От Дарвина до Эйнштейна. Величайшие ошибки гениальных ученых, которые изменили наше понимание жизни и вселенной Ливио Марио
И все же многих британских геологов убедить не удалось. Возникает подозрение, что некоторым из них было удобнее все объяснять не физическими законами, а, по циничному замечанию американского геолога Томаса Чамберлина, сделанному в 1899 году, «строительством замков из песка на берегах времени». Лучшим примером подобного скептического отношения к изысканиям Кельвина служит интереснейший обмен мнениями между Кельвином и шотландским геологом Эндрю Рэмси. Поводом послужила лекция геолога Арчибальда Гейки о геологической истории Шотландии. Впоследствии Кельвин пересказал разговор с Рэмси, состоявшийся сразу после лекции[110], отметив, что каждое слово «запечатлелось в его памяти».
«Я спросил Рэмси, сколько времени, по его мнению, заняла эта история. Он ответил, что не может представить себе никаких границ. Я спросил: «Не думаете же вы, что история насчитывает 1 000 000 000 лет?» – «Почему же, думаю!» – «А 10 000 000 000 лет?» – «Да!» – «Солнце – тело конечного объема. Можно сказать, сколько в нем тонн. Неужели вы думаете, что оно светит уже миллион миллионов лет?» – «Я не в силах ни оценить эту величину, ни понять доводы, которыми вы, физики, обосновываете свои попытки ограничить геологическое время, точно так же как вы не в силах понять геологические причины наших неограниченных геологических оценок». Я ответил: “Доводы физики понять очень легко, если только дать себе труд подумать над ними”».
Кельвин был совершенно прав. Оставим в стороне вопрос о том, насколько справедливы были его физические допущения и насколько точны подробности его вычислений. Главный довод Кельвина, разумеется, можно было понять без особого труда. Поскольку и Солнце, и Земля теряют энергию, а никаких ресурсов, которые восполнили бы эти потери, не известно, значит, геологические процессы на Земле в прошлом шли активнее, чем в настоящем. Более жаркое Солнце вызывало больше испарений, а следовательно, темпы эрозии из-за осаждения были выше. В то же время Земля была горячее, чем теперь, а значит, вулканическая активность была сильнее. Следовательно, заключал Кельвин, главное предположение актуалистов, согласно которому Земля находится в квазистатическом состоянии в течение практически неопределенного времени, совершенно бездоказательно.
Неудивительно, что в 1868 году, когда Кельвин выступил с сообщением[111] в Геологическом обществе Глазго, мишенью своей едкой критики он сделал первый же текст, где читателей знакомили с принципом актуализма (сформулировал который Джеймс Геттон). Это была книга шотландского ученого Джона Плейфэра «Иллюстрации к Геттоновой теории Земли» (John Playfair. Illustrations of the Huttonian Theory of the Earth). Кельвин процитировал следующий потрясающий пассаж из этой книги, который для него выражал суть догматических представлений его современников-геологов.
«Сколько раз постигали Землю эти коловращения распада и обновления, определять не нам, они составляют цикл, ни конца, ни начала которого мы, как отметил автор теории [Джеймс Геттон], не наблюдаем, – и это обстоятельство полностью соответствуют всему, что известно нам относительно иных областей мироустройства… в движении планет, где геометрия увлекает взгляд и в прошлое, и в будущее, мы не видим никаких признаков ни зарождения, ни завершения нынешнего порядка. И в самом деле, нет никаких причин предполагать, что такие признаки вообще существуют (выделено мной. – М. Л.). Великий Автор природы не даровал Вселенной никаких законов, которые, подобно людским установлениям, заключают в себе зачатки саморазрушения. Он не допускал в трудах Своих никаких симптомов младенчества или старости, никаких признаков, по которым можно оценить, сколько они еще проживут или сколько уже прожили. Он может положить всему конец, ибо Он, несомненно, положил и начало нынешней системе в какое-то определенное время, однако мы можем с уверенностью утверждать, что никакой из ныне действующих Его законов не повлечет за собою великую катастрофу, и что, насколько мы можем наблюдать, ничто ее не предвещает.»
Вердикт Кельвина был беспощаден: «Ничего более далекого от истины и представить себе нельзя». Далее он попытался объяснить свою точку зрения простыми словами, для непосвященных.
«Земля, где бы мы ни пробурили в ней скважину, теплая, и если бы нам удалось проделать измерения на очень большой глубине, мы бы, несомненно, обнаружили, что там очень тепло. Представьте себе, что перед вами шар из песчаника, вы бурите в нем отверстие и обнаруживаете, что внутри он теплый, бурите отверстие в другом месте – и там он тоже теплый – и так далее; будет ли разумным предположить, что шар из песчаника пребывал в том же состоянии уже тысячу дней? «Нет, – скажете вы, – этот песчаник нагрели на огне и поставили остывать несколько часов назад». Столь же разумно было бы взять бутыль с горячей водой вроде тех, какие применяют в экипажах, и сказать, что бутыль была такой всегда – а ведь именно так Плейфэр утверждает, будто Земля была такой, как сейчас, вечно и на ней не видно никаких следов начала и никакого продвижения к концу[112].»
Чтобы еще сильнее утвердить свою аргументацию, Кельвин решил полагаться не только на старую систему доводов касательно Земли и Солнца, но придумал еще и третью линию доказательств, основанную на вращении Земли вокруг своей оси. Эта концепция была весьма остроумной и понятной. Первоначально Земля была жидкой и из-за вращения должна была приобрести несколько приплюснутую форму, плоскую у полюсов и выпирающую у экватора. Чем быстрее было первоначальное вращение, тем менее сферичной была получившаяся в результате форма. Эта форма, рассуждал Кельвин, должна была остаться прежней и после затвердения Земли. Поэтому для определения первоначальной скорости вращения нужно было точно измерить, насколько форма Земли отличается от сферы. Поскольку приливы, вызванные притяжением Луны, должны были играть роль трения и замедлять вращение[113], можно оценить, сколько времени потребовалось, чтобы замедлить первоначальное вращение и довести скорость до нынешней – один оборот за 24 часа.
Идея просто чудесная, однако превратить ее в точное число – возраст Земли – было очень трудно. Сам Кельвин признавался: «С нашими несовершенными данными, скажем, о приливах, невозможно вычислить, какое в точности воздействие они оказывают на замедление вращения Земли»[114]. Тем не менее Кельвин думал, что даже того обстоятельства, что в принципе можно оценить границы возраста Земли – пусть и крайне приблизительно, – достаточно, чтобы развенчать идею геологов-актуалистов о непостижимо длительном времени. О своей собственной численной оценке уменьшения периода вращения Земли – на 22 секунды в столетие – он писал: «Составляет ли потеря времени у Земли 22 секунды в сто лет или значительно больше либо меньше 22 секунд, в сущности, неважно. Но никакого актуализма быть не может. На Земле довольно свидетельств, что она существовала в нынешнем состоянии отнюдь не всегда и что события движутся в направлении состояния, которое бесконечно отличается от нынешнего».
Однако, к вящему огорчению Кельвина, оценка, основанная на скорости вращения Земли, продержалась не очень долго – по крайней мере с количественной точки зрения. Судьба распорядилась так, что не кто иной как Джордж Говард Дарвин, пятый ребенок Чарльза Дарвина, доказал, что вращение Земли не имеет отношения к ее возрасту. Джордж Дарвин был физик[115] и обладал солидными познаниями в математике. Он подошел к проблеме вращения Земли с безграничным запасом терпения и вниманием к мелочам. И опубликовал несколько статей, в основном в 1877–1879 годах, где показал, что вопреки ожиданиям Кельвина Земля будет продолжать постепенно менять форму даже при замедлении скорости вращения. Это следовало из того факта, что твердеющая Земля все же не была бесконечно твердой[116]. Итог был однозначным. Дарвин показал, что поскольку знания о внутреннем строении Земли крайне неопределенны, рассчитать возраст Земли по ее вращению не представляется возможным.
Нет нужды говорить, что Чарльз Дарвин был счастлив[117], когда обнаружил, что его сын заставил «пошатнуться» великого Кельвина, и воскликнул: «Ура потрохам земным, их вязкости, луне и светилам небесным и моему сыну Джорджу!»
Однако статьи Джорджа Дарвина отнюдь не опровергли главного утверждения Кельвина, а лишь показали, что третья линия доказательств Кельвина, основанная на вращении Земли, не подтверждает численное значение его оценки возраста Земли. Но эти статьи пролили новый свет на истину и в другом смысле. Они показали, что даже августейший лорд Кельвин не безупречен. Как мы увидим в следующей главе, это, возможно, открыло дорогу дальнейшей критике.
Глубокое воздействие
Считать дискуссию о возрасте Земли великой битвой между физикой и геологией, пожалуй, не стоит. Да, между этими дисциплинами существовали определенные методологические разногласия, однако Кельвин полагал себя полноправным британским геологом и даже в обращении к съезду Геологического общества Глазго в 1878 году объявил, что «Мы, геологи (выделено мной. – М. Л.), повинны в том, что не прибегаем к физическим опытам, дабы изучить свойства материи»[118]. Такая «гибкость» самоопределения свидетельствует о том, что научный мир XIX века был гораздо менее раздроблен. Викторианские ученые свободно посещали съезды обществ, формально относившихся к другим отраслям науки. Поэтому дискуссия о возрасте земли была не междисциплинарным диспутом, а скорее столкновением между Кельвином-человеком и доктриной, которой придерживались некоторые геологи.
Тут возникает вопрос, что подтолкнуло Кельвина к тому, чтобы вообще заняться этой проблемой. Ответ очень прост. Даже поверхностное исследование не оставляет сомнений, что стимулом, который подвиг Кельвина повести наступление на оценки возраста Солнца и Земли, был выход в свет «Происхождения видов» Дарвина в 1859 году. Поясню, что против теории эволюции как таковой Кельвин не возражал. В своем Президентском обращении к Британской ассоциации продвижения науки в 1871 году он, в частности, даже выразил осторожное согласие с некоторыми выводами, которые Дарвин делает в «Происхождении видов». Однако идею естественного отбора Кельвин отмел полностью, поскольку «всегда считал, что эта гипотеза не содержит истинной теории эволюции в биологии, если эта эволюция вообще была»[119]. Каким же был главный довод Кельвина против естественного отбора? Он объяснил, что был «глубоко убежден, что в последних научных дискуссиях в зоологии не следовало так пренебрегать аргументом единого замысла»[120]. Иначе говоря, даже этот адепт физики и математики, страстно провозгласивший, что «самая суть науки… состоит в том, чтобы логически выводить, каковы были условия в прошлом, и предвосхищать развитие в будущем тех феноменов, которые мы наблюдаем в действительности», верил все же, что «нас повсюду окружают неопровержимые доказательства разумного благосклонного замысла». Более того, Кельвин полагал, что и законы термодинамики – тоже часть этого вселенского замысла. Тем не менее нельзя забывать, что даже если Кельвин ощущал определенную душевную склонность к идее «замысла», он, несомненно, обосновывал свою беспощадную критику геологических методов на самой настоящей физике, а не на своих религиозных представлениях.
Какое влияние Кельвин оказал на геологию? Первое, что следует отметить, – это что до 1860 года геологов гораздо больше занимали диспуты о том, какая Земля внутри, твердая или жидкая, а не вопросы геохронологии. Однако к середине 1860 годов довольно многие авторитетные геологи начали очень внимательно прислушиваться к заявлениям Кельвина[121]. В первую очередь это были Джон Филлипс, Арчибальд Гейки и Джеймс Кролл. Филлипс и сам на основании изучения осадочных пород еще в 1860 году подсчитал, что возраст Земли составляет около 96 миллионов лет. К 1865 году он публично поддерживал Кельвина. А Гейки, новый руководитель Геологоразведочных работ Шотландии, стал тем человеком, который занял позицию посредника между физикой и геологией. С одной стороны, он критиковал утверждение Кельвина о том, что геологическое прошлое Земли было активнее настоящего, и приводил свидетельства, которые, по его мнению, доказывали, как минимум, что «интенсивность… в целом возрастала». С другой стороны, в статье, опубликованной в 1871 году, он отказался от идеи геологического актуализма и утверждал, что на основании физических исследований «всю геологическую историю следует вместить примерно в 100 миллионов лет». Кролл – незаурядная личность, физик и геолог-самоучка, считал, что вычисления, основанные на остывании Земли, которые проделал Кельвин, целиком и полностью верны, и также считал, что возраст Земли равен 100 миллионам лет, хотя крайне скептически относился к Кельвиновой оценке возраста Солнца.
Судить, насколько влиятельна та или иная научная теория, иногда можно по тому, насколько яростно возражают против нее различные светила, обремененные заслугами и авторитетом. В случае Кельвина верным признаком, что теория привлекла внимание оппозиции, было то, что в феврале 1869 года вычисления Кельвина раскритиковал биолог Томас Гексли.
Томас Гексли заслужил прозвище «Бульдог Дарвина» за агрессивную поддержку теории эволюции и готовность в любой момент встать на ее защиту. Дарвин терпеть не мог научных споров, зато Гексли их просто обожал. Более всего он прославился, пожалуй, легендарной перепалкой с Самуэлем Уилберфорсом, епископом Оксфордским, 30 июня 1860 года[122] в библиотеке Музея естественной истории при Оксфордском университете во время ежегодной конференции Британской ассоциации продвижения науки. Инцидент был описан яркими, пусть и не вполне достоверными красками в октябрьском выпуске «Macmillan’s Magazine» за 1898 год[123]. Автор вспоминает:
«Мне выпало счастье присутствовать при достопамятной коллизии в Оксфорде, когда мистер Гексли бросил дерзкий вызов епископу Уилберфорсу… Тогда епископ поднялся, покраснев, и несколько презрительным тоном заверил нас, что идея эволюции совершенно пуста и голуби испокон веку были теми же голубями. Затем он обратился к своему противнику с тем же оскорбительно высокомерной улыбкой и поинтересовался, по какой же линии тот произошел от обезьяны, по деду или по бабке? Услышав это, мистер Гексли поднялся – медленно и грозно. Высокий и худой, суровый и бледный, очень сдержанный и очень суровый, он стоял перед нами – и произнес сокрушительные слова, которые сейчас, пожалуй, никто, в том числе и я, не вспомнит в точности, более того, они стерлись у нас из памяти тут же, едва были произнесены, поскольку от их смысла захватывало дух, однако же смысл этот был бесспорен. Мистер Гексли ничуть не стыдился, что среди его предков была обезьяна, но ему было бы стыдно оказаться в родстве с человеком, который при помощи своих великих талантов стремится сокрыть истину. Никто не сомневался, что верно уловил суть сказанного, и впечатление это произвело душераздирающее. Одна леди лишилась чувств, и ее пришлось унести.»
Хотя сохранилось несколько версий того, к каким именно словам и выражениям прибегли участники этого неожиданного диалога, закрепившаяся за Гексли слава блестящего оратора и растущее недовольство вмешательством церковников в дела науки послужили причиной популярности этой легенды, которая с каждым годом обрастала подробностями[124]. Историк науки Джеймс Мур даже заявил, что «XIX век не знал более прославленной битвы со времен Ватерлоо»[125].
Гексли решил выступить в защиту геологов в своем президентском обращении к Лондонскому геологическому обществу. Сначала он воспользовался тем обстоятельством, что Кельвин раскритиковал довольно старое сочинение Плейфэра, и сделал довольно сомнительное заявление: «Я не считаю, что в наши дни среди геологов найдутся сторонники догматического актуализма»[126]. Далее он задает риторический вопрос, требовалось ли какому-либо геологу более 100 миллионов лет на все геологические процессы. Это был крупный промах, поскольку «хозяин» самого Гексли, сам Дарвин, ошибочно оценил возраст Уилда в 300 миллионов лет. Наконец, после нескольких еще более сомнительных, хотя и красноречивых утверждений Гексли объявил собственный вердикт: «от всей критики [геологии и биологии] не осталось камня на камне».
Обращение Гексли вызвало яростный ответ одного из самых верных сторонников Кельвина – физика и математика Питера Гатри Тэта, который никогда не упускал возможности поучаствовать в хорошем скандале и написал отзыв на обращения Кельвина и Гексли, где в нескольких учтивых фразах всячески оскорблял Гексли. После чего решил нанести удар еще болезненнее и заявил, что подобная оценка возраста Земли не только не имеет под собой никаких физических оснований, но и на самом деле Земля гораздо моложе даже самых смелых оценок Кельвина.
«Как выяснилось, мы можем со значительной долей вероятности сказать, что физика уже указывает на период в десять-пятнадцать миллионов лет, которого вполне достаточно для достижения всех целей геолога либо палеонтолога – и весьма вероятно, что, получив более точные экспериментальные данные, мы сумеем еще сильнее сократить этот период[127].»
Итогом провокационных заявлений Тэта стал ропот среди геологов, которые сочли, что достаточно постарались найти компромисс с временными ограничениями, которые установил Кельвин, а физики при этом не сочли нужным снисходить к геологическим данным. Однако, даже если учесть все эти мелочи, победу одержал, несомненно, Кельвин – в научном мире возобладало представление о том, что возраст Земли все же ограничен, а не непостижимо велик. К концу XIX века идея стабильного состояния Земли уступила место осознанию, что подсчет возраста Земли с опорой на законы физики, в сущности, входит в задачи геологии как науки.
Казалось бы, подобный колоссальный прогресс геологии в сочетании с сонмом других научных заслуг Кельвина (он опубликовал более 600 статей) должны были ввести его в число тех выдающихся деятелей науки, вклад которых запоминается человечеству навеки, поставить в один ряд с Ньютоном и Галилеем. К сожалению, реальность жестока, и не помогло даже то, что Кельвин был светилом и в науке, и в технике. В 1999 году журнал «Physics World» и интернет-сайт Британского Института физики «Physics Web» провели опросы с целью выявить десять величайших физиков всех времен и народов[128]. Ни в том, ни в другом списке Кельвин упомянут не был. По крайней мере одна из причин такого низвержения с пьедестала – это «маленькая проблема», возникшая при определении возраста Земли: сегодня мы знаем, что нашей Земле примерно 4,54 миллиарда лет[129]. Это примерно в пятьдесят раз больше оценки Кельвина! Как же ему удалось настолько промахнуться – ведь он опирался на физические законы?
Глава 5.
Как правило, уверенность – это иллюзия
Наука становится опасной тогда лишь, когда начинает воображать, будто она достигла цели.
Джордж Бернард Шоу,«Врач перед дилеммой»(Пер. П. Мелковой)
Диспут о возрасте Земли между Кельвином и «Бульдогом Дарвина» Томасом Гексли вызвал значительный интерес и в научных кругах, и среди широкой публики. В целом почти никто не спорил, что позиция Кельвина в этой словесной битве значительно прочнее. Тем не менее Гексли затронул один вопрос, который оказался весьма чувствительным. В сущности, он уловил суть ляпсуса Кельвина.
«Математику можно сопоставить с искусно сделанной мельницей, которая способна молоть муку любой тонкости, но все же что заложишь в нее, то и получишь, и как самая лучшая мельница в мире не намелет пшеничной муки из бобов, так и целые страницы формул не дадут правильного результата, если в них заложены неточные данные[130].»
И в самом деле, Кельвин владел математическим аппаратом в совершенстве, так что если он и ошибся, то, разумеется, не в вычислениях. Нужно было разобраться, какой набор допущений обеспечил исходные данные для этих вычислений.
Дерзкий ученик
Первым, кто отважно, пусть и неохотно, попытался найти ошибку в первоначальных постулатах Кельвина, был бывший ученик и ассистент Кельвина инженер Джон Перри[131]. По воле случая Перри изучал инженерное дело под началом Джеймса Томсона, старшего брата Кельвина, но впоследствии провел год в лаборатории Кельвина в Глазго. Хотя в основном научные заслуги Перри лежат в сфере электротехники и прикладной физики, сегодня он, пожалуй, известен именно кратким экскурсом в геологию.
В августе 1894 года Роберт Сесил, третий маркиз Солсбери, выступил с президентским обращением на LXIV съезде Британской ассоциации продвижения науки. Солсбери опирался на оценку возраста Земли по Кельвину (100 миллионов лет), чтобы доказать, что эволюции путем естественного отбора быть не могло[132]. Однако, как часто бывает с чересчур догматичными заявлениями, эта речь возымела прямо противоположное воздействие – по крайней мере на Джона Перри. То, что Солсбери отрицал теорию эволюции, убедило Перри, что в расчеты Кельвина вкралась какая-то ошибка. Огромное количество геологических и палеонтологических данных произвело на Перри сильное впечатление, и он написал другу-физику[133], что «едва мне стало ясно, что [в расчетах Кельвина] должен быть подобный промах, найти его перестало быть вопросом случая».
Первую версию исследования, посвященного задаче об остывании Земли, Перри закончил 12 октября 1894 года, а в последующие недели прилежно рассылал экземпляры статьи[134] самым разным физикам, в том числе Кельвину, с просьбой высказать замечания. Даже критикуя Кельвина, он не забывал об учтивости и письмо к Кельвину подписал «Ваш преданный ученик». Выводы Перри подтвердило с полдюжины физиков, однако сам Кельвин не утрудил себя ответом. Второй случай подвернулся Перри, когда его пригласили на торжественный обед в Колледж Св. Троицы в Кембридже, где должен был присутствовать и Кельвин. Возможность поговорить с Кельвином лично Перри упускать не хотел. На следующий день он взволнованно писал другу:
«Вчера вечером в колледже я сидел рядом с Кельвином, и он вынужден был выслушать меня. Я заранее знал, что мои бумаги он читать не станет, он и не стал, но я дал ему богатую пищу для ума, и минут через пятнадцать снисходительная улыбка при виде моего невежества угасла. Думаю, теперь он обо всем этом всерьез задумается. Гейки [тот самый Арчибальд Гейки, геолог] сидел напротив, и глаза у него сияли от восторга[135].»
Вскоре – 3 января 1895 года – статью Перри напечатал журнал «Nature»[136]. В заметке, предварявшей статью, звучат извиняющиеся нотки: «Друзья, интересующиеся геологией, иногда просили меня подвергнуть критическому разбору вычисления лорда Кельвина касательно вероятного возраста Земли. Обычно я отвечал, что ожидать, чтобы лорд Кельвин ошибся в вычислениях – дело безнадежное». Далее Перри выражал свое личное мнение о методологии, принятой в тогдашней геологии: «Мне очень не нравится решать численные задачи, если их ставит геолог. Почти во всех случаях заданные условия очень расплывчаты, и ответ, найденный с их помощью, никак нельзя считать удовлетворительным, к тому же геологу, судя по всему, кажется, будто несколько миллионов лет в ту или иную сторону – это сущий пустяк». Наконец, Перри объяснил, что все же подвигло его на то, чтобы взять на себя деликатную задачу усомниться в выкладках Кельвина: «В наши дни его [Кельвина] вычисления применяются для дискредитации прямых свидетельств, полученных геологами и биологами, и именно поэтому я и счел своим долгом проверить условия лорда Кельвина».
В основном Перри сосредоточился на одном из основных предположений Кельвина – что теплопроводность Земли одинакова на любой глубине. Иначе говоря, Кельвин предположил, что тепло распространяется с одинаковой эффективностью на любой глубине, что в одну милю, что в тысячу. Эта гипотеза была для него жизненно необходимой. Примерно как криминалист может определить время смерти по измерению температуры трупа, так и Кельвин опирался именно на это допущение, чтобы определить время остывания Земли, измеряя, насколько повышается температура в недрах Земли с каждым футом в глубину. В сущности, вычисления Кельвина показали, что если бы Земля была сколько-нибудь старше 100 миллионов лет, то температура возрастала бы с глубиной медленнее, чем наблюдается, поскольку охлажденная кора была бы толще.
Перри задался вопросом: что если теплопередача не везде одинакова, а в глубине идет эффективнее, чем ближе к поверхности? Очевидно, что в этом случае недра Земли под корой сохранят тепло гораздо дольше. В частности, Перри показал, что если недра Земли отчасти находятся в жидком состоянии – а такое может быть, – то сама жидкость поднимает тепло к поверхности посредством конвекции (так бывает, когда подогревают воду в глубокой кастрюле), причем механизм этот столь действенный, что предполагаемый возраст Земли можно увеличить до 3 миллиардов лет. Затем, в завершение статьи, он разобрал аргументы, основанные на возрасте Солнца и на вращении Земли, однако здесь ему не удалось сказать ничего нового. Что касается вопроса о том, что приливы замедляют скорость вращения Земли, то тут Перри прежде всего ссылался на доказательство Джорджа Дарвина, что даже отвердевшая Земля все же способна менять форму.
Одним из первых, кто откликнулся на статью Перри еще до публикации, в том виде, в каком автор разослал ее на апробацию, был не сам Кельвин, а его самопровозглашенный «бульдог» Питер Гатри Тэт. Он ответил на статью оскорбительно-пренебрежительным письмом, написанным 22 ноября 1894 года[137].
«…я так и не сумел уловить, в чем цель вашей заметки. Ведь, насколько я могу судить, против математических выкладок лорда Кельвина вы не возражаете. Тогда зачем было вообще углубляться в математику, если совершенно очевидно, что чем лучше теплопроводность земных недр по сравнению с корой, тем больше времени прошло с тех пор, когда температура целого составляла 7000 градусов по Фаренгейту [температура плавления камня по подсчетам Кельвина]: в каком же состоянии кора находится сегодня? Сдается мне, подобные выкладки едва ли обеспокоят лорда Кельвина.»
Похоже, Тэт и вправду совершенно не разобрался, в чем дело. Поскольку в то время никто не мог определенно сказать, каковы условия на большой глубине, все предположения с целью что-то вычислить были не больше чем догадками. Перри намеревался всего-навсего показать, что если, в отличие от Кельвина, предположить, что в недрах Земли тепло распространяется быстрее и легче, чем на поверхности, то вычисления, основанные на законах физики, приходят в соответствие с тем возрастом Земли, которого требуют биологи и геологи и который значительно превышает оценки Кельвина. Ляпсус Кельвина состоял в том, что он не понял, что диапазон значений, который допускали имевшиеся на тот момент наблюдения, мог привести к куда большей погрешности в оценке возраста Земли, чем Кельвину хотелось признать.
В ответе Тэту[138] Перри старался быть вежливым и отметил: «Вы пишете, что я прав, и спрашиваете, какова моя цель. Дело лорда Кельвина, несомненно, проиграно, осталось только показать, что возможно такое состояние Земли, что возраст ее составит во много раз больше, чем предполагаете и вы, и он». После чего добавляет тоном, выдающим восхищение бывшего ученика: «Меня тревожит, что на вашей стороне, как мне представляется, нет ни крупицы истины, и все же я настолько привык взирать на вас и лорда Кельвина снизу вверх, что, наверное, мои сомнения выглядят более или менее по-идиотски, коль скоро вы с ним столь уверены в своей правоте».
Однако ради Тэта можно было и не стараться и не писать примирительным тоном – тот продолжал изничтожать собеседника иронией (на илл. 10 приведена фотокопия его письма)[139]: «Хотелось бы получить ответы на два вопроса: (1) Какие у вас основания утверждать, будто внутренние материалы Земли проводят тепло лучше, чем кора?» Второй вопрос был, собственно, не вопрос, а скорее презрительная реплика о том, что геологам сколько ни предложи, все мало: «(2) Неужели вы считаете, будто подлинно передовые геологи скажут вам спасибо, если вместо ста миллионов лет вы дадите им десять миллиардов? Им и триллиона едва хватит – в качестве части какого-то вторичного периода!» Однако Перри не сдался: «Это лорд Кельвин должен доказать, что теплопроводность внутри не больше, чем снаружи!» – настаивал он[140].
Не стоит и говорить, что оценки Перри оказались верными. В отсутствие каких бы то ни было определенных экспериментальных свидетельств о том, каковы на самом деле условия в недрах Земли, достаточно было уже того, что Перри сумел показать: Кельвин может ошибаться, причем во много раз.
Когда Кельвин наконец решил ответить Перри, то держался куда менее агрессивно, чем Тэт. Хотя он и отметил, что «мне кажется, никак нельзя предполагать, что на разных глубинах теплопроводность и теплоемкость различаются так сильно, как вы [Перри] предполагаете при своих вычислениях»[141], однако добавил – нехарактерным для него умиротворяющим тоном: «Я считал, что диапазона от 20 до 400 миллионов вполне достаточно, однако не исключено, что верхний предел мне стоит подвинуть гораздо выше, быть может, до отметки 4000 вместо 400». Да, это, пожалуй, единственный случай, когда Кельвин выказал такое уважение взглядам, которые противоречили его собственным. Скорее всего, подобное великодушие свидетельствует о том, что Кельвин хотел подчеркнуть свою признательность бывшему ученику. Однако затем он поспешно добавил, что его оценка возраста Солнца по-прежнему «отказывает [Земле] в солнечном свете[142] более чем на два десятка или несколько раз по два десятка миллионов лет в прошлом». Как мы увидим чуть дальше, у Кельвина и в самом деле в то время не было причин пересматривать вычисления возраста Солнца.
Критика Перри не прошла незамеченной[143]. Месяца два Кельвин провел за опытами – он подогревал базальт, мрамор, кварц и каменную соль. В соответствии с новыми результатами швейцарского геолога Роберта Вебера, эти эксперименты, похоже, показали, что при повышении температуры теплопроводность либо вообще не слишком меняется, либо даже слегка понижается. К сожалению для Перри, новые результаты Вебера противоречили данным его собственных более ранних опытов, согласно которым, по всей видимости, теплопроводность повышалась с температурой и которые Перри приводил в доказательство своей правоты. Кельвин возликовал[144] и напечатал статью с этими результатами в журнале «Nature» 7 марта 1895 года, где объявил во всеуслышание, что «Нам с профессором Перри не пришлось долго ждать… и теперь мы знаем, что предположение, будто камень лучше проводит тепло при высоких температурах, безосновательно». Далее Кельвин приводит вывод американского геолога Кларенса Кинга, который утверждал (не рассматривая вероятность конвекции в жидкости): «У нас нет никаких доказательств, что возраст Земли может превышать 24 миллиона лет». Кельвин радостно провозгласил, что и сам он «не делает выводов, которые сильно отличаются от его [Кинга] оценки в 24 миллиона лет».
Однако Перри все это не убедило. Он сосредоточился на том, какие внутренние условия в принципе возможны, в отличие от Кельвина, который пытался догадаться, какие условия наиболее вероятны, и отметил, что вывод Кинга не выходит за рамки предположения, что Земля была твердой и однородной. В статье, напечатанной в «Nature» 18 апреля 1895 года, Перри подытожил свое представление о сложившейся тупиковой ситуации: «Теперь, когда очевидно, что если мы возьмем любой возможный закон температуры конвекционного равновесия в самом начале и предположим, что на глубине теплопроводность может быть больше, чем у камней на поверхности, то изобретательная проверка на текучесть, которую провел мистер Кинг, не препятствует нам предположить любой, сколь угодно древний возраст». Логика Перри была ясна: он поставил себе цель доказать, что Земля может быть старше, чем получалось по оценкам Кельвина, даже если не удастся выявить слабое место в аргументации Кельвина из-за недостаточных знаний о внутренней структуре Земли. Измерение теплопроводности нагретых камней, может быть, и опровергло один из предполагаемых вариантов распространения тепла на большой глубине быстрее, чем снаружи, однако есть и другие возможности. В частности, многообещающей альтернативой была конвекция посредством текучей, словно жидкость, массы.
Оказалось, что интуиция Перри и в самом деле была пророческой. Он до конца отстаивал свою позицию: то, что модель Кельвина не позволила определить более древний возраст Земли, – прямое следствие предположения Кельвина о том, что теплопроводность Земли везде одинакова, а это ограничение можно преодолеть, если допустить, что в земной мантии происходит конвекция. Геологам ХХ века понадобилось несколько десятилетий, чтобы доказать, что Перри был прав. Мысль о возможности конвекции – правда, внутри достаточно твердой земной мантии – сыграла важную роль в том, что впоследствии научное сообщество приняло идею тектоники плит и материкового дрейфа (ее выдвинул в 1912 году немецкий ученый Альфред Вегенер). Мало того что тепло может передаваться подобно течению жидкости – целые континенты способны дрейфовать горизонтально в течение длительных периодов времени. А вот вокруг того, каковы в точности условия теплообмена между недрами Земли и корой, до сих пор ведутся жаркие споры (да, это был каламбур).
Последнюю свою статью[145] о возрасте Земли Перри заключил совершенно недвусмысленным заявлением:
«Три физических аргумента [замедление вращения Земли из-за приливов, охлаждение Земли и возраст Солнца] дали лорду Кельвину возможность заключить, что верхний предел – это 1000, 400 и 500 миллионов лет. Я же показал, что у нас есть причины полагать, что возраст – исходя из всех трех аргументов – может быть весьма существенно недооценен. Нужно отметить, что если мы исключим все аргументы, кроме чисто физических, то вероятный возраст жизни на земле окажется гораздо меньше всех вышеприведенных оценок, однако если у палеонтологов найдутся веские причины требовать значительно более длительных периодов, я как физик не вижу никаких причин, которые помешали бы постановить, что подлинный возраст Земли вчетверо превышает самую большую из вышеприведенных величин».
Обратите внимание: из этого утверждения следует, что у Перри не было никаких возражений против того, что возраст Земли составляет четыре миллиарда лет – и это очень близко к современным представлениям, согласно которым Земле примерно 4,5 миллиарда лет.
Труды Перри проделали первую брешь в вычислениях Кельвина, которые казались абсолютно бесспорными: Перри подверг сомнению постулаты о твердости и однородности Земли, из которых исходил Кельвин. Однако оценка возраста Земли по Кельвину опиралась и на другую гипотезу: не существует никаких неведомых источников энергии, ни внешних, ни внутренних, которые компенсировали бы теплопотери. События конца XIX века показали, что Кельвин ошибся и здесь.
Радиоактивность
Весной 1896 года французский физик Анри Беккерель открыл, что распад нестабильных атомных ядер сопровождается испусканием излучения и частиц. Это явление получило название радиоактивности[146]. Семь лет спустя физики Пьер Кюри и Альбер Лаборд сообщили, что распад солей радия создает источник тепла, прежде не известный. Астроному-любителю Уильяму Э. Уилсону[147] потребовалось всего четыре месяца с того момента, когда Кюри и Лаборд объявили о своем открытии, чтобы сделать наблюдение, что такое свойство радия «вероятно, содержит в себе подсказку, каков источник энергии Солнца и звезд». По оценке Уилсона, всего «3,6 грамма радия на кубический метр объема Солнца достаточно, чтобы обеспечить наблюдаемый выход тепла». Очень краткая заметка Уилсона в журнале «Nature» не привлекла особого внимания научной общественности, однако потенциальные следствия из того обстоятельства, что был открыт неожиданный источник энергии, не укрылись от внимания Джорджа Дарвина[148]. Дарвин постоянно искал способы освободить геологию от смирительной рубашки геохронологии по Кельвину и в сентябре 1903 года с радостью объявил, что «Количество энергии, которую можно получить [из радиоактивных материалов], столь огромно, что теперь уже невозможно сказать, как давно существует солнечное тепло и надолго ли его хватит в будущем». Ирландский физик и геолог Джон Джоли[149] отнесся к этому заявлению с большим энтузиазмом и тут же применил его к задаче оценки возраста Земли. В письме в «Nature», опубликованном 1 октября 1903 года, Джоли указал, что «источник тепла [радиоактивные минералы] в любом элементе материала [Земли]» может влиять на теплопередачу точно так же, как повышенная теплопроводность земных недр. Именно этого, как ранее показывал Перри, и недоставало, чтобы оценки возраста Земли существенно возросли. Иными словами, по сценарию Кельвина Земля исключительно теряла тепло из своих первоначальных запасов. Открытие нового источника внутреннего тепла, очевидно, подрывало самые основы подобной гипотезы.
Среди главных действующих лиц последовавших лихорадочных исследований в области радиоактивности был молодой физик Эрнест Резерфорд[150], уроженец Новой Зеландии, впоследствии прославившийся как «отец ядерной физики». В то время Резерфорд работал в Университете Макгилла в Монреале (позднее он перебрался в Великобританию), где на основе целого ряда экспериментов установил, что атомы всех радиоактивных элементов содержат колоссальное количество скрытой энергии, которую можно высвободить в виде тепла. Впоследствии Резерфорд, а также – с еще большим восторгом – Фредерик Содди, который некоторое непродолжительное время был его сотрудником, объявили, что радиоактивность, в сущности, обесценивает все результаты Кельвина, связанные с возрастом как Земли, так и Солнца. Один журнал встретил сообщение Резерфорда, что Земля проживет гораздо дольше, чем оценивал Кельвин, броским заголовком «Страшный суд откладывается».
Кельвин, со своей стороны, живо интересовался[151] открытиями, связанными с радием и радиоактивностью, однако так и не склонился к мысли, что это как-то повлияет на его оценки возраста Земли и Солнца. По крайней мере поначалу он отказывался признавать, что источник энергии радиоактивных элементов может лежать в них самих, и писал: «Осмелюсь предположить, что когда радий передает тепло массивному веществу, которое его окружает, энергию ему сообщают какие-то эфирные волны»[152]. Иными словами, Кельвин предположил, что атомы просто забирают энергию из эфира (в то время предполагалось, что он пронизывает все пространство), а при распаде высвобождают ее. Однако в 1904 году он все же набрался недюжинной интеллектуальной отваги[153] и публично отказался от своей идеи на съезде Британской ассоциации, хотя так и не предал гласности свое отречение в печати. К сожалению, по какой-то неясной причине в 1906 году он снова утратил общий язык с остальными физиками: он был категорически не согласен, что при радиоактивном распаде один элемент превращается в другой, хотя и Резерфорд, и другие физики представили веские доказательства этого явления. Все это время Фредерик Содди, который успел создать себе репутацию в физическом сообществе Англии, то и дело терял терпение. На страницах «The Times» он затеял ожесточенную дискуссию[154] с Кельвином и позволил себе оскорбительные намеки: «Жаль, если широкая публика ошибочно решит, будто мнение тех, кто лично не работал с радиоактивными телами [аллюзия на Кельвина], следует уважать наряду с теми, у кого есть подобный опыт». Еще до этой перепалки, в книге, вышедшей в свет в 1904 году, Содди заявил, ни много ни мало, что «пределы прошлого и будущего в истории Вселенной сильнейшим образом раздвинулись».
Резерфорд был несколько великодушнее. Много лет спустя он часто рассказывал об одном случае на лекции по радиоактивности, которую он читал в Королевском институте в 1904 году.
«Я вошел в полутемный зал и сразу заметил среди публики лорда Кельвина и понял, что с последней частью моего доклада, где пойдет речь о возрасте Земли, будут сложности, поскольку мои взгляды противоречили представлениям лорда Кельвина. К моему великому облегчению, он тут же заснул, но едва я дошел до важного места, как старый пройдоха вскинулся, открыл один глаз и смерил меня ядовитым взглядом! Тут на меня снизошло вдохновение, и я сказал, что лорд Кельвин ограничил возраст Земли при условии, что не будет обнаружено никаких новых источников энергии. Так вот, это провидческое заявление и относится к теме моего сегодняшнего доклада – к радию! Видели бы вы, как просиял старик[155].»
Впоследствии одним из самых надежных методов, позволяющих определить возраст минералов, скал и прочих геологических объектов, в том числе и самой Земли, стал метод радиоизотопного датирования[156]. В целом метод основан на том, что радиоактивный элемент превращается в другой радиоактивный элемент со скоростью, определяемой периодом полураспада – то есть временем, за которое первоначальное количество вещества уменьшится вдвое. Элементы распадаются, пока не получится стабильный элемент. Если измерить и сравнить относительное количество радиоактивных изотопов в природе и сопоставить эти данные с известными периодами полураспадов, можно с высокой точностью определить возраст Земли, что и сделали геологи.
Одним из первопроходцев в этой области был Резерфорд, о чем свидетельствует и такая история[157]. Однажды Резерфорд шел по университетскому городку с черным камешком в руке и встретил коллегу – канадского геолога Фрэнка Доусона Адамса.
– Адамс, – спросил он, – сколько бишь лет Земле?
Адамс ответил, что несколько методов подсчета дали примерно 100 миллионов лет.
Тогда Резерфорд заметил вполголоса:
– Я выяснил, что этому кусочку уранита 700 миллионов лет.
Кстати, ученые из Аргоннской Национальной лаборатории в Иллинойсе недавно нашли радиоизотопному датированию новое интересное применение. В 2011 году им удалось при помощи распада редкого изотопа криптон-81 проследить возраст Нубийского водоносного слоя, который раскинулся по всей Северной Африке. Ученые измерили, сколько этого изотопа в воде водоносного слоя (часть которого залегает на три километра в глубину под египетскими оазисами) распалось за время, прошедшее с тех пор, как эта вода в последний раз видела солнечный свет.
Большинство исторических отчетов о научной дискуссии по поводу возраста Земли наводят на мысль, что грубая ошибка, которую допустил Кельвин при оценке этой величины, была прямым следствием того, что он не признавал радиоактивность. Если бы дело было только в этом, я бы не включил ее в свою книгу, поскольку она не подпадала бы под категорию ляпсусов: ведь Кельвин, очевидно, не мог учесть при расчетах источник энергии, который еще не был открыт. Однако представление о том, что ошибка в определении возраста связана исключительно с радиоактивностью, ошибочно само по себе. Да, радиоактивный распад по всему объему земной мантии (на глубину почти 3000 км) действительно вырабатывал бы тепло со скоростью, примерно равной половине скорости теплообмена по всей планете. Однако не все это тепло было доступно по первому требованию.
Тщательное изучение проблемы показывает, что если опираться на те же предположения, что и Кельвин, то, согласись он включить в них и тепло от радиоактивного распада, ему пришлось бы учитывать только тепло, вырабатываемое во внешней коре Земли – на глубине до 100 км. Дело в том, что Кельвин показал: только тепло с такой глубины могло участвовать в теплопередаче к поверхности примерно за 100 миллионов лет. Геологи Филипп Ингленд, Питер Молнар и Фрэнк Рихтер[158] в 2007 году показали, что если принять во внимание этот факт, то радиоактивное тепло не слишком повлияло бы на Кельвинову оценку возраста Земли. Серьезный ляпсус Кельвина заключался, очевидно, не в том, что он не подозревал о радиоактивности (хотя, конечно, игнорировать ее открытие ему не следовало), а в том, что он изначально пренебрег предположением, которое высказал Перри, и в дальнейшем возражал против него – я имею в виду гипотезу о конвекции в земной мантии. Вот почему он так грубо ошибся в своих оценках.
Как же так вышло, что человек такого колоссального ума, как Кельвин, столь упорно настаивал на своей правоте, даже когда стало очевидно, что он совершил колоссальную ошибку? Увы, Кельвин, как и все мы, должен был задействовать машинку, которую природа поместила между его ушей – свой мозг, – а ресурсы мозга не безграничны, даже если он принадлежит гению.
Когда кажется, что ты все знаешь
Поскольку мы не можем ни расспросить самого лорда Кельвина, ни получить изображения его мозговой активности, мы так и не узнаем наверняка, каковы были причины его неуместного упрямства. Мы, разумеется, знаем, что те, кто почти всю профессиональную жизнь отстаивают ту или иную точку зрения, неохотно признают, что заблуждались. Но почему? И даже если это верно для большинства из нас, простых смертных, почему это оказалось справедливо и в случае Кельвина – ведь он был великий ученый? Ведь менять собственную теорию на основании новых экспериментальных данных – это и есть наука, верно? К счастью, современная психология и нейрофизиология пролили некоторый свет на так называемое «ложное чувство знания» – видимо, именно этот феномен и определял ход мыслей Кельвина.
Прежде всего следует отметить, что и подход к науке, и метод поисков истины у Кельвина был скорее инженерный, чем философский. Кельвин был как отличным специалистом по математической физике, так и талантливым экспериментатором и всегда скорее искал способ что-то вычислить или измерить, а не возможность взвесить различные варианты. Поэтому самое простое объяснение ляпсуса Кельвина состоит в том, что Кельвин был убежден, что он в любом случае может определить вероятное развитие событий, и не понимал, что всегда существует опасность упустить возможные альтернативы.
На более глубоком уровне ляпсус Кельвина, вероятно, коренился в одной давно известной психологической особенности: чем больше мы убеждены в том или ином мнении, тем меньше нам хочется от него отказываться, даже если существует масса доказательств, что мы ошибаемся (вспомним, например, оружие массового поражения и убежденность некоторых ученых, что оно положит конец войнам). Именно ощущением дискомфорта, которое возникает у человека, когда он сталкивается с информацией, противоречащей его убеждениям, и занимается теория когнитивного диссонанса[159]. Многочисленные исследования показывают, что для облегчения когнитивного диссонанса во многих случаях человек вместо того, чтобы признать ошибку в рассуждениях, склонен по-новому переформулировать свою точку зрения таким образом, чтобы с полным правом придерживаться старых воззрений. Ситуация, когда решения принимаются под воздействием эмоций, называется «мотивированное обоснование».
Прекрасный пример подобной переориентации – мессианское движение иудеев-хасидов под названием «Хабад»[160]. Последователи Хабада были уверены, что их лидер рабби Менахем-Мендл Шнеерсон и есть Мессия, и это движение достигло пика в последние десять лет перед смертью рабби Шнеерсона в 1994 году. В 1992 году у рабби случился инсульт, и многие его верные последователи считали, что он не умрет, а скорее «возродится» как Мессия. Однако рабби Шнеерсон все-таки скончался, что стало настоящим потрясением – однако десятки его последователей откорректировали свою точку зрения и прямо на похоронах настаивали, что на самом деле его смерть – необходимое условие его воскрешения и возвращения как Мессии.
В 1955 году психолог Джек Брем[161], который тогда работал в Университете штата Миннесота, провел эксперимент, который продемонстрировал еще одно проявление когнитивного диссонанса. В эксперименте участвовали 225 студенток-второкурсниц (классические испытуемые в психологических экспериментах), которых сначала попросили распределить восемь галантерейных товаров по их привлекательности для покупателей – по шкале от 1.0 («совсем не хочу приобрести») до 8.0 («очень хочу приобрести»). На втором этапе студенткам показывали два предмета (из первоначальных восьми) и разрешали выбрать себе в подарок один из них. После этого все восемь предметов расставляли по привлекательности еще раз. Исследование показало, что при составлении второго рейтинга студентки обычно оценивали тот предмет, который выбрали себе в подарок, выше, чем в первый раз, а тот, который отвергли, ниже. Результаты этого эксперимента и нескольких ему подобных подтверждают, что наш мозг стремится снизить диссонанс между идеей «Я выбираю предмет номер три» и идеей «Однако у предмета номер семь тоже есть кое-какие привлекательные черты». Иными словами, когда выберешь какую-то вещь, она становится в твоих глазах лучше, что в дальнейшем подтвердили и исследования мозговой активности, которые показали, что после выбора повышается активность в хвостатом ядре – зоне мозга, отвечающей за «хорошее настроение».
Думается, случай Кельвина – ярчайший пример когнитивного диссонанса. Кельвин повторял свои доводы, подтверждающие оценку возраста Земли, более тридцати лет и не собирался менять мнение только потому, что кто-то предположил возможность конвекции. Обратите внимание, что Перри, очевидно, не мог привести бесспорных доказательств, что конвекция действительно имеет место, более того, не мог даже продемонстрировать, что она вероятна. К тому времени, как на сцену вышла радиоактивность – а до этого прошло еще десять лет – Кельвин, похоже, был еще менее склонен публично признавать свое поражение. Нет, он предпочел участвовать в сложнейшей системе экспериментов и объяснений, исключительной целью которых было показать, что его старые оценки по-прежнему верны.
Почему же так трудно отказываться от собственного мнения даже перед лицом контраргументов, которые счел бы верными любой независимый наблюдатель? Ответ, вероятно, таится в том, как устроен цикл вознаграждений в мозге. Исследователи Джеймс Олдс и Питер Милнер из Университета Макгилла еще в пятидесятые годы обнаружили центр удовольствия в мозге крысы[162]. Оказалось, что крысы нажимали на рычаг, который активировал электроды, помещенные в этот центр удовольствия, более чем 6000 раз в час! Могущество стимуляции, вызывающей удовольствие, ярко продемонстрировали эксперименты середины 1960 годов, когда оказалось, что если крысы вынуждены выбирать между тем, чтобы добывать пищу и воду, и тем, чтобы получать стимуляцию центра удовольствия, они по доброй воле морят себя голодом.
В последние два десятилетия нейрофизиологи разработали весьма хитроумные системы визуального отображения мозговой активности, которые позволяют подробно видеть, какие зоны человеческого мозга становятся ярче в ответ на приятный вкус, музыку, секс или выигрыш в азартных играх. Самые распространенные техники – позитронно-эмиссионная томография (ПЭТ), когда испытуемому вводят радиоактивные метки, а затем наблюдают их распределение в мозге, и функциональное изображение методом магнитно-резонансной томографии, которая следит за притоком крови к активным нейронам. Исследования показали, что важную роль в цикле вознаграждения[163] играет скопление нервных клеток, расположенное у основания мозга (в так называемой вентральной области покрышки) и соединенное с прилежащим ядром – областью под корой лобной доли. Эта цепь называется мезолимбическим дофаминовым путем. Нейроны вентральной области покрышки обмениваются сигналами с прилежащим ядром при помощи определенного химического нейротрансмиттера под названием дофамин. Другие зоны мозга обеспечивают эмоциональное наполнение воспоминаний, а также запускают различные эмоциональные реакции. Например, гиппокамп очень хорошо «делает заметки», а миндалевидное тело «оценивает» степень удовольствия.
Как же все это связано с интеллектуальными изысканиями? Чтобы взяться за какой-то относительно длительный умственный процесс и придерживаться его, мозгу нужна хотя бы перспектива получить удовольствие и награду. Будь то Нобелевская премия, зависть соседей, повышение зарплаты или просто удовольствие от решения головоломки судоку с пометкой «очень сложно» – прилежащее ядро в нашем мозге нуждается в какой-то дозе вознаграждения, чтобы действовать дальше. Однако если мозг в течение длительного времени часто получает вознаграждение, то, как в случае с крысами, которые морили себя голодом, и с наркоманами, нейронные связи между умственной активностью и чувством достигнутой цели постепенно теряют остроту. Наркоманам нужно все больше наркотиков, чтобы добиться прежнего эффекта. А при умственной деятельности возникает обостренная потребность всегда ощущать свою правоту и снижается способность признавать свои ошибки. Нейрофизиолог Роберт Бертон[164] даже предположил, что уверенность в своей правоте, вероятно, имеет общие физиологические черты с другими пагубными привычками. Если это действительно так, то у Кельвина, несомненно, наблюдались все симптомы болезненного привыкания к собственной правоте. Почти полвека победоносных битв с геологами – а он, конечно, воспринимал это именно так, – укрепили его в убеждении настолько, что разрушить сложившиеся нейронные связи было уже невозможно. Однако независимо от того, вызывает чувство собственной правоты болезненное привыкание или все-таки нет, метод функциональной магнитно-резонансной терапии показал, что так называемое «мотивированное обоснование» – когда мозг отбирает именно те суждения, которые вызывают максимально приятные эмоции, связанные с тем, что у человека возникают те или иные мотивы, – не имеет отношения к активности мозга[165], связанной с решением задач, требующих холодной логики. Иначе говоря, мотивированное обоснование управляется исключительно эмоциями, а не бесстрастным анализом, и его цель – минимизировать угрозу самолюбию. Поневоле приходится предположить, что на закате жизни эмоциональный интеллект Кельвина то и дело одерживал верх над рациональным.
Должно быть, вы уже заметили, что когда я говорил о ляпсусе Кельвина, то не упомянул о вычислении возраста Солнца. И в самом деле, я не считаю это ляпсусом. Но почему? Ведь оценка, которую он дал – меньше 100 миллионов лет – оказалась столь же ошибочной, что и оценка возраста Земли.
Термоядерный синтез
В статье о возрасте Земли, написанной в 1893 году, за три года до открытия радиоактивности, американский геолог Кларенс Кинг писал: «Соответствие полученного возраста Земли и Солнца[166], несомненно, подкрепляет позицию физиков и вынуждает оправдываться тех, кто придерживается позиции неопределенно длительного времени, которая основана на седиментарной геологии». Точка зрения Кинга была вполне обоснованной. Если считать, что возраст Солнца составляет всего несколько десятков миллионов лет, любые оценки возраста на основании седиментации – осаждения пород – оказываются ограниченны, поскольку для седиментации необходимо, чтобы Землю подогревало Солнце.
Вспомним, что Кельвин вычислял возраст Солнца, полагаясь исключительно на высвобождение гравитационной энергии в виде тепла по мере сжатия Солнца. Мысль, что гравитационная энергия может быть источником солнечного света и тепла, впервые пришла в голову шотландскому физику Джону Джеймсу Уотерсону еще в 1845 году. Поначалу никто не обратил на нее внимания, однако в 1854 году к ней вернулся Гельмгольц, а затем ее подхватил и с энтузиазмом популяризировал и Кельвин. С открытием радиоактивности многие предположили, что подлинным источником энергии Солнца может оказаться радиоактивное высвобождение тепла. Однако выяснилось, что и это не совсем так. Даже при совершенно безумном предположении, что Солнце состоит в основном из урана и радиоактивных продуктов его распада, вырабатываемой при этом энергии не хватило бы, чтобы обеспечить наблюдаемую яркость Солнца, поскольку цепные реакции во времена Кельвина известны не были и не учитывались. Нет никаких сомнений, что оценка возраста Солнца, которую дал Кельвин, укрепила его нежелание[167] пересматривать свою оценку возраста Земли, поскольку, пока существовала проблема возраста Солнца, расхождение с геологическими расчетами не удалось бы урегулировать.
Ответ был дан лишь несколько десятков лет спустя. В августе 1920 года[168] астрофизик Артур Эддингтон предположил, что энергетическим источником Солнца служит термоядерный синтез ядер водорода и формирование гелия. Чтобы проверить эту гипотезу, физики Ганс Бёте и Карл Фридрих фон Вайцзеккер проанализировали самые разнообразные цепочки ядерных реакций. Наконец, уже в 1940 годах, астрофизик Фред Хойл (к его революционным открытиям мы еще вернемся в главе 8) предположил, что реакции термоядерного синтеза в ядрах звезд способны синтезировать атомные ядра от углерода до железа. Как я отметил в предыдущей главе, именно поэтому Кельвин был совершенно прав, когда в 1862 году заявил: «Что касается будущего, можно с той же определенностью сказать, что обитатели Земли не смогут наслаждаться светом и теплом [Солнца], необходимыми для жизни, еще много миллионов лет, если в великой сокровищнице творения для нас не приготовлены запасы, о которых мы еще не подозреваем (выделено мной. – М. Л.)». Чтобы решить проблему Солнца, понадобился гений Эйнштейна, который показал, что массу можно преобразовать в энергию, и труды ведущих астрофизиков ХХ века, которые показали, какие именно реакции термоядерного синтеза обеспечивают подобное превращение.
Несмотря на то что сегодня оценка возраста Земли по Кельвину в целом подпадает под понятие «ляпсус», тем не менее я считаю, что ляпсус этот совершенно блистательный. Кельвин произвел переворот в геохронологии, превратил расплывчатые спекуляции в настоящую науку, опирающуюся на законы физики. Его новаторские труды положили начало живому диалогу между геологами и физиками – взаимообмену, который продолжался до тех пор, пока все противоречия не удалось полностью уладить. При этом Кельвин параллельно занимался и возрастом Солнца – и из его работ очевидно следовало, что необходимо искать новые источники энергии.
Сам Чарльз Дарвин прекрасно понимал, что выкладки Кельвина препятствуют его теории и что это препятствие следует ликвидировать. Когда он в последний раз пересматривал «Происхождение видов», то писал:
«Что же касается промежутка времени, который истек с той поры, когда наша планета затвердела, и его недостаточности для предполагаемого размера изменения органического мира, то возражение, упорно защищаемое сэром Уильямом Томсоном [Кельвином], по всей вероятности, одно из самых важных, какие были до сих пор выдвинуты, и я могу сказать лишь следующее: во-первых, мы не знаем, как быстро протекают изменения видов, если выражать это время годами, и, во-вторых, многие ученые еще до сих пор не допускают, что строение Вселенной и внутренности нашей планеты известны нам в такой степени, которая допускала бы сколько-нибудь достоверные соображения о продолжительности ее существования[169].»
К сожалению, Дарвин не дожил до того времени, когда Перри выдвинул свою гипотезу о конвекции в недрах Земли, до открытия радиоактивности и до понимания, что в ядрах звезд идут реакции термоядерного синтеза – то есть до того времени, когда временные ограничения, установленные Кельвином, рухнули под натиском научных открытий. Однако факт остается фактом: именно выкладки Кельвина привлекли внимание к этой проблеме и к тому, что ее надо решать.
Для нас, людей, одно из главных преимуществ того, что Земля уже так давно, целых 4,5 миллиарда лет, греется в лучах солнечной энергии, состоит в том, что на нашей планете возникла сложная жизнь. Однако кирпичики, из которых слагаются все живые организмы, – это клетки, и лишь к 1880 годам ученые, вооружившись мощной оптикой, сумели изучить внутреннюю структуру клеток и пустили в обращение термин «хромосома»: так они назвали тельца, похожие на пружинки, обнаруженные в ядрах клеток. Вскоре после этого была заново открыта работа Менделя о генах («факторах»), а революционные исследования Томаса Ханта Моргана и его учеников в Колумбийском университете позволили построить карту позиций генов вдоль хромосом. В 1944 году в хромосомах была выявлена особая молекула – ДНК, которая заняла главное место в изучении генетики. Вскоре биологи поняли, что все клетки получают информацию не от белков, а от двух молекул – ДНК и РНК, так называемых нуклеиновых кислот. Ученые установили, что молекулы ДНК – это начальство, руководящее лихорадочной деятельностью внутри клетки, а кроме того, именно эти молекулы умеют создавать точные копии самих себя. А молекулы РНК, как было показано, отвечают за передачу распоряжений, которые отдают молекулы ДНК, остальной клетке. Вместе эти молекулы содержат всю информацию, которая необходима, чтобы заставить функционировать яблоню, змея, женщину и мужчину. Открытие молекулярной структуры белков и ДНК – это две самые интересные истории о том, как ученые углублялись в происхождение и устройство жизни. Однако и в эти истории также вкрались два колоссальных ляпсуса.
Глава 6. Толкователь жизни
В сфере наблюдений случай благоволит лишь подготовленному уму.
Луи Пастер
В тот декабрьский день 1950 года в лекционном зале лаборатории имени Густава Кирхгофа[170] в Калифорнийском технологическом институте было людно как никогда. Распространились слухи, что знаменитый химик Лайнус Полинг собирается поведать что-то подлинно сенсационное, возможно, даже даст ответ на одну из величайших загадок жизни. Когда Полинг наконец появился, его ассистент внес что-то похожее на большую скульптуру, завернутую в ткань и обвязанную веревкой. Сама лекция в очередной раз показала, как блестяще Полинг знает свой предмет – химию – и какой он великолепный рассказчик. Некоторое время лектор держал своих слушателей в напряжении, а затем перочинным ножом разрезал веревку – и словно фокусник, извлекающий кролика из шляпы, явил публике модель, получившую название альфа-спирали: трехмерную модель базовой структуры множества белков, изготовленную из шариков и палочек.
В числе прочих, кто слушал этот доклад-фейерверк – правда, с расстояния в несколько тысяч миль, из Женевы, – был Джеймс Уотсон, которому всего через три года предстояло открыть структуру ДНК (совместно с Фрэнсисом Криком). Уотсон был в гостях[171] у швейцарского молекулярного биолога Жана Вайгле, который – так уж вышло – только что вернулся домой, проведя зиму в Калифорнийском технологическом институте. И хотя Вайгле не мог вполне оценить, насколько точна разноцветная деревянная модель Полинга, его рассказа о поразительной лекции хватило, чтобы Уотсон горячо заинтересовался этим предметом и вдохновился на дальнейшие исследования. К этой увлекательной истории мы еще вернемся.
К сентябрю 1951 года рассказы о научных достижениях Полинга добрались даже до страниц журнала «Life»[172] [169], где красовалась фотография улыбающегося Полинга, который показывал на свою альфа-спираль, а ниже значилось: «Химики нашли разгадку великой тайны. Определена структура белка». В статье в «Life» кратко и популярно рассказывалось о событиях самого чудесного года за всю научную карьеру Полинга. Достаточно отметить, что в выпуске «Proceeding of the National Academy of Sciences» за май 1951 года было напечатано целых семь статей Полинга и его сотрудника Роберта Кори о структуре белков – от коллагена до стержня птичьего пера. Такова была кульминация пятнадцати лет новаторских исследований.
Путь к модели альфа-спирали
О белках Полинг начал размышлять еще в тридцатые годы[173]. Первые его статьи на эту тему[174] были посвящены теории гемоглобина – железосодержащего белка в красных кровяных тельцах: предполагалось, что каждый из четырех атомов железа в этой молекуле образует химическую связь с молекулой кислорода. Работая над этой темой, Полинг предложил новую методику экспериментов. Ему пришла в голову мысль, что важные сведения о природе связей между атомами железа и окружающими их группами можно почерпнуть из измерения магнитных свойств некоторых белков. Оказалось, что это и в самом деле плодотворный инструмент в структурной химии. Например, Полинг весьма результативно применял исследования магнитных свойств для определения скорости нескольких химических реакций.
Примерно в это же время в Пасадену сотрудничать с группой Полинга приехал ведущий специалист по белкам Альфред Мирски[175]. Это случайное сотрудничество между двумя выдающимися учеными стало отправной точкой для научных изысканий, приведших к потрясающим открытиям. Сначала Мирски и Полинг[176] выдвинули предположение, что нативный белок – неизмененный белок в своем естественном состоянии внутри клетки – состоит из цепочек аминокислот[177], получивших название полипептиды, сложенных из повторяющихся звеньев в определенный ритмический узор. Вскоре после этого Полинг понял, что главный вопрос – то, как именно они сложены.
К счастью, в начале тридцатых годов начали поступать первые данные экспериментов по дифракции рентгеновских лучей. Это оказался весьма информативный метод, а состоял он в том, что ученые направляли пучок рентгеновских лучей на кристалл, а затем по тому, как невидимые лучи отражались от образца, пытались реконструировать структуру этого кристалла – то есть вычислить расстояния между атомами и разобраться, как они ориентированы друг относительно друга. В распоряжении Полинга оказались изображения рентгеновской дифракции, полученные физиком Уильямом Астбери[178] при исследовании волос, шерсти, рога и ногтей (все они содержат так называемый альфа-кератин). Правда, рентгеновские снимки были довольно расплывчаты и не позволяли надежно определить структуру. Тем не менее на них было видно, что одинаковая структура повторяется вокруг оси волоса каждые 5,1 ангстрем (ангстрем – единица длины, равная одной стомиллионной сантиметра). Учитывая относительно низкое качество рентгеновских снимков, Полинг решил подойти к проблеме с другой стороны – опереться на структурную химию, то есть на ожидаемые силы взаимодействия между атомами, чтобы предсказать форму и параметры полипептидной цепи, а затем изучить различные возможные конфигурации, которые не противоречили бы экспериментальным изображениям на рентгеновских снимках.
На штурм загадки белковой структуры Полинг пошел в начале лета 1937 года, сбросив бремя преподавательских обязанностей[179]. На илл. 11 представлена схема общей структуры[180], над которой он работал. Тщательно изучив химическую связь между атомом углерода (на рисунке он обозначен буквой С) и соседним атомом азота (обозначен буквой N), Полинг пришел к выводу, что так называемые пептидные группы – углерод, кислород, азот и водород – должны лежать в одной плоскости. Эта черта и оказалась самой важной, поскольку сильно ограничивала количество возможных вариантов структуры, поэтому Полинг надеялся, что сумеет в конце концов выявить правильную конфигурацию. Однако в науке обычно ждешь одного, а получается совсем другое. Полинг несколько недель работал день и ночь – и все же не сумел разобраться, какой способ сложения пептидных цепочек приводил бы к повторению каждые 5,1 ангстрем вдоль оси волокна, на что указывали данные рентгеновских снимков. У него опустились руки, и он бросил работу над этой задачей.
Когда какая-нибудь многообещающая гипотеза себя не оправдывает, ученые частенько пытаются улучшить качество доступных экспериментальных данных, поскольку более точные сведения иногда позволяют выявить доселе скрытые подсказки. Именно поэтому Полинг уговорил химика Роберта Кори[181] принять участие в долгосрочном проекте, целью которого было определить структуру некоторых простых пептидов и аминокислот – кирпичиков, из которых сложены белки – при помощи рентгеновской кристаллографии. Кори предался этим исследованиям с большим энтузиазмом, и к 1948 году его группа в Калифорнийском технологическом институте смогла разобраться в точной архитектуре примерно дюжины подобных компонентов. Полинг увидел, что все данные о длине химических связей и об углах между разными частями молекул, а также о плоскостной конфигурации пептидной группы, которые получал Кори, в точности согласуются с его изысканиями в прошлом, и решил вернуться к задаче о структуре белка альфа-кератина. Свои воспоминания о тех временах Полинг в 1982 году записал на диктофон (это был диктофон сильно устаревшей к тому времени модели):
«Весной 1948 года я был в Англии, в Оксфорде; в тот год я занимал должность Истмановского профессора и работал в Бейлиол-колледже. Я простудился, захворал, и мне пришлось дня три пролежать в постели. Через два дня мне надоело читать детективы и фантастику, и я задумался над структурой белков[182].»
Очередную атаку на эту загадку Полинг начал с предположения, что все аминокислоты в альфа-кератине с точки зрения структуры должны находиться в одинаковом положении относительно полипептидной цепи. Еще лежа в постели, Полинг попросил свою жену Аву-Хелен принести карандаш, линейку и лист бумаги. Полинг следил, чтобы каждая пептидная группа не вылезала за пределы плоскости листа, при помощи жирных и тонких линий отмечал трехмерные связи и поворачивал пептидные группы вокруг двух одинарных связей между атомами углерода – и у него получилась спиральная модель[183] наподобие винтовой лестницы, где полипептидный хребет составлял центр спирали, а аминокислоты торчали наружу (илл. 12). Чтобы придать конструкции стабильность, Полинг добавил водородные связи между соседними витками спирали, параллельно ее оси (илл. 12; водородная связь – это химическая связь, при которой атом водорода из одной молекулы притягивается к атому другой молекулы). Полинг нашел даже два подходящих варианта структуры – один он назвал альфа-спиралью, а другой гамма-спиралью.
То, что Полинг при помощи столь простых и относительно примитивных инструментов сумел найти решение этой задачи (на илл. 11 показана его попытка реконструировать тот самый чертеж 1948 года), лишь доказывает важность его более раннего открытия – когда он понял, что пептидная группа должна быть плоской. Без этого вариантов комбинаций было бы гораздо больше. Полинг разволновался и потребовал у жены логарифмическую линейку (сейчас уже мало кто помнит, что это такое, а в те времена это был очень распространенный инструмент для вычислений), чтобы рассчитать расстояние между витками вокруг оси волокна. Он обнаружил, что структура альфа-спирали повторяется через каждые 18 аминокислот на пять витков. То есть у альфа-спирали было 3,6 аминокислот на виток. Увы, к вящему огорчению Полинга, подсчет дал расстояние между витками в 5,4 ангстрем, а не в 5,1 ангстрем, на которые указывали данные дифракции рентгеновских лучей. У гамма-спирали вдоль оси шел туннель, такой тесный, что там не помещались другие молекулы, поэтому Полинг сосредоточился на альфа-спирали. Он ни на йоту не сомневался, что нашел верное решение, поэтому приложил все усилия, чтобы найти способ скорректировать углы или длины связей и добиться уменьшения расчетного расстояния с 5,4 до 5,1 ангстрем, однако ничего у него не получилось. Поэтому, хотя модель альфа-спирали очень ему нравилась, он решил воздержаться от ее обнародования, пока не разберется, в чем причина подобных расхождений.
Месяца через полтора Полинг посетил лабораторию Кавендиша в Кембридже и был глубоко потрясен увиденным: «Оборудование у них раз в пять лучше нашего, – писал он своему ассистенту Эдварду Хьюзу в Калифорнийском технологическом институте, – и есть установки, которые могут делать около 30 рентгеновских снимков одновременно»[184]. Полинг был очень обеспокоен тем, что в его модель вкралась ошибка, и при этом боялся, что ученые из лаборатории Кавендиша опередят его и первыми ее проанализируют, поэтому об альфа-спирали никому не рассказывал. Даже во время дискуссии со знаменитым химиком Максом Перуцем[185], когда тот показал Полингу потрясающие результаты своих исследований – он занимался структурой кристалла гемоглобина – Полинг предпочел держать свои соображения при себе.
Однако задача не давала ему покоя. Вернувшись в Пасадену, Полинг тут же попросил приглашенного профессора физики Германа Брэнсона тщательно проверить все эти вычисления. Особенно Полинга интересовало, не сможет ли Брэнсон[186] найти третью спиральную структуру, которая соответствовала бы условиям плоскостной структуры пептидной связи и имела бы максимально сильные водородные связи для устойчивости. Брэнсон и один из помощников Полинга Сидни Вейнбаум целый год просеивали вычисления Полинга сквозь частое сито и пришли к выводу, что структур, соответствующих всем этим условиям, и в самом деле только две: альфа-спираль и гамма-спираль. Кроме того, Брэнсон и Вейнбаум подтвердили, что у более тугой альфа-спирали расстояние между витками составляет 5,4 ангстрем.
Итак, перед Полингом встала дилемма: либо просто проигнорировать несоответствие данным рентгеновских снимков и опубликовать свою модель, либо подождать с публикацией, пока головоломка не будет окончательно решена. Принять решение ему помогла статья, которая была подана в печать в Англии 31 марта 1950 года.
Надо было разозлить вас раньше
Статья называлась «Конфигурации полипептидных цепей в кристаллических белках»[187], а написали ее три светила: Лоренс Брэгг, нобелевский лауреат по физике 1915 года, и два молекулярных биолога, которым еще предстояло получить Нобелевскую премию по химии в 1962 году – Джон Кендрю и Макс Перуц, все трое – из лаборатории Кавендиша в Кембридже. В то время эта знаменитая лаборатория была всемирным центром рентгеновской кристаллографии. В целом рентгеновская кристаллография была детищем Брэггов: Лоренс Брэгг и его отец сэр Генри Брэгг вместе трудились над математической моделью этого физического феномена и разработали экспериментальную методику.
Идея рентгеновской кристаллографии проста до гениальности[188]. Еще с начала XIX века физики понимали, что если направить видимый свет на решетку с равным расстоянием между прутьями, а позади решетки поставить экран, то свет, пройдя сквозь нее, формирует на экране дифракционный узор из темных и светлых пятен. Светлые пятна получались в тех местах, где световые волны из разных щелей в решетке усиливали друг друга, а темные – там, где различные волны подвергались деструктивной интерференции (там, где пик одной волны накладывался на минимум другой). Однако, кроме того, физики знали, что для формирования дифракционного узора расстояния между щелями должно быть того же порядка, что и длина волны светового излучения (расстояние между двумя соседними пиками волны). Хотя создать подобные решетки с тончайшими прорезями для видимого света было относительно легко, сделать их для рентгеновских лучей оказалось невозможно: типичная длина волны для рентгеновского излучения в тысячи раз короче длин волн видимой части спектра. Первым, кто понял, что решетками для установок, на которых проводятся эксперименты по дифракции рентгеновского излучения, могут послужить встречающиеся в природе периодические кристаллы, был немецкий физик Макс фон Лауэ. Лауэ обнаружил, что межатомные расстояния в кристаллах были в точности того же порядка, что и предполагаемые длины волн рентгеновского излучения. Лоренс Брэгг пошел по стопам Лауэ и сформулировал математический закон, который описывает дифракцию рентгеновских лучей на кристаллической структуре. Как ни поразительно, этот важнейший результат он получил еще на первом курсе магистратуры в Кембридже. Семейная команда, состоящая из Генри и Лоуренса Брэггов, построила затем рентгеновский спектрометр, который позволил им проанализировать структуру самых разных кристаллов. Кстати, Лоуренс Брэгг – самый молодой в истории нобелевский лауреат: когда он получил премию, ему было всего 25 лет!
Учитывая все эти регалии, можно представить себе, что когда Полинг увидел название статьи, которую написали Брэгг, Кендрю и Перуц, сердце у него екнуло. И из первых двух абзацев вполне можно было сделать вывод, что команда Брэгга обошла его у самого финиша: «Белки состоят из длинных цепочек аминокислотных остатков… В данной статье сделана попытка собрать как можно больше информации о природе цепочки по данным рентгеновских исследований кристаллических белков и изучить возможные типы цепочек, которые соответствуют имеющимся данным»[189]. Полинг быстро прочитал все 36 страниц статьи и с облегчением обнаружил, что хотя ученые из лаборатории Кэвендиша описали около 20 структур, альфа-спирали среди них не было. Более того, авторы статьи пришли к выводу, что ни одна из этих структур не подходит для альфа-кератина. Полинг с радостью согласился с этим выводом – в особенности потому, что считал, что Брэгг с коллегами не наложили на свои конфигурации самое важное ограничение, зато ввели условие, которое Полингу казалось совершенно ненужным. С одной стороны, ни в одной из моделей Брэгга не учитывалась плоскостная структура пептидной группы, а Полинг был полностью убежден, что его предположение верно. С другой – ученые из лаборатории Кавендиша, судя по всему, исходили из предположения, что на каждый полный виток их спиральных структур должно было приходиться целое число аминокислот, в то время как альфа-спираль Полинга, вопреки традициям, предполагала около 3,6 аминокислот на виток, и ничего дурного в этом Полинг не видел. Кроме того, Брэгг основывался на рентгеновской кристаллографии и считал догмой наблюдаемое расстояние между витками в 5,1 ангстрем, на которое указывали данные Астбери. Впоследствии Перуц вспоминал, что перед началом работы группы Брэгг вбивал в ручку метлы гвозди, изображавшие аминокислотные остатки, по спирали с расстоянием между витками по оси в 5,1 сантиметра[190].
Полинг от природы был страстный спорщик и не терпел конкурентов. Хотя ему было приятно, что кембриджские коллеги упустили несколько важных соображений, появление статьи Брэгга побудило его к немедленным действиям – так он боялся, что его могут опередить. В октябре 1950 года они с Кори опубликовали в «Journal of the American Chemical Society» короткую заметку с описанием альфа-спирали и гамма-спирали[191]. Примерно в это же время другая британская исследовательская группа из исследовательской лаборатории компании «Куртлодз» тоже получила многообещающие результаты. Клемент Бэмфорд, Артур Эллиот и их коллеги сумели получить волокна из синтетических полипептидов. К огромной радости Полинга, рентгеновские снимки дифракции на этих волокнах ясно показали, что расстояние между витками по оси составляет не 5,1, а 5,4 ангстрем, что соответствовало результатам Полинга. Полинг заподозрил, что эта характеристика рентгеновских снимков волоса, вероятно, была всего лишь дефектом снимков, вызванным частичным наложением отраженных изображений, а вовсе не важной характеристикой структуры. Вскоре подозрение переросло в уверенность, и Полинг, Кори и Брэнсон опубликовали статью[192], где подробно описывали альфа– и гамма-спирали. По стечению обстоятельств эта важная статья была послана в журнал в точности в день пятидесятилетия Полинга.
Кстати, химик Джек Дуниц рассказывал мне забавный случай, связанный с самим словом «спираль» – «helix». Джек Дуниц, который в то время работал у Полинга на временную должность научного сотрудника с ученой степенью, вспоминает, что в 1950 году Полинг называл структуру альфа-кератина другим, синонимичным словом – «spiral». Даже в краткой заметке Полинга и Кори в «Journal of the American Chemical Society» говорилось исключительно о «spirals». Дуниц вспоминает, что как-то раз заметил в разговоре с Полингом, что раньше ему казалось, будто слово «spiral»[193] может означать только двумерную, плоскостную спираль, а объемную, трехмерную надо называть «helix». Полинг ответил, что слово «spiral» может означать и двумерную, и трехмерную спираль, однако, подумав, добавил, что слово «helix» нравится ему больше. В результате этого разговора пространная статья Полинга, Кори и Брэнсона, опубликованная в феврале 1951 года, вообще не содержала слова «spiral», а в ее названии «Структура белков. Две спиральные конфигурации полипептидной цепочки с водородными связями» употреблялось слово «helical». К этому времени Полинг был настолько убежден в верности своей модели, что они с Кори вслед за статьей об альфа-спирали выпустили целый фейерверк статей о структуре полипептидных цепочек.
Между тем, одним весенним субботним утром в том же году – дело было в Англии – Макс Перуц отправился в библиотеку и обнаружил там в свежем номере «Proceedings of the National Academy of Sciences» сразу несколько статей Полинга. Лет через тридцать шесть после этого он описывал, какие чувства охватили его в то утро (термины он выбирал научные, однако суть эмоций предельно ясна).
«Статья Полинга и Кори сразила меня наповал. В их спиралях, в отличие от тех конструкций, которые предлагали мы с Кендрю, не было ни малейших натяжек, все амидные группы были плоскостные, все карбоксильные группы формировали идеальные водородные связи с аминогруппами, находившимися на четыре остатка дальше по цепи. Похоже, придраться к этой структуре было в принципе невозможно. Как же я ее проглядел? Почему не подумал, что амидные группы должны быть плоскостными? Почему слепо цеплялся за период в 5,1 ангстрем, который предложил Астбери? С другой стороны, разве могла спираль Полинга и Кори при всей своей внешней красоте быть верной, если у нее неправильный период? В голове у меня царила полнейшая неразбериха. Я сел на велосипед и покатил домой на обед – и проглотил все, что было на тарелке, не слыша ни болтовни детишек, ни расспросов жены, которая интересовалась, что со мной сегодня[194].»
Еще немного поразмышляв над моделью Полинга, Перуц заметил, что альфа-спираль напоминает винтовую лестницу, ступеньками которой и служат аминокислотные остатки (на илл. 12 они отмечены буквой R). Высота каждой ступеньки составляет примерно 1,5 ангстрема. Таким образом, теория рентгеновской дифракции Брэгга предсказала существование до той поры не известных структур в отраженном спектре рентгеновского излучения, разделенных расстояниями в 1,5 ангстрема, от плоскостей, перпендикулярных оси волокна. Ни у одной модели из группы Брэгга подобной черты не было, так что это оказалось бесспорными «отпечатками пальцев» альфа-спирали Полинга.
Перуц уже был готов сделать вывод, что поскольку в данных Астбери подобных структур не было, этого достаточно, чтобы опровергнуть модель Полинга, но тут он вдруг вспомнил, что сама постановка эксперимента Астбери, при которой оси волокон были перпендикулярны пучку рентгеновского излучения, не позволила бы распознать «ступеньку» в полтора ангстрема. Расчеты показывали, что идеальные условия, при которых можно было бы наблюдать структуры в отраженном рентгеновском свете, получаются при наклоне волокон под углом около 31 градуса.
Перуцу не терпелось тут же проделать необходимую проверку. Он вскочил на велосипед, покатил обратно в лабораторию, схватил конский волос, который лежал у него в ящике стола, поместил его в рентгеновский аппарат под углом, который, по его вычислениям, лучше всего подходил для того, чтобы выявить неведомую структуру, обернул его пленкой со всех сторон (у Астбери была камера, которая делала снимки на пластине, поле зрения у нее было слишком узкое, и, таким образом, рассеяния на большие углы не могли быть детектированы) и пустил рентгеновский луч. Проявить снимок он смог лишь через несколько часов, которые стали для него настоящей пыткой, но в конце концов Перуц получил ответ. Предсказанные моделью альфа-спирали структуры, расположенные на расстоянии в полтора ангстрема, прямо-таки бросались в глаза!
Утром в понедельник Перуц первым делом показал рентгеновский снимок Брэггу. Брэгг поинтересовался, что заставило Перуца ни с того ни с сего провести эксперимент, который привел к таким знаменательным результатам. Перуц ответил, что страшно разозлился на самого себя за то, что упустил из виду модель альфа-спирали. На это Брэгг пробурчал – и эта фраза вошла в историю: «Надо было мне разозлить вас раньше!»
Чертежи самой Жизни
Не все, о чем писал Полинг в той прославленной серии статей, опубликованных в 1951 году, оказалось верным. Тщательный пересмотр всего корпуса его текстов за тот год позволяет выявить несколько слабых мест. В частности, впоследствии пришлось отказаться от модели гамма-спирали по энергетическим соображениям. Однако мелкие недочеты совершенно не умаляют грандиозности открытия Полинга – его альфа-спирали и ее основополагающей роли в структуре белков. Более того, вклад Полинга в наше понимание природы жизни этим отнюдь не ограничивается. Он оказался в числе первых ученых[195], которые заметили, что биология при всей ее сложности, в сущности, не более чем молекулярная химия, сопряженная с теорией эволюции. Еще в 1948 году Полинг прозорливо писал: «Чтобы понимать все великие биологические явления, нужно прежде всего разбираться в устройстве атомов и молекул, которые они формируют, создавая связи друг с другом; при этом нельзя довольствоваться пониманием устройства простых молекул… Нам следует также изучить структуру гигантских молекул в живых организмах»[196].
Влияние Полинга на теорию и методологию молекулярной биологии в целом поражает не меньше. Сначала в своей основополагающей монографии «The Nature of the Chemical Bond and the Structure of Molecules and Crystals» («Природа химической связи и структура молекул и кристаллов»), вышедшей в 1939 году (Перевод на русский язык опубликован под сокращенным названием и с другой транслитерацией фамилии: Л. Паулинг, «Природа химической связи», Госхимиздат, 1947, пер. М. Дяткиной. – Прим. перев.) Полинг отмечает, как велико значение водородной связи в биомолекулах: «По моему мнению, если и далее применять методы структурной химии к физиологическим задачам, мы обнаружим, что значение водородной связи в физиологии куда больше, чем значение любой другой особенности химических структур»[197]. И в самом деле, структура многих органических молекул – от белков до нуклеиновых кислот – полностью подтвердила это предположение.
Во-вторых, Полинг стал первопроходцем в построении моделей – он превратил его в своего рода искусство предсказаний, основанное на строгих правилах структурной химии. Даже объемные красочные модели[198], построенные в Калифорнийском технологическом институте, произвели в области макромолекулярных исследований настоящий фурор. Эти модели, которые делали в мастерской Калифорнийского технологического института по заказу лаборатории, в 1956 году стоили 1220 долларов за набор, состоявший примерно из шестисот «атомов».
Оказалось, что и практика, к которой прибегнул Полинг – не начинать с изучения рентгеновской дифракции, а прибегать к рентгенографии лишь как к последнему доводу, позволяющему выбрать верную гипотезу из нескольких, очень хитроумных и тонко обоснованных, – необычайно эффективна: тот же подход вскоре применили и Уотсон и Крик при изучении структуры ДНК.
Полингу принадлежит и еще одно выдающееся замечание по поводу генетики, которое он сделал в 1948 году во время лекции. Правда, судя по всему, даже он в то время еще не понимал в полной мере, насколько масштабны выводы из него. В начале той лекции Полинг напомнил слушателям:
«Монах Мендель обратил внимание, что наследование черт у растений горошка, например, карликовости или высокорослости или, скажем, лиловых и белых цветков, можно объяснить при помощи гипотезы о неких единицах наследования, которые передаются от родителей к потомству. Томас Хант Морган и его сотрудники определили, что эти единицы – это гены, расположенные вдоль хромосом в линейном порядке[199].»
А затем, ближе к концу лекции, добавил:
«Точный механизм, при помощи которого ген или молекула вируса производит себе подобных, пока не известен. В целом применение гена или вируса в качестве лекала приводит к образованию молекулы не с идентичной, а с комплементарной структурой. Может, конечно, случиться и так, что молекула окажется одновременно и идентичной, и комплементарной лекалу, по которой она создана. Однако мне представляется, что подобное развитие событий крайне маловероятно и рассматривать его стоит лишь в следующем случае. Если структура, которая служит лекалом (ген или молекула вируса) состоит, предположим, из двух частей, которые сами комплементарны по структуре, то каждая из этих частей может служить образцом для создания копии другой части, и тогда комплекс из двух частей может служить лекалом для создания копии самого себя (выделено мной. – М. Л.)[200].»
Как мы вскоре убедимся, если бы Полинг четыре года спустя вспомнил собственное утверждение, когда пытался определить структуру ДНК, то, вероятно, избежал бы своего ужасного ляпсуса.
О ДНК Полинг задумался только летом 1951 года. До начала пятидесятых большинство биологов и биохимиков придерживались белковой парадигмы – представления о том, что закладывают основу жизни и играют важнейшую роль в размножении, росте и физиологической регуляции именно белки, а не нуклеиновые кислоты. Это предположение коренится в представлениях биолога Томаса Генри Гексли, того самого «бульдога Дарвина», который считал, что источник всех качеств живой материи – это протоплазма, живая часть клетки. Белки, состоящие из длинных цепочек аминокислот, составляют заметную долю структуры живой клетки, в то время как нуклеиновые кислоты, что явствует из их названия, были обнаружены в ядрах клеток – nuclei.
Первые работы о структуре и составе нуклеиновых кислот, которыми занимался биохимик Фоэбус Левен (родившийся в России под именем Фишель Аронович Левин. – Прим. перев.) не помогли пробудить интерес к этим молекулам. Хуже того, эти исследования привели к прямо противоположному результату. Левен сумел отличить[201] дезоксирибонуклеиновую кислоту (ДНК) от рибонуклеиновой кислоты (РНК) и выявить некоторые их качества. Однако его изыскания оставляли впечатление, что это довольно-таки простые и неинтересные вещества, неспособные играть важную и сложную роль руководителей роста и размножения. По словам цитолога Эдмунда Бичера Уилсона: «Нуклеиновые кислоты клеточного ядра в целом отличаются удивительным однообразием… В этом отношении они представляют собой прямую противоположность белкам: белки, и простые, и сложные, неистощимо разнообразны»[202].
Подобные взгляды были приняты на протяжении всех сороковых годов. К тому времени уже стало известно, что ДНК состоит из неразветвленной цепочки единиц, получивших название нуклеотидов. Сами нуклеотиды также представлялись довольно несложными: каждый состоял из трех частей – фосфатной группы (атом фосфора, соединенный с четырьмя атомами кислорода), пятиатомного сахара и одного из четырех азотистых оснований. Эти четыре основания – это моноциклические цитозин и тимин (у которых одно кольцо) и бициклические аденин и гуанин (у которых кольцо двойное) (см. илл. 13). Однако даже в 1951 году еще не было известно, какова структура нуклеотидов на самом деле, как именно соединяются друг с другом их составные части и какова природа связей между самими нуклеотидами. Хотя все это с химической точки зрения было довольно занимательно, к концу 1951 года большинство генетиков все еще считали[203], что роль ДНК, в сущности, сводится к структурной и она, вероятно, не связана прямо с наследственностью, а служит своего рода подпоркой для более сложных белков. Само по себе это было странно, поскольку еще в 1944 году была опубликована статья, в которой биологи Освальд Эвери, Колин Маклеод и Маклин Маккарти представили солидные экспериментальные свидетельства того, что генетический материал живых клеток состоит из ДНК. Эвери с коллегами[204] вырастили большое количество болезнетворных бактерий, затем сумели разложить их на биохимические составляющие и сделали вывод, что именно молекулы ДНК, а не белки и не жиры, отвечают за то, чтобы превращать неболезнетворных бактерий в болезнетворные. В мае 1943 года Эвери написал своему брату Рою письмо, где рассказывал о результатах своих исследований, и в заключение добавил: «Вот, собственно, и все, Рой, и я не знаю, правда это или нет, однако мы отлично поработали и повеселились на славу»[205]. Причина, по которой результатам Эвери не уделили должного внимания, вероятно, состоит в том, что поскольку ни один из трех ученых не был генетиком, свои выводы они формулировали до того осторожно, что многие биологи и биохимики так и не смогли оценить всего их масштаба. Вывод статьи гласил: «Даже если бесспорно, вне всяких сомнений доказать, что преобразующая активность материала, описанного в этой статье, и в самом деле имманентно присуща нуклеиновой кислоте, все же при изучении специфически биологического аспекта ее воздействия следует опираться на химические основания». Осторожный читатель должен был принять в расчет и краткий итог статьи: «Полученные данные… свидетельствуют, что в пределах данного метода активная фракция не содержит никакого белка, который можно было бы продемонстрировать… и состоит в основном, а может быть, и исключительно из высокополимеризованной вязкой формы дезоксирибонуклеиновой кислоты».
Полинг был знаком с работой Эвери, однако даже он в более позднем интервью признался, что в то время не поверил, что ДНК имеет такое прямое отношение к наследственности: «Я знал о доводах в пользу того, что ДНК – это наследственный материал. Однако я с этой идеей не был согласен – понимаете, мне так нравились белки, что я считал, что наследственный материал – это именно они, а не нуклеиновые кислоты». Химик Питер Полинг, сын Лайнуса, также подтверждал, что точка зрения его отца была именно такова. В короткой статье, написанной в 1973 году, Питер писал: «Для моего отца нуклеиновые кислоты были просто интересными химическими соединениями, примерно как хлорид натрия [обычная поваренная соль]: оба эти вещества интересны, с обоими связаны интересные структурные задачи»[206].
Тем не менее к концу 1951 года появилась незаурядная статья биохимика Эдварда Ронвина[207], который тогда работал в Беркли, и Полинг так ею заинтересовался, что тут же приступил к решительным действиям. Статья Ронвина была озаглавлена «Остаток фосфорной кислоты в нуклеиновых кислотах» и вышла в ноябре 1951 года. В ней Ронвин предложил новый «дизайн» ДНК, при котором каждый атом фосфора связывается с пятью атомами кислорода, а Полинг – химик-структуралист до мозга костей – был полностью убежден, что он может быть связан только с четырьмя. Рассерженный Полинг (совместно с химиком Вернером Шомакером) мгновенно ответил краткой заметкой, адресованной редактору «Journal of the American Chemical Society», в которой первым делом заявил: «При описании гипотетической структуры вещества прежде всего надо следить, чтобы структурные элементы, на которые опирается гипотеза, не противоречили действительности». Заключение Полинга и Шомакера было еще язвительнее: «Объединение пяти атомов кислорода вокруг каждого атома фосфора настолько невероятно», писали они, что предполагаемая формула ДНК «не стоит дальнейшего рассмотрения». Ронвин сердито ответил[208], что есть и другие вещества, где атом фосфора соединяется с пятью атомами кислорода. Полинг и Шомакер[209] были вынуждены отозвать это замечание, высказанное в крайне резких выражениях, однако продолжали настаивать, и совершенно справедливо, что структуры подобного типа крайне чувствительны к влаге, а значит, они не слишком вероятные кандидаты на роль структуры ДНК. Этот спор ничего бы не значил, но он натолкнул Полинга на размышления о том, как может быть устроена ДНК. Чтобы добиться прогресса, ему нужны были высококачественные снимки рентгеновской дифракции ДНК, поскольку опубликованы были только очень старые снимки, которые сделали Уильям Астбери и Флоренс Белл в 1938–39 годах. К сожалению, получить хорошие рентгеновские снимки было не так-то просто. В начале пятидесятых в Калифорнийском технологическом институте сделали новые снимки, однако – хотите верьте, хотите нет – они были даже хуже качеством, чем у Астбери и Белл. Пока Полинг рассматривал варианты дальнейших действий, он услышал, что Морис Уилкинс из Королевского колледжа в Лондоне получил какие-то «хорошие волоконные изображения нуклеиновой кислоты»[210]. Полинг решил, что терять ему нечего, и написал Уилкинсу, чтобы узнать, готов ли тот поделиться полученными изображениями. Однако Полинг не знал, что в Великобритании началась настоящая «гонка за ДНК».
А тем временем в Англии
Три не связанные на первый взгляд события[211] [208], произошедшие в 1951 году, оказались судьбоносными: благодаря им и была открыта структура ДНК. Именно в тот год Фрэнсис Крик, которому исполнилось тридцать пять лет, работал в Кембридже над диссертацией по биологии, поскольку физика ему наскучила (впоследствии он говорил, что исследование вязкости воды было «самой занудной задачей на свете»). Однако без крепкой математической подготовки он не смог бы совершить своих выдающихся открытий. В том же году Джеймс Уотсон, двадцати трех лет, приехал в Кембридж изучать рентгеновскую дифракцию под руководством Макса Перуца. Уотсон защитил в Университете штата Индиана диссертацию о воздействии рентгеновских лучей на вирусы, получил степень доктора философии, а затем некоторое время изучал химию нуклеиновой кислоты в Копенгагенском университете. В том же 1951 году Розалинда Франклин, которой тогда было тридцать один, прибыла в Королевский колледж в Лондоне после трех лет исследовательской работы в Париже, где она стала специалистом по методам рентгеновской дифракции.
Розалинда Франклин родилась в семье образованных банкиров и получила степень доктора философии в Кембридже в 1945 году. Когда Розалинда прибыла в Королевский колледж, физик Морис Уилкинс рассчитывал, что благодаря ее глубоким познаниям в кристаллографии она поможет ему в исследованиях молекулярных структур. То, что Уилкинс рассчитывал на это, было ничуть не удивительно: по словам Уотсона, «исследования молекулы ДНК в Англии в то время были практически личной епархией Мориса Уилкинса»[212]. Однако сама Франклин совершенно не имела этого в виду, когда ехала в Королевский колледж, и у нее были на то веские причины. В письме с описанием должностных обязанностей, которое она получила от сэра Джона Рэндалла, руководителя отдела биофизических исследований Королевского колледжа, говорилось: «Это означает, что во всем, что касается экспериментов[213] с рентгеновскими снимками, на данный момент будете участвовать только вы с Гослингом [речь идет о Раймонде Гослинге, который в то время был студентом-старшекурсником], а также ваша временная помощница миссис Геллер, выпускница Сиракузского университета в штате Нью-Йорк». Из этого Франклин сделала логичный вывод, что в работе над структурой ДНК она будет сама себе хозяйкой, а это, очевидно, не совпадало с намерениями Уилкинса. Так что с первого же дня Франклин и Уилкинс были обречены на ссоры и раздоры, и так оно и случилось. В конечном итоге они работали порознь в стенах одной и той же лаборатории.
А вот Уотсон и Крик, у которых был общий кабинет в Кембридже, сразу же поладили. Уотсон считал, что Крик «несомненно, самый талантливый человек из всех, с кем мне доводилось работать, и я не видел никого, кто был бы так близок по уровню к Полингу»[214]. У этих ученых были разные, но взаимодополняющие способности, опыт и характеры. Как отмечал Крик в одном интервью: «Нам было очень выгодно, что раньше он [Уотсон] занимался бактериофагами, а я об этом только читал, а сам с этим не сталкивался, а я раньше работал в кристаллографии, о которой он только читал, а сам не сталкивался». Просто удивительно читать, как они отзывались друг о друге. Уотсон писал, что Крик был самоуверен, задирист, остер на язык и имел привычку говорить правду в глаза: «В жизни не видел Фрэнсиса Крика в мирном настроении»[215]. И добавлял, что Крик «говорил быстрее и громче всех на свете». Между тем Крик писал об Уотсоне: «Джим был гораздо откровеннее меня»[216]. Несмотря на разное образование, между ними сразу пробежала какая-то искра. Крик подозревал, что дело было в «юношеской дерзости, безжалостности и нетерпимости к неряшливым умозаключениям». Мыслили они очень похоже. По словам Крика: «Он был первым среди моих знакомых, чьи представления о биологии были такими же, как и у меня… Я решил, что главное – это генетика, весь вопрос в том, что такое гены и что они делают. А еще Уотсон был первым среди моих знакомых, у кого возникали в точности такие же идеи, как и у меня».
Научный тандем Уотсона и Крика оказался столь плодотворным и еще по одной причине. В смысле профессиональных регалий они были ровней друг другу и поэтому могли честно до жестокости критиковать идеи друг друга. В отношениях, отягощенных требованиями официальной вежливости, такая интеллектуальная честность подчас невозможна, что вредит делу: приходится подчиняться либо научному авторитету, либо громкой должности. Вот как сам Крик писал об общении с Уотсоном: «Если кто-то из нас предлагал какую-то новую идею, второй относился к ней серьезно, но всеми силами старался опровергнуть ее – откровенно, однако без враждебности». Согласно Крику, Уотсон был «полон решимости выяснить, что такое гены, и надеялся, что открытие структуры ДНК этому поспособствует»[217]. Так и оказалось.
Остается только гадать, что же убедило Уотсона и Крика, что ДНК – не аморфная масса, а в принципе обладает структурой, которую можно выявить. Скорее всего, это был доклад Мориса Уилкинса, с которым тот выступил весной 1951 года на конференции в Неаполе, где присутствовал и Уотсон. Уилкинс сумел вытянуть необычайно тонкие волокна из натриевой соли ДНК (дезоксирибонуклеата натрия) и сделать рентгеновские снимки, качество которых было значительно выше, чем у старых снимков Эстбери и Белл. На снимках была видна кристаллическая форма ДНК, что убедило Уотсона, что ее структура правильна и регулярна. Это были те самые снимки, копии которых Полинг попросил у Уилкинса.
Получив письмо Полинга, Уилкинс, который прекрасно понимал, что в области исследования молекулярных структур Полинг – настоящий талант, не знал, как поступить. В конце концов он вежливо ответил, что не готов делиться снимками, пока у него не будет возможности проделать некоторых дополнительных изысканий. Полинг не сдался и решил попытать счастья и обратиться к руководителю лаборатории Джону Рэндаллу, но и тут его ждал отказ на том основании, что «передать эти снимки Вам было бы непорядочно по отношению к ним [Уилкинсу и его коллегам] и к трудам нашей лаборатории в целом»[218]. Так что к концу 1951 года Полингу так и не удалось увидеть рентгеновские снимки приемлемого качества.
Между тем Уотсона и Крика все сильнее обуревало желание опередить Полинга и первыми расшифровать структуру ДНК. Эдвин Чаргафф, американский биохимик родом из Австро-Венгрии, который познакомился с Уотсоном и Криком в мае 1952 года, оставил юмористическое описание этого супер-дуэта: «Одному тридцать пять, и он вылитый стареющий завсегдатай скачек – словно персонаж полотен Хогарта… другой выглядит куда моложе своих двадцати трех, с улыбкой скорее лукавой, чем застенчивой, говорит мало – и при этом не сообщает ничего интересного»[219]. Еще ехиднее Чаргафф описывал неуемное честолюбие молодых ученых: «Насколько я сумел разобраться, они, не будучи обременены никакими познаниями о химической стороне процесса, пытались втиснуть ДНК в спираль. В основном, похоже, по той простой причине, что Полинг построил спиральную модель альфа-кератина»[220]. И в самом деле, хотя Полинг об этом не знал, Уотсон (в особенности) и Крик (в определенной степени) считали, что у них с Полингом соревнование.
Спиральные модели предлагали и до Полинга, однако именно он, несомненно, сыграл главную роль в том, чтобы доказать, что именно от этих моделей нужно отталкиваться при изучении молекул, имеющих биологическое значение. Кроме того, Полинг в своей альфа-спирали допустил, чтобы число аминокислот на виток было не целым, и это еще сильнее расширило мировоззрение кристаллографов-структуралистов традиционного направления. В результате начался настоящий бум исследований в области интерпретации рентгеновской дифракции спиральных структур – а это обеспечило необходимый научный инструментарий для последующей расшифровки ДНК. Вот как описал умонастроения тогдашних ученых сам Крик: «В те времена всякого, кто не соглашался, что ДНК имеет форму спирали, считали слегка сумасшедшим»[221].
К концу 1951 года события начали стремительно развиваться. Двадцать первого ноября 1951 года Уотсон специально съездил в Лондон, чтобы послушать доклад Розалинды Франклин. Ничего особенно нового он из этой лекции не узнал, однако прошла всего неделя, и они с Криком предложили первую модель структуры ДНК. Эта модель состояла из трех спиральных нитей, обвивавшихся вокруг сахаро-фосфатного стержня внутри, а основания были направлены наружу. Такое строение Уотсон и Крик выбрали в основном по одной простой причине: поскольку основания были разных форм и размеров (два моноциклических и два бициклических, см. илл. 13), Уотсон и Крик считали, что относительно правильная структура у кристаллической ДНК может быть только в том случае, если основания не играют особой роли в архитектуре ее центра.
По совету Джона Кендрю неугомонный дуэт показал свою модель сотрудникам Королевского колледжа, хотя Крик впоследствии признался, что ему было неловко рассылать подобное приглашение так скоро. Вызов был принят незамедлительно: уже назавтра в Кембридж прибыла группа ученых, состоявшая из Мориса Уилкинса, Розалинды Франклин, Раймонда Гослинга и Уильяма Сидса.
Демонстрация первой модели[222] Уотсона и Крика увенчалась полным провалом. Розалинда Франклин не просто подвергла сомнению все предпосылки, на которые они опирались, от спиральной структуры до сил, которые, как предполагалось, связывают ядро и не дают ему распасться: она еще и указала на то, что ученые грубо ошиблись в расчетах содержания воды[223] (ДНК – молекула, которая постоянно «хочет пить»), а это дискредитировало все расчеты плотности, которые проделал Уотсон. Очевидно, Уотсон ошибся отчасти из-за того, что неверно понял один кристаллографический термин, который упоминала Франклин за неделю до этого на своем семинаре. Это досадное недоразумение натолкнуло Крика на мысль, что количество возможных конфигураций довольно-таки ограниченно.
Последствия этого фиаско были весьма значительны: Уотсона и Крика, по сути дела, отстранили от дальнейшей работы над ДНК, а все исследования ДНК оказались ограничены пределами Королевского колледжа в Лондоне. Раньше считалось, что два руководителя лаборатории, Рэндалл и Брэгг, объявили мораторий на дальнейшую работу Уотсона и Крика над ДНК. Однако в 2010 году Александер Ганн и Ян Витковски из лаборатории в Колд-Спринг-Харбор в штате Нью-Йорк обнаружили несколько писем из переписки Фрэнсиса Крика[224], которые до этого считались утраченными. Оказалось, что пропавшие письма затерялись среди бумаг биолога Сидни Бреннера, с которым у Крика в 1956–1977 годах был общий кабинет. Обнаруженные документы позволяют по-новому взглянуть на обстоятельства, при которых были приостановлены исследования ДНК. Официальное письмо Мориса Уилкинса Крику, датированное 11 декабря 1951 года, гласит:
«К несчастью, я вынужден сообщить – крайне неохотно и с большим сожалением – что общественное мнение здесь [в Королевском колледже] против того, чтобы вы продолжили работу над н. к. [нуклеиновыми кислотами] в Кембридже. Выдвинуты доказательства того, что ваши идеи были почерпнуты непосредственно на некоем семинаре, и эти доказательства представляются мне столь же убедительными, как и ваше собственное заявление о том, что ваша гипотеза пришла к вам в голову сама собой[225].»
Продолжая исполнять роль посредника между Королевским колледжем и лабораторией Кавендиша, Уилкинс добавил: «Полагаю, главное – чтобы было достигнуто понимание, что все сотрудники нашей лаборатории и в будущем, как и в прошлом, должны быть вольны обсуждать свою работу и обмениваться идеями с вами и вашей лабораторией. Мы – два подразделения Совета по медицинским исследованиям и два физических факультета, тесно связанные друг с другом». Затем Уилкинс предложил Крику показать письмо Максу Перуцу и сообщил, что посылает копию Рэндаллу. В тот же день Уилкинс прислал Крику письмо более личного содержания, написанное от руки, где признался, что с трудом отговорил Рэндалла от того, чтобы тот «написал Брэггу жалобу на ваше поведение». В черновике ответа, который Уотсон и Крик составили несколькими днями позже, говорится, что «мы все согласны, что нужно найти какой-то компромисс»[226]. Стоит ли говорить, что подобного рода административные решения были бессильны запретить Уотсону хотя бы размышлять о ДНК.
Между тем Розалинда Франклин, со своей стороны, получала все более и более обнадеживающие результаты. Сначала она обнаружила, что ДНК бывает двух различных конфигураций[227]. Одна форма, которую Франклин назвала А, была кристаллической. Другая, В, оказалась больше по размеру и содержала больше воды. Следствием существования двух конформаций стало, в частности, то, что снимки рентгеновской дифракции образцов ДНК получались неразборчивыми, если делались не с одной чистой разновидности. Первые пять месяцев 1952 года Франклин провела за получением чистых образцов форм А и В, после чего ей удалось вытянуть по одному волокну каждой формы, а также за тем, чтобы придумать особую конфигурацию рентгеновского аппарата, с помощью которого можно было бы получить снимки высокого разрешения. Одному из ее снимков более «влажной» В-ДНК, так называемому снимку № 51 (илл. 14), вскоре предстояло стать ключом к разгадке структуры ДНК. К сожалению, Франклин решила ограничиться одним определенным методом анализа, и они с Гослингом сначала сосредоточились на более детальных снимках А-ДНК, оставив без внимания более простые, зато крайне познавательные рентгеновские узоры на снимке № 51 – и вернулись к ним лишь через девять месяцев!
По всем научным начинаниям Розалинды Франклин очень заметно, что ее образ мыслей разительно отличался от образа мыслей Полинга. Франклин терпеть не могла «обоснованных догадок» и эвристических методов. Она твердо решила, что выведет верный ответ на основании рентгеновских данных. Поэтому она, например, не возражала в принципе против спиральных структур, однако категорически отказывалась опираться на предположение об их существовании как на рабочую гипотезу[228]. А Уотсон и Крик, наоборот, во всем старались подражать подходу и методам Полинга и не желали вязнуть в болоте формальной методологии. Вот как вспоминал об этом Крик: «Он [Уотсон] хотел получить результат, а какими методами – сугубо научными или экстравагантными – не тревожило его ни на йоту. И чем скорее, тем лучше»[229].
Как ни странно, ни Уотсон и Крик, ни Полинг в то время не знали, что еще в 1951 году Элвин Бейтон из лаборатории Астбери в Лидсе получил отличные рентгеновские снимки В-ДНК[230], вытянув и увлажнив волокна ДНК. Однако, поскольку Астбери и Бейтон, очевидно, считали, что это были снимки не чистой конфигурации, а ее смеси (поскольку структура на снимке была проще, чем на снимках Астбери и Белл), они не стали широко рекламировать свои снимки. Астбери и Бейтон, к несчастью для них, не очень хорошо знали, как получается спиральная структура на рентгеновских снимках. Так и получилось, что лаборатория в Лидсе упустила шанс сыграть важнейшую роль в истории исследований ДНК.
Между тем, Полинг в США пытался в очередной раз проделать свой фокус с белками, но на сей раз уже с ДНК. На имеющихся в его распоряжении рентгеновских снимках виден четкий период в 3,4 ангстрема, но больше почти ничего не различить. Для начала Полинг еще раз внимательно изучил статью Ронвина. Хотя он был убежден, что гипотеза о структуре ДНК, которую предлагает Ронвин – в которой атом фосфора соединен с пятью атомами кислорода – была полностью ошибочна, кое-что в ней привлекло его внимание. По Ронвину, четыре основания находились вне структуры, а фосфаты – по центральной оси. Полингу показалось, что в этом есть смысл – по той же самой причине, по которой Уотсон и Крик в своей первой модели вывели основания в наружную сторону (об этой крайне неудачной модели Полинг ничего не знал). Поломав голову, пусть и недолго, Полинг снова решил прибегнуть к своему прославленному «стохастическому методу». Основная мысль заключалась в том, чтобы, опираясь на химические принципы, сократить перечень возможных структур до самых вероятных, а затем построить их трехмерные модели, чтобы исключить слишком плотные и слишком свободные конфигурации. А затем можно будет сравнить оставшуюся структуру-«фаворита» с экспериментальными рентгеновскими данными.
Раньше этот метод приводил к грандиозным успехам, и Полинг решил, что точно знает, какому плану следовать. Во-первых, он почти не сомневался, что молекула имеет спиральную структуру, и снимки Астбери и Белл, похоже, в целом подтверждали это предположение. Во-вторых, два основания были с одинарным кольцом, а два – с двойным. Разница в конструкции и объеме, по крайней мере на первый взгляд, не позволяла предположить, что ось спирали, по всей видимости, обладающая правильной структурой, состоит из оснований. Следующим шагом было выяснить, из скольких нитей состоит спираль. Полинг решил подойти к этой задаче с неожиданной стороны – вычислить плотность структуры. Однако не успел он даже приступить к делу, как ему помешали непредвиденные обстоятельства.
Жизнь в эпоху маккартизма
В атмосфере холодной войны, которая наступила после Второй мировой, а особенно – после принятия Закона о внутренней безопасности 1950 года, служба виз и регистраций при Госдепартаменте США получила практически неограниченное право отказывать в выдаче заграничного паспорта любому, у кого, на ее вкус, будут слишком левые взгляды. В январе 1952 года Полинг подал документы на новый заграничный паспорт, поскольку в мае того же года собирался участвовать в собрании Королевского общества в Лондоне. И Полинга, и Кори пригласили туда рассказать о своих исследованиях белков и об альфа-спирали, а Полинг собирался воспользоваться случаем, раз уж он окажется в Европе, и посетить несколько университетов в Испании и Франции. Поэтому дальнейшие события были для него как гром среди ясного неба. Четырнадцатого февраля 1952 года глава службы виз и регистраций Рут Б. Шипли отправила Полингу письмо[231], которое никак нельзя было считать валентинкой. Она сообщила, что в выдаче паспорта ему отказано, поскольку у Госдепартамента сложилось впечатление, что его поездка «не послужит на благо интересам Соединенных Штатов».
Конечно, если учесть тогдашнюю обстановку, а также то, что Полинг постоянно выступал с пацифистскими речами, активно протестовал против ядерного оружия и заявлял, что «мир стоит на распутье, которое ведет либо к счастливому будущему всего человечества, либо к полной гибели цивилизации», пожалуй, не стоит удивляться, что Шипли решила, будто «есть все основания полагать, что доктор Полинг – коммунист».
Поначалу Полинг решил, что отказ – это просто досадная неурядица, и был убежден, что этот вопрос удастся легко уладить. Чтобы ускорить события, он тут же отправил письмо президенту США[232], приложив копию удостоверения к медали «За заслуги», полученной в 1948 году. Удостоверение было подписано президентом Гарри Трумэном. Полинг с досадой писал: «Я уверен, что моя предполагаемая поездка не причинит нашему народу ни малейшего вреда». Секретарь президента учтиво ответил, что они обратились в паспортную службу с просьбой пересмотреть решение. Однако решение осталось прежним. В апреле Полинг понял, что время уходит, и предпринял решительные действия. Во-первых, он обратился к юристу. Во-вторых, он направил в службу виз и регистраций всевозможные клятвы в верности государству и нотариально заверенные заявления, что он вовсе не коммунист. Наконец, он записался на прием лично к Рут Шипли. Все это ни к чему не привело. Двадцать восьмого апреля Полинг получил окончательный отказ, а на следующий день уведомил оргкомитет Королевского общества, что на конференцию приехать не сможет.
Нетрудно догадаться, что все эти коллизии с отказом в получении паспорта взбесили мировую научную общественность[233]. Англичанин сэр Роберт Робинсон, лауреат Нобелевской премии, написал в лондонскую «Times» письмо, где сообщал, что эта история «ужаснула» его. Письма протеста писали выдающиеся американские и английские ученые, в число которых входили физики Энрико Ферми и Эдвард Теллер, биолог Гарольд Юри и кристаллограф Джон Бернал, а французские биохимики избрали Полинга «почетным президентом» Международного биохимического конгресса, который прошел в Париже в июле того же года.
В конце концов международное давление оказало нужное воздействие. Когда в июне Полинг снова подал документы на получение паспорта, Госдепартамент отменил решение Шипли, и 14 июля (в День взятия Бастилии, кстати!) Полинг отправился во Францию и Англию.
Помимо политического резонанса, у истории с паспортом были и чисто научные последствия. Кори, который попал на конференцию Королевского общества, воспользовался случаем и посетил лабораторию Розалинды Франклин. Там ему показали отменные рентгеновские снимки, которые получила Франклин. Однако Кори, судя по всему, не понял с первого взгляда всего их значения, поскольку Полингу он ничего важного не сообщил. О том, что было бы, если бы Полинг смог поехать на конференцию и сам увидел эти снимки, написаны целые тома. На самом деле все эти тома не имеют к делу никакого отношения. Полинг имел прекрасную возможность посетить Королевский колледж всего через два с половиной месяца после конференции, поскольку летом 1952 года провел в Англии целый месяц, однако он решил этого не делать. По одной простой причине: главным для Полинга по-прежнему было убедить всех в том, что его модель альфа-спирали для белковых молекул верна, а о ДНК он особенно не задумывался. Как обнаружилось впоследствии, знающий человек увидел бы на снимках Розалинды Франклин, в особенности на снимке № 51, который ждала заслуженная слава, все признаки двойной спирали.
Был и еще один важный факт, касающийся ДНК, о котором Полингу сообщали, однако он то ли забыл о нем, то ли не усвоил его. Эти сведения относились к основаниям в нуклеотидах. Об этом стоит рассказать подробнее – и этот курьезный случай ясно показывает, как излишняя эмоциональность мешает подчас даже тем процессам, которые должны подчиняться чисто научному обоснованию.
В 1947 году, на следующий день после Рождества, Полинг с семьей направлялся в Европу, где ему предстояло полгода провести в Оксфорде. Они путешествовали на борту знаменитого корабля «Queen Mary». По воле случая на том же судне оказался и американский биохимик австрийского происхождения Эрвин Чаргафф, который заинтересовался нуклеиновыми кислотами еще в годы войны, и они с Полингом вскоре встретились на верхней палубе. К несчастью, по выражению биолога Алекса Рича[234], Чаргафф был «страшно настырным типом», а Полингу это оказалось некстати: он был в целом человек довольно легкий и к тому же предвкушал приятный отдых. Вот почему Полинг не только пропустил мимо ушей оживленный рассказ Чаргаффа о его научных результатах, но и впоследствии, похоже, не обратил внимания на важную статью Чаргаффа о нуклеиновых кислотах. В этой статье, опубликованной в 1950 году[235], Чаргафф описал примечательное соотношение между количеством оснований в ДНК. Он доказал, что на любом участке ДНК количество молекул аденина (обычно его обозначают А) в точности равно количеству молекул тимина (Т). Подобным же образом количество единиц гуанина (G) всегда равно количеству единиц цитозина (С). Так вот, этот важнейший ключ к структуре ДНК – то, что количество А равно количеству Т, а количество G количеству С – Полинг совершенно упустил из внимания. Если бы он об этом вспомнил, история изучения ДНК, вероятно, пошла бы по другому пути.
После поездки в Англию и Францию летом 1952 года Полинг вернулся в Калифорнийский технологический институт; это было в сентябре. Однако и тогда он еще не был готов полностью погрузиться в изучение ДНК. В Англии он побеседовал с Криком, и у него появилась идея, как найти ответ на загадку периода в 5,1 ангстрем на снимках белковых молекул. Как часто случается в мире науки, Полинг и Крик решили эту задачу независимо – и оба показали, что сама альфа-спираль может формировать скрученные, будто канат, структуры. Казалось, забрезжил свет в конце тоннеля, но даже Полинг в то время еще не предвидел, что гонка за ДНК вышла на финишную прямую.
Тройная спираль
Поездка во Францию подарила Полингу еще одну подсказку, что, вероятно, главный генетический материал – это ДНК. Американский микробиолог Альфред Херши в своем докладе на международной конференции по бактериофагам в Ройомоне под Парижем. Херши и его сотрудница Марта Чейз[236] пометили ДНК и белок бактериофага Т 2 (вируса) радиоактивными фосфором и серой соответственно. Затем они заразили бактерии этим бактериофагом и смогли показать, что генетический материал, заразивший бактерии, был, скорее всего, ДНК, а не белком. Белковая оболочка вируса оставалась вне клетки бактерии и не играла в заражении никакой роли. Это убедило не всех. Да и сам Херши осторожно оговаривался, что еще неясно, имеют ли его результаты какое-либо фундаментальное значение. А вот Джеймс Уотсон, с другой стороны, тоже побывал в Ройомоне – и, уже давно будучи специалистом по ДНК, вполне поверил в эти результаты.
Полинг вернулся к работе над ДНК лишь в конце ноября 1952 года. Подтолкнул его к этому интереснейший семинар, который провел в Калифорнийском технологическом институте биолог Робли Уильямс. Уильямс показал изумительно четкие изображения соли нуклеиновой кислоты – химической родственницы ДНК, – полученные при помощи электронного микроскопа[237]. Для Полинга изображения длинных цилиндрических нитей в сочетании с рентгеновскими снимками Астбери, судя по всему, стали решающим доводом в пользу спиральной модели молекулы – если ему еще требовались решающие доводы. Кроме того, из трудов Александера Тодда, специалиста по органической химии, Полингу было известно, что «каркас» молекулы ДНК состоит из перемежающихся фосфатных и сахарных фрагментов.
Вооружившись снимками Астбери, где был отчетливо виден период примерно в 3,4 ангстрема, Полинг 26 ноября занялся наконец грязной работой: стал подсчитывать параметры структуры ДНК. На основе измерений плотности, проделанных Астбери и Белл[238], и расчетов диаметра нити, которые проделал Уильямс, Полинг приблизительно оценил, что длина одного остатка по оси волокна составляет 1,12 ангстрем, то есть практически точно треть периода на рентгеновском снимке (3,4 ангстрема). Это и подтолкнуло его к неожиданному выводу: «Цилиндрическая молекула состоит из трех цепочек, обернутых друг вокруг друга… и каждая цепочка формирует спираль»[239]. Иначе говоря, Полинг убедил себя, что спираль из двух нитей даст недостаточную плотность, и предпочел архитектуру из трех переплетенных спиралей. Эта структура и стала известна как тройная спираль.
Следующей задачей, с которой предстояло разобраться, была природа собственно «каркаса» конструкции из трех спиральных цепочек. Вопрос состоял в том, какой из трех известных компонентов нуклеотидов (основания, сахара или фосфатные группы) формирует этот «каркас». Полинг и Кори решили прибегнуть к методу исключения.
«По причине разнородности пурино-пиримидиновую группу [основания] невозможно уложить вдоль оси спирали так, чтобы могли создаваться необходимые связи между остатками сахаров и фосфатными группами. Кроме того, маловероятно, чтобы ядро молекулы составляли сахара… форма ее… такова, что плотно уложить подобные группы вдоль оси спирали затруднительно, и не удалось обнаружить никакого приемлемого способа их уложить… Мы делаем вывод, что «ядро» молекулы, вероятно, сформировано из фосфатных групп[240]. (Выделено мной. – М. Л.)»
Теперь общая картина выглядела примерно следующим образом: фосфатные группы были расставлены по оси спирали, их окружали сахара, а основания радиально торчали наружу. Тройная спираль молекулы держалась на водородных связях между фосфатными группами разных цепочек.
Выглядело это многообещающе, однако Полинг заметил и недочеты. Трем цепочкам фосфатов в центре молекулы было так тесно, что это было похоже на соревнование, сколько человек удастся втиснуть в телефонную будку. Полинг знал, что фосфатный ион имеет форму тетраэдра: в центре – атом фосфора, а его окружают четыре атома кислорода, расположенные на вершинах пирамиды. Весь декабрь Полинг, Кори и химик Вернер Шомакер пытались так и сяк сплющить, скрутить и смять эти тетраэдры, чтобы они лучше помещались в структуру молекулы. В процессе Полинг руководствовался той же интуицией, которая недавно обеспечила ему триумфальный успех с альфа-спиралью. Он был убежден, что если ему удастся найти структурно-химическое решение, в целом соответствующее рентгеновским данным, все остальные проблемы решатся сами собой, дайте только срок. Например, оставался вопрос, как такая модель допускает существование натриевой соли ДНК, поскольку места для ионов натрия в центре точно не оставалось. Ответа на этот вопрос Полинг не знал, но предполагал, что ответ придет, как только прояснится общая архитектура. Трудился он не покладая рук, день и ночь. В Рождество он даже собрал коллег в своей лаборатории на неофициальную презентацию модели[241]. К концу месяца он решил, что в целом уловил суть. В последний день 1952 года Полинг и Кори направили в печать статью «Предполагаемая структура нуклеиновых кислот». Начиналась эта статья со слов «Нуклеиновые кислоты как составляющие живых организмов по важности сравнимы с белками». Далее следовало несколько более осторожных фраз.
«Мы предлагаем перспективную модель структуры нуклеиновых кислот… это первая точно описанная модель структуры нуклеиновых кислот, которую предложили исследователи. Структура соответствует некоторым характерным чертам рентгеновских снимков, однако точные расчеты плотности еще предстоит проделать, и правильность этой модели пока нельзя считать доказанной.»
Иначе говоря, некоторые углы еще предстояло загладить, но Полинг хотел установить свое первенство и застолбить участок.
Несмотря на довольно-таки робкую интонацию этой научной статьи, в личном общении Полинг держался гораздо самоувереннее. В письме шотландскому биохимику (впоследствии нобелевскому лауреату) Александеру Тодду, датированном 19 декабря 1952 года, Полинг писал: «Мы считаем, что открыли структуру нуклеиновых кислот. Думаю, что рукопись с описанием этой структуры мы опубликуем примерно через месяц, но я практически уверен, что структура, которую мы открыли, верна… Эта структура очень красива»[242]. В тот же день он написал Генри Аллену Моу[243], президенту фонда Гугенхейма, и повторил эту же фразу: «Я считаю, что открыл структуру нуклеиновых кислот как таковых».
Другой постоянный корреспондент Полинга, его сын Питер, по счастливой случайности, всего за несколько месяцев до этого приехал в Кембридж, чтобы работать под началом Джона Кендрю. У Питера был стол в кабинете, который он делил еще с четырьмя сотрудниками. Вот что он пишет: «Слева, у окна, сидит болтун по имени Фрэнсис Крик. Справа – стол, который иногда занимает Джим Уотсон. Еще в кабинете временно работает Джерри Донохью, которого я хорошо знаю, потому что он давно сотрудничает с Калифорнийским технологическим институтом, и, наконец, Майкл Блюм, младший сотрудник Джона Кендрю»[244]. В ту эпоху, до всякой электронной почты, Питер благодаря постоянной переписке с отцом стал основным каналом связи между Калифорнийским технологическим институтом и Кембриджем. Поэтому, как только Лайнус сообщил Питеру, что написал статью о структуре ДНК, тот попросил экземпляр. Это было 13 января 1953 года. В своем письме с просьбой Питер сделал приписку, которая очень красноречиво говорит, под каким давлением работали тогда английские ученые: «Сегодня мне рассказали одну историю. Знаешь, как пугают детей: “Веди себя хорошо, а то придет страшный великан и заберет тебя”. Так вот, уже больше года Фрэнсис [Крик] и все прочие то и дело приговаривают сотрудникам Королевского колледжа, которые занимаются нуклеиновыми кислотами: “Надо постараться как следует, а то нуклеиновыми кислотами, чего доброго, займется Полинг!”»[245]
Неудивительно, что когда Питер рассказал Уотсону и Крику, что Полинг открыл структуру ДНК, у них земля ушла из-под ног. У всех сотрудников Кембриджа еще свежа была память о его триумфе с альфа-спиралью, поэтому молодые люди сразу испугались, не станет ли это катастрофическим дежавю. Двадцать третьего января Питер снова написал Лайнусу, на сей раз с жалобой: «Грустно, что здесь нет Джима Уотсона [Уотсон ненадолго уехал в Милан]. Без него скучно. Нечем заняться. Да и интересных девушек тут нет, только восторженные дурочки, которых интересует исключительно секс, причем так, вообще»[246].
Две недели, которые прошли между тем, как Питер попросил у отца копию статьи, и прибытием рукописи, стали для Уотсона и Крика вечностью. Когда Питер наконец принес статью, Уотсон подскочил к нему, выдернул ее у него из кармана пальто и жадно пробежал краткое содержание и введение. Потом он несколько минут изучал иллюстрации – и глазам своим не верил. Структура, которую предлагал Полинг, с фосфатами в центре и основаниями снаружи, оказалась поразительно похожа на его с Криком нежизнеспособную модель. Модель Полинга была полнейшей нелепицей!
Глава 7. Чья же это ДНК?
Бедствия бывают двух видов: наши собственные несчастья и удачи ближних.
Амброз Бирс
Вывод, что модель ДНК Полинга неверна, Уотсон сделал не только потому, что она состояла из трех цепочек. Просто молекула нуклеиновой кислоты, которая получилась у Полинга, вообще не была кислотой. То есть при растворении в воде она не могла выделять ионы водорода. Атомы водорода в ней были прочно связаны с фосфатными группами, отчего те становились электрически нейтральными, в то время как в любом учебнике по элементарной химии – в том числе и в книге самого Полинга! – говорится, что фосфаты должны быть заряжены отрицательно (водный раствор кислоты сильно ионизирован). И вообще извлечь эти атомы водорода было невозможно, поскольку именно они служили своего рода замками, скрепляющими три цепочки при помощи водородных связей.
Молчать о ляпсусе подобного масштаба Уотсон и Крик, конечно, не могли. Величайший в мире химик построил совершенно несостоятельную модель, причем она была неверна не из-за какой-то биологической тонкости, а из-за дурацкой ошибки в самой что ни на есть элементарной химии. Уотсон, по-прежнему не веря своим глазам, бросился к кембриджскому химику Рою Маркхэму[247] и в лабораторию органической химии – спросить там, есть ли какие-нибудь сомнения в том, что ДНК в том виде, в каком она встречается в природе, представляет собой соль кислоты. К полному удовольствию Уотсона, все подтвердили, что произошло немыслимое: Полинг грубо ошибся в элементарной химии.
В тот день осталось сделать всего две вещи. Сначала Крик бросился к Перуцу и Кендрю, чтобы убедить их, что дело не терпит отлагательства: если они с Уотсоном немедленно не примутся за свою модель, напирал он, Полинг вот-вот найдет у себя ошибку, а значит, пересмотрит свои результаты. По подсчетам Крика, на то, чтобы создать правильную модель, у них было не больше полутора месяцев. Второе, что сделали Уотсон и Крик, казалось им столь же понятным и естественным: они отправились отмечать радостное событие[248] в паб «Орел» на Бенет-стрит. Впоследствии Уотсон вспоминал: «Поскольку за последние несколько часов мы страшно переволновались, о работе в тот день не могло быть и речи, поэтому мы с Фрэнсисом двинулись в “Орел”. Открывался паб по вечерам, и едва его двери отворились, как мы уже были там и подняли кружки за ошибку Полинга».
Как же Полинг мог так промахнуться? Почему подход к созданию моделей, который так прекрасно оправдался в случае с альфа-спиралью, оказался столь катастрофически бессилен в случае тройной спирали?
Анатомия ляпсуса
Попробуем шаг за шагом проанализировать возможные причины ошибки Полинга. Во-первых, дело было в том, сколько времени и сил он на самом деле потратил на работу над моделью ДНК. Он начал обдумывать некоторые аспекты ДНК после появления статьи Ронвина в ноябре 1951 года. Однако всерьез размышлять над этой задачей Полинг начал лишь через год, в ноябре 1952 года. А статья у него была готова всего через месяц – к концу декабря 1952 года! Сравните это с усердной работой над структурой полипептидов, когда он обдумывал все тонкости около тринадцати лет, несколько раз откладывал публикацию – до тех пор, пока не оказался полностью уверен, что его модель верна. Так что даже с точки зрения временных затрат напрашивается мысль, что модель ДНК была сработана наспех, кое-как. Так, судя по всему, думал и Морис Уилкинс. В интервью об истории открытия структуры ДНК он отмечал: «Полинг просто не стал стараться. Сам он, наверное, и пяти минут не думал над задачей»[249]. К вопросу о том, почему, собственно, он так спешил и почему был так рассеян, мы еще вернемся.
Во-вторых, есть большая разница в качестве данных, на основании которых Полинг строил модель молекулы белка и модель ДНК. В случае альфа-спирали коллега Полинга Роберт Кори собрал обширный арсенал структурной информации о размерах, объемах и углах расположения отдельных составляющих молекулы. А в случае ДНК Полинг, напротив, работал практически в вакууме. Рентгеновские снимки, которые ему удалось раздобыть, были скверного качества, к тому же на них изображалась смесь форм А и В, о чем Полинг не подозревал, так что толку от них не было никакого. Хуже того, Полинг не знал, что в препаратах, с которых делались снимки, содержалось значительное количество воды. А поскольку Полинг пренебрег тем фактом, что примерно треть материала в образцах ДНК составляла вода, то неверно подсчитал плотность, а это привело его к ошибочному выводу, что цепочек в спирали три. Наконец, Кори много и подробно изучал то, из каких «кирпичиков» состоят белки, а над основаниями – составляющими частями нуклеотидов – подобной работы проделано не было.
Далее, у Полинга случилось два непостижимых провала в памяти. Один относился к соотношениям оснований, которые подсчитал Чаргафф, а другой – к принципу самокомплементарности, который сформулировал сам Полинг. Напомню, что Чаргафф обнаружил, что количество основания А равно количеству основания Т, а количество С – количеству G, так что напрашивался вывод, что основания так или иначе спарены, а значит, цепочек две, а не три. Впоследствии Полинг утверждал, что знал про эти соотношения, но забыл. Сам Чаргафф полагал, что в этом и кроется главная причина ляпсуса: «Полинг в своей структурной модели ДНК не принял в расчет мои результаты. В результате его модель была бессмысленна с химической точки зрения».
Второй провал в памяти Полинга был еще поразительнее. Вспомним, что Полинг еще в 1948 году говорил, что если гены состоят из двух частей, комплементарных друг другу, их воспроизводство получается легко и просто. В этом случае каждая из двух частей служит образцом для создания второй части, так что комплекс из двух комплементарных частей в целом может служить образцом для создания точной своей копии. Из этого принципа самокомплементарности[250] прямо следует, что архитектура должна состоять из двух цепочек, а конструкция из трех нитей ему явно противоречит. Однако Полинг, очевидно, ко времени построения модели ДНК начисто забыл об этом принципе.
Когда я говорил с Алексом Ричем и Джеком Дуницем[251], которые в это время только получили ученую степень и работали под началом Полинга, они согласились, что если бы Полинг видел рентгеновский снимок № 51 В-ДНК, который сделала Розалинда Франклин, он бы сразу понял, что молекула зеркально симметрична, а значит, ее структура не тройная, а двойная. Однако, как мы уже заметили, Полинг не предпринимал никаких усилий, чтобы взглянуть на снимки Франклин.
В январе 2011 года я спросил Джеймса Уотсона, удивился ли он, когда увидел ошибочную тройную модель Полинга. Уотсон рассмеялся: «Удивился ли я? Да чтобы Лайнус сделал подобную ошибку – такого даже в фантастическом романе не сочинишь! Едва я увидел эту структуру, как сразу подумал: “Чепуха!”»
Если пристально взглянуть на множество вышеперечисленных причин, по которым у Полинга вышло такое фиаско с этой моделью, возникает ряд вопросов на более глубоком уровне. Как объяснить спешку, очевидный недостаток усердия, забывчивость и пренебрежение самыми фундаментальными химическими законами?
На самый поверхностный взгляд спешка – это особенно странно, если принять на веру слова Питера Полинга о том, что не было никакой «гонки» к разгадке структуры ДНК. В той же занятной заметке, где Питер утверждал, что для его отца ДНК была не более чем интересным химическим соединением, он добавил: «История открытия структуры ДНК в популярной прессе описывается как “гонка за двойной спиралью”. Едва ли это было так. Гнался за ней разве что Джим Уотсон»[252]. Затем Питер пояснил, что «Морис Уилкинс никогда ни за кем не гонялся», а Фрэнсису Крику просто нравилось «задавать себе трудные задачки». Я спросил у Алекса Рича и Джека Дуница, как они считают, была ли гонка, и оба ответили, что нет – со стороны Полинга уж точно. Почему же тогда он так спешил публиковать результаты? «Просто у него всегда был силен дух соперничества», – предположил Рич. Это, конечно, так, однако это лишь часть объяснения, поскольку в случае альфа-спирали Полинг проявил куда больше терпения и осторожности. Парадоксально, но факт: триумф с альфа-спиралью, безусловно, поспособствовал катастрофе с тройной спиралью, поскольку Полинг решил, будто сможет повторить успех первой со второй. В этом смысле перед нами классический случай рассуждения по индукции, распространенного вероятностного метода, позволяющего строить догадки на основе накопленного опыта, – просто в данном случае Полинг слишком им увлекся.
Метод индукции применяют[253] все и всегда, и почти всегда он позволяет принимать верные решения на основании сравнительно скудных данных. Предположим, я попрошу вас закончить фразу: «Шекспир был необычайно талантливый _________». Большинство, вероятнее всего, скажет «драматург», и с полным на то основанием. Хотя можно закончить фразу и словами, например, «кулинар» или «картежник», и никакого логического противоречия в этом не будет, скорее всего, верный ответ и в самом деле «драматург». Подобно опытным шахматистам, мы обычно не анализируем все возможные логичные ответы, а выбираем тот, который, по нашему мнению, наиболее вероятен. Это неотъемлемая черта когнитивного процесса. Вот как сказал о методе индукции психолог Даниэль Канеман: «Нельзя жить в постоянных сомнениях, поэтому мы сочиняем самую лучшую историю и живем так, словно это правда»[254]. Однако индукция предполагает вероятностные догадки, а следовательно, иногда приводит к неверным выводам, а случается, что и к совсем неверным. Полинг решил, что можно пойти напролом[255], поскольку опыт показал, что все его догадки о структуре молекул оказывались верны. В катастрофической истории с ДНК автор ляпсуса стал жертвой собственной блистательности.
Но почему же Полингу казалось, что нужно идти напролом? Конечно, не из-за Уотсона и Крика, об их ученых занятиях он едва ли задумывался, а потому, что ему стало известно, что в Королевском колледже, а может быть, и в лаборатории Кавендиша, есть доступ к прекрасным рентгеновским данным. Скорее всего, Полинг решил, что верную структуру вот-вот обнаружат его старые соперники – Брэгг, Перуц, Кендрю, а может быть, и Уилкинс. Поэтому он решил пойти ва-банк, и проиграл.
Однако не приходится сомневаться, что если бы Полинг надолго отложил публикацию своей модели, исследователи из Кембриджа или Лондона успели бы первыми обнародовать верную модель. Даже если Полинг и не задумывался именно об Уотсоне и Крике, он понимал, что у противника карта лучше. Так что, вероятно, продуманный риск был не таким уж и безумием.
Если же позволить себе немного пофантазировать, решение поспешить с публикацией, вероятно, было у Полинга связано и с присущим человечеству когнитивным искажением, получившим название «фрейминг-эффект»[256] или «эффект постановки проблемы»; суть его в том, что мы очень боимся потерь. Вам никогда не приходило в голову, почему на ценнике, например, говяжьего фарша в магазине пишут «90 % мяса», а не «10 % жира и добавок»? По той простой причине, что с первым вариантом ценника фарш будут покупать гораздо охотнее, хотя написано на ценниках одно и то же. Точно так же избиратели охотнее проголосуют за экономическую программу, которая сулит 90 % занятости, а не за ту, которая обещает 10 % безработицы. Многочисленные исследования показывают, что мучения от потерь для нас субъективно всегда сильнее, чем радость от выгоды. Поэтому, если поставить проблему в негативном ключе, «фрейме», мы склонны рисковать, вот и Полинг, вероятно, предпочел рискнуть перед лицом возможных потерь.
Есть и еще одна загадка – почему Полинг забыл о правилах Чаргаффа, а главное, о собственной догадке о принципе самокомплементарности генетической системы. Думается, это было ярким проявлением того, что даже когда Полинг принял окончательное решение работать над ДНК, он все еще не был убежден, что именно в этой молекуле содержится разгадка тайны жизни, механизм наследственности и деления клетки.
Почему я так считаю? К такому выводу меня подтолкнули четыре основных обстоятельства. Во-первых, свидетельство Питера, что ДНК была для его отца не более чем интересным химическим соединением. Ведь Полинг был химиком, а не биологом. Во-вторых, в письме президенту фонда Гугенхейма Полинг, объявив о том, что «открыл» структуру ДНК, добавил с прохладцей: «Биологи, вероятно, считают, что задача о структуре нуклеиновой кислоты играет столь же важную роль, что и структура белков»[257] (обратите внимание на отстраненную, скептическую интонацию: «вероятно, считают»). В-третьих, известно, что когда шум вокруг публикации модели Уотсона и Крика слегка поутих, жена Полинга Ава-Хелен задала супругу вопрос по существу: «Если это такая важная проблема, почему ты не поработал над ней как следует?»[258] И, наконец, в самой статье Полинга и Кори о тройной спирали содержится, вероятно, самое убедительное свидетельство, что Полинг не был убежден, что ДНК играет столь уж важную роль. Биологические свойства своей модели Полинг и Кори обсуждают лишь вскользь. В первом абзаце статьи они мимоходом упоминают, что есть свидетельства, что нуклеиновые кислоты «участвуют» в процессе роста и деления клеток, а также «задействованы» в передаче наследственных черт. И лишь в последнем абзаце рукописи авторы затрагивают вопрос о кодировании информации (но не о копировании): «Предлагаемая структура допускает создание максимального числа нуклеиновых кислот и тем самым способствует их крайней специфичности»[259]. Полагаю, именно потому, что Полинг так и не поверил в важнейшую роль ДНК, тема наследственности (и догадки, которые возникли у него по ее поводу) не связалась у него в сознании с задачей о структуре ДНК.
Объяснить, почему Полинг забыл о правилах Чаргаффа, мне кажется, проще. Во-первых, в том, что Полинг не обратил внимания на результаты Чаргаффа, отчасти сыграла роль личная неприязнь. Во-вторых, не надо забывать, что во время работы над ДНК Полинг постоянно на что-то отвлекался. Ему приходилось и продолжать работу над белками, и активно участвовать в политической борьбе против маккартизма, так что ему было некогда сосредоточиться. Более того, 27 марта 1953 года, всего через два месяца после того, как Питер получил рукопись статьи о ДНК, Полинг написал ему письмо, где отмечал: «Я как раз навожу лоск на статью о новой теории ферромагнетизма»[260]. Значит, он уже думал над чем-то другим. Это, конечно, едва ли способствовало успеху. Масштабные исследования шведских ученых показали[261], что естественные нарушения памяти, так называемая доброкачественная старческая забывчивость, чаще наблюдается в тех случаях, когда внимание рассеивается или быстро переключается. Так что неудивительно, что Полинг не вспомнил о принципах Чаргаффа.
И, наконец, остается самый главный вопрос, который и в самом деле ставит в тупик: почему Полинг при построении своей модели пренебрег элементарными химическими законами, например, кислотными свойствами ДНК? Именно это имел в виду Джеймс Уотсон, когда говорил, что Полинг не мог бы совершить такую чудовищно неправдоподобную ошибку даже в фантастическом романе. Самый знаменитый химик на свете – и запутался в элементарной химии?!