, существовавшую до сотворения нашей Вселенной. (Квантовая пена – это сильно турбулентная, конденсированная среда, где пространство и время сильно искривлены и мощно проявляются квантовые эффекты и эффекты Общей теории относительности.) В этом смысле Вселенная не возникла из абсолютного и полного ничто, подобного математическому пустому множеству. «Пустота» модели Виленкина – это отсутствие классического пространства-времени. Он сам пишет: «Я буду обсуждать модель, согласно которой Вселенная возникла в результате квантового туннельного эффекта», согласно которому квантованные частицы (здесь под малой частицей Виленкин понимает не имеющую протяженности точку, из которой было суждено родиться Вселенной. – Прим. авт.) могут преодолевать потенциальные барьеры (рис. 10), что представляется невозможным по законам классической физики. Туннельный эффект становится возможным, потому что частица является одновременно волной, а следовательно, подчиняется волновой функции. Может случиться так, что длина волны волновой функции превосходит толщину барьера, например толщину тонкой металлической пластинки. Так как возведенная в квадрат волновая функция представляет собой меру вероятности, может получиться так, что «вероятностная» функция тоже окажется за барьером. Это означает, что частица обладает ненулевой вероятностью тоже оказаться за барьером. Так как в физике, в конце концов, происходит все, что может произойти (то есть любое событие, имеющее ненулевую вероятность), то и частица в какой-то момент преодолевает потенциальный барьер и оказывается по другую его сторону.
Рис. 10. Квантовая частица может в результате туннельного эффекта проникнуть сквозь плотный барьер, благодаря тому что некоторые участки волновой и вероятностной функции могут оказываться по ту его сторону
Приложив эту идею к точке, представляющей сжатую вселенную, Виленкин утверждает, что ее волновая функция позволяет ей выйти за пределы состояния «пустоты», что она в конце концов и делает. Дальше начинается история, так как происходит Большой взрыв!
Однако пустота Виленкина – это не абсолютная пустота. Для возникновения Вселенной, по Виленкину, требуется весьма многое: квантовая пена, гравитационное поле Эйнштейна, поле Хиггса, туннельный эффект и другие физические сущности и законы. Следовательно, утверждения Краусса о том, что из всего этого следует возникновение Вселенной из ничего, мягко говоря, некорректны.
Сам Виленкин отнюдь не разделяет доктрину Докинса, опровергающего существование Бога, и даже придерживается несколько иных взглядов. Во введении к своей статье Виленкин пишет: «Идея о том, что Вселенная была сотворена из ничего, по меньшей мере так же стара, как Ветхий Завет». После этого автор цитирует «Исповедь» Блаженного Августина: «Что делал Бог до того, как сотворил небо и землю? Если он почивал и ничего не делал, то почему он не продолжал ничего не делать и дальше, как целую вечность прежде?» Ответом, по мнению Виленкина, является туннельный эффект, проскок кванта из «пустоты». Пространство и время были сотворены в ходе Большого взрыва, который произошел в результате флуктуаций в квантовой пене.
КВАНТОВАЯ ПЕНА
+
КВАНТОВАЯ ФЛУКТУАЦИЯ
(РЕЗУЛЬТАТ ТУННЕЛЬНОГО ЭФФЕКТА)
ВСЕЛЕННАЯ
После того как произошел туннельный эффект, в игру вступили, согласно такой модели, законы Общей теории относительности Эйнштейна. В результате мы имеем нашу Вселенную, которой управляет гравитация и остальные три природные силы.
Итак, мы видим, что Вселенная Виленкина, на самом деле, начинается вовсе не с пустоты, а с реального, существующего пузыря в предсуществующей квантовой пене (рис. 11). Вот что он пишет: «Модель описывает пузырь, который сокращается в момент (времени) t < 0, затем принимает минимальный объем R0, а вслед за этим расширяется в какой-то момент t > 0. В известной нам истории пузыря часть, соответствующая t < 0, отсутствует; в какой-то начальный момент в результате туннельного эффекта происходит проскок пузыря, который мгновенно переходит из состояния R = 0 в состояние R = R0, а затем происходит дальнейшее расширение…» То, что описывает здесь Виленкин, – это ситуация, когда в реальном «пузыре» предсуществующей квантовой пены внутренняя энергия (рассматриваемая как некое давление) каким-то образом оказывается меньше энергии вне пузыря. В результате происходит то же самое, что и с пузырем надутой жвачки, попадающим в область высокого давления. Квантовый пузырь под действием внешнего давления сжимается до тех пор, пока его радиус не становится равным нулю. Затем, в результате чудесного туннельного эффекта, пузырь вырывается в больший объем, внешнее давление падает, и пузырь в ходе Большого взрыва расширяется до Вселенной. Весь фокус здесь заключается в том, что сжатие до нулевого размера (до «ничто») происходит в период времени, определяемый как отрицательный (t < 0), скрытый от нашего наблюдения, так как мы можем «знать» только те вещи, которые появились после того, как возникло знакомое нам время, то есть после Большого взрыва, ознаменовавшего сотворение пространства и времени.
Рис. 11. Пузыри в плотной смеси пространства-времени называют квантовой пеной
Идея Виленкина возникла, как он сам пишет в своей статье, под влиянием более ранней концепции, предложенной физиком Эдвардом Трайоном. Физик из Массачусетского технологического института Алан Гут также считает Трайона автором идеи возникновения «Вселенной из ничего». В статье «Является ли Вселенная результатом вакуумной флуктуации?», опубликованной в 1973 году, Трайон выдвигает идею о том, что наша Вселенная может иметь в сумме ноль для всех ее квантовых чисел – таких, например, величин, как электрический заряд, считающихся «сохраненными» в природе. То есть они не могут быть ни сотворены заново, ни уничтожены (вспомним, что при рождении пар из электрически нейтрального фотона одна частица заряжена положительно, а вторая несет равный по величине, но противоположный по знаку заряд – это и есть проявление закона сохранения).
Считают, что энергия – это самая важная составляющая часть природы, подчиняющаяся закону сохранения. Энергию нельзя создать или уничтожить, ее можно лишь перевести из одной формы в другую, например, согласно уравнению Эйнштейна, она может превратиться в массу. А масса – снова в энергию. Трайон (вероятно, впервые в истории науки) высказал идею о том, что суммарная энергия Вселенной равна нулю. Так как считается, что энергия подчиняется законам сохранения, ее невозможно «создать». Это означает, что энергия, которую мы наблюдаем в нашем мире, либо существовала всегда, либо ее в какой-то момент создал Бог. (Вероятно, Бог может нарушать все установленные человеком физические законы сохранения.) Однако если Трайон прав и суммарная энергия Вселенной тождественно равна нулю, то никакого акта творения вовсе и не требуется. Дело в том, что нуль всегда останется нулем. В данном случае нулевая энергия просто принимает форму двух энергий – положительной и отрицательной. В конце концов, по мнению Трайона, эти формы энергии превратились во Вселенную из материи, сосуществующую с Вселенной из антиматерии.
Правда, сегодня у нас еще нет ответа на вопрос о том, где находится вся та антиматерия, которая теоретически должна была возникнуть вместе с регулярной материей во время Большого взрыва. Физики в большинстве своем считают, что равновесие между материей и антиматерией не подчиняется законам сохранения. Теоретическая неравновесность материи и антиматерии называется нарушением CP-инвариантности, то есть нарушением зарядового сопряжения (charge conjugation) и зарядовой четности (parity). (Эти феномены можно уподобить зеркальному отражению, когда правое становится левым.)
До середины 1950-х годов физики считали, что четность является феноменом, подчиняющимся законам сохранения. Это означало, что если вы посмотрите на некую физическую систему, а затем поднесете к ней зеркало, то увидите в нем точно такую же физическую систему, но противоположной направленности: частица, исходно двигавшаяся вправо, будет двигаться влево. Это был очень привлекательный взгляд – почему отражение в зеркале должно менять основные законы физики? Но, на самом деле, оказалось, что зеркальное отражение меняет законы физики. Идея о нарушении закона сохранения четности пришла в голову двум американским физикам-теоретикам китайского происхождения Яну и Ли в 1950-е годы, во время посещения китайского ресторана в Нью-Йорке.
Вместе они пришли к выводу о том, что слабые силы, действующие внутри атомного ядра, не подчиняются закону сохранения четности. Ян и Ли предложили еще одной китаянке, известной среди американских физиков под дружелюбной кличкой «мадам Ву» (Сяньсюн Ву) и работавшей в Колумбийском университете, экспериментально проверить их теорию. Мадам Ву подтвердила странную теорию Яна и Ли: четность не подчиняется законам сохранения, во всяком случае, при слабых внутриядерных взаимодействиях. Позднее было обнаружено, что если мы объединим четность и зарядовое сопряжение, создав величину, называемую CP, то эта величина тоже не будет подчиняться законам сохранения. Таким образом, имеет место различие (возможно, очень небольшое) между материей и антиматерией как зеркальной субстанцией, в которой все электрические заряды меняются на противоположные.
Такое нарушение CP-инвариантности в том виде, в каком оно нам известно, может быть, не является достаточно сильным для того, чтобы вытеснить из нашей Вселенной всю антиматерию. Этот важнейший для теоретической физики и космологии вопрос до сих пор остается открытым. С другой стороны, может существовать целая Вселенная, состоящая из чистой антиматерии. Возможно, такая Вселенная расположена в пространстве симметрично нашей Вселенной, если материя и антиматерия действительно возникли в равных количествах во время взрыва чистой энергии, который теперь принято называть Большим взрывом.