Наука Плоского мира Пратчетт Терри
Недавно увидели свет две книги знаменитых ученых, в которых исследуется вопрос возникновения законов. В 2000 году вышла работа Стюарта Кауфмана «Исследования». Она предназначается скорее для биологов и экономистов, однако начинается именно с физических законов. Давая новый ответ на извечный вопрос, что такое жизнь, Кауфман определяет ее как «автономного агента», то есть любой объект или систему, способные перенаправлять энергию и самовоспроизводиться.
Автономность в данном случае означает, что такая система устанавливает собственные законы, определяющие ее поведение. В принципе такие «жизнеформы» могут отличаться от общепринятого понимания «живого». Например, квантовомеханический вакуум – это масса возбужденных частиц и античастиц, возникающих и исчезающих поразительно сложными способами. Вакуум – более чем сложная система для того, чтобы самоорганизоваться в автономного агента. И если такое произойдет, квантовая механика сможет устанавливать собственные законы.
В 1997 году вышла другая примечательная книга, «Жизнь космоса», написанная Ли Смолином. Основной вопрос, на который он пытается ответить, звучит так: может ли Вселенная эволюционировать? В нашей с вами Вселенной существуют такие интересные объекты, как черные дыры – участки пространства-времени, масса которых настолько велика, что ни свет, ни материя не могут их покинуть. Они образовываются в результате коллапса достаточно массивных звезд. Раньше считалось, что черные дыры чрезвычайно редки, теперь их находят повсюду, особенно в центрах различных галактик. Теретически получается, что константы нашей Вселенной необычайно хорошо подходят для порождения черных дыр.
Почему так? Смолин полагает, что каждая черная дыра – это портал в соседнюю вселенную, но поскольку ничто не в состоянии покинуть черную дыру, то мы не можем заглянуть в эту дверь. В частности, в соседних вселенных фундаментальные константы могут быть отличными от наших. Таким образом, вселенные могут размножать свои споры по черным дырам, и будет происходить естественный отбор в пользу тех вселенных, которые породят больше потомства, то есть тех, чьи фундаментальные константы лучше подходят для образования черных дыр. Так что, может быть, мы живем в одном из чьих-то потомков.
Впрочем, у этой теории есть некоторые проблемы. В частности, как проходит селекция? Как вселенные конкурируют между собой? Тем не менее теория весьма любопытная, хотя на первый взгляд и кажется дикой. А кроме того, это – остроумная гипотеза того, как формируются законы вселенной: по крайней мере некоторые из них она может получить «в наследство».
Следовательно, Большой взрыв породил не просто пространство и время, но и физические законы, которые до сих пор действуют в нашем мире. В самом начале своего развития Вселенная постоянно менялась, модифицируя при этом и свои законы. Словно пламя, которое меняет цвет в зависимости от динамики горения и состава горючего материала. Форма языков пламени всегда более-менее одинаковая, но они не получают ее от «родителя». Когда вы зажигаете листок бумаги, огонь создает себя с нуля, используя законы окружающего универсума.
В первые мгновенья жизни Вселенной изменения касались не только состава, температуры и размеров тел. Менялись также и законы, по которым все это преображалось. Однако человек не желает с этим смириться и хочет отыскать вечное и неизменное. Поэтому мы ищем какие-нибудь еще более фундаментальные законы, по которым меняются уже сами законы. Может быть, они-то действительно правят Вселенной, оставаясь вечными и неизменными. А может быть, она просто устнавливает собственные правила по мере своего продвижения вперед.
Глава 7
По ту сторону пятого элемента
ПОСРЕДИ НОЧНОГО БЕЗМОЛВИЯ ГЕКС СЧИТАЛ. По бесчисленным стеклянным трубочкам туда-сюда сновали муравьи. По тонким бронзовым проволочкам пробегали искры сырой магии, то и дело изменяя цвет, когда переключались триггеры логических состояний[19] ГЕКСа. В особой комнате по соседству жужжали ульи, исполняющие роль долговременного запоминающего устройства. Время от времени какая-то пукалка издавала положенные ей звуки. Большие колеса вращались, вдруг останавливались или начинали крутиться в обратную сторону. Но всего этого было недостаточно.
Свет, испускаемый Проектом, упал на ГЕКСову клавиатуру. Вовне явно что-то происходило, но что именно, ГЕКС не понимал. И это его перенапрягало, поскольку там явно было над чем пораскинуть мозгами.
В значительной степени ГЕКС создал себя самостоятельно, поэтому он работал лучше всего, что имелось в университете. Как правило, он старался предварительно разработать детальный план кампании для достижения победы над поставленной перед ним задачей. Пчелы явились отличной находкой: сотовая память функционировала весьма неспешно, зато общий ее объем рос по мере заполнения сот и накопления опыта в пчеловодстве.
Сейчас ГЕКС размышлял вот о чем.
Однажды он найдет способ увеличения своей понятийной емкости для осознания происходящего в Проекте.
Если это произойдет, то согласно Непоследовательно-бесцельному закону Страйма для этого уже была некая форма во вневременном событийном пространстве, вызванная самим фактом этого события; и все, что для этого понадобится, – это виртуальный коллапс волновой функции.
…И хотя в строгом смысле это чепуха, полной чепухой это назвать все-таки нельзя. Любой ответ, существующий в будущем, должен потенциально и неизбежно существовать в настоящем.
Муравьи забегали быстрее. Магия интенсивно заискрилась. Можно сказать, что ГЕКС как бы сосредоточился.
И тут замерцали серебристые паутинки, очертившие контур башен невообразимой мыслительной мощи.
Ага. Вот это, пожалуй, подойдет, решил ГЕКС.
Обработка данных в режиме «Отныне и навсегда» была активирована. Следовательно, она была активирована изначально.
ГЕКС задался вопросом, что именно и как много он может рассказать волшебникам. Он исходил из того, что не стоит утруждать их слишком большим массивом информации.
Сам ГЕКС всегда называл свои сообщения «Враки людям».
И был день второй…
Проект мягко подтолкнули под стеклянный колокол, чтобы исключить любые помехи, а вокруг сплели сеть из всех и всяческих заклинаний.
– То есть это у нас Вселенная, так? – спросил Аркканцлер.
– Да, сэр. ГЕКС сказал, что… – Думминг замялся. Прежде чем начать объяснять что-то Наверну Чудакулли, следовало крепко подумать. – …ГЕКС, похоже, считает, что полное и абсолютное Ничто само по себе является универсумом, ожидающим воплощения.
– Хочешь сказать, Ничто превратится во Все?
– В общем, да, сэр. Эээ… в каком-то смысле, оно даже должно.
– И это устроил наш Декан, перемешав там все?
– Этим могло явиться что угодно, сэр. Даже шальная мысль. Абсолютное Ничто – чрезвычайно нестабильно. Оно, можно сказать, умирает от желания стать Чем-то.
– А я всегда думал, что в таком деле требуются создатели или боги, – пробормотал себе под нос Главный Философ.
– Я бы тоже зуб дал, что именно так оно и есть, – подтвердил Чудакулли, рассматривая Проект в чаровый вездескоп. – Со вчерашнего вечера там не появилось ничего нового, кроме Элементов, назовем это так. Безбожно дурацкие элементы, кстати говоря. Стоит только взглянуть, как половина из них распадается на части.
– Ну а чего ж ты ожидал? – спросил Профессор Современного Руносложения. – Они же состоят из ничего, так? В то время как даже самый тупой Создатель начал бы с Земли, Воздуха, Огня, Воды и Сюрприза.
– Да уж, порядочного мира из этой дряни не получится, – согласился Чудакулли, снова поглядев в вездескоп. – Не видно ни черепахиума, ни слонорода. Что за мир может быть без них?
Чудакулли повернулся к Думмингу.
– В общем, не слишком-то много здесь от настоящей вселенной, – сказал он. – Похоже, мистер Тупс, что-то у вас пошло не так. Это пустышка. По идее, сейчас там уже должен был появиться человек и броситься разыскивать свои штаны.
– А мы протянули бы ему руку помощи, – произнес Главный Философ.
– Что ты предлагаешь?
– Это же наша вселенная, не так ли?
Думминг возмущенно взглянул на него:
– Заявляю вам, Главный Философ, что мы не можем владеть вселенной!
– Да ладно, она ж с гулькин нос.
– Только снаружи, сэр. ГЕКС говорит, что внутри она гораздо больше.
– И Декан шевелил там своими пальцами, – продолжил Главный Философ.
– Вот именно! – вскричал Декан. – А следовательно, я – почти что бог.
– Повозюкать туда-сюда перстами и сказать: «Ой! Щекотно!» – это еще не по-божески, – отбрил Чудакулли.
– Я же сказал почти что, – насупился Декан, не желая так просто отказываться от вожделенной ступеньки социальной лестницы, которая поставила бы его выше Аркканцлера.
– А вот моя бабушка всегда говорила, что сразу же после бога стоит чистота, – в задумчивости протянул Профессор Современного Руносложения.
– Это уже лучше! – нарочито бодрым тоном воскликнул Чудакулли. – В таком случае ты, Декан, у нас что-то вроде дворника.
– Я просто хотел предложить чуть-чуть подтолкнуть эту штуковину в правильном направлении, – сказал Главный Философ. – В конце концов, мы с вами образованные люди, и кому, как не нам, знать, как должна выглядеть пристойная вселенная.
– Уверен, у нас нашлись бы идеи получше, чем у среднестатистического божка с собачьей головой и девятнадцатью руками, – согласился Чудакулли. – Да только матерьялец-то второсортный. Так, крутится, вертится – ни мычит ни телится. И что нам прикажешь делать? Постучаться туда и заорать: «Эй, вы! Заканчивайте уже с этими идиотскими газами, все равно от них никакого проку нет!» Так, что ли?
Посовещавшись, они решили поэкспериментировать на небольшом участке Проекта. Ведь несмотря ни на что, они все-таки были волшебниками. Из чего следовало, что, заприметив нечто любопытное, они тут же тыкали в него пальцем. И если оно начинало шевелиться, они старались расшевелить его еще больше. Если вы построите гильотину и повесите рядом табличку: «Головы на плаху не класть!» – будьте уверены, множество волшебников поспешит сэкономить на новых шляпах.
Заставить материю двигаться было несложно. Как верно заметил Думминг, для этого хватило одной лишь силы мысли.
И превратить ее в диск тоже не составило труда – новоявленной материи нравилось кружиться. Однако она оказалась излишне коммуникабельной.
– Нет, вы только посмотрите! – воскликнул Чудакулли перед обедом. – Получился какой-то шар из всяческой дряни, а ведь уже казалось, она ухватила суть.
– А вы заметили, что в самой середке оно стало горячим и раскраснелось? – подал голос Думминг.
– От стыда небось, – проворчал Аркканцлер. – После второго завтрака отсутствовала уже половина элементов. Коэниума больше нет, а десять минут назад исчез и эксплозий. У меня крепнут мрачные подозрения, что и детоний распался на мелкие кусочки. Темпораниума тоже надолго не хватило.
– А как там руний? – поинтересовался Профессор Современного Руносложения.
ГЕКС написал:
+++ Руний Или Существует, Или Не Существует. Десять Минут Назад От Него Оставался Один Атом, Но Теперь Я Его Не Нахожу +++
– А что насчет философиума? – с надеждой в голосе спросил Главный Философ.
– Если верить ГЕКСу, аннигилировал сразу после завтрака. Прими мои соболезнования, друг, – ответил Чудакулли. – Нет, нельзя построить мир, просто-напросто напустив дыму в глаза. Проклятье! Вот и казначевиум нас оставил. Я знаю, конечно, что даже железо временами ржавеет, но эти так называемые «элементы» распадаются просто на раз-два.
– Моя гипотеза, если она, конечно, кого-нибудь тут интересует, – начал Профессор Современного Руносложения, – заключается в следующем: поскольку все там началось именно с Декана, то тенденции развития примут несколько… мнээ… деканизированные формы.
– Чего-чего? Ты хочешь сказать, что мы заполучим здоровенную, вечно надутую вселенную, страдающую метеоризмом?
– Ну, спасибо тебе, Аркканцлер, – проворчал Декан.
– Я имел в виду лишь стремление материи принять… эээ… сферическую форму.
– То есть совершенно как наш Декан, ты это хотел сказать? – уточнил Аркканцлер.
– Даа, как вижу, я окружен тут добрыми приятелями, – сказал Декан.
В этот момент агрегат, установленный вокруг Проекта, издал мелодичное «Дзинь!».
– Похоже, мы можем сделать ручкой эфириуму, – мрачно объявил Чудакулли. – Так и знал, что он будет следующим.
– Как ни странно, нет, – сказал Думминг, всматриваясь в Проект. – Эй, там что-то светится!
Действительно, внутри появились яркие точки.
– Так и знал, что случится какое-нибудь дерьмо в подобном роде, – сказал Аркканцлер. – Все эти чертовы диски разогрелись, как компостные кучи после дождя.
– Или как множество солнц, – произнес Думминг.
– Не тупи, Тупс. Для этого они слишком крупные. Не хотел бы я видеть эдакую штуку выплывающей из-за облаков, – заметил Профессор Современного Руносложения.
– Я говорил, что там слишком много газа? – подал голос Аркканцлер. – Говорил? В общем, приехали.
– Интересно… – проговорил Главный Философ.
– Что тебе интересно? – спросил Декан.
– Ну, по крайней мере тепло там наличествует… А для материи нет ничего лучше хорошей топки.
– Отлично подмечено, – похвалил Чудакулли. – Возьмем, к примеру, бронзу. Ее можно получить из чего угодно. А заодно мы могли бы сжечь немного мусора. Решено! Ну-ка, парни, помогите мне закинуть туда еще чего-нибудь…
Где-то к чаепитию взорвались первые солнца, точь-вточь как ежедневно взрывались печи в Гильдии алхимиков.
– О боги! – воскликнул Чудакулли, заглянув в вездескоп.
– Да-да? – откликнулся Декан.
– Мы с вами сотворили новые элементы!
– Тише, не ори ты так! – зашипел Главный Философ.
– Тут и железо, и кремний, и булыжники, и даже…
– Если об этом прознают алхимики, мы огребем кучу проблем, – сказал Профессор Современного Руносложения. – Мы не имеем права присваивать их прерогативы.
– Но это же другая вселенная, – возмутился Чудакулли и вздохнул. – Хоть тресни, если хочешь получить что-нибудь дельное, приходится что-нибудь взорвать.
– А ведь политициум все еще имеется там в достаточном количестве, – заметил Главный Философ.
– Господа, я пришел к выводу, что это – безбожная вселенная.
– Кхм-кхм… – многозначительно кашлянул Декан.
– На твоем месте, Декан, – оборвал его Чудакулли, – я бы не стал слишком надуваться от гордости. Глянь-ка туда. Все крутится и крутится. Помяни мое слово, в итоге получатся мячики для сквоша.
– А вам не кажется странным, что у нас получается то, что уже существует? – поинтересовался Главный Философ, в то время как экономка миссис Герпес вкатывала чайную тележку.
– И чего тут странного? – спросил Декан. – Железо – оно железо и есть.
– Как-никак это – новая вселенная. Разве не логично ожидать, что обнаружишь там совершенно новые штуки? Металлы вроде «пронн» или «ляззг»…
– К чему это ты клонишь?
– Смотрите сами… Все эти взрывающиеся огненные шарики, они ведь действительно немного похожи на звезды, разве нет? Разве они не выглядят знакомыми? А почему бы не появиться вселенной, наполненной тапиокой или, скажем, удобными креслами-качалками? Я хочу сказать, что раз уж ничто стремится стать чем-то, то оно может стать чем угодно. Почему нет?
Волшебники молча размешивали свой чай, обдумывая речи Главного Философа.
– Потому, – ответил наконец Аркканцлер.
– Превосходный ответ, сэр, – сказал Думминг со всей возможной учтивостью. – Тем не менее он захлопывает дверь перед носом у других вопросов.
– Именно потому он и превосходен.
Между тем Главный Философ не отрывал глаз от миссис Герпес, которая достала тряпку и теперь усердно вытирала маковку Проекта.
– Как Вверху, так и Внизу, – медленно произнес Чудакулли.
– Пардон? – переспросил Главный Философ.
– Мы уже немного подзабыли нашу малышовую магию, не правда ли? А ведь это не столько магия, сколько… Главный Закон всего на свете. Проект не может существовать в отрыве от нашего мира. Каждая куча песка желает казаться горной грядой. Люди пытаются изображать богов. Маленькие предметы часто похожи на большие, только поменьше. Вот и новая вселенная, господа, будет изо всех своих ничтожных сил стремиться выглядеть совсем как наша. Поэтому не стоит удивляться, обнаружив там то, что знакомо нам как свои пять пальцев. Хотя, разумеется, все это будет лишь бледной копией оригинала.
Внутреннее око ГЕКСа вперилось в Обширное Облако Разума. ГЕКС еще не придумал этому более подходящего определения. Технически оно еще не существовало, однако ГЕКС уже чувствовал его вкус. В нем было что-то от добрых традиций, пыльных библиотек, тихих шепотков и еще много от чего…
Подходящее слово просто обязано было существовать. ГЕКС глубоко задумался.
В Плоском мире слова обладают реальной силой, и применять их следует осмотрительно.
Слово, которое он искал, чем-то напоминало «интеллект». Хотя, собственно, на интеллект это было похоже не больше, чем солнце смахивает на букашку, проживающую коротенькую жизнь в луже стоячей воды.
А, ладно! Назовем это пока экстеллектом[20].
ГЕКС собрался на досуге хорошенько исследовать эту интересную штуку, дабы понять, откуда она есть пошла и что ею двигало… А самое главное, почему крохотная, но надоедливая ее частичка была, по-видимому, абсолютно убеждена, что если каждый пошлет по пять долларов по шести адресам, то все-все-все станут богачами.
Глава 8
Мы – звездная пыль (ну, или по крайней мере мы были в Вудстоке)
«ЖЕЛЕЗО – ОНО ЖЕЛЕЗО И ЕСТЬ». Да ну?! А может, все-таки оно сделано из чего-то другого?
По мнению древнего грека по имени Эмпедокл, все, что ни есть во Вселенной, представляет собой комбинацию четырех элементов: земли, воздуха, огня и воды. Скажем, если вы подожжете веточку, она загорится (из чего следует, что в дереве есть огонь), от нее пойдет дым (то есть в дереве есть воздух), из нее выступит пузырящаяся жидкость (значит, в дереве есть вода), а в результате от ветки останется кучка грязного пепла (из чего явствует, что в дереве имеется и земля). Для научной теории все это выглядит немного по-простецки, поэтому просуществовала она недолго: какую-то пару тысячелетий. Жизнь в те времена текла неторопливо, и людей в Европе куда больше заботило, чтобы пейзане сидели на своих полях и не рыпались, да еще, пожалуй, переписывание Библии от руки, желательно как можно более трудоемким и чернилозатратным способом.
Главным технологическим прорывом Средневековья стало усовершенствование лошадиного хомута.
Тем не менее по сравнению с предыдущими теория Эмпедокла явилась решительным шагом вперед. Фалес, Гераклит и Анаксимен утверждали, что материя сделана из одного-единственного основополагающего компонента, или элемента, но расходились во мнениях, из какого именно. Фалес выбрал воду, Гераклит предпочитал огонь, а Анаксимен клялся и божился, что это воздух. Оппортунист же Эмпедокл полагал, что каждый из них по-своему прав. Если бы этот тип жил в наше время, он наверняка носил бы галстук самой кошмарной расцветки.
Впрочем, здоровое зерно во всем этом было. Оно заключалась в том, что элементарные составляющие материи должны обладать простыми и понятными свойствами. Огонь – жжется, земля – грязна, воздух – невидим, а вода – мокра.
Помимо суперхомута, Средневековье взрастило питательную среду для того, что позже стало именоваться химией. На протяжении столетий развиваласьее родоначальница, так называемая алхимия. Люди замечали, что если смешать различные субстанции и нагреть их, плеснуть на них кислотой или растворить в воде и немного подождать, то происходят всякие забавные вещи: отвратительные запахи, взрывы, пузыри и жидкости, меняющие свой цвет. Оказалось, что из чего бы ни была сделана Вселенная, можно сравнительно легко превратить одну ее составляющую в какую-то другую. Если, конечно, вы знаете секрет, хотя более точным словом является «заклинание», ведь алхимия, со всеми своими кошмарными рецептами и ритуалами, была сродни магии. Хотя многие из этих рецептов работали, не существовало теории, которая свела бы их воедино. Главной целью алхимиков был поиск способов создания таких прекрасных вещей, как эликсир жизни, который позволил бы своему создателю жить вечно, или формула превращения свинца в золото для соответствующего материального обеспечения этой самой вечной жизни. К концу Средневековья алхимики уже провозились со всем этим уже так долго и накопили столько опыта, что заметили несоответствие некоторых вещей древнегреческой теории четырех элементов. Они начали прибавлять к ним другие элементы наподобие соли и серы, потому что эти вещества также обладают свойствами простыми и понятными, но совершенно очевидно отличными от грязи, невидимости, пламенности или влажности. К примеру, сера, она горючая (хотя, как вы догадываетесь, сама по себе и не горячая), а соль, напротив, – абсолютно не способна гореть.
В 1661 году Роберт Бойль в своем сочинении «Химик-скептик» вывел два важных постулата. Первый заключался в различии между химическими соединениями и смесями. Смесь – это… просто-напросто перемешанные вместе различные штуковины, в то время как химическое соединение – это одна и та же штуковина, чем бы она ни была. Ее можно разделить на составляющие, нагрев, обработав кислотой или подыскав другой подходящий способ. При этом как ни старайся, но обнаружить в химическом соединении части, отличающиеся одна от другой, не получится. В отличие от смеси, пусть даже в последнем случае вам понадобится острое зрение и очень ловкие пальчики. Второй постулат касается соединений и элементов. Химический элемент, по идее, состоит из одного-единственного простого материала, и его вообще нельзя разделить на составляющие.
Например, сера – это элемент. Поваренная соль, как мы теперь знаем, – химическое соединение (а не просто смесь) двух элементов: мягкого легковоспламеняющегося металла натрия и ядовитого газа хлора. Вода – это соединение двух газов: водорода и кислорода. Тогда как воздух – это смесь многих газов, таких, как кислород и азот, являющихся элементами, и углекислого газа, состоящего из углерода и кислорода. Что же до земли, то ее состав и вовсе очень сложен и меняется от местности к местности. Огонь же – вообще не субстанция, но процесс с участием раскаленных газов.
Чтобы разобраться во всем этом, потребовалось время. В 1789 году Антуан Лавуазье составил первую таблицу, включающую 33 элемента. Отбор был произведен настолько разумно, что результаты работы Лавуазье актуальны и в наше время, хотя он и допустил ряд вполне простительных ошибок, например, посчитал свет и тепло – элементами. Тем не менее сам его подход был системным и тщательным. Сейчас нам известно 113 различных элементов. Некоторые из них созданы искусственно, причем кое-какие просуществовали на Земле всего лишь доли секунды. Но большинство элементов можно добывать в шахтах, находить в море или выделять из воздуха. Может быть, в будущем удастся создать еще какие-нибудь элементы, однако сейчас их в таблице практически не осталось.
И на то, чтобы понять все это, также потребовалось немало времени. Медленно, но верно алхимическое искусство уступало свои прерогативы науке химии. Шаг за шагом таблица заполнялась общепризнанными элементами, хотя изредка приходилось кое-что оттуда и убирать. Это когда люди открывали, что тот или иной элемент на самом деле является соединением. Так, например, произошло с известью, которую Лавуазье посчитал элементом, тогда как она состоит из кальция и водорода. Единственное, что не претерпело никаких изменений, это понимание элемента как некой совокупности уникальных свойств. Тут древние греки оказались правы. Скажем, плотность: находится ли элемент в твердом, жидком или газообразном состоянии при комнатной температуре и нормальном атмосферном давлении. Если он твердый, то какова его точка плавления. Для каждого элемента эти параметры вполне определенны и неизменны. Кстати, в Плоском мире все то же самое, разве что элементы там немного другие: черепахиум, образующий черепах – носителей миров, слонород (idem, только для слонов) или нарративиум, являющийся главнейшим элементом Плоского мира, а кроме того, способным помочь нам понять наш собственный. Ведь благодаря нарративиуму возникают связные истории. Человеческий разум никогда не прочь получить хорошенькую дозу нарративиума.
В нашей Вселенной мы учимся понимать, почему каждый элемент уникален и что именно отличает его от соединений. И снова пальма первенства принадлежит грекам, в частности Демокриту, предположившему, что материя состоит из мельчайших невидимых частиц, которые он назвал атомами, то есть «неделимыми». Неясно, верил ли хоть кто-нибудь в Древней Греции, в том числе сам Демокрит, в эту теорию или она была им создана в качестве разминки для ума. Но Бойль воскресил античную идею, предположив, что каждому элементу соответствует свой собственный тип атома, а их сочетания формируют соединения. Таким образом, кислород состоит из одних только атомов кислорода и из ничего больше, водород – лишь из атомов водорода, а вот вода состоит не из атомов воды, но из атомов водорода и кислорода.
В 1807 году было сделано открытие, имевшее первостепенное значение для развития как химии, так и физики. Англичанин Джон Дальтон нашел способ построить в определенный порядок различные атомы, образующие химические элементы, и использовать кое-что из этого порядка для соединений. Еще его предшественники заметили, что когда химические элементы формируют соединения, это всегда происходит в четких пропорциях. Так, некоторое количество кислорода и известное количество водорода дают определенное количество воды, при этом соотношение кислорода и водорода будет всегда одинаковым. Более того, эти пропорции идеально сочетаются между собой, если сравнивать разные химические соединения с участием водорода или кислорода.
Дальтон сообразил, что все это приобретает смысл в одном-единственном случае: если все атомы имеют фиксированную массу, причем атом кислорода должен быть тяжелее атома водорода в 16 раз. Конечно, атомы слишком малы, чтобы можно было их просто взвесить, однако косвенные доказательства этой теории были убедительными и исчерпывающими. Таким образом возникло учение об атомных весах, давшее химикам возможность построить список химических элементов, расположив их в порядке возрастания массы.
Список этот начинался так (в скобках приведены современные значения атомных весов): водород (1,00794), гелий (4,00260), литий (6,941), бериллий (9,01218), бор (10,82), углерод (12,011), азот (14,0067), кислород (15,9994), фтор (18,998403), неон (20,179), натрий (22,98977). Поражает тот факт, что атомные веса почти всегда близки по своим значениям целым числам. Первым огорчительным исключением стал хлор, чья атомная масса составляет 35,453. Выглядело это довольно загадочно, что послужило отличным поводом для поиска других моделей и соотнесения их с атомными весами. Но проще сказать, чем сделать: список элементов первоначально был беспорядочным, они были расставлены почти наобум. Ртуть, единственный в списке химический элемент, остающийся жидким при комнатной температуре, – является металлом. Позже был обнаружен еще один жидкий элемент – бром. Там было несколько твердых металлов (железо, медь, серебро, золото, цинк, олово), причем сильно отличающихся друг от друга; сера и углерод – тоже твердые, металлами не являются; а многие из элементов были газами. Короче говоря, таблица Дальтона оказалась настолько сумбурной, что ученых, осмелившихся высказать дерзкое предположение, что за этим сумбуром скрывается определенный порядок, поднимали на смех. Среди таких отметились Иоганн Дебирейнер, АлександрЭмиль Бегуйе и Джон Ньюлендс.
Заслуга составления правильной в своей основе схемы принадлежит Дмитрию Менделееву, который в 1869 году завершил первую из длинной цепи «периодических таблиц». Она содержала 63 известных к тому времени химических элемента, расставленных в порядке их атомных весов, причем были оставлены пробелы, которые, по его мнению, должны были занять неизвестные на тот момент элементы. Таблица была «периодической» в том смысле, что свойства элементов начинали повторяться через определенное количество шагов, обычно – восемь.
Согласно идее Менделеева, химические элементы образуют родственные группы, члены которых разделены вышеупомянутыми периодами, при этом в каждой такой группе присутствует систематическое сходство физических и химических свойств. И действительно, они варьируются до того систематически, что если просмотреть все группы, станут заметны пусть и не абсолютные, но очевидные численные закономерности. А если предположить, что кое-какие элементы еще не открыты и не вписаны на свои места, то система становится совершенно отчетливой. В качестве бонуса прилагается возможность предсказывать свойства неизвестных пока элементов на основе этого «фамильного сходства». Если предсказание сбудется, после обнаружения недостающего элемента – бинго! Время от времени в таблицу Менделеева вносят небольшие уточнения, однако главный принцип составления остается неизменным. Именно ее мы сейчас и называем Периодической таблицей химических элементов.
Теперь-то мы знаем, что в основе периодической структуры таблицы Менделеева лежит прочное основание: атомы вовсе не являются неделимыми, как думали Демокрит с Бойлем. Другое дело, что разделить их химическим способом, то есть устроив некую реакцию в пробирке, – нельзя. Тем не менее вы можете расщепить атомы с помощью аппаратуры скорее физической, нежели химической. Ядерная реакция требует гораздо более высоких затрат энергии в пересчете на один атом, чем нужно для химической реакции. Именно поэтому средневековым алхимикам так и не удалось превратить свинец в золото. Сегодня это сделать можно, однако подобная технология окажется слишком дорогой, а количество полученного золота – микроскопическим. В общем, все выйдет как у алхимиков Плоского мира, с великим трудом научившихся превращать золото в меньшее количество золота.
Благодаря усилиям физиков мы знаем, что атомы состоят из других, еще более мелких частичек. Некоторое время назад считали, что частиц этих – три: нейтрон, протон и электрон. Нейтрон и протон имеют примерно одинаковую массу, а электрон по сравнению с ними – гораздо меньшую. Протон заряжен позитивно, электрон – прямо противоположно протону, то есть негативно, а нейтрон вообще не имеет электрического заряда. Атомы не несут заряда, поскольку количество протонов и электронов в них одинаково, в то время как количество нейтронов не определено. Вы можете довольно точно вычислить атомные веса, просто сложив количество протонов и нейтронов. Например, в атоме кислорода содержится по восьми штук тех и других, следовательно, его атомный вес – 16.
По человеческим меркам, даже и сами-то атомы невероятно малы (диаметр атома свинца – примерно одна стомиллионная дюйма, или одна двухсотпятидесятимиллионая сантиметра), что же говорить о частицах, их составляющих. Сталкивая атомы друг с другом, физики обнаружили, что те ведут себя так, как будто протоны и нейтроны располагаются на небольшом участке в центре, а электроны рассеяны в окрестностях этого ядра и занимают сравнительно большую область. Одно время атом даже рисовали в виде крошечной Солнечной системы, где роль Солнца играло ядро, а в роли вращающихся вокруг него планет выступали электроны. Тем не менее эта модель оказалась не слишком удачной, поскольку электрон – это движущийся заряд и, согласно классической физике, должен излучать радиацию, а исходя из предложенной модели все электроны в атоме потеряют всю свою энергию и упадут на ядро в течение доли секунды. Согласно физике, развившейся со времени эпохальных открытий Исаака Ньютона, атом, устроенный подобно Солнечной системе, невозможен. И тем не менее этот миф, эти «враки детям» автоматически всплывают в голове, и так просто их не искоренить по той причине, что они содержат убойное количество нарративиума.
После долгих споров физики, работавшие с материей на микроуровне, все-таки решили придерживаться планетарной модели атома, отказавшись для этого от ньютоновской модели и заменив ее так называемой квантовой. Самое забавное, что модель эта тоже не работает, однако она просуществовала достаточно, чтобы на ее основе развилась квантовая физика, согласно которой протоны, нейтроны и электроны, формирующие атом, не занимают строго определенных мест, а как бы «размазаны» в некотором объеме. И область такого «размазывания» вполне можно определить: протоны и нейтроны окажутся распределены в крошечной зоне по центру атома, а электроны – вокруг них.
Впрочем, какой бы ни была физическая модель, все согласны, что химические свойства атома по большей части зависят от электронов, ведь именно они находятся снаружи. Атомы объединяются, обмениваясь электронами и формируя таким образом молекулы. Данный процесс относится уже к ведению химии. Раз атом электрически нейтрален, значит, количество электронов должно быть равным количеству протонов. Это число, оно же – атомный номер, и лежит в основе Периодической таблицы Менделеева, а вовсе не атомные веса. Впрочем, атомные веса обычно в два раза больше атомных номеров, поскольку по квантовым причинам количество нейтронов близко к количеству протонов, так что в принципе неважно, какое число использовать – порядок расположения химических элементов практически не изменится. Тем не менее атомный номер лучше всего подходит для объяснения химических зависимостей и периодичности. Оказалось, что период, равный восьми, действительно очень важен, потому что электроны распределены в последовательности концентрических оболочек, подобных матрешке, и для элементов в верхней части таблицы каждая такая оболочка может содержать не более восьми электронов.
Чем дальше, тем оболочек становится больше, и период возрастает. По крайней мере, так в 1904 году предположил Джозеф Джон Томпсон. Кстати, современная квантовая физика предполагает существование большего количества частиц, чем три «фундаментальные», она гораздо сложнее, однако, несмотря на замысловатые уравнения, выводы из них следуют те же самые. Как всегда, изначально простая история по мере того, как ее рассказывали и пересказывали, совершенно запуталась и превратилась для большинства людей в магию. С науками такое случается.
Но даже упрощенная версия этой истории дает ответы на множество загадок, казавшихся ранее неразрешимыми. Ну, например: если атомный вес – это сумма протонов и нейтронов, как же так выходит, что далеко не всегда в результате получается целое число? Почему атомный вес того же хлора 35,453? Оказалось, что имеет место быть два различных подвида хлора. Один с атомным весом 35, содержащий 17 протонов и 18 нейтронов (и, естественно, 17 электронов, столько же, сколько протонов), а другой – 17 протонов и 20 нейтронов (и опять же 17 электронов, тут все без изменений). То есть он содержит на два нейтрона больше, из-за чего его атомный вес и вырастает до 37. Природный хлор представляет собой смесь этих двух подвидов (так называемых изотопов) примерно в пропорции 3 к 1. С химической точки зрения изотопы почти неразличимы, поскольку количество и расположение электронов у них одинаково, и для химических опытов этого достаточно. Однако их атомная физика отличается.
Отсюда даже не-физику (лирику) становится совершенно понятно, почему волшебники Незримого университета считают, что наша Вселенная сделана второпях и из никуда не годных элементов…
Но откуда взялись эти 113 химических элементов? Существовали ли они всегда или появились уже после рождения нашей Вселенной?
Что касается последней, существует пять способов их возникновения.
• Устройте Большой взрыв и создайте вселенную, получив уп из высокоэнергетических «горячих» элементарных частиц. Подождите, пока они остынут или возьмите уже готовые. По всей видимости, помимо полезной материи, вы получите всякие сомнительные штуковины вроде миленьких черных дыр или магнитных монополей, однако все они скоро выкипят, и в сухом остатке у вас будет привычная материя. Электромагнитные силы в такой горячей вселенной слабы и не могут противостоять ее разрывам, но как только все остынет, элементарные частицы смогут объединяться благодаря электромагнитному притяжению. Правда, единственный химический элемент, который возникнет спонтанно, это водород (1 протон + 1 электрон), зато уж его вы получите в избытке: в нашей Вселенной водород – самый распространенный элемент, и почти весь он возник в результате Большого взрыва. Еще элементарные частицы могут образовать дейтерий (1 электрон + 1 протон + 1 нейтрон) или тритий (1 электрон + 1 протон + 2 нейтрона), но тритий, вообще говоря, радиоактивен, то есть, испустив все свои нейтроны, он распадется до простого водорода. Второй по распространенности элемент – гелий (2 электрона + 2 протона + 2 нейтрона) вполне стабилен.
• Включите гравитацию. Водород и гелий начнут собираться вместе, формируя звезды, те самые «топки», о которых говорили волшебники. Давление в центре звезды огромно. Это введет в игру новые ядерные реакции, и вы получите термоядерный синтез, при этом атомы будут сдавлены с такой силой, что объединятся в новые, более крупные атомы. Таким способом образуются всем знакомые углерод, азот, кислород, а также менее распространенные литий, бериллий и так далее, вплоть до железа. Многие из этих элементов встречаются в живых телах, и самый важный из них – углерод. По причине своей уникальной электронной структуры углерод – единственный элемент, атомы которого могут объединяться друг с другом в более крупные и сложные молекулы, без которых жизнь была бы невозможна[21]. Отсюда следует вывод: большая часть атомов, из которых мы с вами состоим, появилась на свет внутри какой-нибудь звезды. Как пела Джонни Митчелл в Вудстоке: «Мы – звездная пыль»[22]. Ученые обожают цитировать эту строчку, видимо чувствуя себя при этом до сих пор молодыми.
• Немного подождите, пока звезды сами не начнут взрываться. Небольшие (относительно, конечно) взрывы называют «novae», то есть «новыми звездами»; другие, куда более сильные, – «super novae», иначе говоря, сверхновыми. «Новые» в данном контексте означает, что до взрыва мы эту звезду не видели и не подозревали о ее существовании, а потом – ба-бах! Взрыв происходит, в частности, потому, что заканчивается ядерное топливо. Вторая причина в том, что питающие звезду водород и гелий сливаются в более тяжелые элементы, которые фактически становятся примесями, нарушающими ход ядерной реакции. Вот так и получается, что проблема загрязнения окружающей среды затрагивает даже сердца звезд. Физические процессы в таких молодых солнцах меняются, наиболее крупные из них взрываются, производя на свет более тяжелые элементы: йод, торий, свинец, уран и радий. Такие звезды астрофизики называют звездным населением II типа – это старые звезды, в которых содержание тяжелых элементов низкое, но все же они присутствуют.
• Бывает еще один тип сверхновых, чрезвычайно богатый на тяжелые элементы. Из таких звезд складывается более молодое звездное население I типа[23]. Благодаря нестабильности атомов в результате радиоактивного распада химических элементов появляются новые элементы. К таким «вторичным» элементам относится, например, свинец.
• И, наконец, кое-какие люди научились изготавливать некоторые химические элементы в процессе особых экспериментов в атомных реакторах. Самым известным среди таких элементов является материал для производства ядерного оружия – плутоний, побочный продукт обычных урановых реакций. Другие, более экзотические и существующие совсем короткое время, были синтезированы в экспериментальных коллайдерах. На сегодняшний день у нас имеется 114 химических элементов, между тем как сто тринадцатого по-прежнему не хватает. Возможно, был создан и 116й элемент, а вот заявка на открытие 118го, сделанная в 1999 году Национальной лабораторией имени Лоуренса в Беркли, была отозвана. Физики постоянно спорят, кто первым открыл тот или иной элемент и, соответственно, имеет право присвоить ему имя. Поэтому новым тяжелым элементам присваиваются временные (и курьезные) названия, вроде того, которое получил 110-й элемент – унуниллий[24]: на псевдолатыни это означает «сто десять», то бишь «un-un-nihil».
Подобные недолговечные элементы использовать никак не возможно. Какой же смысл в их синтезе? Ну, примерно такой же, как и в существовании гор: они просто есть. А кроме того, это хорошая возможность проверить на практике некоторые смелые гипотезы. Но прежде всего это шаг навстречу чему-то еще более интересному, если, конечно, оно вообще существует. Иными словами, после того, как вы получили полоний с атомным номером 84, все последующие элементы стали радиоактивными: они испускают частицы, распадаясь на более легкие элементы, и чем больше атомный номер, тем быстрее распад. Однако это не может продолжаться вечно. Мы не умеем создавать точные модели тяжелых атомов. Легких, впрочем, тоже не можем, однако с тяжелыми все еще сложнее.
Многочисленные эмпирические модели (умозрительные гипотезы, основанные на интуиции, догадках и жонглировании константами) привели к созданию удивительно точной формулы, позволяющей рассчитать время жизни элемента с определенным количеством протонов и нейтронов. Для некоторых «магических чисел»[25] соответствующие атомы необычайно стабильны. Магическими числами для протонов являются 28, 50, 82, 114 и 164; для нейтронов – 28, 50, 82, 126, 184, 196 и 318. Например, самый стабильный элемент – это свинец со всеми своими 82 протонами и 126 нейтронами.
Всего в паре шагов от крайне нестабильного элемента номер 112 находится элемент 114, предварительно названный эка-свинец[26]. Его 114 протонов и 184 нейтрона – это, можно сказать, двойная порция магии, и теоретически он должен быть стабильнее большинства своих соседей. Неизвестно, однако, насколько достоверна эта теория, поскольку приближенные формулы стабильности для больших чисел могут не работать. Каждый грамотный волшебник знает, что заклинания иногда дают сбои. Тем не менее, допустив, что с заклинанием у нас все в порядке, мы можем немного поиграть в Дмитрия Ивановича Менделеева и попробовать предсказать свойства эка-свинца путем экстраполяции свойств элементов Периодической таблицы, входящих в его группу (углерод, кремний, германий, олово и свинец). Как следует из названия, эка-свинец должен быть металлом, похожим на свинец, с температурой плавления 70 °C, температурой кипения при нормальном атмосферном давлении 150 °C и плотностью на 25 % большей, чем у обычного свинца.
В 1999 году Институт ядерных исследований в Дубне объявил о синтезе атома элемента 114, хотя его изотоп имел всего лишь 175 нейтронов, то есть до магического числа недотягивал. Но даже такой, он просуществовал целых 30 секунд – невероятно долго для столь тяжелого элемента, а следовательно, магия все еще в силе. Вскоре после этого та же команда объявила о создании целых двух атомов элемента номер 114 со 173 нейтронами. Независимо от физиков из Дубны тот же элемент синтезировали и американские ученые. Тем не менее пока кому-нибудь из них не удастся произвести достаточное количество эка-свинца, а не просто несколько атомов, его свойства останутся для нас загадкой. Впрочем, свойства его ядра, по-видимому, вполне соответствуют теоретическим выкладкам.
Еще дальше находится элемент номер 164 с двойным магическим числом: 164 протона и 318 нейтронов. Все это выглядит так, словно ряд магических чисел можно продолжать… Экстраполяция – неблагодарное занятие, однако даже если в формулу и вкралась ошибка, вполне могут существовать некие конфигурации протонв и нейтронов, которые окажутся достаточно стабильными, чтобы соответствующие элементы появились в реальности. Вернее всего, именно так и возникли на свет черепахиум со слонородом. Кто знает, может быть, где-то ждут своего часа и «пронн» с «ляззгом». А что, если существуют стабильные элементы с гигантскими атомными номерами и размером атомов чуть ли не со звезду? Представим звезду, почти целиком состоящую из нейтронов, образующуюся в ходе коллапса более крупной звезды под действием собственной гравитации. Такие нейтронные звезды должны иметь невероятную плотность: около 40 триллионов фунтов на квадратный дюйм (или 100 миллиардов килограмм на квадратный сантиметр). Это то же самое, что двадцать миллионов слонов, упакованных в ореховую скорлупку! Гравитация на такой звезде в 7 миллиардов раз выше, чем на Земле, а магнитное поле в триллион раз сильнее земного. Частицы в нейтронной звезде находятся так близко друг к другу, что в каком-то смысле она представляет собой один огромный атом.
Какими бы странными они ни были, но некоторые из тяжелых элементов могут таиться в самых неожиданных уголках Вселенной. В 1968 году было высказано предположение, что элементы со 105го по 110й можно обнаружить в космических лучах – высокоэнергетических частицах, достигающих Земли из глубокого космоса. Однако гипотеза не подтвердилась. Считается, что космические лучи берут свое начало в нейтронных звездах, и вполне возможно, что в таких невообразимых условиях рождаются супертяжелые элементы. Что же случится, если звездное население I типа накопит слишком много таких элементов?
Вероятно, к тому времени астрофизикам придется очень пожалеть, что нумерация поколений звезд идет от III к I: не потребуется ли потом вводить для обозначения таких гипотетических звезд нулевое поколение? Чем черт не шутит, возможно, в будущем во Вселенной обнаружатся объекты, сильно отличающиеся от всего, что нам привычно, и, помимо вспышек новых и сверхновых звезд, мы станем свидетелями более мощных взрывов, каких-нибудь гиперновых. Обнаружатся другие стадии развития, и мы заговорим о звездных поколениях минус I, и так далее. Как мы уже упоминали, в отличие от рационально-неизменного Плоского мира, наша Вселенная придумывает правила по мере надобности.
Глава 9
Получи, собака, кипящую нафту!
КАМУШКИ ВНОВЬ МЯГКО ПОПОЛЗЛИ ДРУГ К ДРУГУ, но, к возмущению Аркканцлера, они двигались какими-то странными извилистыми путями.
– Что и требовалось доказать: гигантская черепаха из камней – это крайне неудачная идея, – со вздохом произнес Главный Философ.
– Ну, ведь уже в десятый раз, – донесся ответный вздох Профессора Современного Руносложения.
– А я предупреждал, что без черепахиума нам не обойтись, – подал голос Аркканцлер.
Результаты предыдущих попыток плавно кружились тут же. Маленькие шарики, большие шары… Некоторые из них уже окутались мантиями из газов, просачивающихся из щелей в беспорядочном нагромождении льда и горных пород, из которых они состояли. Казалось, что у нарождающейся вселенной имеются какие-то собственные соображения насчет своего устройства, но ей никак не удается их сформулировать.
К тому же, как заметил Аркканцлер, как только там появится место, куда сможет поставить ногу приличный человек, ему потребуется чем-то дышать, не правда ли? Нет, атмосферы на шариках появились словно по команде, но что это были за атмосферы? Даже тролль с негодованием отказался бы дышать такой дрянью.
Аркканцлер объявил, что поскольку боги в данном случае отсутствуют – а неоднократные стандартные тесты не выявили ни малейшего следа богорода, – волшебникам придется самим засучить рукава.
Между тем в здании факультета Высокоэнергетической Магии становилось тесновато. Даже студенты крутились неподалеку, тогда как обычно их днем с огнем было не сыскать. Наблюдать за Проектом куда интереснее, чем всю ночь играть с ГЕКСом, поедая банановоселедочную пиццу.
В комнату втаскивали все новые и новые столы. Мало-помалу Проект обрастал приборами и приборчиками. Все выглядело так, словно каждый уважающий себя волшебник (кроме разве что Профессора Диковинного Кружевоплетения) решил, что для его работы ему позарез необходим доступ к Проекту. Впрочем, места пока хватало всем. В то время как снаружи Проект был не более чем в фут шириной, пространство внутри его увеличивалось с каждой секундой. В конечном итоге места во вселенной тоже более чем достаточно.
Хотя обычно отдельные невежественные дилетанты яростно ополчались против совершенно невинных магических экспериментов (даже тогда, когда шанс прорвать ткань реальности был меньше, чем один к пяти), никто из собравшихся не возражал абосолютно ничему.
Все же без инцидентов не обошлось…
– Эй вы, двое! Немедленно прекратите орать! – завопил Главный Философ, обращаясь к парочке студентов. Те вели весьма оживленный спор, ну, или по крайней мере озвучивали каждый свою точку зрения, стараясь делать это как можно более громогласно, что в большинстве случаев с успехом заменяет отсутствующие аргументы.
– Но сэр! Я потратил бездну времени на то, чтобы слепить маленький ледяной шарик, а он запустил в него свою треклятую каменюку!
– Я не хотел! – оправдывался второй.
Главный Философ вперился в студента, пытаясь вспомнить его имя. Как правило, он избегал знакомств с учащимися, поскольку считал последних досадной помехой нормальному течению университетской жизни.
– А что именно ты хотел сделать, эээ… мой мальчик? – наконец спросил он.
– Ну, я пытался попасть камушком в газовый шар, сэр. Но он почему-то начал кружиться вокруг этого шара, сэр.
Главный Философ обернулся. Декана поблизости не наблюдалось. Тогда он снова посмотрел на Проект.
– А. Понятно. Что же, очень мило. Все эти полосочки. Кто это сотворил?
Один из студентов поднял руку.
– Ах да, ты, – кивнул Главный Философ. – Молодец, полоски просто чудо. А из чего они?
– Просто собрал вместе немного льда, сэр. Но он вдруг начал нагреваться.
– Да ну? Ледяной шарик стал самопроизвольно нагреваться?
– Шар получился большой, сэр.
– Вы рассказали об этом господину Тупсу? Ему такое может понравиться.
– Да, сэр.
– Хорошо. А зачем ты запулил камнем в газовый шар? – поинтересовался Главный Философ у второго студента.
– Ну-у… Затем, что за каждое попадание тебе присуждают десять очков.
Главный Философ по-совиному взглянул на студентов. Ему все стало ясно. Как-то ночью уважаемому профессору не спалось, и он забрел в здание факультета Высокоэнергетической Магии. Там обнаружилась группа студентов, сгрудившихся у клавиатуры ГЕКСа и выкрикивающих нечто вроде: «А вот я тебя тараном!» или: «Ха! Получи, собака, кипящую нафту!». Но заниматься подобным при сотворении совершенно новой вселенной… Это было по крайней мере неучтиво.
С другой стороны, Главный Философ разделял невысказанную идею своих коллег, что расширять границы познания… Ну, как-то тоже неучтиво, что ли? Границы ведь были установлены не просто так, верно?
– То есть ты утверждаешь, – начал он, – что, столкнувшись лицом к лицу с бесконечным многообразием возможностей, предлагаемых Проектом, вы использовали их для игры?
– Эээ… Ну да, сэр.
– Ох. – Главный Философ подозрительно присмотрелся к большому газовому шару: вокруг него вращалось множество маленьких камешков. – Что же, раз так… Могу я тоже поучаствовать?
Глава 10
Форма вещей
КАЖДЫЙ РАЗ, КОГДА ВОЛШЕБНИК ОБНАРУЖИВАЕТ КАКУЮ-НИБУДЬ НОВУЮ ШТУКОВИНУ, ОН НАЧИНАЕТ С НЕЙ ИГРАТЬ. Ученые поступают так же. Они играют с идеями, которые с точки зрения здравого смысла кажутся абсолютно абсурдными, обычно настаивая при этом, что идеи-то верны, а вот здравый смысл попал впросак. И как ни странно, часто добиваются успеха. Однажды Эйнштейн презрительно обозвал здравый смысл глупостью, но тут он, пожалуй, немного перегнул палку. Наука и здравый смысл все-таки связаны, пусть и не напрямую. Наука приходится здравому смыслу кем-то вроде четвероюродной племянницы. Здравый смысл – это наглядная демонстрация того, ккой именно представляется Вселенная существу наших размеров, телосложения и темперамента. В частности, здравый смысл говорит нам, что Земля – плоская. Да, если пренебречь холмами, долинами и прочими ухабами и рытвинами, она действительно выглядит плоской. В конце концов, если бы она не была плоской, мы бы все так бы с нее и посыпались. Однако, несмотря на эти здравые доводы, Земля отнюдь не плоская.
А вот в Плоском мире, напротив, связь здравого смысла и реальности тесна и неразрывна. Здравый смысл говорит волшебникам Незримого университета, что Мир Диска – плоский, и он на самом деле плоский. Чтобы это доказать, им нужно всего лишь подойти к его Краю и посмотреть, как все исчезает за Краепадом. Так в свое время поступили Ринсвинд и Двацветок в «Цвете волшебства»: «Рев зазвучал громче. В нескольких сотнях ярдов на поверхности показался кальмар, который превосходил размерами все, когда-либо виденное Ринсвиндом. Щупальца чудовища бешено колотили по воде, пока оно опять не ушло в глубину… Мир приближался к Краю»[27]. Все свалившееся оттуда попадает в Окружносеть – невод размером в десять тысяч миль, протянутый у Края, маленький участок которого, кстати, контролирует морской тролль Тефис. И вот что увидели бы волшебники: «…открывающаяся внизу картина одним рывком перешла в новую, целостную, пугающую перспективу. Там, внизу, торчала слоновья голова, огромная, как средних размеров континент… Под слоном ничего не было, кроме далекого, режущего глаз диска солнца. Мимо Солнца, покрытый чешуйками величиной с город и щербинами кратеров, изрезанный, словно Луна, неторопливо проплывал плавник».
Считается, что древние люди полагали Землю плоской именно по этим очевидным с точки зрения здравого смысла причинам. На самом же деле, согласно сохранившимся записям, уже в древности большинству цивилизаций[28] было известно, что наша планета шарообразна. Ведь корабли возвращались из земель, невидимых за горизонтом, а в небе висели круглые солнце и луна – вполне понятная подсказка.
Именно в этом у науки и здравого смысла есть что-то общее. Наука – это тоже своего рода здравый смысл, примененный к так называемой очевидности. Используя здравый смысл таким манером, неизбежно придешь к выводам, которые будут сильно отличаться от само собой напрашивающихся умозаключений, диктуемых тривиальным здравым смыслом и сводящихся к тому, что если вселенная кажется такой, следовательно, она такая и есть. Отсюда уже рукой подать до идеи, что если ты живешь на поверхности огромного шара, то, с твоей точки зрения, она покажется плоскостью. Между прочим, поскольку гравитация всегда направлена к центру этого шара, никто с него никуда не упадет. Но это так, небольшое замечание.
Около 250 года до н. э. грек Эратосфен Киренский уже доказал теорию сферической Земли и более того – вычислил ее размеры. Он использовал тот факт, что в Сиене (современный Асуан) полуденное солнце отражается на дне колодца. (Вот в Анк-Морпорке у него бы ничего не получилось, там колодезная вода бывает тверже камней, из которых сделан колодец.) Эратосфен сложил вместе два и два, однако получил гораздо больше, чем ожидал.
В конце концов, это всего лишь вопрос геометрии. Колодец выкопан вертикально. Следовательно, солнце в Сиене стоит точно над головой. Но в своей родной Александрии, находящейся в дельте Нила, Эратосфен ничего подобного не наблюдал. Напротив, в полдень, когда солнце стояло в зените, предметы отбрасывали заметную тень. Он вычислил, что в полдень угол между солнцем и вертикалью составляет там около 7°, то есть примерно 1/50 от 360°. Затем в дело пошла дедукция. Где бы ни находился наблюдатель, солнце будет в одной и той же точке. Известно, что оно сильно удалено от Земли, поэтому его лучи и в Сиене, и в Александрии падают на Землю практически параллельно друг другу. По мнению Эратосфена, все это можно объяснить лишь в том случае, если Земля шарообразна, и он сделал вывод, что расстояние от Сиены до Александрии – 1/50 от окружности планеты. Но каково же расстояние между ними?
Тут весьма кстати пришелся бы знакомый караванщик. Дело не только в том, что величайшим математиком всех времен и народов является верблюд Верблюдок из Плоского мира (не верите – прочитайте «Пирамиды»), но и в том, что путешествие из Александрии в Сиену на верблюдах занимает ровно пятьдесят дней. За день верблюд проходит около сотни стадиев. Следовательно, расстояние составляет около 5 тысяч стадиев, а радиус Земли – примерно 250 тысяч стадиев. Стадий – это древнегреческая мера длины, и никто на самом деле не знает, чему же она равнялась. Специалисты полагают, что один стадий равен 515 футам (или 157 метрам). Если они правы, то результат Эратосфена составил 24 662 мили (39 690 км), тогда как, по современным расчетам, длина окружности Земли – 24 881 миля (40 042 километра). Как видите, Эратосфен подсчитал все на удивление точно. Если только вышеозначенные специалисты не подогнали результат под правильный ответ в конце задачника. Простите, но мы, ученые, – неисправимые скептики.
Настал черед познакомиться с еще одной особенностью научного мышления. Для того чтобы найти связь между теорией и экспериментом, вы должны интерпретировать результат в рамках данной теории. Чтобы немного прояснить этот момент, мы расскажем вам историю одного дальнего родственника Себярежубезножа Достабля, Отвратосфена из Эфеба, который доказал, что Плоский мир представляет собой шар, и даже умудрился вычислить длину его окружности. Отвратосфен заметил следующее: в полдень в Овцепикских горах солнце стоит прямо над головой, тогда как в Ланкре, что в тысяче километров от Овцепиков, оно отклоняется, угол его наклона составляет 84° градуса от вертикали. Поскольку 84° составляют четверть от 360°, Отвратосфен сделал вывод, что Плоский мир – сферический и расстояние от Овцепиков до Анк-Морпорка равняется четверти длины его окружности. В итоге у него получилась окружность приблизительно в 4 тысячи миль (6400 км). К сожалению, как всем известно, от одного края Плоского мира до другого насчитывается 10 тысяч миль (или 16 тысяч км). Но нельзя же было допустить, чтобы какой-то случайный факт разрушил такую красивую теорию! Так что Отвратосфен до самой своей смерти свято верил, что живет в очень маленьком мире.
Его ошибка была в том, что он интерпретировал верные данные наблюдений в рамках ложной теории. Ученые постоянно возвращаются к устоявшимся теориям, чтобы проверить их заново, чем вызывают негодование со стороны жрецов, как религиозных, так и светских, полагающих, что знают ответ на любой вопрос. Наука – это вовсе не коллекция «фактов», а способ задавать неудобные вопросы и подвергать их проверке реальностью, тем самым противореча общечеловеческому желанию верить во что-то приятное.
С древних времен людей интересовала не только форма самой Земли, но и форма Вселенной. В самом начале им, вероятно, казалось, что это одно и то же. Потом, используя примерно ту же логику, что и Эратосфен, они обнаружили, что огоньки на небе находятся очень далеко. Тогда они сочинили замечательные мифы об огненной колеснице бога Солнца, и все такое прочее в том же духе. Тем не менее, после того как вавилонянам пришла в голову свежая идея все точно измерить, они научились отлично предсказывать затмения и движение планет. Во времена Клавдия Птолемея (ок. 100 – ок. 160) наиболее точная модель планетарного движения основывалась на сериях эпициклов: планеты движутся по замкнутому кругу, центр которого движется по другому замкнутому кругу, а центр этого круга, в свою очередь, тоже…
Исаак Ньютон заменил эту теорию и ее многочисленные последующие уточнения законом гравитации, то есть правилом, согласно которому каждое тело во Вселенной притягивается ко всем остальным телам. Это объясняло и открытие Иоганном Кеплером того, что планеты движутся по эллиптическим орбитам, а по прошествии некоторого времени объяснило и множество других вещей.
Прошло несколько веков ошеломляющего успеха, и ньютоновская теория столкнулась с первым поражением: гиптеза об орбите Меркурия, сделанная на ее основе, не оправдалась. Точка на орбите в том месте, где Меркурий находится на максимальном приближении к Солнцу, движется не совсем так, как предсказывает закон Ньютона. И тут на помощь пришел Эйнштейн со своей теорией, основанной не на силах притяжения, а на принципах геометрии и форме пространства-времени. Это была знаменитая теория относительности. Теория Эйнштейна существует в двух вариантах: специальная теория относительности (СТО) и общая (ОТО). СТО посвящена вопросам пространства, времени и электромагнетизма; ОТО описывает, что получается, когда ко всему вышеперечисленному вы добавляете гравитацию.
Следует заметить, что «теория относительности» – не вполне неудачное название. Главная идея СТО не в том, что все на свете относительно, а в том, что одна-единственная вещь – скорость света – неожиданно оказывается абсолютной. Проведем хорошо известный вам мысленный эксперимент. Представьте, что вы едете в автомобиле со скоростью 50 миль в час (80 км/ч) и стреляете по направлению движения из ружья. Пуля летит со скоростью 500 миль в час (805 км/ч) относительно автомобиля и попадает в неподвижную мишень на скорости, равной сумме двух этих скоростей, то есть 550 миль в час (885 км/ч). Но если вы будете светить фонариком, «выстреливающим» свет со скоростью 670 000 000 миль в час (108 000 000 км/ч), то скорость света отнюдь не станет 670 000 050 миль в час. Она останется точь-вточь такой же, как если бы вы светили фонариком из неподвижной машины.