Твиты о Вселенной. Микроблоги о макропроблемах Шиллинг Говерт

Кроме сверхновой с «коллапсирующим ядром» существует второй важный тип сверхновых звезд. Он встречается в двойной системе, в которой одна звезда эволюционировала в белого карлика.

Вещество от звезды-компаньона перетекает на белый карлик, запуская стремительный механизм ядерных реакций. Звезда сама выдувает сверхновую.

Ключевое свойство сверхновой звезды второго типа — техническое название «сверхновая типа Ia» — состоит в том, что светимость при взрыве всегда одинаковая.

Тип Ia сыграл решающую роль в измерении расстояний во Вселенной. В 1998 с помощью таких сверхновых выявили существование таинственной «темной энергии».

75. Что, если сверхновая возникнет рядом?

Поскольку сверхновая звезда может легко гореть так же ярко, как 10 млрд Солнц, ее прохождение по нашим космическим задворкам может иметь страшные последствия.

Если бы сверхновая взорвалась в пределах 30 световых лет от Земли, это была бы ослепляюще яркая звезда, по крайней мере, в 100 раз более яркая, чем полная Луна.

Мало того что она была бы видима при дневном свете, к тому же на несколько месяцев исчезла бы ночь, что осложнило бы жизнь существ, охотящихся по ночам.

Затем, пусть спустя 30 лет, которые необходимы свету, чтобы достичь нас, появился бы смертельный дождь со снегом субатомных частиц, который продлился бы 300 лет.

Если такие частицы будут бомбардировать атмосферу, они могут лишить Землю ее озонового слоя, который защищает жизнь от смертельного солнечного ультрафиолетового излучения.

Жизнь на поверхности Земли станет невозможна. Смогут выжить только существа в море, в пещерах или под землей.

Невозможно оценить, насколько распространены сверхновые на Млечном Пути, так как они часто скрыты за завесой межзвездной пыли. Но… в такой галактике, как наша, мы видим 1 сверхновую каждые 50 лет или около этого. Значит, в 10-млрд-летней истории Млечного Пути было 200 млн сверхновых.

С момента рождения Земли одна или две сверхновых должны были взорваться в пределах 30 световых лет. Это легко могло вызвать массовое вымирание жизни.

К счастью, ближайшая известная сверхновая за последние 400 лет — SN1987A— была на расстоянии в 170 000 световых лет в галактике-спутнике Млечного Пути.

Плохая новость: Бетельгейзе — яркая звезда в созвездии Ориона — находится на грани превращения в сверхновую. Хорошая новость: это может занять еще миллион лет!

К счастью, Бетельгейзе находится на расстоянии около 650 световых лет от нас. Если она взорвется, то окажется ~ в 500 раз слабее, чем сверхновая на расстоянии 30 световых лет.

Но сверхновая отходит на второй план по сравнению с всплеском гамма-излучения необычайно энергичной сверхновой, в котором рождается черная дыра.

Важно отметить, что энергия «гамма-луча» распространяется в одном направлении, как свет от маяка. Это «луч смерти» из высокоэнергетического гамма-излучения.

Гамма-всплеск даже в 10 000 световых лет от Земли может разбить или «ионизировать» атомы в атмосфере, разрушив озоновый слой и поставив под угрозу жизнь.

76. Что такое нейтронные звезды и пульсары?

Удивительный факт: вы можете поместить все человечество в объем, соответствующий кусочку сахара. Почему? Потому что вещество может быть умопомрачительно пустым.

Если говорить примитивно, вы можете представить атом как мини-Солнечную систему с электронами, движущимися по орбитам. Они подобно планетам вращаются вокруг крошечного центрального ядра, подобного Солнцу.

Но картина атома как мини-Солнечной системы не в состоянии передать, как удивительно пуст атом. Это на 99,9999999999999 % пустое пространство.

Если бы вы могли выжать все пустое пространство из всех атомов, то все люди в мире, все человечество, действительно поместилось бы в объеме размером с кусочек сахара.

Это не просто безумная теория. В космосе есть объекты, где все пустое пространство было выжато из их атомов. Это нейтронные звезды.

Нейтронная звезда является реликтом (сколлапсировавшим ядром), оставшимся при превращении массивной звезды в сверхновую. Представьте себе Солнце, сжатое до объема горы.

Если бы вы могли подойти к нейтронной звезде и вычерпнуть из нее объем размером с кусочек сахара, он бы действительно весил столько же, сколько весь род человеческий.

Когда звезда сжимается в нейтронную звезду, она вращается все быстрее. Это подобно фигуристу на льду, складывающему руки. Вращаясь, нейтронная звезда как будто кричит: «Я здесь!»

В 1967 24-летняя студентка Джоселин Белл работала на радиотелескопе в Кембридже. Она обнаружила регулярные импульсы радиоволн от объекта СР1919.

Белл вскоре нашла несколько других пульсирующих источников. Сначала люди подумали, что это сигналы от инопланетян, и назвали их LGMs — аббревиатура от Little Green Men (Маленьких Зеленых Человечков).

В 1968 Томми Голд и Франко Пачини поняли, что Белл нашла вращающиеся нейтронные звезды. При вращении они испускают радиоволны подобно тому, как маяк, вращаясь, посылает узкий луч света.

Они назвали их «пульсирующими нейтронными звездами», или пульсарами. Гравитация на поверхности нейтронной звезды в 100 млрд раз больше, чем на Земле.

К настоящему времени за открытие и изучение пульсаров были присуждены три Нобелевских премии. И ни одна из них не досталась первооткрывательнице Джоселин Белл Бюрнелл. Широко признано как величайшая несправедливость.

77. Что такое черные дыры?

Черная дыра представляет собой область пространства, где градация настолько сильна, что даже свет — самая быстрая вещь в о Вселенной — не может покинуть ее. Поэтому она такая.

Черная дыра, как полагают, образовалась в результате гибели очень массивной звезды при катастрофическом коллапсе, известном как рождение сверхновой.

Парадоксально, но, когда звезда при взрыве выбрасывает свои внешние слои в космос, ее ядро коллапсирует; при этом его плотность и температура быстро растут.

Если ядро достаточно массивное, неизвестная сила может довести сокращение ядра до «сингулярности» — кошмарной точки бесконечной плотности.

Черная дыра состоит из сингулярности, скрытой «горизонтом событий», который отмечает точку невозврата для материи, падающей в черную дыру.

Если бы Солнце превратилось в черную дыру — не волнуйтесь: оно не достаточно массивно для этого — его горизонт событий составил бы всего 3 километра в поперечнике.

Гравитация черной дыры настолько велика, что вблизи нее свет отклоняется, а время замедляется согласно теории гравитации Эйнштейна.

Таким образом, если бы вы могли оказаться близко, то увидели бы свой затылок: свет от затылка изогнулся бы вокруг черной дыры и попал бы в ваш глаз.

А благодаря замедлению времени вблизи горизонта событий могли бы наблюдать будущую историю Вселенной, мелькающую перед вами как фильм при быстрой перемотке вперед.

Черные дыры невозможно увидеть напрямую (пока), потому что они: 1) малые и 2) черные. Мы убеждаемся в их существовании косвенным путем из их гравитации.

Например, Лебедь Х-1 (Cygnus Х-1) представляет собой очень массивную звезду, вращающуюся вокруг невидимого компаньона — черной дыры (ЧД). Мы видим рентгеновские лучи от материи, всасываемой в ЧД.

Рождение черной дыры должно сопровождаться взрывом гравитационных волн, колеблющим пространство. Их обнаружение будет доказывать существование черных дыр.

В дополнение к «звездным» черным дырам, Вселенная содержит «супермассивные» черные дыры (в ядрах галактик) с миллионами и миллиардами масс Солнца.

Существует также вероятность, что Вселенная содержит мини-черные дыры, реликты от собственного влияния огненного шара Большого взрыва.

На самом деле черные дыры не совсем черные! Как обнаружил Стивен Хокинг, благодаря квантовым эффектам, они испускают «излучение Хокинга».

78. Искусственны ли звезды?

Это совершенно глупый вопрос — не так ли? Но в действительности он имеет отношение к важнейшему научному вопросу: как мы сможем распознать инопланетян (ЕТ)?

В поисках внеземного разума аппарат SETI (search extra-terrestrial intelligence) сканирует небо для обнаружения связи на одной постоянной частоте — ЕТ-аналог радиостанции.

Такой повторяющийся регулярный сигнал структурирован. Но информация со структурой избыточна. Она может быть в дальнейшем сжата.

Вывод: по-настоящему эффективный сигнал не должен содержать структуру. Он будет выглядеть случайным, как и радиоизлучение Солнца или электрическая буря.

Именно так с помощью нашего мобильного телефона/компьютера передаются данные сейчас. Для повышения эффективности все повторения/структуры удаляются.

Вывод: ЕТ-сигнал от развитой цивилизации будет выглядеть как случайный, подобный естественному сигналу. Его очень трудно выделить из космического радиошума.

И как ЕТ-сигналы внеземного разума не будут выглядеть подобно нашим постоянным сигналам, так и ЕТ-артефакты не будут похожи на наши искусственные.

По словам Стивена Вольфрама, изобретателя компьютерного языка Mathematica,?Т-артефакты будут выглядеть естественно, как деревья… и звезды.

Со всей серьезностью Вольфрам спрашивает: «Искусственны ли звезды?» Хотя это маловероятно, но и отрицать этого нельзя.

Млечный Путь

79. На что похожа наша галактика Млечный Путь?

Млечный Путь — туманная полоса белого света в ночном небе, древним казалась похожей на молоко, разлитое в темноте, — отсюда такое лирическое название.

В 1610 Галилей обратил свой телескоп в небо и обнаружил, что Млечный Путь на самом деле создан из бессчетного количества звезд, сгрудившихся вместе.

Открытие (1922), что «спиральные туманности» это острова звезд в океане космоса, дало основания думать, что Млечный Путь — один из таких островов, или «галактика».

Но оказалось очень трудно рассмотреть подробную структуру Млечного Пути с точки зрения Солнца, расположенного глубоко внутри.

Видимый свет от далеких звезд Млечного Пути поглощают завесы пыли, висящей в межзвездном пространстве.

Чтобы увидеть структуру Млечного Пути, необходим такой свет, который проникает сквозь пыль. (И все равно, трудно увидеть структуру изнутри.)

Радиоволны проникают через пыль. С их помощью обнаружили, что Млечный Путь действительно является спиральной галактикой. Эта гигантская карусель из приблизительно 200 млрд звезд неторопливо поворачивается в пространстве.

Звезды Млечного Пути сосредоточены в плоском диске. Если смотреть на эту галактику с края, то она выглядит как два глазка яичницы-глазуньи, сложенные «спина к спине».

Как все спиральные галактики, Млечный Путь имеет центральную сферическую выпуклость из звезд, из которой драгоценными камнями змеятся наружу их «спиральные рукава».

Плоский диск Млечного Пути имеет около 100 000 световых лет в диаметре. Но его толщина — всего 2000 с небольшим световых лет от верха до низа.

Солнце расположено на отростке «Рукава Персея», который находится в 27 000 световых лет от центра Млечного Пути где-то на полпути к краям.

Солнце приближается к центру галактики примерно раз в 220 миллионов лет. В последний раз, когда оно было на нынешнем месте, Землей правили динозавры.

80. Где рождаются звезды в Млечном Пути?

Ключ к разгадке, где рождаются звезды, был найден Вальтером Бааде, который использовал 2,5-м телескоп в Маунт-Вильсоновской обсерватории во время Второй мировой войны при затмении над Лос-Анджелесом.

Бааде, немецкий эмигрант, помещенный американскими военными властями под домашний арест как «враждебный иностранец», обнаружил, что Млечный Путь содержит два различных «населения» звезд.

Население I, в спиральных рукавах, состоит преимущественно из горячих голубых звезд. Население II, в выпуклости Млечного Пути, образовано в основном из холодных красных гигантов.

Важно, что красные звезды старые, в то время как синие — молодые. Бааде, следовательно, обнаружил, что спиральные рукава — это звездные ясли.

Почему звезды рождаются в спиральных рукавах, стало ясно только тогда, когда астрономы поняли, что такое спиральные рукава.

Спиральные рукава не являются постоянной частью Млечного Пути. Если бы это было так, то при вращении галактики рукава неизбежно «наматывались бы» и исчезли.

Получается, что газовый диск Млечного Пути вибрирует, как поверхность пруда. Рябь распространяется наружу от центра в виде «спиральных волн плотности».

Когда волна плотности движется наружу, она сжимает межзвездные газ на своем пути, образуя глобулы, которые уплотняются, что приводит к формированию звезды.

Из-за того что спиральная волна плотности вызывает бурное формирование звезд, спиральные рукава являются домом, где находятся звездные ясли.

Млечный Путь спиралевидно изогнут и образует галактическую мексиканскую волну![19] Он выглядит неизменным только потому, что наша жизнь коротка по сравнению с временем распространения волны.

Примечательно, что кольца Сатурна являются спиралями, похожими на спиральные рукава, только более тугими. И обусловлены они тем же явлением: спиральными волнами плотности.

81. Что такое рассеянные и шаровые звездные скопления?

Звезды рождаются не в одиночестве, а в группах по 10 или 1000. Их ужасное тепло поедает газ на краю «звездной колыбели» — гигантского молекулярного облака.

Новорожденные звезды постепенно рассеиваются в пространстве, поскольку звездные ясли — это неспокойные места, страдающие от ожесточенных звездных ветров и звездных взрывов.

Через несколько сотен млн лет родившиеся звезды так удаляются друг от друга, что можно говорить о формировании несвязанных, или «открытых скоплений», в которых звезды настолько разделены, что трудно поверить в их происхождение от одних родителей.

В самом деле, некоторые из Солнечных сиблингов, возможно, до сих пор еще находятся в окрестности Солнца. Трудно сказать, ведь все-таки оно родилось 4,55 млрд лет назад.

Молодые рассеянные скопления, однако, легко увидеть. Новорожденная горячая звезда в скоплении Плеяд (Телец) по-прежнему окутана плацентарной туманностью.

Но в Млечном Пути есть не только скопления из звезд, родившихся вместе и диспергировавших впоследствии. Существуют также нерассеившиеся «шаровые скопления».

Шаровое скопление содержит много звезд — от 100 000 до нескольких млн — сжатых в тугой комок, несколько десятков световых лет в поперечнике.

Шаровые скопления жужжат, подобно пчелам вокруг диска Млечного Пути — спирального диска, встроенного в гигантский сферический рой из 150–200 таких скоплений.

В других галактиках, таких как гигантская эллиптическая галактика М87, не то, что несколько сотен шаровых скоплений — их более 10 000.

Звезды в шаровом скоплении упакованы так тесно, что они могут даже столкнуться. Это невозможно для далеко отстоящих друг от друга звезд, подобных Солнцу.

На планете, относящейся к шаровому скоплению, на ночном небе видны не 1000 звезд, как на Земле, а 100 000. Какой это должен быть вид!?

Шаровое скопление отличается от открытого скопления не только тем, что в первом звезды скорее связаны, чем не связаны, но и большим содержанием древних, чем новорожденных, звезд.

Ключом к разгадке происхождения шаровых скоплений является возраст звезд. Они родились 10 млрд лет назад, когда сферическое газовое облако еще было сжатым до размера Млечного Пути.

Но тем не менее вопрос, как и почему шаровые звездные скопления образовались в первые дни Млечного Пути, остается загадкой.

82. Сколько галактик-спутников вокруг нашего Млечного Пути?

Так же как планеты имеют спутники (луны), галактики имеют галактики-спутники. У Млечного Пути их около 25 в гравитационном рабстве.

Два крупнейших спутника — Большое и Малое Магеллановы Облака (LMC и SMC) — легко видны невооруженным глазом в Южном полушарии.

LMC — отдаленное облако, выглядящее как пятно на фоне ночного неба, в 10 раз превышает видимый размер Луны. SMC тоже похоже на пятно и в 5 раз больше Луны.

Магеллановы Облака названы в честь Фернана Магеллана, первого европейца, описавшего их во время кругосветного путешествия между 1519 и 1521.

LMC: около 10 % массы Млечного Пути и расстояние примерно 170 000 световых лет. SMC: около 200 000 световых лет от нас, и приблизительно 5 % массы Млечного Пути.

В 1987 в LMC возникла первая видимая невооруженным глазом сверхновая после «сверхновой Кеплера» в 1604. В течение примерно месяца SN1987A испускала свет в 100 млн Солнц.

LMC и SMC — самые крупные и яркие из галактик-спутников, которые порхают около Млечного Пути, как мотыльки вокруг свечи.

Большинство галактик очень тусклые: они содержат небольшое число звезд. Самая крупная имеет около 1000 световых лет в поперечнике, что составляет менее 1 % от диаметра Млечного Пути; наименьшая — около 150 световых лет.

Другие галактики также имеют галактики-спутники. Например, известно, что у гигантского соседа Млечного Пути, Андромеды, по крайней мере, пятнадцать.

Галактики-спутники Млечного Пути представляют собой серьезную головоломку, потому что их должно быть примерно в 100 раз больше, чем астрономы наблюдают.

Теория происхождения галактик говорит о сгустках темной материи (гало), в которых размещена нормальная материя. Основные характеристики: гало темной материи может иметь любые размеры.

Большое гало, как некий «зародыш» Млечного Пути, может содержать до 1000 мини-гало — источников малых галактик-спутников.

Итак, где же все эти галактики-спутники Млечного Пути? Сторонники темной материи говорят, что они существуют, но мы не видим их, они слишком слабые.

Возможно, «проблема недостающих галактик-спутников» говорит нам: что-то не так с теорией темной материи.

83. Что является главным компонентом Млечного Пути?

Млечный Путь, как все спиральные галактики, является островом из звезд и туманностей, правильно? Нет. Как у айсберга, большая часть галактики скрыта от нас.

Недостаток материи стал очевидным, когда люди изучили звезды во внешних областях Млечного Пути и обнаружили, как быстро они вращаются вокруг центра.

Далекие от центра галактики звезды движутся слишком быстро. Как дети на ускоряющейся карусели, они должны быть сброшены в межгалактическое пространство.

Астрономы объяснили аномалию, постулируя, что галактика содержит невидимую «темную» материю, дополнительная гравитация которой, захватывая, удерживает звезды.

Заключение: плоская спираль Млечного Пути встроена в обширное сферическое гало темной материи, масса которой, возможно, в 10 раз больше массы видимой галактики.

Но что такое темная материя? Ваше предположение так же хорошо, как любое другое. Действующая излюбленная версия — существование не открытых до настоящего времени субатомных частиц.

Если Млечный Путь — в основном темная материя, значит, она неизбежно сейчас окружает нас. Многие экспериментаторы ее ищут. Тому, кто ее найдет, будет присуждена Нобелевская премия.

Также существуют доказательства, что Вселенная содержит темную материю за пределами Млечного Пути. Она перевешивает видимую материю, из которой мы сделаны, в 6 или 7 раз.

Но темная материя — не самое смелое предложение, объясняющее, почему наиболее удаленные звезды в Млечном Пути вращаются слишком быстро. Есть другая идея: MOND.

MOND (модифицированная ньютоновская динамика), которую предложил Мордехай Милгром в 1983, может объяснить ускоренное движение звезд во всех спиральных галактиках.

Идея: звезды держит не дополнительная гравитация темной материи, а более сильная гравитация у границ галактик, чем предсказанная Ньютоном.

MOND признана довольно значительным меньшинством астрономов. Но никто не уверен в «глубине» физики, лежащей в ее основе. Скептицизм большинства физиков хорошо известен.

Версия темной материи будет подтверждена, если частица-кандидат будет обнаружена в Большом адронном коллайдере, «ускорителе атомов[20]» близ Женевы.

84. Что скрыто в сердце Млечного Пути?

В сердце Млечного Пути звезды упакованы в сотни раз ближе друг к другу, чем в окрестности Солнца.

На планете, вращающейся вокруг звезды, находящейся в галактическом центре, в ночном небе были бы видны сотни тысяч звезд.

Центр галактики — место чрезвычайной активности. Большие цунами межзвездного газа сталкиваются друг с другом, управляемые вспышками сверхновых.

В темном сердце Млечного Пути на расстоянии 27 000 световых лет от Солнца под завесой межзвездной пыли спрятана звезда Стрелец A* (Sagittarius А*)[21].

Стрелец А* является черной дырой с массой в 4,3 млн масс Солнца. Эта «черная вдова», как чудовище, пожирает газ и оторванные друг от друга звезды.

«Горизонт событий» Стрельца А* — точка невозврата для поглощаемой материи — составляет приблизительно 15 млн км в поперечнике (1/10 расстояния от Земли до Солнца).

Никто не знает происхождения Стрельца А*. Но «супермассивные» черные дыры — приблизительно в 1000 раз большие, — вероятно, скрываются в сердце большинства галактик.

Черные дыры Вселенной или слишком малы (звездообразные) или, если они супермассивны, настолько далеки от нас, что увеличение современных телескопов не позволяет сделать их видимыми.

Стрелец А*, который имеет средние размеры и расположен относительно близко, является единственной черной дырой, изображение которой мы имеем реальный шанс обработать.

Радиоинтерферометрия со сверхдлинной базой (VLBI) использует радиоантенны, чтобы моделировать телескоп размером с Землю, который позволит увеличить Стрельца А*.

Для VLBI лишь простой коэффициент 2–3 отдаляет нас от «видения» горизонта событий Стрельца А*. Необходимо совершить прорыв в ближайшие несколько лет и подтвердить существование черной дыры.

85. Кто наши ближайшие галактические соседи?

Млечный Путь это один из крупнейших членов мини-скопления из приблизительно 30 галактик, известных астрономам как Местная Группа Галактик (Local Group).

Единственная другая сопоставимая с ним по размеру галактика в Местной Группе — галактика Андромеды, гигантская спираль, подобная Млечному Пути.

Большие спирали, такие как Млечный Путь/Андромеда, являются исключением в Местной Группе Галактик. Большинство других — карликовые галактики. В самой большой из них в 10 раз меньше звезд.

Андромеда — самый отдаленный объект, видимый невооруженным глазом. Она видна в небе как удлиненное пятно, приблизительно равное 6 размерам Луны.

Мы видим Андромеду, находящуюся в 2,5 млн световых лет, такой же, какой она была, когда предки человеческой расы — люди-обезьяны — карабкались на африканское плато.

В настоящее время Андромеда приближается к Млечному Пути. Через 2,3 млрд лет она пролетит мимо, и ее гравитация повлияет на звезды в нашей галактике.

Но, как маятник, пролетевший свою низшую точку, Андромеда качнется обратно. Через 5 млрд лет она врежется в Млечный Путь.

Результатом столкновения будет гигантская эллиптическая галактика, получившая название Милкомеда (Milkomeda). Солнце будет отброшено на расстояние от 27 000 до 52 000 световых лет от центра.

Ближайшее крупное скопление галактик — скопление Девы, находящееся примерно в 50 млн световых лет, содержит около 1300 галактик.

Фактически Местная Группа является удаленным членом скопления Девы. Она вращается на тихой окраине того, что астрономы называют «Местное сверхскопление»[22].

Галактики

86. Что такое галактики?

Галактики — большие острова звезд, дрейфующие в океане космического пространства. Это строительные блоки Вселенной, которых около 100 млрд.

Галактики разлетаются друг от друга как части космической шрапнели после колоссального взрыва — Большого взрыва.

Если бы Вселенная была сжата в сферу, около 1 км в поперечнике, каждая из 100 миллиардов галактик имела бы примерно размер таблетки аспирина.

Некоторые галактики являются постоянными, некоторые кажутся аморфными неровными звездными пятнами. Два наиболее распространенных типа — спиральные (как наш Млечный Путь) и эллиптические галактики.

Галактики содержат от нескольких миллионов звезд — в случае карликовой галактики, до нескольких триллионов — для гигантской эллиптической галактики.

Эллиптические галактики подобны большим пчелиным роям звезд. Они сферические или слегка вытянутые. Спиральные галактики, ну, они говорят сами за себя.

Спиральные галактики имеют центральную выпуклость из старых красных звезд и «спиральные рукава», где идет процесс образования из газа других новых звезд.

Эллиптические, в отличие от спиральных, вряд ли содержат газ. Созданные давным-давно в процессе звездного формирования, они (по-видимому) содержат только старые, красные звезды.

Взаимосвязь спиральных и эллиптических галактик неясна. Но, похоже, эллиптические создаются при столкновении двух спиральных. Звезды движутся беспорядочно.

Некоторые спиральные имеют любопытную «перемычку» в центре, из которой распространяются «спиральные рукава». Существует доказательство того, что наш Млечный Путь является спиральной галактикой с перемычкой.

Дуглас Адамс допустил неточность. Надо было написать о баре в центре галактики, а не о ресторане на краю Вселенной![23]

87. Как были обнаружены галактики?

В XVIII в. астрономы были безумно увлечены охотой за кометами. Но ночное небо содержит много туманных пятен, которые могут быть ошибочно приняты за кометы.

Для оказания помощи охотникам за кометами в 1784 Шарль Мессье составил каталоги небесных хищников. Неизвестные ему, некоторые из этих «туманностей» это галактики.

В Бир-Касле (Ирландия) в 1845 лорд Росс строит 72-дюймовый телескоп — самый крупный в мире. С помощью «Левиафана» он обнаруживает, что большинство туманностей имеют форму спирали.

Самая совершенная спиральная туманность — М51. Впоследствии ее назовут «Галактика Водоворот» (Whirlpool Galaxy).

Даже большие телескопы, построенные позже, показывают, что размытость спиральных туманностей связана с бесчисленными звездами, которые смазывают изображение.

В 1920 идут жаркие споры о существовании спиральных туманностей внутри нашего Млечного Пути. Или это отдельные «островные вселенные» далеко в океане космоса?

Харлоу Шепли поддерживал мнение, что спиральные туманности находятся в пределах Млечного Пути; Хебер Кертис утверждал, что они далеко за его пределами. Спор был разрешен в 1922.

Эдвин Хаббл, используя 100-дюймовый телескоп Хукера в обсерватории Маунт-Вилсон, недалеко от Лос-Анджелеса, увидел переменные Цефеиды в Большой Туманности Андромеды.

Колебания периода светимости Цефеид связаны с их собственной светимостью. Хаббл заключил, что Андромеда находится в миллионах световых лет за пределами Млечного Пути.

Андромеда и другие спиральные туманности, следовательно, находятся на огромных расстояниях от Млечного Пути. Это отдельные острова из миллиардов звезд.

Хаббл обнаружил фундаментальные строительные блоки Вселенной. Галактики усеивают космическое пространство в пределах, поддающихся исследованиям с помощью крупнейших телескопов.

Наконец, человечество узнало истинные масштабы Вселенной и потерялось в них. Она оказалась невообразимо более обширной, чем кто-либо когда-либо мог представить.

88. Откуда мы знаем, как далеко галактики?

Галактики — это строительные блоки Вселенной, поэтому вопрос «Как мы узнаем расстояния до галактик?» является синонимом вопроса «Откуда мы узнаем размер Вселенной?».

Чтобы найти расстояние до галактики, необходимо найти «стандартную свечу» — объект, светимость которого мы можем сравнить с аналогичными объектом, расположенным рядом.

Для ближайших галактик астрономы используют переменные цефеиды. Период, в течение которого они меняют свой блеск, связан с их истинной светимостью.

Цефеиды высокой светимости были замечены в галактике М100, что позволило определить расстояние до них в 56 млн световых лет за пределами Млечного Пути.

Двигаясь дальше, астрономы должны найти более яркие свечи, чем цефеиды: сверхновые типа la.

Сверхновые типа la возникают в двойных системах, в которых одна звезда сжимает вещество до суперкомпактного «белого карлика» размером с Землю, вызывая его взрыв.

Широко распространено мнение, что, когда такие белые карлики, наконец, взрываются как сверхновые, они всегда имеют одинаковую светимость.

Сверхновые типа la такие яркие, что они видны на краю Вселенной. Так были получены оценки расстояний до самых отдаленных галактик.

Измерения космических расстояний позволяют оценить «постоянную Хаббла», которая устанавливает масштабы Вселенной. Лучшая текущая оценка: 73 (км/с)/Мпк.

Это означает, что две галактики, разделенные расстоянием в 1 мегапарсек (3,26 млн световых лет), в среднем разлетаются со скоростью в 73 км/с из-за расширения в результате Большого взрыва.

Скорость галактик определяется из «растяжения» приходящих от них световых волн (красное смещение). Зная это и постоянную Хаббла, можно оценить расстояние.

Примечание: расстояние не вполне реальное. Дело в том, что при расчетах с использованием скорости света мы всегда получаем расстояние до движущегося объекта, существовавшего в «более раннее время».

Поэтому у астрономов принято ссылаться не на вычисленное расстояние до галактики, а на красное смещение как на более реальную меру ее удаленности от нас.

Квазары, или квазизвездные объекты, подобные звездным булавочным уколам света, находятся далеко за пределами расстояния, на котором может быть видна любая звезда.

Первооткрыватель квазаров (1963) — голландско-американский астроном Маартен Шмидт. Другие астрономы видели их, но он был первым, кто обосновал их существование.

Чтобы сверкать так ослепительно, находясь на ошеломляюще огромном удалении во Вселенной, квазары должны быть необыкновенно яркими.

Типичный квазар испускает 100-кратную энергию нормальной галактики типа Млечного Пути. Невероятно, но она исходит из объема меньшего, чем Солнечная система.

Ядерная энергия здесь ни при чем. Единственный возможный источник — «гравитационная энергия», высвобождаемая материальным объектом, падающим к центру черной дыры.

Свет излучается «аккреционным диском»[24] квазара, образующимся при поглощении черной дырой его вещества, разогреваемого до белого каления из-за завихрений, подобных воронке в сливном отверстии.

Здесь речь идет не об обычной черной дыре, а о «супермассивной». Самые яркие квазары имеют почти в 30 млн раз большую массу, чем Солнце.

После открытия квазаров окружающие звезды кажутся «пушинками». Квазар это суперъяркое «ядро» галактики, затмевающее все остальное.

Страницы: «« 23456789 »»

Читать бесплатно другие книги:

Данная книга представляет собой небольшое практическое руководство к действию – план и список уже го...
Вода, как никакое другое вещество, связывает нас со всем миром. Самой Природой созданная для очищени...
Последние годы большое распространение получили гармонизирующие техники легкого массажа – с использо...
Описана новейшая версия программы «1С: Управление небольшой фирмой 8.2», которая сочетает в себе мно...
Пять сотен лет назад простая рабыня встала за плечом одного из могущественнейших правителей мира. Ею...
У сестер Кисоньки и Мурки известная фамилия – Косинские. Их предку посвящены целых пол-абзаца в учеб...