Почему наука не отрицает существование Бога? О науке, хаосе и пределах человеческого знания Ацель Амир

Другой аргумент Трайона основывается на допущении о том, что Вселенная, будучи «закрытой», имела суммарную энергию, равную нулю. Однако в 1998 году астрономы сделали историческое открытие: оказалось, что Вселенная с ускорением расширяется, а микроволновое фоновое излучение, улавливаемое спутниковыми обсерваториями, говорит о том, что наша Вселенная не является «закрытой» или «свернутой». Более того, она очень близка к тому, чтобы стать по-настоящему «плоской». Это означает, что пространство имеет структуру евклидовой геометрии, то есть характеризуется прямыми линиями и лишено внутренней кривизны. Таким образом, аргументы Трайона выглядят совершенно несостоятельными в свете открытий, сделанных за десятилетия, прошедшие после опубликования его статьи.

Кроме того, факт присутствия во Вселенной огромного количества «темной энергии», природа которой остается пока совершенно неясной, делает беспредметным любой спор о «суммарной нулевой энергии» нашей Вселенной.

«Вселенная из ничего» в смысле Лоуренса Краусса – это вымысел, фикция, не имеющая никакого обоснования в объективной реальности. Эта гипотеза не вытекает из теоретических результатов Виленкина или Тайона, так как, по мнению этих авторов, Вселенная возникла не из абсолютного «ничто»: Виленкин требует наличия предсуществующей квантовой пены и «скрытой истории» («отрицательного времени»), а Трайон нуждается в закрытой Вселенной, хотя мы знаем, что наша Вселенная таковой не является. К тому же Трайон никак не объясняет исчезновение антиматерии, на существовании которой и зиждется его теория.

Тем не менее вполне возможно, что наша Вселенная возникла в результате происшедшей в квантовой пене флуктуации, предшествовавшей Большому взрыву. По модели Виленкина такая флуктуация требует наличия квантовой пены, в которой отсутствовали классическое пространство и время, причем такая квантовая флуктуация, породившая нашу Вселенную, могла происходить неоднократно – если считать, что все, что может произойти, обязательно в конце концов произойдет. Таким образом, по мнению некоторых космологов, существует некая мультивселенная, то есть множество вселенных. Пользуясь языком Блаженного Августина, можно сказать, что если Бог однажды перестал предаваться ничегонеделанью и создал Вселенную, то он мог поступать так снова и снова.

Глава 8

На восьмой день сотворил Бог мультивселенную

2 марта 2011 года мне пришлось принять участие в самых неприятных публичных дебатах в моей жизни. Это были дебаты с физиком, которого я когда-то считал своим другом или, во всяком случае, хорошим знакомым. Брайан Грин незадолго до этого опубликовал книгу «Скрытая реальность. Параллельные миры и глубинные законы космоса» («The Hidden Reality: Parallel Universes and the Deep Laws of the Cosmos»)[15] и совершал турне по США, рассказывая о ней широкой аудитории.

Бостонский музей науки поручил мне взять у Брайана телевизионное интервью. Зная Брайана Грина много лет, я с радостью согласился. Однако мои ожидания не оправдались. Почти каждый раз, когда я просил Грина пояснить утверждение о том, что существуют и другие вселенные, и привести хоть какие-то экспериментальные доказательства, он уклонялся от ответа.

Этот талантливый ученый не привел ни одного убедительного доказательства того, что в мире, помимо нашей, существуют и другие вселенные. На все вопросы он отвечал приблизительно следующее: «Так нам говорит математика, а я верю в эту науку». Однако математика ничего не говорит нам о других вселенных – точнее, о реальных вселенных. Все рассуждения о «мультивселенной» как скоплении возможно существующих вселенных являются целиком и полностью гипотетическими. Дебаты получились неудачными главным образом потому, что мы имели дело с вещами, о которых мы, как ученые, не имели никаких объективных данных. С равным успехом мы могли бы спорить о том, сколько ангелов умещается на булавочной головке.

Атеисты с готовностью ухватились за идею мультивселенной, полагая, что если существует множество вселенных, то менее впечатляющим выглядит сотворение одной Вселенной, которое, следовательно, могло произойти и без божественного акта. Они шумно приветствовали книгу Грина.

В ней автор собрал воедино четыре различные теории, согласно которым, по мнению Грина, наша Вселенная является всего лишь одной из многих, а возможно, и бесконечного числа вселенных: некоторые из них похожи на нашу Вселенную, некоторые нет.

Одной из таких теорий является теория инфляции Алана Гута. Согласно ей Вселенная прошла через период очень быстрого расширения (названного автором инфляцией), которое затем значительно замедлилось. Эта теория была дополнена Андреем Линде и Александром Виленкиным до хаотической теории инфляции. Линде и Виленкин считают, что, исходя из квантовых представлений, можно утверждать, что инфляционный процесс, породивший нашу Вселенную, продолжается в природе непрерывно и вечно.

Согласно этим теоретикам, инфляционный процесс «идет везде» в более обширной Вселенной, где он продолжает раздувать другие ее сегменты, недоступные нашему наблюдению из-за огромных расстояний, порожденных стремительным расширением пространства. Когда же эти малые части Вселенной невероятно быстро увеличиваются, они еще больше удаляются от нас, и мы начинаем рассматривать их как отдельные вселенные, ибо они становятся совершенно недосягаемыми для наблюдений.

Вопрос, однако, заключается в следующем: какую ценность имеют все эти утверждения? Они объясняют, каким образом части нашей Вселенной могут развиваться, когда в них начинается быстрая инфляция, уже прекратившаяся в нашей части огромной Вселенной. Пока все хорошо и логично. Но здесь нет речи об истинной «мультивселенной». Речь идет всего лишь о теоретических допущениях, где присутствуют отдаленные сегменты одной Вселенной, частью которой являемся и мы сами. Кроме того, у нас нет никакой уверенности в том, что эта теория верна. Физики не знают, как «остановить» инфляцию, а так как нам известно, что наша часть Вселенной уже не находится в состоянии инфляции (она расширяется с более умеренной скоростью), то допускаем, что инфляция переместилась в какой-то иной участок Вселенной. Однако если мы не можем наблюдать столь отдаленные участки нашей собственной Вселенной и получить о них информацию, то в чем же польза такой модели?

Интерпретация квантовой механики Хью Эвереттом приводит нас к понятию мультивселенной другим путем, и именно этот путь поддерживает Брайан Грин. Теория Эверетта о множественности миров является еще менее вероятной, чем хаотическая теория инфляции. Эверетт утверждает, что, поскольку у нас нет теоретического способа «схлопнуть волновую функцию» квантовой механики, что позволяет придать определенность ее смутным сущностям, постольку каждая возможность (потенциальный результат проведенных нами экспериментов), которая не состоялась здесь, может реализоваться в какой-нибудь «другой вселенной».

Мы не знаем, где именно находятся эти вселенные. К тому же их так много: каждый возможный исход квантового события уводит в другую вселенную! Квантовые события происходят все время и везде: всякий раз, когда в электрической лампочке освобождается фотон в результате перехода электрона на более низкий энергетический уровень. Квантовые события имеют место во время любой химической реакции. Каждое мгновение происходит немыслимое, невероятное количество квантовых событий.

Если, ведя машину, вы на перекрестке решили повернуть налево, то существует и другой мир, очень похожий на наш, в котором вы поворачиваете направо. Существуют вселенные, где Гитлер выиграл Вторую мировую войну и где нацисты правят миром; существуют вселенные, в которых не случился теракт 11 сентября и Всемирный торговый центр до сих пор стоит на своем месте. Эта причудливая теория не подкреплена никакими экспериментальными данными и имеет очень мало сторонников.

Теория струн – это еще одна область физики, достижения в которой привели Грина и его единомышленников к предположению о существовании множества вселенных. Что такое теория струн? Это направление возникло в физике более 40 лет назад. Согласно взглядам ее приверженцев, основными элементами природы являются крошечные вибрирующие струны. Теория струн была предложена итальянским ученым Габриэле Венециано, когда он проходил в 1960-х годах стажировку в Израиле в институте Вейцмана.

«Однажды я рассматривал уравнения, управляющие движениями частиц, – рассказывал он мне в 2005 году в Генуе, – и вдруг заметил, что эти уравнения напоминают уравнения поведения струн, например скрипичных». Венециано проанализировал свое наблюдение, и действительно, оказалось, что существует сходство между вибрацией струн и движениями элементарных частиц. Так родилась теория струн. Однако с момента своего возникновения она прошла очень долгий путь. Специалисты по математической физике, в частности Эдвард Уиттен из Института перспективных исследований в Принстоне, ввели в теорию струн такой изощренный и мощный математический аппарат, что она считается теперь отраслью чистой математики. Действительно, за разработку теории Уиттен получил медаль Филдса, которую присуждают за достижения в математике.

По мнению специалистов по математической физике теория струн обладает изяществом, которое привлекло к ней многих ученых. Правда, эта теория дала мало результатов, подтвержденных экспериментально. Другие теоретические подходы не приводят к таким же выводам. «Единственный реальный успех теории струн – это определение энтропии черных дыр», – сказал мне Роджер Пенроуз, когда я брал у него интервью. Он имел в виду, что теория струн позволила воспроизвести результат теоретического определения физических характеристик черных дыр, выполненного другими методами. В настоящее время еще не разработаны эксперименты, которые могли бы подтвердить предсказания математически строгой, но слишком отвлеченной теории струн.

Согласно этой теории, Вселенная находится в пространстве-времени, имеющем больше четырех привычных для нас измерений, так как уравнения, управляющие поведением струн, имеют смысл только в пространствах, обладающих десятью или одиннадцатью измерениями. Некоторые ученые приняли эти теоретические требования теории струн и считают, что реальная физическая Вселенная, в которой мы живем, должна дополнительно иметь от шести до семи скрытых измерений. Такие специалисты теории струн, как Грин, называют их «свернутыми измерениями», полагая, что они скрыты в трех пространственных измерениях и одном временном измерении, о которых мы знаем доподлинно.

Но действительно ли тот факт, что в некоторых уравнениях используется больше четырех измерений, означает, что реальная Вселенная, описанная этими уравнениями, на самом деле имеет дополнительные измерения? Перефразируя физика-теоретика Джона Белла, можно спросить: являются ли эти дополнительные измерения «бытийными», реальны ли они или их вводят только для удобства математических вычислений?

Поскольку теория струн пока не представила сколько-нибудь достоверных предсказаний и едва ли представит их в ближайшем будущем, действительное, а не математическое существование дополнительных измерений остается под большим вопросом. Являются ли эти измерения только лишь математической причудой, математическим требованием теории, или они и в самом деле что-то говорят нам о Вселенной?

Грин и его коллеги используют дополнительные измерения теории струн для того, чтобы утверждать, будто другие вселенные могут «прятаться» где-то внутри этих измерений. Хочу еще раз подчеркнуть, что, поскольку ни одно из предсказаний теории струн пока не удалось подтвердить экспериментально, представляются весьма сомнительными гипотезы относительно «скрытых» вселенных, прячущихся в свернутых закулисных измерениях.

Четвертая линия рассуждений относительно существования других вселенных, которую рассматривает Грин, опирается на антропный принцип. Этот принцип, детально рассмотренный ниже, привел некоторых физиков к предположению о том, что, поскольку возникновение нашей Вселенной было событием однократным, постольку существуют и другие вселенные, недоступные нашему наблюдению. Мы исследуем только те места в космосе, которые пригодны для нашего обитания, и не можем наблюдать вселенные, где условия несовместимы с жизнью. Идея заключается в том, что в нашей Вселенной есть множество вещей, недоступных сегодняшнему пониманию: параметры и свойства ее слишком хорошо настроены под жизнь для того, чтобы возникнуть случайно, и все значения этих параметров идеально подходят для нашего существования. Поэтому «должны» существовать и иные места (другие вселенные), где параметры являются другими, не подходящими для жизни.

Для того чтобы избежать необходимости признания факта «творения», которое само напрашивается как объяснение возникновения Вселенной, настолько совершенной, что в ней смогла возникнуть жизнь, эти физики придерживаются следующего взгляда на Вселенную. Если мы здесь и параметры Вселенной идеально подходят для нашего существования, то должны существовать бесчисленные иные миры и вселенные, чьи параметры не годятся для поддержания жизни. Мы живем в нашей Вселенной, потому что только ее параметры подходят для жизни.

Проблема этого объяснения существования мультивселенной заключается в том, что оно не упоминает о механизме создания других невидимых вселенных. При всех недостатках хаотическая теория инфляции, теория струн и теория множества миров все же предлагают свои механизмы такого создания. Антропная теория является самой слабой из всех теорий множественности вселенных.

Тот факт, что абстрактные уравнения могут требовать больше измерений, чем мы наблюдаем, не означает, что эти измерения реальны. То, что мы не знаем, как «остановить» инфляцию, не означает, что именно она создает другие вселенные, так же как и то, что мы так мало понимаем смысл волновой функции квантовой механики, не означает, что волна может существовать в других мирах.

Новые атеисты ухватились за идею мультивселенной, несмотря на всю ее спекулятивность, просто потому, что она, по видимости, позволяет избавиться от фигуры творца. По мнению новых атеистов, законы физики и математики ведут к возникновению Вселенной из ничего; а поскольку это могло произойти один раз, постольку это может происходить снова и снова, откуда появляется возможность существования бесчисленного множества вселенных. Если же бесконечное множество вселенных и в самом деле существует, то наша является бесконечно малой частью мироздания и, возможно, не требует для своего управления божественной силы. С другой стороны, исходя из того же аргумента, можно утверждать, что сила, создавшая бесконечное множество вселенных, должна быть неизмеримо больше, чем сила любого творца, о котором до сих пор шла речь во всех религиях. В любом случае, мы можем наблюдать лишь одну Вселенную.

Наихудшая черта теории мультивселенной – отсутствие экономности. Это модель, которая, подобно древней теории Птолемея о Солнечной системе с ее циклами и эпициклами, решительно сметенной Коперником, имеет слишком много свободных параметров. Действительно, бесконечная мультивселенная имеет бесконечно много параметров. Должны существовать параметры, описывающие каждую из многих других вселенных, которые, как полагают отдельные специалисты, каким-то образом где-то существуют. Бесконечная мультивселенная не выдерживает критерия Эйнштейна на изящество и простоту, а природе наилучшим образом соответствуют простые и изящные модели.

Однако даже Докинз, не являющийся математиком, увлекся идеей мультивселенной, поскольку она дает возможность избежать признания существования Бога. Вот что он сам пишет по этому поводу:

Очень соблазнительно думать (и многие поддались этому искушению), что постулирование существования изобилия вселенных является расточительной и совершенно непозволительной роскошью. Если мы позволим себе экстравагантность множества вселенных (утверждают эти люди), то семь бед, один ответ – мы можем признать и существование Бога. Разве обе эти гипотезы ad hoc не являются одинаково расточительными и равно неудовлетворительными? Сознание людей, которые так думают, явно не было воспитано естественным отбором.

Докинз сильно недооценивает истинную «расточительность» идеи об «изобилии вселенных». Почему он думает, что физическая Вселенная имеет какое-то отношение к биологическому «естественному отбору» и как можно «воспитать сознание» путем естественного отбора для того, чтобы понять бесконечность числа вселенных? Обо всем этом можно только гадать.

Главной проблемой в идее мультивселенной является абсолютная невозможность подтвердить ее теории экспериментально или с помощью любых данных, полученных из наблюдений над реальным миром. Идея о мультивселенной требует привлечения математического аппарата, который нельзя приложить к реальным физическим явлениям. Любая гипотеза – Бог существует, или Бог не существует – остается недоказанной в случае, если мы примем гипотезу множества вселенных. Мультивселенная лишь делает гипотетического творца еще более всемогущим. Мультивселенная и бесконечность приводят нас в царство математики и ее отношений с физикой и космологией.

Глава 9

Математика, вероятность и Бог

В чем заключается отношение между математикой и наукой и каким образом это отношение влияет на проблему существования Бога? То есть нам надо ответить на следующий вопрос: как относится математика к реальности, которую мы воспринимаем в повседневной жизни? Это самые важные вопросы, касающиеся математики.

Многие математики по своим взглядам являются платониками (то есть последователями философии Платона об идеальных формах): они считают, что числа и математика обладают собственной жизнью, независимой от реального мира. Числа, уравнения, геометрические фигуры и такие идеи, как совершенная окружность или совершенный квадрат, находятся в среде, существующей независимо от нашей Вселенной. Некая сущность, внешняя сила – Бог – должна была сотворить все эти концепции, существующие реально и вне зависимости от людей. Такие науки, как физика, космология, химия и биология, пользуются уравнениями и другими математическими конструкциями платоновской Вселенной. В свою очередь уравнения и другие математические правила тоже должны были откуда-то взяться. Если эволюция создала жизнь, то кто создал математические правила эволюции? Пусть даже законы квантовой механики смогли породить Вселенную, но кто установил математические правила квантовой механики? Законы не могут «возникнуть» сами по себе – кто-то или что-то должны были их создать.

Математика – это не физика. Несмотря на историческую связь между ними, которая восходит к временам Галилея и даже к более ранним эпохам, между этими двумя дисциплинами существуют фундаментальные различия. Ключевая разница – это реальность. В чистой математике мы можем создать любую реальность, просто отталкиваясь от некоторых основных и часто произвольных допущений. Например, в геометрии мы определяем точку и линию.

Из базовых определений, аксиом, математики могут построить целую теорию, доказывая результаты, называемые теоремами, леммами или следствиями, используя логические правила и методы. Однако после того как теорема доказана, математику не требуется и дальше доказывать ее истинность. Ее утверждения считаются верными вне зависимости от физической или иной научной реальности и даже от метафизических рассуждений. После доказательства теорема получает право на существование, она просто есть. Все последующие результаты лишь дополнят теорему, но ни в коем случае ее не заменят.

Физика и другие отрасли науки в этом фундаментальном вопросе отличаются от чистой математики. В физике результат, считавшийся какое-то время верным, всегда может быть заменен более поздним результатом, который теоретически или экспериментально лучше объясняет реальность. Классический пример из астрономии: модель Солнечной системы Коперника сменила модель Птолемея, которая оказалась неадекватной реальности. Точно так же Общая теория относительности Эйнштейна заменила механику Ньютона в том, что касалось теории гравитации. Хотя при скоростях, существенно меньших скорости света, механика Ньютона превосходно описывает реальность. Упомянутый выше пример регулярного смещения перигелия планеты Меркурий в процессе ее обращения вокруг Солнца показывает, что объяснить это смещение можно только на основании Общей теории относительности. Стоит также упомянуть, что система глобального позиционирования (GPS) не смогла бы работать без постоянной электронной корректировки из-за релятивистских эффектов. Поэтому верным является утверждение о том, что Общая теория относительности заменила механику Ньютона как «истинная» теория гравитации. Возможно, это будет до той поры, когда появится более общая теория, объединяющая квантовую механику с теорией относительности.

Более того, в физике мы требуем экспериментальных доказательств всякой теории для того, чтобы адекватно ее оценить. Как правило, мы строим теорию, состоящую из математического уравнения или набора таких уравнений в сочетании с другими параметрами (например, начальными условиями). Потом мы используем эту модель (уравнения и дополнительные параметры) для того, чтобы сделать какие-то предсказания относительно новых явлений. Если и когда эти предсказания точно соответствуют результатам эксперимента, мы говорим, что теория доказана – до того момента, когда появится следующая теория, способная лучше предсказывать результаты экспериментов. В таком случае новая теория заменит старую.

Однако математика имеет особенные, и весьма таинственные, отношения с физикой и в какой-то степени с другими науками. Математика отлично помогает описывать физическую Вселенную, что невозможно при ином, не математическом подходе.

В своей книге «Путь к реальности»[16] Роджер Пенроуз рассматривает отношения трех сфер – математики, физической Вселенной и человеческого разума. Пенроуз прибегает к знаменитой аллегории Платона: к истории находящихся в пещере невольников, которые не видят ни входа, ни внешнего мира и вынуждены поэтому судить о нем по теням на стенах пещеры. В каком-то смысле современная физическая наука следует этому принципу: то, что мы наблюдаем и на основании чего делаем выводы о природе, основано лишь на «тенях» скрытой реальности, которыми только и может ныне оперировать наука. Эту идею мы уже обсуждали в контексте квантовой теории.

Известно, что были проведены квантовые эксперименты, связанные в большинстве своем с квантово-механическими взаимодействиями и современными модификациями опыта Томаса Юнга, где было показано, что реальные или потенциальные знания экспериментатора могут повлиять на исход эксперимента. Например, если в ходе опыта с двумя прорезями на траекториях частиц установить детекторы, то выяснится, что частица «выбирает» только один из двух возможных путей, и, следовательно, мы не будем наблюдать никакой интерференции на втором экране. Если же детекторов нет, то экспериментатор попросту не знает, по какой траектории пойдет частица, и она пойдет по обоим путям и будет интерферировать сама с собой. Из этого странного результата следует, что разум каким-то образом взаимодействует с природой.

Мы доподлинно не знаем, так ли это, и многие физики не верят в существование связи между разумом и физикой – скорее всего, это ложная связь, которую мы наблюдаем в результате особенностей дизайна опыта. Тем не менее проблема до конца пока не решена. Все же наш разум в определенном смысле и до какой-то степени воспринимает и понимает природу, и это восприятие надо учитывать при трактовке и анализе результатов опытов.

Эти рассуждения привели Пенроуза к мысли о том, что существуют три взаимодействующих друг с другом «мира»: платонический математический, естественный и природный, находящийся в нашем сознании, как это представлено на рисунке 12.

Рис. 12. Перекрывающие друг друга три мира Роджера Пенроуза: математика, физический мир и человеческий разум

Часть чисто математического мира идей, в том виде, как он был определен Платоном, отражает информацию об объективном физическом мире, хотя в чисто математическом мире есть элементы, не имеющие ничего общего с миром реальным. Некоторая часть физического мира влияет на наше сознание и представлена в нем, но есть и другая доля, недоступная человеческому сознанию и пониманию. Часть же того, что происходит в нашем сознании, может быть представлена в мире чистой математики, в то время как другие ментальные процессы, вероятно, не являются математическими по своей сути.

Часть математических истин недоступна ментальному суждению: схематический рисунок «допускает существование истинных математических утверждений, в принципе недоступных разуму и его суждениям». Существует также «возможность физических процессов, не поддающихся математическому контролю». И, наконец, никто не может запретить «веру в то, что возможна ментальность, не основанная на определенных физических структурах».

В своих рассуждениях о математике Пенроуз находится под влиянием австрийского логика Курта Гёделя, который доказал, что внутри любой математической системы всегда найдется утверждение, суждение об истинности которого для нас недоступно. Мы неспособны определить, истинно это утверждение или ложно. (Об этой работе Гёделя мы поговорим позже.) Выводы Пенроуза очень глубоки и вполне соответствуют задачам настоящей книги – они говорят нам о том, что наука имеет свои ограничения. Эти ограничения проистекают из того факта, что, вероятно, не все в природе поддается математическому анализу, не все содержание математики доступно нашему разуму и сам человеческий разум не всегда и не во всем опирается на чисто физические и/или материальные идеи и не всегда ими питается.

В 1960 году лауреат Нобелевской премии по физике, специалист по квантовой механике Юджин Вигнер, работавший в Принстонском университете, написал известную статью о таинственной и необъяснимой природе связи математики с физикой и другими естественными науками. Сам Вигнер внес большой вклад в физику, используя сложный и изощренный математический аппарат. В частности, вместе с Германом Вейлем он стал первопроходцем в применении абстрактной математической теории групп для моделирования физических явлений. Теория групп – это отрасль математики, занимающаяся симметрией, а симметрия, как показали Вигнер и Вейль, помогает раскрывать тайны физической реальности.

Симметрия, в частности, позволила другому американскому нобелевскому лауреату Стивену Вайнбергу предсказать существование одной частицы и массы покоя двух других частиц: так называемых Z– и W-бозонов, которые играют важную роль в радиоактивном распаде ядер. Представляется поразительным сам факт того, что чисто математическая теория групп смогла точно предсказывать физические явления. Природа связи между математической теорией групп и физикой была установлена немецким математиком еврейского происхождения Эмми Нётер, которая приехала в Америку накануне Второй мировой войны, спасаясь от нацизма. Она доказала две важнейшие теоремы, установившие связь между математической симметрией групп и важнейшими физическими законами сохранения (например, законом сохранения энергии, который гласит, что энергию нельзя ни создать, ни уничтожить).

В своей статье, вышедшей в 1960 году, он поражался таинственной связи между математикой и естественными науками. Вигнер рассказывает историю о двух друзьях детства, встретившихся через несколько десятилетий после долгой разлуки. Один из них стал статистиком и принялся с гордостью рассказывать другу о своих достижениях. Рассказывая о кривой гауссова (иначе называемого нормальным) распределения, он показал другу, как делаются выводы о больших группах населения на основе небольших выборок. Друг, изо всех сил стараясь понять собеседника, ткнул пальцем в символ, следовавший за гауссовым интегралом. «Что это?» – спросил он. «О, это пи, – ответил статистик, – отношение длины окружности к ее диаметру». Друг был изумлен до глубины души. «Пи? Но какое отношение имеет население к длине окружности?»

Вигнер приводит эту историю, как пример непостижимой эффективности математики в тех случаях, когда некоторые ее закономерности (например, константа, определяющая длину окружности), по видимости, не имеют отношения к изучаемому явлению. Тем не менее эта связь есть! Мало того, гауссова кривая примечательна и в других отношениях: мы до сих пор не знаем, как интегрировать эту функцию (мы можем интегрировать ее лишь численно, с помощью компьютера, но не в общей форме, как происходит с другими функциями). Получилось так, что эту важнейшую функцию теории вероятностей мы не можем анализировать с помощью интегрального исчисления Ньютона и Лейбница.

Теорию вероятностей применяют во многих отраслях науки, и ученым, для того чтобы по-настоящему заниматься своим делом, надо хорошо ее знать. В книге «Бог как иллюзия» Ричард Докинз дает следующее ничем не обоснованное высказывание: «Гипотеза Бога… практически исключается законами вероятности». Через несколько страниц, процитировав Гексли, Докинз пишет:

Гексли, твердо убежденный в абсолютной невозможности доказать наличие или отсутствие Бога, кажется, полностью игнорирует некоторые аспекты вероятности. Тот факт, что мы не можем ни подтвердить, ни опровергнуть существование чего бы то ни было, не означает, что наличие и отсутствие равновероятны. Не думаю, что Гексли выразил бы свое несогласие, и подозреваю, что он делает это лишь для того, чтобы, уступив одну позицию, защитить другую. Мы все время от времени так поступаем.

Непонимание современной теории вероятностей, видное из приведенной цитаты, еще раз проявилось в его суждении о книге Стивена Анвина «Простое вычисление, доказывающее конечную истину или вероятность Бога»[17]:

Анвин является по профессии риск-менеджером… Он решил начать свои рассуждения с полной неопределенности, приписав изначально существованию и несуществованию Бога вероятности, равные 50 %.

Докинз делает Гексли и Анвину выговор за то, что они дают Богу 50 % шансов на существование (в случае Гексли – для того, чтобы «уравнять вероятность существования и несуществования», что, собственно говоря, одно и то же). Докинз утверждает, что приписывание такой априорной вероятности не согласуется с теорией вероятности. Но Докинз в данном случае прибегает к некорректным аргументам.

Великий британский статистик Гарольд Джеффрис, чьи труды заложили основу некоторых разделов современной теории вероятностей и статистических выводов, опубликовал в 1939 году книгу, озаглавленную «Теория вероятности» («Theory of Probability»), в которой ввел понятие о неинформативном априорном распределении. Неинформативное распределение является единственным честным распределением в тех случаях, когда в статистических исследованиях мы не обладаем никакими предварительными знаниями. Более того, даже если такие знания и существуют, мы не должны их использовать в построении априорного распределения, если хотим добиться беспристрастности исследования.

В своей формулировке честного статистического вывода Джеффрис использует величину 1/n, где n представляет число всех допустимых возможностей. Если таких возможностей у нас две: «Бог существует» и «Бог не существует», то n = 2. Следовательно, по правилу Джеффриса, верными априорными вероятностями истинности каждого утверждения будут и , то есть по 50 % для каждого из них (рис. 13).

Рис. 13. Статистически честное распределение вероятностей существования и несуществования Бога с использованием стандартных «неинформативных» байесовских требований к априорному знанию

Неинформативное априорное распределение является плоским и не имеет пиков, потому что пик предполагает, что существуют исходы, имеющие более высокую вероятность. Это будет показано ниже.

Неинформативное распределение вероятности используется затем в предложенной Джеффрисом процедуре вывода для того, чтобы получить непредвзятые заключения, основанные на функции правдоподобия, построенной при использовании реальных данных.

По мнению выдающихся статистиков Джорджа Бокса и Джорджа Тяо:

Неинформативная априорность не обязательно представляет собой настроение исследователя в отношении обсуждаемых параметров. Напротив, она должна выражать «непредвзятость» ума… неинформативные априорности часто используют как точку отсчета, опираясь на которую делают непредвзятые выводы, вытекающие из имеющихся данных.

Однако никто не сможет назвать Ричарда Докинза непредвзятым. Единственный способ произвести статистическую проверку существования Бога – это начать с неинформативного априорного распределения вероятностей, которое приписывает каждому состоянию («Бог существует» и «Бога не существует») равные вероятности, составляющие 50 %, а именно за это Докинз критикует Гексли и Анвина.

Докинз называет себя большим почитателем британского эволюционного биолога и генетика начала ХХ века Рональда Фишера, отца современных статистических методов. Фишер разработал сегодняшнюю теорию статистики, возделывая помидорные плантации и выясняя, какое и нескольких удобрений работает лучше.

Работы Фишера позволяют нам определять, какая из существующих гипотез лучше подкрепляется имеющимися данными, исходя из теории вероятности. Процесс такого определения основан на ключевой концепции – величине p. Величина p – это вероятность получения выявленных нами данных при условии верности нулевой гипотезы. Следовательно, низкие значения величины p говорят о высокой вероятности альтернативной (тестовой) гипотезы. Например, если мы апробируем гипотезу о том, что курение провоцирует развитие рака, используя для этого большую, случайным образом отобранную группу курящих и некурящих, и выясняем, что курение является причиной рака с величиной p, равной 0,0001. Это означает – наше заключение о том, что курение вызывает рак, неверно с вероятностью 1 на 10 000. Следовательно, наше предположение в высшей степени вероятно. С другой стороны, величина p = 0,1 является очень слабым подтверждением справедливости исходной гипотезы, так как означает, что шанс ошибиться составляет 1 к 10, а 10 % считают показателем большой вероятности ошибки.

Докинз в исследовании истинности своих гипотез не использует величину p, стараясь при этом доказать, что Бога или какой-либо иной внешней силы не существует. Таким образом, выводы Докинза ни в коем случае нельзя признать научными. Он отбрасывает тот факт, что великие ученые (Гексли в XIX, а Стивен Джей Гулд в ХХ веке) признавали: наука и Бог могут великолепно сосуществовать. Вот что пишет по этому поводу Докинз:

Наука может подорвать агностицизм, от чего уклонился Гексли, отрицая это в особом случае с Богом. Я утверждаю, что, невзирая на вежливое уклонение Гексли, Гулда и многих других, вопрос о Боге не может быть в принципе отделен от науки. Как в вопросе о звездах (вопреки Конту), как в вопросе о вероятности жизни на обращающихся вокруг них планетах, наука может находить по крайней мере вероятностные способы вылазок на территорию агностиков.

Но каким образом? Где мы видим вероятностные аргументы против существования Бога? Где вероятности и априорные вероятности, свидетельствующие против гипотезы Бога? Какими способами должна наука совершать свои вероятностные вылазки? Есть разница между выяснением новых фактов о свойствах звезд или даже обнаружением радиосигналов от внеземных цивилизаций (чего, впрочем, до сих пор не случалось) и опровержением существования Бога. Как же нам в таком случае открыть вероятностную истину о Боге?

С другой стороны, можно привести реальный пример того, как коэффициент достоверности p и корректный вероятностный подход используются в ядерной физике.

Недавнее открытие бозона Хиггса, о котором объявлено в Европейском центре по ядерным исследованиям, было обосновано строжайшим доказательством, какое требуется для подтверждения открытия любой частицы: вероятность равна 99,99997 %, а значение p меньше 0,0000003. Такой строгий стандарт доказательства требует огромного количества данных. До тех пор пока эти данные не были получены, специалисты CERN не отваживались объявлять об обнаружении бозона Хиггса. В отличие от этих физиков, Докинз даже не попытался проверить гипотезу Бога с помощью сколько-нибудь корректного вероятностного теста.

Очевидное невежество Докинза и его незнание законов вероятности приводят к невежеству в статистике, и это тем более удивительно, потому что знание статистики необходимо во многих отраслях науки, и прежде всего в той области, какой занимается Докинз, – в биологии. Вот, например, что он утверждает, описывая свое статистическое изучение отношения к вере в Бога членов Королевского общества:

Все 1074 члена Королевского общества, у которых есть адреса электронной почты (подавляющее большинство), были мной опрошены. Ответили 23 %, и это очень хороший результат для такого рода исследований.

Эта цитата – великолепный пример предвзятости в статистических исследованиях. Первое, чему учат начинающих статистиков, – не доверять никакой, даже самой естественной, цензуре. В данном случае такой цензурой послужило использование электронной почты. В честном и строгом статистическом исследовании следовало бы лично обратиться к каждому члену Королевского общества, так как обращение по электронной почте немедленно исключает из исследования некоторых членов интересующей статистика популяции, что приводит к необъективным выводам. (Все мы знаем, что люди по-разному реагируют на непрошеные электронные письма.)

Если Докинз говорит, что 23 % ответивших – хороший результат, то мы вправе спросить: хороший для чего? Способ, выбранный Докинзом, – это просто классический способ получения предвзятой и вводящей в заблуждение информации. Если на поставленный вопрос ответили лишь 23 % опрошенных, то, значит, самой методике присуща необъективность и пристрастность. Как верующие, так и неверующие в большинстве своем предпочли уклониться от опроса, ибо в противном случае процент ответивших не был бы столь удручающе низким. Этот пример показывает, как нельзя проводить статистические исследования. В настоящем исследовании следовало бы обратиться к людям, не ответившим на электронное письмо, и все же постараться получить ответ, чтобы установить уровень пристрастности и исправить ошибку. Во всяком случае, это одно из самых плохих статистических исследований, с какими мне приходилось сталкиваться. Если 78 % ответивших заявили о том, что не верят в Бога, то это не значит, что среди 77 % членов выборки, не ответивших на вопрос, не преобладали верующие люди. Это исследование бесполезно, и ни один уважающий себя статистик не стал бы обнародовать такие результаты.

Интересно, что религиозные и не имевшие ни малейших представлений о современной статистике люди, жившие на Британских островах в XII веке, достигли поразительных успехов (не пользуясь никакими благами современной науки) в методологии проверки качества золотых и серебряных монет, которые чеканились на королевском монетном дворе. Эта история показывает, что, проявляя добрую волю, не гнушаясь тяжким трудом и стараясь понять что-то о природе и мире, даже глубоко религиозные люди могут делать «правильные вещи», которые впечатляют нас и сегодня, хотя мы знаем неизмеримо больше благодаря знаниям о статистике и вероятности, добытым Фишером и другими учеными.

В Вестминстерском аббатстве стояли несколько больших деревянных ящиков для пробной монеты разных столетий. Ящики эти называли пиксами (от греч. pyxis — ящик). Эти пиксы – исторические раритеты, напоминающие нам о ежегодной пробе монет, в ходе которой почтенная гильдия золотых дел мастеров от имени английской короны «испытывала» смотрителя монетного двора, чтобы выяснить, насколько добросовестно он относился к своей работе. Не впал ли он в одну из двух ошибок: не расточал ли понапрасну королевское золото, чеканя монеты большего веса, и не крал ли золото, чеканя монеты меньшего веса?

Из всех золотых монет, отчеканенных за день, «наудачу» отбирали одну монету и клали ее в ящик. Такой отбор назывался journee, то есть «ежедневный». Один раз в год, когда ящик заполнялся почти целиком, все монеты пересчитывали и взвешивали. Если средний вес монет оказывался больше или меньше положенного стандарта, то смотрителя монетного двора находили виновным в злоупотреблении или недобросовестности.

Статистик Стивен Стиглер, работающий в Чикагском университете, изучил процедуру пробы монет и пришел к выводу, что, несмотря на свою древность, она подчинялась правилам, которым мы следуем и сегодня при статистической проверке гипотез. Проба монет показывает нам, что даже несовершенное знание (статистическое понимание природы, более интуитивное, нежели строго математическое) тоже может приводить к превосходным результатам.

Проблемы с вероятностным анализом возникают, когда исследователь допускает бесконечное число возможностей. Математическая концепция бесконечности очень сложна, и мы вернемся к ней позже, а сейчас мне хотелось бы пояснить одно простое свойство бесконечности, очень важное для понимания концепции мультивселенной и антропного принципа.

При бесконечном числе испытаний будет в конце концов получен результат, имеющий ненулевую вероятность, причем таких исходов окажется бесчисленное множество.

Предположим, что вероятность попасть под машину, переходя улицу, чрезвычайно мала; вы можете выбрать любое число для ее выражения (оно не должно быть равно нулю, ибо это означает, что такое событие не может произойти). Предположим, что вероятность указанного события равна одной миллиардной. В теории вероятности есть правило, которое гласит, что при независимых событиях вероятность попасть под машину (хотя бы один раз при заданном числе испытаний) равна единице минус значение вероятности один раз попасть под машину, возведенной в степень, показатель которой равен числу испытаний[18].

Можно экспериментировать с различным числом испытаний и различной вероятностью попасть под машину при одной из попыток перейти улицу. Здесь важно другое: возведение в бесконечную степень любого числа меньше единицы дает в результате ноль, а при вычитании нуля из единицы мы получим единицу, то есть стопроцентную вероятность события. Если повторять испытание бесконечное число раз, то не важно, насколько маловероятным является событие – оно должно в конце концов произойти.

В популярном примере об обезьяне, печатающей «Гамлета», можно с помощью приведенного выше метода математически строго доказать, что обезьяна, сидящая перед пишущей машинкой или клавиатурой компьютера и случайно нажимающая на клавиши, при бесконечном числе нажатий в конце концов перепечатает Гамлета, сонеты Шекспира и все книги самой большой библиотеки мира. В реальной жизни этого не произойдет никогда, потому что вероятность расстановки букв в порядке текста «Гамлета» при случайном выборе клавиш исчезающе мала. Но я хочу этим примером показать невероятную мощь бесконечности.

Если в спор вмешивается бесконечность, то произойти может все что угодно, даже написание обезьяной «Гамлета». В этой пьесе 30 тысяч слов, и если мы примем, что средняя длина слова составляет пять букв, то получается, что обезьяне надо в надлежащем порядке расставить сто пятьдесят тысяч знаков. Таким образом, вероятность справиться с задачей с первого раза (оставив в стороне вопрос о пробелах и знаках пунктуации, что лишь усложняет проблему) равна единице, деленной на 26 в степени 150 000, а это число весьма близко к нулю, но не равно тождественно нулю. Если же число попыток доведено до бесконечности, то вероятность события неизбежно становится равной единице. Это просто математический факт, не имеющий никакого смысла за пределами царства чистой математики и никоим образом не описывающий реальный мир. Поэтому игра в «обезьяну, печатающую “Гамлета”» – это не самый лучший подход к исследованию реальных жизненных ситуаций и вселенных, из которых нам доподлинно известна лишь одна.

В этом заключается проблема с бесконечной мультивселенной, которой увлечены Брайан Грин, Лоуренс Краусс, Ричард Докинз и многие другие. Все упирается в непонимание математической идеи бесконечности. Как только вы допускаете бесконечность в свои расчеты, то получаете возможность «доказать» практически все что угодно. Если вы допускаете бесчисленное множество других вселенных, то, пользуясь мощными свойствами бесконечности, вы можете найти Вселенную, отвечающую всем параметрам, необходимым для зарождения и существования жизни: нужными массами и зарядами элементарных частиц, балансом всех природных сил (силы притяжения и электромагнитного поля), а также всех химических элементов, необходимых для существования живых существ. Имея бесконечный набор возможностей, вы можете выбрать из него те, что идеально подходят для получения нужных результатов. Вам нужна мультивселенная, в которой присутствуют все величины континуума величин, и вы, без сомнения, найдете Вселенную, в которой, например, отношение массы протона к массе электрона будет в точности равно 1 836 153 (это совершенно точное число), что требуется для существования материи. То же самое касается и всех других физических и биологических параметров. Итак, мы снова убеждаемся в том, насколько расточительной является модель бесконечной мультивселенной.

Это не наука, ибо она не основана на реальности, на экспериментах или даже на жизнеспособной теории, а всего лишь притянутый за уши аргумент, который позволяет доказывать все, что вам заблагорассудится. Аналогично можно утверждать, будто обезьяна напечатает «Гамлета», несмотря на нереальность самой идеи: единственная причина, по которой эта идея работает, заключается в невероятной мощи концепции бесконечности. Если вы «доходите до бесконечности», то можете делать вид, что способны доказать все на свете. Таким образом, понятие мультивселенной и бесконечного множества копий меня и вас (о чем с такой убежденностью говорит Брайан Грин), которые должны где-то существовать, лишено всякого смысла и не может иметь места в научном споре о природе, жизни нашей Вселенной и ее происхождении.

Но оставим в стороне чистую математику и рассмотрим главную проблему «научного атеизма». Наука в том виде, в каком мы ее сегодня знаем, все больше и больше сдвигается в царство теории информации. Многие вещи мы сегодня рассматриваем как чистую информацию. Для того чтобы разобраться, как это работает, давайте рассмотрим абстракцию, связанную с биологической жизнью: если существует правило, которое говорит нам, как создать человеческий организм, то оно представляет собой чистую информацию – человеческий геном, состоящий из трех миллиардов бит информации, выраженной буквами генетического кода А, Т, Г и Ц, упорядоченными в пары. Таким образом, спор о Боге и науке сводится к вопросу: кто создал информационный набор, необходимый для жизни? Определенную роль в этом сыграла эволюция, но она сама по себе тоже является кодом, то есть набором информации. Для того чтобы «развиваться», нечто должно для начала иметь исходную конструкцию плюс правило, согласно которому эта конструкция изменяется во времени. Таким образом, перед нами неизбежно встает вопрос о начале процесса жизни с помощью действенного набора команд, этакого первобытного компьютерного кода. Как можем мы доказать, что такой набор команд не создан какой-то внешней силой?

Тот же аргумент сохраняет свою силу и в ситуации создания неодушевленного мира и Вселенной в целом. Физика и космология тоже состоят из набора правил создания Вселенной. Существуют физические законы и начальные параметры, дифференциальные уравнения, описывающие начало и протекание любого процесса. Коды должны предусматривать массы и заряды частиц, как и все силы, существующие в природе. Представляется вполне жизнеспособной гипотеза, согласно которой нечто (какая-то внешняя сила) должна была создать первоначальную информацию, запустившую рождение Вселенной и, в конечном счете, приведшую к возникновению жизни, разума и людей, задающих вопросы о том, откуда они появились. Но, как мы увидим в следующей главе, математика не всегда может помочь нам в полноценном объяснении механизмов работы Вселенной на уровне, достаточном для формирования предсказаний о событиях и явлениях.

Глава 10

Катастрофы, хаос и пределы человеческого знания

Землетрясение и цунами, обрушившиеся на Японию в марте 2011 года и повредившие ядерный реактор атомной электростанции Фукусима, в результате чего в окружающую среду попало большое количество радиоактивных материалов, являют собой пример катастрофы. Катастрофы – это непредсказуемые события с нежелательными последствиями, которые часто постигают нас, причиняя разрушения и опустошения. Катастрофы неожиданны, в математическом смысле дискретны и часто представляют собой нелинейные процессы. Если события протекают ожидаемо, упорядоченно переходя от одной стадии к другой, то это не катастрофа. По определению, катастрофа – это разрыв системы, нарушение протекающих в ней последовательных процессов.

В 60-е годы ХХ века французский математик Рене Том разработал теорию внезапных непредвиденных изменений. Теория катастроф, как ее стали называть, является частью геометрии и описывает динамику прерывистых процессов: резких сдвигов, разрывов или скачков. Эта теория представляет собой попытку моделирования катастроф – неожиданных скачков в какой-либо системе, как это случилось в Японии во время землетрясения и цунами 2011 года. Собака может долгое время вести себя спокойно и миролюбиво, но затем внезапно без всякой видимой причины бросается и кусает прохожего. Снег, неподвижно лежащий на склонах альпийских скал, может вдруг прийти в движение и превратиться в сокрушительную снежную лавину. Землетрясения, смерчи, ураганы и природные пожары – все это непредсказуемые катастрофические события. Тектонические силы постоянно вызывают небольшие подвижки плит земной коры, но затем без всякого предупреждения может случиться разрушительное землетрясение. Стоит чудесная тихая погода, которая спустя час неожиданно сменяется сильнейшим смерчем, сносящим простоявшие столетия каменные здания.

Теория катастроф является попыткой объяснить динамику подобных систем, но факт остается фактом – очень часто мы не в состоянии предсказать катастрофу. Очень легко понять и предсказать континуальные изменения – те, которые легко моделируются с помощью дифференциального и интегрального исчисления Ньютона и Лейбница; это исчисление хорошо объясняет слаженно работающую Вселенную Ньютона. Если переменная непрерывна, как, например, расстояние, которое вы проезжаете на автомобиле (являющееся функцией времени), то никаких больших неожиданных изменений в пути, как правило, не происходит. Но если процесс разрывный, то предсказания становятся невозможными. Катастрофы показывают нам, что, несмотря на технический прогресс, в нашей жизни и в физической Вселенной остаются аспекты, которые мы не понимаем и не можем контролировать.

Иногда математика говорит, что некоторые вещи нельзя знать наверняка. В теории хаоса мы видим, как в очень простых физических системах возникает хаотичное поведение элементов, которое не является случайным. Возьмем для примера двойной маятник, сделанный из двух металлических шариков, связанных нитью с точкой вращения на середине расстояния между шариками. Такая система позволяет шарам двигаться независимо друг от друга, их колебания становятся непредсказуемыми, полностью хаотичными.

Хаос – это крайняя форма свойства, которое мы называем нелинейностью. Линейные переменные растут медленно, подчиняясь уравнению прямой линии. Нелинейные переменные растут намного быстрее и поэтому с большим трудом поддаются ограничениям. Можно сказать, что они ведут себя менее сдержанно. Например, если курс акций изменяется пропорционально третьей степени некой экономической переменной, то это означает, что увеличение переменной вдвое повлечет за собой повышение курса акций в восемь раз (так как два в третьей степени равно восьми). Это – пример нелинейности.

Турбулентность является процессом в высшей степени нелинейным. Ураганы показывают, как быстро турбулентность может выйти из-под контроля. Буря обычно начинается линейно, движение воздуха ускоряется медленно, возникает область низкого давления, которая медленно перемещается над океаном. По непонятным пока причинам движение это набирает силу, потоки воздуха приобретают турбулентный характер, поведение масс воздуха становится нелинейным, и начинается ураган, подпитывающий сам себя. Скорость ветра нарастает, как и его энергия, и он сметает все на своем пути. В том, что касается турбулентности, вода ведет себя так же, как воздух. Океанические течения, водовороты и другие гидрологические явления очень часто бывают в высшей степени нелинейными. Сила волн тоже может нарастать неожиданно и непредсказуемо. Небольшие изменения какой-то одной переменной могут породить волну или течение намного большей величины. Механизмы обратной связи делают процесс еще более неконтролируемым, непредсказуемым и разрушительным.

Нелинейные математические системы хорошо известны своей изменчивостью. Например, для того, чтобы понять, как будет колебаться двойной маятник, нам надо знать начальные условия его движения с недостижимой для нас точностью. Почему? Потому что хаотичная система очень сильно зависит от начальных условий. Если движение маятника начинается в какой-то точно определенной точке (причем для нас не важно, что именно мы выбираем в качестве этой исходной точки), например на высоте 18,5 сантиметров, то маятник будет колебаться по определенной траектории, зависящей от начальной высоты подъема маятника. Но если в следующем опыте вы поднимете тот же маятник на высоту 18,50000000000000000000001 сантиметра, отличающуюся от предыдущей высоты на очень малую в выбранном масштабе измерений величину, колебания маятника станут совершенно другими. Можно математически доказать, что каждый раз, когда хаотическая система приходит в движение с разных исходных точек, даже очень близких друг к другу, ее поведение становится совершенно иным. Этот пример показывает реальную ограниченность наших знаний о мире.

Надо сказать, что неожиданные, непредсказуемые, хаотические процессы влияют в этом мире на все, включая и историю о том, как мы стали господствующим на Земле видом. Падение на нашу планету крупного астероида или метеорита 65 миллионов лет назад привело к вымиранию динозавров и возвышению приматов, а в конечном итоге и к эволюции человека. Метеорит и удар были разрывными, внезапными событиями, приведшими к решающим изменениям условий жизни на Земле. Уравнения, описывающие движение нашей планеты и других небесных тел Солнечной системы (если бы они были в то время известны), могли сделать эти события предсказуемыми, но они были бы не в силах предсказать их последствия. Сегодня мы знаем, что орбиты малых космических объектов в нашей Солнечной системе являются хаотическими по своей природе. Вселенная полна таких сюрпризов, бросающих вызов научной предсказуемости.

Вскоре после выхода в свет моей книги «Последняя теорема Ферма» («Fermat’s Last Theorem») мне позвонил Бенуа Мандельброт, отец фрактальной геометрии. Друзья из IBM, где тогда работал Мандельброт, сказали мне, что это была единственная книга, с которой Мандельброт не расставался во всех своих поездках. Мы договорились о встрече в маленьком ресторанчике неподалеку от моего университета. После приятного разговора о математике и о жизни я спросил Мандельброта: «Как вам пришла в голову идея фрактала?» Ответ сильно меня заинтриговал: «На эту идею меня натолкнула фондовая биржа».

Очевидно, Мандельброт следил за изменениями биржевых курсов в течение различных временных циклов: годовых, месячных, недельных, дневных, минутных и мгновенных. В результате таких наблюдений он заметил, что колебания всегда выглядели одинаково, то есть имели одинаковую геометрическую форму – зубчатый рисунок этих изменений оставался прежним, независимо от величины периода. Это натолкнуло Мандельброта на идею самовоспроизводящейся структуры: фрактала. Эти структуры тесно связаны с теорией хаоса. Если вы «живете» на фрактале, то ваша жизнь является непредсказуемой, так как переходы от одной точки поверхности фрактала к другой непредсказуемы и хаотичны.

Этим я хочу подчеркнуть, что какими бы обширными математическими знаниями мы ни обладали, какие бы точные уравнения ни составляли, всегда найдутся такие переменные величины и количества, которые мы никогда не сможем предсказать с какой бы то ни было точностью, потому что эти величины хаотичны по своей природе.

Наилучший пример – это «эффект бабочки», идея которого была разработана математиком и метеорологом из Массачусетского технологического института Эдвардом Лоренцем. Это гипотетический эффект, произведенный взмахом крыльев бабочки в Китае. Взмах непредсказуемо вызывает ураган, обрушившийся на Восточное побережье США. Это теория хаоса в действии: крошечное возмущение величины давления воздуха в одном месте, ничтожное по своим начальным параметрам в сравнении с системой (Землей и погодой на ней), может вызвать гигантские, неожиданные изменения в другом, удаленном месте земного шара.

Теория хаоса демонстрирует ограниченность нашего знания: не важно, насколько точно человек понимает природные и физические системы, так как всегда найдутся вещи, которые мы будем неспособны ни понять, ни предсказать. Мне думается, что теория хаоса указывает на большую и неизбежную лакуну в науке, не оставляющую нам иного выбора, кроме признания ограниченности человеческих знаний и возможностей объяснения механизмов Вселенной. Существует большое разнообразие ситуаций и обстоятельств, в которых системы становятся внутренне хаотичными или почти хаотичными. Очевидно, что человек часто не в состоянии предсказать штормы, землетрясения, цунами и другие природные явления. В каких-то случаях исследователи смотрят на все это с точки зрения теории катастроф, а иногда рассматривают как характеристически нелинейные события, в которых теория хаоса помогает объяснить их непредсказуемость.

Крах фондовых рынков – это тоже в высшей степени нелинейное событие, имеющее непосредственное отношение к теории хаоса. Крах 1929 года стал классическим примером такого происшествия. Резкие колебания курсов акций, наблюдавшиеся Бенуа Мандельбротом, тоже являются непредсказуемыми событиями. Небольшие изменения в локальных сегментах мировой экономики могут привести (путями, которые мы даже не в состоянии себе вообразить) к огромным сдвигам на рынках ценных бумаг и даже к обрушению всей мировой финансовой системы.

Проведя день на Уолл-стрит, все экономические гуру начинают выступать со своими объяснениями того, что произошло в тот день на бирже: «Рынок упал, потому что…» или «Рынок вырос, потому что…». Часто этот анализ выглядит полнейшей бессмыслицей, поскольку изменения были непредсказуемыми, а значит, и необъяснимыми.

Теория хаоса, теория катастроф и нелинейность учат, что некоторые события просто выходят за пределы нашего понимания. К сожалению, человеческий мозг приспособлен к линейному мышлению: в своих суждениях мы идем по пути последовательного перехода от одного пункта к другому. Мы можем прямым или гладким и плавным путем перейти из точки А в точку Б, но не способны по самой своей природе понять или предсказать неожиданную нелинейную траекторию этого перемещения. Даже наша математика, очень надежная в описании линейных и гладких траекторий, в иных случаях отказывается нам служить.

Отсутствие способности предсказывать исходы определяется не «плохой математикой». На самом деле это результат того, что очень сложные системы весьма чувствительны к начальным условиям: никто не может предсказать, как взмах крыльев бабочки изменит динамику всей системы. Это свойство нелинейных систем представляет собой огромную брешь в наших знаниях о природе и еще раз демонстрирует, что есть и всегда будут вещи, не поддающиеся удовлетворительному предсказанию. Что это говорит о нашей способности понимать природу?

Очень важно понять, что хаос – это не случайность. Хаотичная система является не случайной, а детерминистской в том смысле, что результат каждого события в ней прямо ведет к следующему без всякой случайности. Проблема заключается в том, что мы не знаем – к какому именно событию.

Очень важно, что система может быть нелинейной в своей основе и непредсказуемой, но в то же время не является и случайной. Этот факт говорит нам, что в природе существуют процессы и исходы, которые не поддаются даже вероятностному анализу. По сути они для нас непознаваемы и в каком-то смысле находятся в сфере богов – во всяком случае, вне пределов человеческого понимания и, тем более, контроля.

Удивляет еще и то, что хаотичные, катастрофические и нелинейные феномены не обязательно требуют множества переменных и вводных данных для своего запуска. Поведение нашего двойного маятника, сделанного из двух металлических шариков и отрезка нити, немедленно после запуска становящееся хаотичным, говорит о том, что даже очень простой с виду процесс может быть непредсказуем. Если же остаются бесплодными наши попытки понять простейшие из естественных процессов, то как можем мы претендовать на такое совершенное и могущественное знание, которое позволило бы нам опровергнуть существование Бога?

Глава 11

Между Богом и антропным принципом

Это самая важная глава, ибо в ней мы рассмотрим антропный принцип, согласно которому наша Вселенная такова, потому что если бы она была другой, то нас бы в ней не существовало. Антропный принцип – это одно из самых мощных орудий атеистов, которые используют его в своей битве с идеей о сотворении мира Богом.

Воспринимаемая нами Вселенная характеризуется набором отлично пригнанных друг к другу констант – таких как масса электрона или сила тяжести, от которых зависит существование нашего мира. Это привело некоторых ученых к мысли о том, что если мы здесь, значит, мир должен быть таким, каков он есть. Нам приходится жить в этой единственной гостеприимной для нас Вселенной среди всех других частей мультивселенной. То есть мы находимся в той Вселенной, в какой можем существовать. Антропный принцип плюс существование бесконечной совокупности вселенных (по большей части негостеприимных) многие рассматривают как удачную замену Бога, который целенаправленно сотворил природные константы для того, чтобы мы могли жить.

В ХХ веке появилась квантовая теория. Роджер Пенроуз всю свою жизнь посвятил попыткам понять, как работает вселенная. После многолетних экспериментов и размышлений он пришел к поразительному выводу: если бы энтропия (мера неупорядоченности, часто используемая в физике) космоса хоть ненамного отклонилась от существующей величины, то Вселенной бы не существовало. Таким образом, Вселенная должна была быть «идеально настроенной» в такой степени, какую мы не можем ни осознать, ни представить. В книге «Путь к реальности»[19] Пенроуз пишет: «Можно ли привлечь антропный принцип для объяснения весьма специфической природы Большого взрыва? Следует ли включить этот принцип в качестве составной части в картину инфляции, так чтобы первоначально хаотичное (то есть обладавшее максимумом энтропии) состояние тем не менее привело к образованию Вселенной, в которой мы живем и где господствует второе начало термодинамики?»

Второе начало термодинамики гласит, что энтропия системы со временем возрастает. Модель Вселенной Пенроуза, давшей начало человеческой жизни, обусловлена определенными требованиями: например, соблюдением второго начала термодинамики, условием равновесия температур и другими условиями. Пенроуз пишет:

Грубо говоря, аргумент звучит так: «Для того чтобы существовала разумная жизнь, нам нужна большая Вселенная, располагающая временнй шкалой, достаточной для эволюции в благоприятных условиях, и т. д. Эти условия требуют инфляции, начавшейся в ограниченном регионе и поражающей нас видом той огромной Вселенной, которую мы знаем». Может показаться, что благодаря своей романтичности такие аргументы устоят против любой научной критики, но я все же склонен думать, что это не так… Требуемая для такого процесса точность соблюдения фазовых, пространственных и объемных отношений имеет вероятность, равную единице, деленной на (1010)123. Степень 10123 – величина энтропии черной дыры, масса которой равна массе наблюдаемой нами Вселенной.

Только такой математический гений, как Пенроуз, мог представить аргументы в пользу существования порождающей жизнь Вселенной, построенные на термодинамических требованиях черной дыры. После этого Пенроуз, уточняя аргумент, спрашивает: «Но на самом ли деле нам нужны условия для жизни во всех частях Вселенной?» Ответ его заключается в том, что существует минимальная часть Вселенной, в которой в результате действия слепых и неумолимых сил возникли благоприятные условия для поддержания жизни и разума. Это позволяет Пенроузу несколько смягчить условия:

Таким образом, точность, которая требовалась от нашего Создателя… для того чтобы построить меньший участок, иеет вероятность, равную единице, деленной на (1010)117. Теперь творцу нужен лишь очень малый сегмент первоначального множества, намного меньший, чем раньше. Господь наверняка выбрал для этого тихий и спокойный участок… Должно быть, в возникновении нашей Вселенной действительно было нечто весьма особенное… Или примем версию о том, что первоначальный выбор был «божественным актом», или попытаемся измыслить какую-нибудь физическую или математическую теорию, объясняющую в высшей степени необычную природу Большого взрыва. Лично я склонен посмотреть, насколько далеко удастся нам продвинуться по второму пути.

Пенроуз рисует и образ Создателя – человека с длинной белой бородой, указующего перстом на бесконечно малую точку всего «пространства параметров», мыслимых для актуальной энтропии Вселенной и создания той, что мы имеем. Не будучи религиозным человеком, Пенроуз тем не менее понимает: для того чтобы появился наш мир, должно было случиться чудо и возникнуть строго определенное количество энтропии, требующееся для его создания. В поисках альтернативной причины такого точного попадания в бесконечно малую вероятность Пенроуз признает, что разработка квантовой теории гравитации может привести нас к вариантам ответа.

Самый знаменитый ученик, а ныне научный соратник Пенроуза – Стивен Хокинг. Как мы уже видели, он уклоняется от обсуждения темы сотворения Вселенной, становясь иногда на атеистическую точку зрения. Всю свою сознательную жизнь Хокинг всерьез занимался разбором идей антропной теории.

В сентябре 1981 года Хокинг присутствовал на конференции в Ватикане. Обращаясь к нему, находившемуся в группе ведущих ученых мира, папа Иоанн-Павел II сказал, что, вероятно, человек тщетно ищет движущие силы сотворения Вселенной. По мнению понтифика, такое знание проистекает «из божественного откровения». Папа был прав, утверждая, что физика и космология не в состоянии показать нам движущие силы сотворения Вселенной и, тем более, найти причины, вызвавшие Большой взрыв. Независимо от того, существует Бог или нет, мы не способны объяснить Большой взрыв. Некоторое время спустя Хокинг, обсуждая этот вопрос с писателем Джоном Бослафом, высказал свой взгляд на Вселенную и на ее возникновение:

Вероятность того, что Вселенная, подобная нашей, могла возникнуть в результате Большого взрыва, ничтожно мала. Начиная обсуждать происхождение Вселенной, в первую очередь вспоминаешь религиозные объяснения.

Всю свою жизнь Хокинг удивлялся свойствам элементов, составляющих Вселенную. Если бы заряд электрона был немного другим, то не горели бы звезды и не взрывались сверхновые, выбрасывающие в пространство множество необходимых для жизни элементов. Если бы сила притяжения была хоть чуть-чуть слабее, то не было бы компактной материи, не существовало бы ни звезд, ни планет.

У нас нет теории, которая могла бы объяснить, почему заряды и массы частиц таковы, каковыми они являются. С теоретической точки зрения эти параметры представляются произвольными. Но если бы их величины отличались от реальных хоть на йоту, нас попросту бы не существовало. Хокинг сказал следующее: «Если принять во внимание все возможные константы и законы, которые могли бы иметь место в пространстве, то можно понять, что шансы возникновения Вселенной, способной породить жизнь, были ничтожно малы».

В своей попытке объяснить, как образовалась породившая жизнь Вселенная, само возникновение которой имело крайне низкую вероятность, Хокинг пришел к антропному принципу. Биограф Хокинга Китти Фергюсон пишет:

Хокинг следующим образом поясняет антропный принцип: представьте себе множество различных, удаленных друг от друга вселенных или изолированных участков одной Вселенной. Условия в большинстве их неблагоприятны для возникновения разумной жизни. Однако в некоторых появились предпосылки для возникновения звезд, галактик и солнечных систем, на которых возникли разумные существа, спрашивающие: почему Вселенная такова, какой мы ее видим? Согласно антропному принципу, ответ может быть один: если бы Вселенная была другой, нас бы в ней не было и некому было бы задать этот вопрос.

Многие физики не любят антропный принцип, потому что он ничего не объясняет, давая лишь тривиальный ответ: порядок вещей таков, каков он есть, потому что он не может быть иным. Кроме того, антропный принцип – не самая удачная замена Бога. Можно сказать, что существует лишь одна Вселенная и Бог сотворил ее именно такой, с нужными параметрами и силами, подходящей для возникновения разумной жизни. Постулировать бесконечное множество вселенных и антропный принцип, «выбирающий» ту из них, где мы должны жить, – это очень расточительный и к тому же не слишком научный способ построения модели жизни. Хокинг и многие другие физики надеются, что настанет день, когда универсальная «теория всего» объяснит значимость всех параметров Вселенной, упразднив, таким образом, антропный принцип.

Несмотря на то что антропный принцип не имеет никакой научной ценности и не может правдоподобно объяснить реальность, новые атеисты с радостью за него ухватились в качестве аргумента, заменяющего необходимость творца. В своей книге «Бог как иллюзия» Ричард Докинз посвящает 30 страниц этому принципу и даже весьма любопытным способом связывает его с естественным отбором: «Естественный отбор работает, потому что это дорога с односторонним движением, накапливающая удачные изменения. Повезти должно только в самом начале, и это “миллиардам планет” обеспечивает именно антропный принцип». Заметив, что антропный принцип «ненавистен большинству физиков», Докинз продолжает: «Я не могу понять почему. Думаю, что он просто прекрасен. Возможно, я так считаю, потому что мое сознание было воспитано Дарвином».

Роджер Пенроуз, на самом деле, отходит от антропного принципа. Пенроуз считает, что Вселенная обязана своим происхождением либо «божественному акту творения», либо причине, которую мы обнаружим, когда будет создана «окончательная физическая теория». Подобно мультивселенной, антропный принцип – это своего рода принудительный аргумент, не имеющий глубокого теоретического обоснования.

Антропная идея существует в нескольких вариантах. Слабый антропный принцип занимается конкретными переменными, например отвечает на вопрос: почему мы живем на Земле, а не на Венере? На Венере слишком жарко, поэтому мы находимся здесь, а не там. Мы должны жить в «обитаемой зоне» нашей Солнечной системы, удовлетворяющей требованиям Златовласки – не слишком жарко и не слишком холодно. В этой зоне вода должна существовать в жидком агрегатном состоянии, чтобы сделать возможным существование жизни.

Сильный антропный принцип применяют ко всему: к массам и зарядам элементарных частиц, к космологическим константам, к энтропии нашего участка Вселенной, к величинам всех природных сил и прочему. Сильный антропный принцип гласит, что все природные величины такие просто потому, что если бы они были иными, то нас бы здесь не было.

У антропного принципа интересная история. В начале 1960-х годов принстонский физик Роберт Дикке воспользовался антропными аргументами для того, чтобы объяснить возраст Вселенной, который, по его мнению, должен быть совместим с эволюцией жизни и с разумными сознательными существами. Во Вселенной, слишком юной для того, чтобы на ней могла развиться жизнь, таких существ просто не было бы. Однако сам термин антропный принцип был придуман в 1973 году австралийским физиком Брендоном Картером. Впервые он сказал о нем в Кракове, в речи на конгрессе, посвященном пятисотлетию со дня рождения Коперника.

За прошедшие десятилетия аргумент Дикке распространили и на другие численные величины, характеризующие свойства наблюдаемой Вселенной. Ученые задавали следующие вопросы. Почему масса протона в 1836,153 раза больше массы электрона? Почему электрические заряды верхних и нижних кварков равны 2/3 и –1/3 соответственно? И почему на той же шкале заряд электрона в точности равен –1? Почему гравитационная постоянная Ньютона равна 6,67384 10–1?

Есть еще один вопрос, занимающий умы физиков с 1916 года. Почему постоянная тонкой структуры так соблазнительно близка к величине 1/137, обратной простому числу? (Теперь мы знаем эту постоянную с куда большей точностью – 1/137,035999.)

Ричард Фейнман однажды написал: «Это одна из величайших проклятых загадок физики: магическое число, пришедшее к нам неизвестно откуда. Можно сказать, что его “начертала божественная рука”, но мы не знаем, что “двигало карандашом”». Астроном Артур Эддингтон (доказавший теорию Эйнштейна об искривлении пространства-времени вблизи массивных объектов) построил вокруг этого числа множество нумерологических гипотез, ни одна из которых, впрочем, так и не была доказана. (Правда, Эддингтон полагал, что эта константа равна 1/136.) Есть даже анекдот о том, что австрийский физик и один из первопроходцев квантовой механики Вольфганг Паули, который всю жизнь был одержим числом 137, умирая, попросил Бога разъяснить ему эту загадку (между прочим, Паули в то время лежал в больнице, в палате номер 137) и вознесся на небо, где Бог вручил ему толстый конверт и сказал: «Прочти мой препринт, там я объяснил все».

Если отвлечься от забавных историй и анекдотов, то надо признать, что все физические константы, описанные выше, пока не поддаются анализу и разумному объяснению. Одним из физиков, пытавшихся понять их, был Стивен Вайнберг, который часто опережал свое время. В 1998 году, буквально за несколько месяцев до публикации поразительного астрономического открытия об ускоряющемся расширении Вселенной, приведшего к выводу о существовании «темной энергии», пронизывающей пространство и распирающей Вселенную, Вайнберг и его коллеги из Техасского университета опубликовали статью о гипотетической темной энергии. Авторы утверждали, что если такая энергия существует, то ее величина может колебаться в очень узких пределах, приведенных в статье. В противном случае энергия будет или слишком велика для того, чтобы галактики могли сливаться под действием сил гравитации, или слишком мала, и тогда может произойти гравитационный коллапс до того, как успеет развиться жизнь.

Вайнберг и его коллеги пришли к выводу, что величина космологической постоянной должна основываться (в определенных границах) исключительно на антропном принципе. Он позволил предсказать значение неизвестного параметра, но при этом была использована неудовлетворительная методология, так как она не выявила никаких оснований для величины космологической константы, за исключением все того же аргумента: «Если мы здесь и наблюдаем это, то оно должно находиться в таком-то диапазоне величин».

Конечно, то же самое можно сказать и по поводу постоянной Ньютона, масс и зарядов кварков и электрона, константы тонкой структуры, параметров, управляющих сильными и слабыми ядерными силами, и т. д. Силы природы чрезвычайно точно подогнаны под то устройство Вселенной, какое мы наблюдаем. С точки зрения антропного принципа, если мы здесь, то параметры должны быть именно такими, какими они являются в реальности.

Сила тяжести, несмотря на то что именно ее действие мы ощущаем больше всего, является самой слабой из всех четырех природных сил. Гравитация на сорок порядков слабее сил электромагнитного поля. Можете провести наглядный эксперимент: положите на стол небольшую скрепку. Она будет лежать на месте, удерживаемая полем тяготения всей расположенной под столом планеты. Теперь возьмите маленький магнит и постепенно приближайте его сверху к скрепке. Когда магнит приблизится на достаточное расстояние, она подпрыгнет вверх и прилипнет к нему. Это показывает, что даже крошечный магнит, обладающий электромагнитными силами, может преодолеть силу притяжения всей необъятной Земли.

Почему же сила тяготения на сорок порядков слабее сил электромагнитных? Почему четыре природные силы имеют именно такие, а не иные величины? Если бы было по-другому, нас бы здесь просто не было: гравитация раздавила бы нас еще до появления на свет, если бы была сильнее. А если бы иным было электромагнитное поле, то перестала бы работать вся химия, ибо ядро не смогло удержать около себя противоположно заряженные частицы. Если бы сильные внутриядерные силы имели иную величину, то кварки либо были бы раздавлены, либо улетели из протонов и нейтронов, а сами ядра просто прекратили свое существование. Если бы иную величину имели слабые внутриядерные силы, то либо все элементы стали бы радиоактивными, либо звезды перестали бы излучать свет и тепло. В обоих случаях жизнь просто не смогла бы возникнуть.

Когда я брал у Вайнберга интервью и расспрашивал его о работе, он сказал: «Вселенная, скорее всего, напоминает гигантского кота Шредингера. Есть части Вселенной, где кот жив, космологическая постоянная имеет должную величину и находятся ученые, наблюдающие Вселенную и задающие вопросы. Есть и другие части Вселенной, где кот мертв, космологическая постоянная либо слишком мала, либо слишком велика, и там нет ни жизни, ни задающих вопросы ученых». Такой вот интересный взгляд на Вселенную.

Однако некоторые космологи прибегают к антропному принципу, потому что не знают, почему масса, заряд электрона и кварка, энтропия Вселенной и величина космологической постоянной таковы, что стало возможным существование нашей Вселенной.

Если вы захотите проверить, какая из двух гипотез верна: Вселенная, созданная согласно особым требованиям, или Вселенная, случайно оказавшаяся подходящей для жизни просто потому, что мы ее наблюдаем, то обнаружите, что наука не в состоянии ответить на этот вопрос.

Как мы уже видели, физика не может уйти от загадки невероятной точности настройки многих ее параметров. Самый лучший и самый простой пример этой загадки – взаимодействие протона, нейтрона, электрона и кварков. Каждый студент-физик знает, что материя состоит из протонов и нейтронов, составляющих атомное ядро, вокруг которых обращаются электроны, завершая строение атома. Притяжение электронов к ядрам обусловлено тем, что электрический заряд электрона равен по абсолютной величине и противоположен по знаку электрическому заряду протона: без этого равновесия зарядов жизнь во Вселенной была бы невозможна.

Однако в то время как электрон не имеет отчетливой внутренней структуры и является элементарной частицей, протон и нейтрон таковыми не являются. Каждый протон состоит из трех кварков – двух верхних и одного нижнего. Суммарный электрический заряд кварков таков, чтобы заряд протона был в точности равен +1 (заряд электрона полагают равным –1), ибо в противном случае равновесие будет нарушено.

Мы знаем, что на самом деле в ядре заряд верхнего кварка равен в точности 2/3, а заряд нижнего кварка – –1/3. Если сложить заряды двух верхних и одного нижнего кварка, то получим 2/3 + 2/3 – 1/3 = 1. Каким образом стала возможной такая точность? Мало того, нейтрон (частица, присутствующая в ядрах всех элементов тяжелее водорода) должен иметь суммарный электрический заряд, равный нулю, и он состоит из двух нижних кварков и одного верхнего. Здесь снова срабатывает ставшее привычным математическое волшебство. Если вы сложите заряды кварков, составляющих нейтрон, то получите 2/3 – 1/3 – 1/3 = 0.

Но почему заряды кварков так идеально подогнаны друг к другу? В самом начале, через ничтожную долю секунды после Большого взрыва Вселенная, как считают ученые, состояла из кварк-глюонной плазмы, которую иногда называют «кварковым супом». Потом кварки, плававшие в этом плотном и исключительно горячем супе, созданном Большим взрывом, внезапно объединились в тройки с образованием протонов и нейтронов. Одно только это уже представляется загадочным: в природе большинство вещей образуют пары, но не триплеты (набор, состоящий из трех объектов). Почему и как все это произошло и как заряды, массы и силы взаимодействия, объединившись, создали стабильные сложные частицы, необходимые для возникновения Вселенной? У науки пока нет удовлетворительных ответов на эту головоломку.

На самом деле, стандартная модель физики частиц была построена с применением мощного математического аппарата именно в попытке разрешить хотя бы некоторые из этих загадок, но она не смогла ответить на вопросы о массах элементарных частиц и взаимодействиях сил. Также без ответа остается и вопрос о пресловутой константе «1/137», управляющей всеми электромагнитными взаимодействиями. Эти числа не получаются в результате решения уравнений модели; их приходится вставлять «вручную». Однако как именно были получены «свободные параметры» в наших моделях Вселенной и как они обрели именно те значения, какие необходимы для существования Вселенной, остается трудной, неразрешенной загадкой – одной из многих загадок науки.

Один из способов выйти из положения – сказать, согласно антропному принципу: «Если бы параметры были другими, то нас бы здесь не было и некому было бы задавать все эти вопросы». Но таким образом невозможно научно опровергнуть соперничающую гипотезу: «Параметры были выбраны так, чтобы можно было создать Вселенную». Так что же все-таки было первопричиной – Бог или антропный принцип?

Вероятно, самым лучшим примером неадекватности применения антропного принципа для правдоподобного объяснения природных явлений является упомянутое выше событие, случившееся 65 миллионов лет назад, – столкновение Земли с небесным телом Солнечной системы. В результате этой катастрофы атмосфера Земли наполнилась пылью, заслонившей Солнце, наступило резкое похолодание, погубившее почти все живое, включая динозавров. Ученые считают, что если бы это событие не произошло, то динозавры продолжали бы господствовать на Земле, а приматы не получили бы возможности развиться и, в конце концов, став людьми, захватить власть над нашей планетой.

Если спросить у верного поборника антропного принципа, почему астероид или гигантский метеорит столкнулся с Землей 65 миллионов лет назад, то ответ, скорее всего, будет все тот же: «Потому что в противном случае нас бы здесь не было и некому было бы задать этот вопрос». Но именно на этом примере мы действительно убеждаемся в антинаучности антропного принципа. Небесное тело Солнечной системы столкнулось 65 миллионов лет назад с Землей, потому что его орбита случайно пересеклась в тот момент с орбитой нашей планетой. Это правильное научное, а не антропное объяснение. Очень важно иметь в виду, что такого объяснения пока не существует для констант, характеризующих массы частиц и силы их взаимодействия. Поскольку же, как мы видим, антропный принцип этому объяснений не дает, нам надо искать и находить другие варианты. Таким объяснением может стать божественный замысел или, по меньшей мере, то, что пока находится за пределами нашего понимания.

Глава 12

Пределы эволюции

Предложенный в 1859 году Чарльзом Дарвином принцип эволюции навсегда изменил облик естественных наук. Благодаря Дарвину мы теперь имеем превосходный научный механизм, объясняющий, каким образом развиваются биологические виды и почему наиболее приспособленные организмы получают преимущества в распространении своих генов. Эволюция функционирует по принципу естественного отбора: хорошо адаптированные индивиды получают преимущества в размножении.

По мере изменения условий окружающей среды начинают процветать наиболее приспособленные к новым условиям виды, а менее адаптированные уменьшаются в численности или вовсе исчезают. Таким образом, эволюция объясняет, почему до сих пор существуют многие из живших некогда видов.

Корни эволюции заложены в таксономии: классификации живых существ по семействам, родам и другим группам, позволяющей видеть, как это ветвление управляет их развитием. Углубленный научный анализ дал возможность нарисовать достаточно отчетливую картину развития жизни от простых организмов к более сложным и показать ветвление их различных семейств и родов. Возможно, оно обусловлено генными мутациями, приведшими к возникновению живых существ, отличных от своих предков и близкородственных животных или растений.

Путь к теории эволюции Дарвина был открыт в XVIII веке шведским врачом, ботаником и зоологом Карлом Линнеем. Будучи студентом Уппсальского университета в 20-е годы XVIII века, Линней написал статью о тычинках и пестиках цветков. Она была высоко оценена, и ученого пригласили на работу в ботанический сад университета. Он преуспел в работе и в 1732 году был направлен в Лапландию для изучения флоры.

В Лапландии Линнею в голову пришла дерзкая идея – классифицировать все живые существа Земли. В 1735 году, защитив в Голландии диссертацию по медицине, Линней представил научному сообществу свой шедевр – книгу «Система природы» («Systema Naturae»)[20]. Двадцать лет спустя, в десятом издании этого руководства по систематике, были собраны сведения по классификации 7700 растений и 4400 животных видов.

Система Линнея, ничего не говоря об эволюции, только классифицировала живущие в то время организмы. Ученый полагал, что в мире живых существ заложен извечный порядок, который можно проанализировать, пользуясь научными методами.

Путь Дарвину проторил и еще один человек – французский ученый Жорж Кювье, изучавший живущие и вымершие виды семейства слоновых. В ходе работы Кювье пришел к выводу, что окаменелости – это остатки древних живых организмов, виды которых, прожив череду поколений, по неизвестной причине переставали существовать. Кроме того, современник Кювье, французский биолог Жан-Батист Ламарк, изучавший моллюсков, выяснил, что живые организмы со временем изменяются, развиваясь и усложняясь. Тем не менее Ламарк не верил в возможность вымирания видов.

Все эти предшествовавшие дарвиновскому учению идеи сами по себе уже противоречили буквальной интерпретации Священного Писания, согласно которому Бог сотворил живую природу неизменной – виды не меняются и не вымирают, но продолжают с момента творения вести статичное существование.

Несмотря на то что идеи изменяемости видов просто витали в воздухе, книга Дарвина «О происхождении видов путем естественного отбора»[21], вышедшая в 1859 году, потрясла широкую публику, так как поставила под сомнение роль Бога как «творца» и историю, рассказанную в книге Бытия. Даже жена Дарвина была шокирована его исследованием и стала бояться, что не сможет впоследствии воссоединиться с мужем на небесах. Тем не менее, поскольку идея уже витала в воздухе, ученые и интеллектуалы безоговорочно приняли ее за истину.

Говорят, что, когда натуралист Томас Гексли прочитал книгу Дарвина, он воскликнул: «Какой же я глупец, что не подумал об этом раньше!» Именно Гексли сыграл решающую роль в распространении идей эволюции, приспособления и отбора среди широких слоев общества, помогая пониманию и признанию теории Дарвина.

Чарльз Роберт Дарвин родился в Шрусбери (графство Шропшир, в Англии) в 1809 году, пятым из шести детей преуспевающего сельского врача Роберта Дарвина и его жены Сюзанны Веджвуд, происходившей из знаменитой семьи производителей фарфора. Дед Дарвина, Эразм Дарвин, в свое время предложил теорию, сходную с теорией Ламарка, названную им зоономией. В этой теории содержался зародыш идеи эволюции, но сама работа не была строго научной и содержала массу неточностей и произвольных спекуляций.

Дарвин изучал медицину в Эдинбургском университете, но, как говорят, был не в восторге от первоначально выбранной профессии. Он часто прогуливал занятия, посвящая время изучению работ Ламарка и своего собственного деда. Спустя недолгое время Дарвин перешел в Кембриджский университет, где поступил на богословский факультет, но и там не проявлял особого рвения, занимаясь вместо изучения теологии собиранием жуков и других насекомых, верховой ездой и охотой. Тем не менее Дарвин добился больших успехов в изучении естественной истории, ботаники и геологии.

По окончании университета профессор ботаники рекомендовал Дарвину занять неоплачиваемую должность натуралиста в качестве «джентльмена-спутника» капитана судна его величества «Бигль» Роберта Фицроя. Корабль должен был отправиться в двухгодичное плавание к берегам Южной Америки. Профессор считал, что это путешествие предоставит юному Дарвину превосходную возможность непосредственно, из первых рук, познакомиться с естественной историей. Получилось так, что судно пробыло в плавании пять лет и, обойдя Южную Америку, совершило кругосветное путешествие, которое привело Дарвина к его величайшему открытию, кардинально изменившему наш взгляд на природный мир.

В книге «О происхождении видов» Дарвин намеренно не касается вопросов религиозной веры. До самого конца он весьма осмотрительно допускает существование «Творца», хотя и избегает привлекать его для объяснений. Организмы развиваются в течение тысяч и миллионов лет от простых к более сложным формам. В знаменитом заключении Дарвин говорит о «нескольких силах», оставляя место и Творцу, хотя и отводит ему чисто пассивную роль. Вот заключительный абзац книги:

Любопытно созерцать густо заросший берег, покрытый многочисленными, разнообразными растениями с поющими в кустах птицами, порхающими насекомыми, ползающими в сырой земле червями, и думать, что все эти прекрасно построенные формы, столь отличающиеся одна от другой и так сложно одна от другой зависящие, были созданы благодаря законам, еще и теперь действующим вокруг нас. Эти законы в самом широком смысле – «рост», «воспроизведение» и «наследственность», почти необходимо вытекающая из воспроизведения. Также «изменчивость», зависящая от прямого или косвенного влияния жизненных условий, прогрессия возрастания численности – столь высокая, что она ведет к борьбе за жизнь и впоследствии – к «естественному отбору», влекущему за собой дивергенцию признаков и вымирание худших форм. Таким образом, из борьбы в природе, из голода и смерти непосредственно вытекает самый высокий результат, какой ум в состоянии себе представить, – возникновение высших животных. Есть величие в этом воззрении, по которому жизнь с ее различными проявлениями Творец первоначально вдохнул в одну или ограниченное число форм; и между тем как наша планета продолжает вращаться согласно неизменным законам тяготения, из такого простого начала развилось и продолжает развиваться бесконечное число самых прекрасных и изумительных форм.

Таково было резюме Дарвина, выраженное в превосходном и поистине поэтическом описании процесса эволюции. Потом началась полемика. Томас Гексли (известный также по прозвищу «бульдог Дарвина») возглавил сражение за эволюцию. Его заслуга состоит в том, что теория эволюции в конце концов получила общественное признание, поскольку она соответствует данным биологической науки и может на самом деле объяснить различные природные факторы.

Многие религиозные люди (особенно те из них, кто понимает, что Ветхий Завет был написан для людей, живших тысячи лет назад и не обладавших современными научными знаниями) принимают дарвинизм как превосходную, жизнеспособную теорию, объясняющую возникновение жизненных форм во всей их непостижимой сложности.

По мнению великого, к сожалению, покойного, ученого-эволюциониста Стивена Джея Гулда:

Главный конфликт Дарвина с креационизмом[22] заключается не в том, что последний доказуемо ложен, а в том, что креационизм не располагает интеллектуальными аргументами, ибо убеждение в творении ничему нас не учит, но лишь констатирует (причем такими словами, которые многие люди могут счесть экзальтированными), что определенный организм или его признак просто существуют. То есть констатируется факт, видимый невооруженным взглядом: «Ничто не может быть более безнадежным, чем попытка объяснить сходство особей одного биологического семейства полезностью свойств или учением о конечной причине…»

Сам Гулд был твердо убежден, что эволюция не согласуется с какими бы то ни было утверждениями креационизма, но, несмотря на это, терпимо относился к религиозным интерпретациям, принимавшим эволюционную теорию, хотя и был атеистом. Именно в этом контексте он говорит: «Дарвин, например, и его последователи Хаттон, Лайелл и многие другие великие мыслители избегали всяких измышлений о первопричинах вещей (как находящихся за пределами науки)».

Такой подход, естественно, оставляет открытым вопрос о том, как возникла жизнь. В своей книге «Камни веков» («Rocks of Ages», 1999) Гулд пишет, что вопрос о существовании Бога находится вне пределов науки. Этот взгляд поддержали многие ученые, но осудил Докинз. Отвечая Гулду, он писал:

Я просто не могу поверить в то, что Гулд действительно имел в виду то, что он написал в «Камнях веков». Как я не раз говорил, всем нам приходится сдавать назад для того, чтобы не обижать невежественных, но могущественных оппонентов, и мне хочется надеяться, что Гулд именно так и поступает. Не имел же он в самом деле намерения недвусмысленно заявить о том, что наука вообще ничего не может сказать по поводу существования Бога… Однако по Гулду выходит, что наука не может высказывать даже вероятностные суждения по этому вопросу.

Как мы уже видели, когда Докинзу не нравится то, что считает другой ученый, он отбрасывает его суждение, говоря, что этот ученый имел в виду «нечто другое» или хотел ублажить своих оппонентов. Неясно, правда, как сам Докинз собирается определять честную вероятность существования Бога. Откуда возьмется объективная вероятность? Пока нет научных методов, позволяющих сделать это беспристрастно.

Нам, однако, ясно, почему Докинз критиковал беспристрастного Гулда. Вот что пишет Гулд в начале книги «Камни веков»:

Я неверующий человек. Я – агностик в том смысле, какой мудро придал этому понятию Томас Гексли, который тем самым обозначил непредвзятый скептицизм как единственно возможную позицию. Ибо человек не может знать ничего доподлинно. Тем не менее, несмотря на мой отход от родительских взглядов (и благодаря отсутствию в моем воспитании влияния источников бунта против родителей), я сохранил большое уважение к религии. Она всегда очаровывала меня больше других предметов (если не считать эволюции, палеонтологии и бейсбола).

Даже такой именитый эволюционист, как Гулд, принял ценность религии для нашей жизни, что прекрасно видно по его книге. Конфликт между эволюцией и религиозной верой неизбежен лишь в глазах новых атеистов, и в этом кроются истинные причины враждебности Докинза. Для него грехом является даже обычное уважение к убеждениям верующих. Целый раздел книги «Бог как иллюзия» посвящен разъяснению причин, по которым вера в Бога не заслуживает уважения и интеллектуального понимания со стороны таких просвещенных избранных, как сам Докинз.

Однако эволюция и вера в Бога не обязательно противоречат друг другу. Еще в начале XX века выдающийся французский философ, геолог, палеонтолог и иезуитский священник Пьер Тейяр де Шарден смог убедительно доказать, что эволюция не подменяет собой Бога. Создатель (или та сила, которая нас создала) может делать свое дело посредством эволюции.

«Бог руководит процессами эволюции, – говорил Тейяр. – Я не вижу противоречия между эволюцией и моей верой в Бога». Для Тейяра сами эти законы были так или иначе «созданы». По мнению философа, эволюционные процессы не заменяют первоначального творца, который их запустил и создал зародыш жизни, именно потому, что они реально существуют. Тейяр был глубоко и истинно верующим человеком, но это не мешало ему верить в науку и учение об окружающем нас мире.

Тейяр был одним из палеонтологов, участвовавших в великом открытии окаменевших останков пекинского человека (одного из «недостающих звеньев» между человеком и обезьяной) в гроте Чжоукоудянь к юго-западу от Пекина, вызвавшем большое воодушевление среди антропологов. Тейяр в то время находился в Китае, так как был изгнан туда распоряжением церковных иерархов за сочинения и лекции по теории эволюции. По иронии судьбы, именно там он мог больше всего навредить церкви, ибо в Китае Тейяр де Шарден занялся «практической эволюцией», приняв участие в анализе находки, возраст которой составлял не меньше 600 тысяч лет.

Пекинский человек относился к виду гоминидов, названному Homo erectus (человек прямоходящий), предшественнику современных людей и неандертальцев. Его мозг по объему занимает промежуточное положение между обезьяной и современным человеком. Тейяр сумел доказать, что пекинский человек пользовался огнем для приготовления пищи и отопления пещер.

У теории эволюции есть видимые недостатки. Она не может объяснить множество типов поведения животных и их анатомического строения. Почему некоторые виды до сих пор существуют? Мой излюбленный пример – павлин. Неужели его огромный неуклюжий хвост так необходим для привлечения самок? Должно быть, они более требовательны к своим «мужчинам», чем капризные звезды Голливуда. Почему бы им не удовлетвориться меньшим хвостом? Разве это немыслимое украшение не делает павлинов более уязвимыми для хищников? Почему эволюция позволила существовать этой анатомической детали и, мало того, хвост стал залогом выживаемости павлинов?

Самой обсуждаемой темой, связанной с поведением животных в современной науке, стала проблема альтруизма. Милосердный человек, анонимно жертвующий свои деньги на помощь нуждающимся, не получает никаких эволюционных преимуществ. Вообще, исходя из чисто эволюционной точки зрения, можно было бы утверждать, что по мере развития общества альтруизм должен отмирать. Но этого почему-то не происходит.

Сюжет становится еще более запутанным, если мы добавим к нему знания, добытые современной генетикой. Естественный отбор говорит нам, что индивиды стремятся передать свои гены будущим поколениям. Значит, рискованное поведение людей, спасающих незнакомцев из горящих домов, должно, по идее, исчезнуть, ибо оно снижает вероятность передачи генов этих героев будущим поколениям.

Все это выглядит дискредитацией эволюции как принципа. Было предложено следующее объяснение такому альтруистическому поведению: мужество, проявленное спасателем, играет роль павлиньего хвоста в привлечении женщин. По видимости, альтруист-пожарный зарабатывает престиж, который помогает ему привлекать здоровых красивых женщин с великолепными генами, и поэтому если пожарный не погибает в огне, то получает возможность передать наследственность будущим поколениям с большей вероятностью, чем те, кто не желает рисковать жизнью.

Альтруизм можно объяснить и по-другому. Возможно, он все же помогает сберегать гены, поскольку чаще всего спасают своих – детей и других родственников. То есть альтруисты косвенно способствуют передаче своих генов будущим поколениям согласно формуле, выведенной эволюционистом В. Гамильтоном: обеспечить продолжение своему геному можно, если ценой собственной жизни спасти двух своих детей, четырех двоюродных сестер или братьев или восьмерых троюродных сестер или братьев. С помощью статистики можно доказать, что, проявляя альтруизм именно в таких соотношениях, вы спасете от элиминации собственную ДНК. Уже в 1930-х годах британский ученый Дж. Б. С. Холдейн сказал, что готов «положить жизнь за двух братьев или восьмерых кузенов». Будут ли, однако, люди рисковать ради братьев и сестер более охотно, чем из-за детей? Едва ли, и поэтому все эти «генетические» расчеты представляются мне весьма спорными.

Можно ли с точки зрения эволюции объяснить постоянное существование в нашем мире людей таких специальностей, как солдаты, медики, пожарные, полицейские, а также добровольцы, мужественно спасающие всех нас, рискуя при этом собственной жизнью? Примеров тому множество в современной и недавней истории. Европейские христиане спасали еврейских детей от холокоста, рискуя быть казненными нацистами. Белые активисты в 1960-е годы рисковали жизнью, помогая черным на Юге США. Солдаты рассказывают о возникающем в боях фронтовом братстве, когда люди выручают друг друга, рискуя быть ранеными или убитыми. Говорить о том, что такие действия способствуют передаче генов будущим поколениям, по меньшей мере нелепо.

Американский генетик Э. Уилсон, всю жизнь объяснявший альтруизм некими гипотетическими эволюционными преимуществами, недавно отказался от этих взглядов. В своей последней книге он уподобил сообщество людей колонии муравьев, которые часто выбирают поведение, хотя и укорачивающее их индивидуальную жизнь, но помогающее выжить всей колонии в целом. Нельзя, правда, с уверенностью утверждать, что такая аналогия справедлива. Что можно считать аналогией колонии муравьев в человеческом обществе: семью, армейский взвод, сельскую общину, народ или весь род человеческий?

Приходилось ли вам слышать рассказы о человеке, который бросился в ледяную воду, чтобы спасти тонущую собаку, или о пожарном, рисковавшем жизнью ради спасения кошки из горящего дома? Такие поступки не принесут никакой пользы «колонии», даже если под колонией понимать все человечество, придерживаясь аналогии Уилсона. Таким образом, истинно альтруистическое поведение, которое, как мы знаем, существует с незапамятных времен, невозможно объяснить, исходя из учения об эволюции.

Сейчас я приведу пример, по выражению Докинза, наносящий «зубодробительный удар» по эволюции как источнику возможного объяснения альтруизма. В мае 2012 года несколько групп альпинистов, как это бывает каждой весной, штурмовали Эверест. Один из них, молодой израильтянин, был уже недалек от вершины, когда натолкнулся на беспомощно лежавшего турецкого альпиниста, потерявшего в результате падения кислородную маску, баллон и большую часть снаряжения. Турок, скорее всего, скоро бы умер от холода и недостатка кислорода в разреженном воздухе.

Израильтянин, находившийся в прекрасной форме и близкий к исполнению мечты всей своей жизни, немедленно остановился и потратил несколько часов на то, чтобы помочь искалеченному турку спуститься к лагерю. Израильтянин спас турецкому альпинисту жизнь, потеряв от обморожения три пальца на руках и четыре на ногах и простившись с надеждой когда-нибудь покорить высочайшую вершину мира.

После экспедиции печально известной турецкой флотилии в Газу в мае 2010 года Турция и Израиль находятся в состоянии вражды. Собственно, между народами этих стран никогда и не было особой любви. На одежде упавшего альпиниста отчетливо виднелся флаг Турции – звезда и полумесяц. Другие альпинисты прошли мимо, предоставив турка его судьбе. Израильтянин стал бы куда более сексуально привлекательным для красивых женщин, если бы вместо спасения турка и потери семи пальцев покорил Эверест. Так зачем он это сделал? Зачем многие другие люди совершают подобные акты мужественного альтруизма, причиняя себе вред, без всякой надежды сберечь часть ДНК своей и родственников? Ответ прост: причина в человеческой доброте и порядочности. Эволюция не может научно объяснить самоотверженное альтруистическое поведение.

Страницы: «« 12345 »»

Читать бесплатно другие книги:

Частный детектив Александр Шибаев пробежал глазами заметку о жестоком убийстве предпринимателя Плотн...
Живете, как и большинство ваших современников, крутясь как белка в колесе и беспрерывно бегая по кру...
Перед вами книга известного психолога и тренера Леонида Каюма, которую многие сравнивают с работами ...
В книге – описание современных техник, приемов и «фишек» успешных продаж, которые обычно держатся в ...
Гриффин Стил, побочный сын принца-регента, жил в свое удовольствие и имел сомнительную славу владель...
Мэгги – обычная семнадцатилетняя девушка из маленького городка, и у нее полно проблем: родители разв...