Наука Плоского мира Пратчетт Терри

В данной теории находят свое объяснение практически все особенности Солнечной системы, оставляя тем не менее место некоторым исключениям из правил. Она согласуется с наблюдениями конденсирующихся газовых облаков в отдаленных областях космоса. Может быть, она и не идеальна, и нужно бы еще поработать, чтобы объяснить кое-какие несообразности наподобие Плутона, однако самые главные параметры встали на свои места.

Кроме того, представляется вероятной возможность существования большого количества планет, не имеющих центральной звезды. В 2000 году исследовательская группа под руководставом Рафаэля Реболо обнаружила такие одиночные крупные планеты. Наблюдение за подобными объектами в кластере Сигма Ориона показывает, что чем они меньше по размеру, тем их больше. Если подобное соотношение верно и для объектов размера Земли (которые слишком малы, чтобы их можно было наблюдать существующими методами), то одиноких планет в Галактике полным-полно. Только в радиусе тридцати световых лет от Земли их могут быть сотни. Проблема в том, что если у них нет звезды, то и увидеть их мы не можем. Без мерцающего света звезды и тени, которую отбрасывает на нее планета, проходя мимо, сделать этого никак нельзя, а сами эти планеты светятся лишь отраженным светом далеких звезд, слишком слабым, чтобы его увидеть с Земли. Общепринятая теория образования планет, при которой звезда и ее планетная система появляются одновременно, к ним не применима, поскольку сравнительно небольшие газовые облака имеют недостаточную массу, чтобы коллапсировать под воздействием гравитации так, как нужно. Впрочем, кое-какие магнитные явления могут спровоцировать разрыв газового облака, коллапсирующего вокруг звезды. Но в этом случае облако рассеется до того, как сформируются планеты. А может быть, эти одинокие планеты появились самым обыкновенным путем, однако затем были «изгнаны» за что-то из родной солнечной системы.

Будущее нашей Солнечной системы не менее интересно, чем ее прошлое. В глазах Ньютона и его современников Солнечная система представляла собой что-то вроде небесного часового механизма, который, будучи единожды запущен, так и продолжает свой ход, подчиняясь простым математическим правилам. И будет весело тикать вечно. Были даже построены механические модели Солнечной системы, так называемые «оррерии», с великим множеством шестеренок, бронзовыми планетками и лунами из слоновой кости, запускавшиеся в движение поворотом рукоятки.

Теперь-то мы знаем, что и космические «часы» могут «сломаться». Это произойдет не скоро, но рано или поздно в Солнечной системе грядут большие перемены. Основная причина такого развития событий – хаос. В том смысле, в котором это слово применяется в теории хаоса со всеми ее причудливыми разноцветными фракталами, то есть некая быстроразвивающаяся область математики, проникающая во все другие науки. Согласно теории хаоса, простые правила не предполагают простого поведения (Думминг Тупс и другие волшебники вот-вот это поймут). В действительности же простые правила могут привести к такому поведению, которое во многих аспектах будет случайным. Поначалу хаотическая система ведет себя вполне предсказуемо, но стоит вам пересечь так называемый «горизонт предсказуемости» – и все ваши пророчества тут же перестают сбываться. Например, погода – хаотична, ее горизонт предсказуемости – около четырех дней. Солнечная система, как мы видим, тоже хаотична, только ее горизонт предсказуемости – десять миллионов лет. Например, мы не можем сказать, с какой стороны Солнца будет Плутон через сто миллионов лет. Он будет на той же орбите, что и теперь, но вот в какой именно точке – никому не известно.

Все это мы знаем благодаря математике, а также – оррериям, не механическим, конечно, а цифровым, то есть специальным компьютерам, способным очень быстро просчитывать небесную механику. Первый цифровой оррерий был разработан исследовательской группой Джека Уиздома, который на пару со своим конкурентом Жаком Ласкаром старался углубить наши познания о будущем Солнечной системы. Несмотря на то, что хаотичная система в долгосрочной перспективе непредсказуема, можно составить ряд отдельных прогнозов и посмотреть, что в них общего. Математики полагают, что с большой долей вероятности такие совпадения будут близки к реальности.

Одним из самых впечатляющих результатов стало предсказание о возможной потере Солнечной системой одной из планет. За миллиард лет Меркурий удалится от Солнца настолько, что пересечет орбиту Венеры. Такое тесное сближение планет приведет к тому, что одна из них, а то и обе сразу, окажутся выброшенными за пределы Солнечной системы. Если только не столкнутся с чем-то еще на своем пути, а это хотя и маловероятно, но все же возможно. Такой «неудачницей» может оказаться даже Земля. А может быть, Венера пригласит нашу планету на своеобразное космическое танго, в результате которого уже сама Земля может быть «выставлена» из Солнечной системы. Детали этого события непредсказуемы, но общий сценарий выглядит обнадеживающе.

Это означает, что наши представления о Солнечной системе далеки от реальности. По человеческим меркам, это очень простое место, где ничего никогда не меняется. По меркам же самой Солнечной системы, сотни миллионов лет ее жизни заполнены волнующими и драматическими событиями: вокруг с ревом носятся планеты, сбивая друг друга с орбит и увлекая в дикую гравитационную пляску.

Все это слегка напоминает события, описанные в книжке «Миры в столкновении», опубликованной в 1950 году Иммануилом Великовским. Он верил, что когда-то Юпитер породил гигантскую комету, которая уже дважды прошла мимо Земли, разок вступила в любовную интрижку с Марсом (в результате чего на свет появился выводок кометок поменьше) и теперь живет-поживает под именем Венеры. Однако во время своей бурной молодости эта комета стала причиной многих странных событий, описанных в библейских легендах. В одном Великовский оказался прав: орбиты планет в действительности могут меняться. Правда, в остальном он полностью заблуждался.

Так есть ли другие планетные системы у далеких звезд или мы – единственные? Еще до недавнего времени по этому вопросу велось множество споров, потому что никаких доказательств не было. Большинство ученых, доведись им заключать пари, скорее всего, поставили бы на существование таких систем, поскольку механизм сжатия пылевого облака может легко повториться там, где имеется космическая пыль: только в нашей галактике есть сто миллиардов звезд, не говоря уже о миллиардах миллиардов во всей Вселенной, появившихся именно из космической пыли. Но все же это было лишь косвенным доказательством. Теперь же кое-что наконец начинает проясняться. И как частенько случается, в этой истории наличествует по крайней мере один фальстарт и критический пересмотр доказательств, на первый взгляд выглядевших вполне убедительно.

В 1967 году Джоселин Белл, аспирантка Энтони Хьюиша из Кембриджского университета, работала над своей диссертацией. Ее специализацией была радиоастрономия. Как и свет, радиоизлучение – это электромагнитные волны, и звезды испускают радиоволны точно так же, как и световые. Такие радиоволны можно улавливать с помощью параболических приемников, похожих на нынешние «тарелки» для приема спутникового телевидения. Такие приемники получили не слишком удачное название радиотелескопов, хотя работают они на принципах, весьма далеких от нормальных оптических телескопов. Если посмотреть на небо вооруженным взглядом в радиоволновом диапазоне электромагнитного спектра, то сразу станет видно то, что не позволяет увидеть обычный свет. В общем-то в этом нет ничего удивительного, например, военные снайперы умеют видеть в темноте, используя инфракрасные волны и засекая предметы, которые излучают тепло. В то время технологии были не слишком продвинутыми и радиосигналы фиксировались самописцами на длинных рулонах бумаги: получались эдакие волнообразные кривые, нарисованные старыми добрыми чернилами. В задачу Белл входил поиск чего-то необычного в этих записях, для чего ей приходилось просматривать около 400 футов бумаги в неделю. И она таки нашла нечто странное, а именно сигнал, пульсирующий с частотой тридцать колебаний в секунду. Хьюиш отнесся к этому довольно скептически, подозревая, что подобный сигнал может генерироваться их собственной аппаратурой. Однако Белл была убеждена в его подлинности. Она пересмотрела около трех миль предыдущих записей и обнаружила несколько случаев точно такого же сигнала, что доказывало ее правоту. Что-то такое там, в космосе, излучало радиоволны, похожие на вибрирующий свист. Соответственно, объект был назван пульсаром, то есть пульсирующим звездным телом.

Что же это за странная штуковина? Кое-кто тут же предположил, что мы получили радиосигнал от инопланетной цивилизации, однако все попытки расшифровать ток-шоу внеземного Джерри Спрингера[35] оказались напрасными. Может, оно и к лучшему. Вернее всего, никаких тайных закодированных посланий в сигналах попросту не было. В действительности, как мы сейчас понимаем, этот феномен куда более загадочен, чем любая инопланетная телепрограмма. Предполагается, что пульсары – это нейтронные звезды диаметром примерно 12 миль (20 километров), состоящие из сильно вырожденной материи, содержащей только нейтроны.

Как вы, конечно, помните, нейтронные звезды невероятно плотны и образуются в результате гравитационного коллапса другой, более крупной, звезды. Исходная звезда вращалась, следовательно, в результате сохранения углового момента, нейтронная звезда должна вращаться гораздо быстрее. Как правило, это составляет около тридцати полных оборотов в секунду. Для звезды это весьма внушительная скорость, и только такие крошечные звезды, как нейтронные, способны на такой подвиг: если с такой скоростью начнет крутиться звезда обычного размера, то ее поверхность будет двигаться быстрее, чем со скоростью света – Эйнштейн бы от такого в восторг не пришел. Правда, куда более реалистичным является предположение, что попробуй нормальная звезда это проделать, то и на гораздо меньшей скорости, чем световая, ее разорвало бы в клочья. Однако нейтронная звезда мала, а ее угловой момент сравнительно велик и пируэты со скоростью 30 оборотов в секунду для нее не проблема.

Проведем сравнение с нашей Землей. Как и пульсар, она вращается вокруг своей оси и обладает магнитным полем. Последнее, кстати, также имеет ось, отличную, однако, от оси вращения. Вот почему магнитный Северный полюс не совпадает с географическим Северным полюсом. Точно так же магнитный полюс пульсара может не совпадать с его географическим полюсом. И если это действительно так, то магнитная ось «накручивает» по тридцати оборотов в секунду. Быстро вращающееся магнитное поле создает так называемое синхротронное излучение в виде двух узких пучков, направленных вдоль магнитной оси пульсара. Короче говоря, нейтронная звезда испускает двойной радиолуч, похожий на вспышки света от вращающегося фонаря на земном маяке. Так что если вы посмотрите на нейтронную звезду в радиодиапазоне, то заметите яркую вспышку, когда луч направлен вам в лицо, затем – практически ничего, пока луч не вернется в то же положение. Каждую секунду вы увидите 30 таких вспышек. Именно это и обнаружила Белл.

Если вы – живое существо, хотя бы отчасти традиционного телосложения, вы решительно не захотите жить рядом с пульсаром. Его синхротронное излучение занимает широкий волновой диапазон, от видимого света до рентгеновских лучей, а Минздрав предупреждает, что рентгеновское излучение может серьезно навредить вашему здоровью. Впрочем, ни один астроном никогда всерьез не предполагал, что пульсары могут иметь планеты. Если большая звезда коллапсирует в невообразимо плотную нейтронную, последняя наверняка затянет в себя все, что только находится поблизости, ведь так?

А может, и нет. В 1991 году Мэттью Бэйлз объявил, что обнаружил планету, вращающуюся вокруг пульсара PSR 1829–10. Ее масса равна массе Урана, а находится она от него на расстоянии, примерно равном расстоянию от Солнца до Венеры. Известные пульсары, да и все остальные звезды, даже самые близкие, располагаются слишком далеко, чтобы мы могли непосредственно наблюдать их планеты. Тем не менее отличить звезду с планетами можно, наблюдая за ее мерцанием по ходу движения. Звезды ведь не стоят в небе точно вкопанные, наоборот, они куда-то движутся, скорее всего влекомые гравитационным притяжением Вселенной в целом, которого вполне достаточно, чтобы тянуть отдельные звезды в том или ином направлении. Большинство звезд движется почти по прямым линиям, в то время как звезда с планетами – словно водят хоровод. Планеты вращаются вокруг звезды, она отклоняется в ту или в другую сторону, и ее путь становится немного похожим на волнистую линию. Если один «танцор» – большой и массивный, а другой – в весе мухи, то второй может сколько угодно кружиться вокруг первого: ему вряд ли удастся сдвинуть его с места. Если же весовые категории «танцоров» равны – оба будут вращаться вокруг общего центра. Понаблюдав за отклонениями в движении, вы сможете сделать обоснованный вывод о массе окружающих звезду планет и о дистанциях, на которых расположены их орбиты.

Впервые эта методика хорошо зарекомендовала себя для обнаружения двойных звезд: когда второй партнер по танцу – другая звезда, отклонения в движении становятся особенно заметными, так как звезды куда массивнее планет. По мере совершенствования аппаратуры стало возможным регистрировать даже незначительные колебания, вызванные существенно менее крупным соседом. И вот тогда Бэйлз и обнаружил, что у пульсара PSR 1829–10 имеется компаньон и, судя по массе, это – планета. Конечно, наблюдать отклонения непосредственно он не мог, зато зафиксировал легкие изменения в периодах пульсаций. Однако период вращения предполагаемой планеты вызвал легкое недоумение: он составлял ровно шесть земных месяцев. Слишком странное совпадение. Быстро выяснилось, что измения в пульсациях вызваны куда более близкой к нам планетой, а точнее – Землей. Приборы улавливали отклонения на этом конце, а не на стороне пульсара.

Едва страсти вокруг «обнаруженной» у пульсара планеты начали утихать, как Александр Вольщан и Дэйл Фрейл объявили об открытии сразу двух планет, вращающихся вокруг пульсара PSR 1257+12. Надо же! Солнечная система пульсара, причем с двумя планетами! Колебания звезды с двумя партнерами по танцу намного более замысловаты, и их трудно перепутать с помехами в сигнале, генерируемыми чем-то на стороне приемника, вроде движения Земли. Пока что второе открытие выглядит достаточно правдоподобно, если, конечно, пульсары не могут изменять свой исходящий сигнал в подобной манере даже и в отсутствие близлежащей планеты. Может быть, сами радиоволны немного осциллируют? Поскольку мы не можем сходить туда и проверить все лично, приходится как-то разбираться с этим, не выходя из дома. И знаете, пока все выглядит разумно.

За пределами Солнечной системы существуют и другие отдаленные планеты. Однако интерес представляют прежде всего те, которые пригодны для жизни, а планеты, соседствующие с пульсарами с их рентгеновским излучением, в это число явно не входят, особенно если вы планируете пожить подольше. Да, теперь нам известно, что и у обычных звезд имеются планеты. В октябре 1995 года Мишель Майор и Дидье Квелоц заметили колебания в движении 51й звезды созвездия Пегаса, которые могли быть вызваны планетой примерно в половину массы Юпитера. Их наблюдения подтвердили Жоффрей Марси и Пол Батлер, обнаружив еще две планеты. Одна – в семь раз массивнее Юпитера – находится близ 70й звезды созвездия Девы; вторая – в два-три раза массивнее Юпитера – вращается около 47й звезды Большой Медведицы.

К 1996 году было открыто семь таких планет, а к моменту написания этой книги – уже семьдесят. При этом использовался как метод поиска отклонений в движении, так и наблюдение за осцилляциями излучаемого звездой света в результате его отражения проходящей поблизости планетой. Теоретические расчеты показывают, что, усовершенствовав телескопы, можно будет определить и скорость вращения планеты. Но даже сейчас новые экстрасолярные планеты (экзопланеты) открывают чуть ли не каждую неделю. Точное их количество неизвестно, потому что довольно часто астрономы обнаруживают ошибки в предыдущих измерениях, что ставит под сомнение существование уже кому-то полюбившейся новой планеты, однако общая тенденция сохраняется. И наш ближайший солнцеподобный сосед, Эпсилон Эридана, как стало известно в 1998 году благодаря наблюдениям Джеймса Гривза и его коллег, также окружен пылевым облаком, подобным солнечному облаку Оорта. Правда, никаких колебаний там не видно, следовательно, масса планеты должна быть раза в три меньше массы Юпитера. Годом ранее Дэвид Триллинг и Роберт Браун заметили похожее облако вокруг 55й звезды созвездия Рака, которая к тому же колеблется, что означает наличие у нее планеты массой в 1,9 массы Юпитера. Это практически исключает иное объяснение вроде наличия невидимого компаньона, например, коричневого карлика (погасшей звезды).

И хотя нынешние телескопы не могут различить экзопланету непосредственно, телескопы будущего наверняка это смогут. Привычные нам астрономические телескопы используют большое, слегка вогнутое зеркало для фокусировки входящего света, а также линзы и призмы для создания изображения и передачи его на фотопластину, на месте которой когда-то был окуляр, в который глядел астроном. Сейчас в качестве фотопластины используется прибор с зарядовой связью (ПЗС-матрица), чувствительный электронный детектор света, соединенный с компьютером. Чтобы увидеть планету около отдаленной звезды, обычному телескопу потребовалось бы огромное зеркало диаметром 100 ярдов (примерно 100 метров), тогда как самое большое зеркало, существующее на данный момент, достигает лишь трети этого размера. А для того чтобы рассмотреть какие-то детали инопланетного мира, необходимо зеркало еще больших размеров, то есть воплотить подобное на практике просто невозможно.

Но вы же не обязаны использовать один-единственный телескоп, не так ли?

И технология, называемая интерферомтрией, в принципе позволяет это сделать, заменив одно 100метровое зеркало двумя зеркалами поменьше, находящимися в ста метрах друг от друга. Оба таких зеркала создают картинку одной и той же звезды или планеты, а входящие световые волны, формирующие изображения, тщательно синхронизируются и суммируются. Такая двухзеркальная система собирает меньше света, чем полноразмерное стоярдовое зеркало, однако детальное разрешение оказывается таким же. К тому же современная электроника в состоянии усилить даже ничтожное количество входящего света. Во всяком случае, сейчас используются уже десятки маленьких зеркал, а также преогромное количество хитростей и всяческих уловок, чтобы синхронизировать эти зеркала между собой и точно совместить изображения, которые они получают.

Радиоастрономы уже давно пользуются таким способом. Наибольшей технической трудностью здесь является удержание для всех этих небольших телескопов одинакового расстояния от звезды до ее изображений с точностью до длины волны. Для оптической астрономии подобная техника относительно нова, так как длина волны оптического диапазона намного короче радиоволн, однако главная проблема с видимым светом состоит в том, что не стоит и пытаться соорудить подобную систему на Земле. Земная атмосфера находится в постоянном турбулентном движении, искривляя падающий свет самым непредсказуемым образом. Даже очень мощные телескопы, установленные на Земле, показывают размытую картинку, именно поэтому космический телескоп «Хаббл» и находится на орбите Земли. Его преемник, Космический телескоп нового поколения[36], будет запущен уже на орбиту Солнца за миллионы миль от Земли. Его нужно будет аккуратнейшим образом разместить в так называемой точке Лагранжа L2, то есть в таком месте на воображаемой линии, соединяющей Солнце и Землю, но чуть дальше, где земное притяжение, притяжение Солнца и центробежная сила, действующие на телескоп, окажутся взаимно скомпенсированными. Конструкция «Хаббла» включает в себя массивную трубу, защищающую аппарат от ненужного света, особенно отраженного от нашей планеты. Тогда как в точке L2 намного темнее, и можно будет отказаться от громоздкой трубы, сэкономив топливо для запуска. Кроме того, в этой точке гораздо холоднее, чем на низкой околоземной орбите, а следовательно, работа инфракрасного телескопа будет намного эффективнее.

В интерферометрии вместо одного большого телескопа используется сеть маленьких, удаленных друг от друга телескопов, но для оптической астрономии такой комплекс придется разместить в космосе. Кроме всего прочего, это даст дополнительное преимущество, ведь космос – большой, или, как сказали бы в Плоском мире, – место, где можно быть большим. Максимальная дистанция между телескопами в сети называется длиной базы. В космосе можно создать сеть интерферометров с невероятно длинной базой. Радиоастрономы уже создали такую с длиной базы, превышающей размеры Земли, разместив один телескоп с антенной на Земле, а другой – на орбите. И НАСА, и ЕКА (Европейское космическое агентство) разрабатывают программы по размещению в космосе прототипов сети оптических интерферометров, своего рода стай, образно выражаясь.

В 2003 году НАСА должно запустить проект «Space Technology 3»[37] (прежде он назывался «Deep Space 3»), включающий два космических аппарата, расположенных на расстоянии 0,6 мили (1 км) друг от друга и способных поддерживать дистанцию с точностью около половины дюйма (1 см). Его последователь, «Star Light», должен быть запущен в 2005 году. Другой смелый проект НАСА, планируемый на 2009 год, «Space Interferometry Mission», должен задействовать три интерферометра с длиной базы 10 метров. Кроме того, в НАСА задумываются о запуске в 2012 году «Terrestrial Planet Finder», который будет искать не только планеты земного типа, но и следы углекислого газа, водяного пара, озона и метана, которые могут быть признаками жизни, или, на худой конец, планет, на которых могут выжить организмы земного типа. Потом туда на разведку отправится другой проект, «Life Finder», дата которого пока не определена. В ЕКА также имеются подобные проекты. В 2006 году предполагается запустить «SMART2»[38], состоящий из двух спутников, которые будут летать по орбите. Также планируется более амбициозный проект «Darwin», представляющий собой целую флотилию из шести телескопов.

Однако больше всего ожиданий связано с проектом «Planet Imager», к которому НАСА рассчитывает приступить в 2020 году. Эскадрилья из пяти летательных аппаратов, каждый с четырьмя оптическими телескопами на борту, развернет интерферометрическую сеть с длиной базы в несколько сотен миль и начнет наносить на карту далекие планеты. До ближайшей от нас звезды всего лишь чуть более четырех световых лет, а компьютерные модели показывают, что 50 телескопов с длиной базы в 50 миль (150 км) вполне могут получить качественное изображение планеты, располагающейся в 10 световых годах, причем оно позволит рассмотреть континенты и даже луны размером с нашу. А имея 150 телескопов с аналогичной длиной базы, можно будет уже посмотреть на Землю с расстояния десяти световых лет и, например, заметить в ее атмосфере зарождающиеся ураганы. Только представьте, что можно сделать с длиной базы в тысячу миль!

Планеты за пределами Солнечной системы определенно существуют, более того, вполне вероятно, что их там видимо-невидимо. И это прекрасная новость для тех, кто надеется отыскать инопланетную жизнь. Вот только существующие доказательства наличия последней весьма сомнительны.

Традиционное место, где мы ожидаем найти жизнь в Солнечной системе, – это Марс. Вопервых, этому поспособствовали легенды о марсианских каналах, увиденных астрономами в телескопы. Каналы, правда, оказались иллюзией, что выяснилось после получения фотографий с посланных к Марсу космических аппаратов. Вовторых, природные условия на Марсе близки к земным, только куда гаже. Ну и, втретьих, нужно поблагодарить авторов десятков научно-фантастических книг, исподволь подготовивших нас к существованию марсиан. Конечно, на Земле жизнь можно отыскать в самых неприглядных местах вроде жерл вулканов, раскаленных пустынь или в глубинах земных недр. К сожалению, ни единого следа жизни на Марсе не обнаружено.

Во всяком случае, пока…

Хотя какое-то время, пусть и недолгое, отдельные ученые полагали, что это уже произошло. В 1996 году НАСА объявило, что найдены следы жизни на Марсе. В Антарктиде откопали метеорит под кодовым номером ALH84001, который 15 миллионов лет назад якобы откололся от Марса в результате его столкновения с другим метеоритом и упал на Землю около 13 миллионов лет назад. Когда его распилили и внимательно рассмотрели под большим увеличением, то внутри нашлись три возможных признака марсианской жизни: отметины, напоминающие крошечные ископаемые остатки бактерий; железосодержащие кристаллы, похожие на отходы жизнедеятельности некоторых бактерий; органические молекулы, напоминающие найденные в ископаемых бактериях на Земле. Короче, все указывало на то, что найдены самые что ни на есть настоящие марсианские бактерии! Неудивительно, что после подобного заявления разгорелся жаркий спор, в результате которого были сделаны неутешительные выводы: почти с полной уверенностью можно сказать, что все три открытия ни в коей мере не доказывают существование жизни на Марсе. Так называемые «ископаемые бактерии» слишком малы, большая часть их – это всего лишь выступы на кристаллической поверхности, образовавшие забавные фигуры на металлическом зеркале электронного микроскопа. Наличие же железосодержащих кристаллов можно объяснить, отнюдь не прибегая к помощи бактерий. Органические же молекулы могли попасть на метеорит безо всякого участия какой-либо марсианской жизни.

И все же в 1998 году беспилотная исследовательская станция «Mars Global Surveyor» отыскала на Марсе следы существования древнего океана. Когда-то, давным-давно, огромные массы воды сошли с марсианских гор и обрушились на северные долины. Ранее считалось, что вся эта вода виталась в грунт или испарилась, однако оказалось, что берега северных низменностей находятся на одном уровне, подобно размытой береговой линии земных океанов. Этот гипотетический океан должен был покрывать примерно четверть поверхности Марса. Если там когда-то существовала жизнь, то нас терпеливо дожидаются марсианские окаменелости.

Сейчас фаворитом поисков жизни в Солнечной системе неожиданно, особенно для тех, кто не читал научной фантастики, стал спутник Юпитера Европа. Неожиданно потому, что Европа неимоверно холодна и покрыта толстой коркой льда. В общем, не то место, где ожидаешь найти что-нибудь живое. Европа находится в гравитационной хватке Юпитера, и приливные силы разогревают ее изнутри. Это означает, что глубокие слои льда могли растаять, образовав огромный подледный океан. До недавнего времени это было только гипотезой, но доказательства наличия жидкой воды на Европе становятся все убедительнее. Они включают в себя геологические исследования ее поверхности, гравитационные измерения, а также тот факт, что недра Европы электропроводны. Это открытие было сделано в 1998 году К. Хураной и другими исследователями по результатам наблюдений космического зонда «Галилей» за магнитным полем Европы. Конфигурация ее магнитного поля очень необычна, и единственным правдоподобным объяснением этого является наличие подповерхностного океана, который может являться проводником электрического тока благодаря растворенным в нем солям. Поскольку Каллисто, другой спутник Юпитера, имеет похожие очертания магнитного поля, ученые сделали заключение, что и там имеется подповерхностный океан. В том же году Т. Б. МакКорд и другие ученые обнаружили на поверхности Европы обширные участки гидратированных солей (солей, чьи молекулы содержат воду), которые вполне могут оказаться коркой соли, оставшейся после подъема на поверхность соленой воды.

Существует соблазнительная идея отправить на Европу зонд, который бы приземлился, пробурил скважину и заглянул внутрь. Конечно, технические сложности огромны, ведь толщина слоя льда достигает по крайней мере 10 миль (16 км). К тому же операция должна быть проведена чрезвычайно аккуратно, чтобы ненароком не разрушить то, что мы собираемся найти: живые организмы Европы. Менее деструктивный способ, значащийся в планах, предполагает поиск в тонкой атмосфере Европы молекул, свидетельствующих о наличии жизни. Конечно, никто не говорит, что собирается найти там антилоп или, на худой конец, рыб, но все же как-то странно было бы, что химический состав океана Европы глубиной сто миль (160 км) не стал источником жизни. Ведь почти наверняка там есть какие-нибудь подводные «вулканы», где через океанское дно циркулирует очень горячая сернистая вода. Это обеспечивает прекрасные возможности для сложных химических реакций вроде той, которая породила жизнь на Земле.

Впрочем, куда более вероятно разыскать на Европе простые химические структуры, подобные башням – бактериям, которые могут там существовать в горячих жерлах, так же как в Балтийском море. Более сложные создания наподобие амеб или инфузорий-туфелек стали бы весьма приятным сюрпризом, а что-то еще более интересное, какой-нибудь многоклеточный организм – так вообще подарком судьбы. Обнаружение растений даже не обсуждается – если бы солнечный свет и мог как-то пробиться сквозь толщу льда, на Европу его попадает слишком мало. Жизнь на Европе должна поддерживаться химической энергией, как это происходит около жерл поводных вулканов на Земле. Не стоит, конечно, ожидать, что европеанские формы жизни будут хоть немного похожи на те, которые обитают у земных кратеров, поскольку они должны были развиваться в совершенно иной химической среде.

В 2001 году астрогеофизик («геолог», изучающий другие планеты) Брэд Далтон решил выяснить, не может ли быть так, что мы уже нашли инопланетную жизнь. Поверхность Европы покрыта красно-коричневыми пятнами, особенно заметными на полосах, похожих на разломы льда. Он обнаружил, что в инфракрасном спектре эти пятна здорово напоминают следы земных бактерий, способных выдерживать сильный холод. И действительно, три вида таких бактерий дают инфракрасный спектр, куда более близкий к наблюдаемому на Европе, чем спектр минеральных солей, выходящих на ее поверхность (согласно наиболее распространенным объяснениям). Конечно, на поверхности Европы слишком холодно даже для бактерий, но они могут прекрасно выживать в океане, а затем каким-то образом попадать наверх.

Глава 15

Самый первый рассвет

ДУММИНГ ОТКРЫЛ ГЛАЗА, НЕ ПОНИМАЯ, НА КАКОМ ОН СВЕТЕ. Ему под нос сунули чашку чая. Из нее торчал банан.

– Ааа… Это вы, Библиотекарь, – слабо пробормотал Думминг, беря чашку. Пока он пил, банан мягко постукивал его по левому веку. Библиотекарь полагал, что все на свете можно исправить спелыми фруктами. Впрочем, в остальном он был отличным парнем, всегда готовым протянуть тебе руку помощи и банан[39].

Волшебники положили Думминга спать на скамье в кладовке, до самого потолка заваленной пыльными магическими приборами, по большей части сломанными. Там все, буквально все было покрыто толстым слоем пыли.

Думминг сел и зевнул.

– Который теперь час?

– Уук.

– Неужто так поздно?

Уютный сонный туман рассеялся, и до Думминга внезапно дошло, что он оставил Проект в руках пожилых волшебников. Его как ветром сдуло, и Библиотекарь был крайне впечатлен тем, как долго, оказывается, может раскачиваться дверь.

Лаборатория почти опустела, лишь вокруг Проекта разливалось свечение.

– Маппин Зимли… Миленькое имя, правда?

– Заткнись.

– А если так: Оуэн Домовладелли?..

– Заткнись.

– Тогда просто Вилльям.

– Ты заткнешься наконец, Декан? Это уже не смешно, притом что с самого начала не было несмешным, – раздался голос Аркканцлера.

– Как скажешь, Гертруда.

Думминг приблизился к светящемуся Проекту.

– А, это ты, Тупс, – произнес Главный Философ, торопливо делая шаг навстречу Думмингу. – Рад тебя видеть в таком цветущем… эээ…

– Вы ведь… Вы что-то такое сделали? – спросил Думминг, пытаясь заглянуть за спину Главного Философа.

– Уверен, ничего непоправимого не произошло, – успокоительно сказал Профессор Современного Руносложения.

– И он все равно еще почти совсем круглый, – произнес Декан. – Да вот спроси хоть у Чарли Зубриллера. Я теперь точно знаю, что его зовут именно так, а вовсе не Наверн Чудакулли.

– Декан, я тебя последний раз предупреждаю…

– Что вы с ним сделали?

Думминг смотрел на свой шарик. Шарик, бесспорно, стал более горячим и, несомненно, менее шарообразным. Один его бок был весь изрыт красными шрамами, а противоположное полушарие занимал большой кратер, так и пыхавший огнем. Шарик медленно вращался, чуть подрагивая.

– Почти все кусочки мы подобрали, – сказал Главный Философ, с надеждой глядя на Думминга.

– Что-что вы сделали?

– Мы просто хотели быть полезными, – сказал Декан. – Гертруда подумал, что мы вполне могли бы соорудить солнце, ну и…

– Декан! – окликнул его Чудакулли.

– Да, Аркканцлер.

– Хотелось бы еще раз обратить твое внимание, Декан, что это было дурацкой шуткой с самого начала. Жалкая попытка высмеять элементарную фигуру речи. Только четырехлетки или люди с тяжелым расстройством чувства юмора могут талдычить подобные вещи снова и снова. Так что ради твоего же блага, Декан, я взвешенно и миролюбиво довожу это соображение до твоего сведения, поскольку надеюсь, что тебе еще можно помочь. Мы все здесь торчим исключительно из-за тебя, притом я понятия не имею, на черта ты нам сдался, – с этими словами Чудакулли повернулся к перепуганному Думмингу. – Так вот, Тупс, мы сделали солнце…

– …Даже несколько солнц, – пробормотал Декан.

– Ну да, какое-то количество солнц… Но все это коловращение чертовски запутанная штука. Пока насобачишься – семь потов сойдет.

– Вы что, уронили свое солнце в мой мир? – спросил Думминг.

– Всего несколько штучек, – ответил Чудакулли.

– Мое вообще отскоило, – сказал Декан.

– Ага, и пробило вон там до безобразия здоровенную дыру, – показал Аркканцлер. – И к тому же оно откололо от планеты большущую глыбу.

– По крайней мере все кусочки моего солнца долго светились, – огрызнулся Декан.

– Ну да, внутри планеты. Так что это не считается. – Чудакулли вздохнул. – Кстати, твоя машина, господин Тупс, утверждает, что солнце в шестьдесят миль диаметром никуда не годится. Надо же, какая чушь!

Запавшими от ужаса глазами Думминг глядел на свой несчастный мир, который вихлялся из стороны в сторону, словно хромая утка.

– Там же нет нарративиума, – глухо произнес он. – Этот мир просто не знает, какого размера солнце ему требуется.

– Уук, – сказал Библиотекарь.

– О, небеса! – воскликнул Чудакулли. – Кто его сюда впустил?

По молчаливой договоренности, Библиотекарю был заказан вход на факультет Высокоэнергетической Магии, принимая во внимание присущую ему привычку исследовать вещи, пробуя их на зуб. Такой метод, отлично зарекомендовавший себя в Библиотеке, где укус орангутана сделался точнейшим инструментом классификации, был абсолютно бесполезен в помещении со свисающими там и сям шинами, пульсирующими под напряжением в несколько тысяч чар. Запрет, конечно, был неофициальный – попробуй запрети что-нибудь тому, кто без труда повернет любую дверную ручку вместе с дубовой дверью, выломанной из проема.

Орангутан приподнялся на костяшках пальцев и куснул купол. Волшебники сразу подобрались. Тонкий черный палец покрутил колесико вездескопа, сфокусировав его на взорвавшейся вчера топке. Сейчас это была всего лишь крошечная точка, лучащаяся ослепительным газом.

Изображение сфокусировалось на светящемся угольке.

– Все равно оно слишком большое, – сказал Чудакулли. – Но попытка засчитана, старичок.

Библиотекарь обернулся к нему, и его лицо озарила вспышка взрыва. У Думминга перехватило дыхание: до него внезапно стало доходить.

– Кто-нибудь, посветите мне!

Шары так и посыпались со стола, пока Думминг пытался схватить хотя бы один из них. Когда ему это удалось, он протянул Главному Философу, который услужливо зажег спичку и поводил ею туда-сюда.

– Это сработает!

– Вот и прекрасно! – сказал Чудакулли. – А что именно?

– Смена дня и ночи! – пояснил Думминг. – И даже времена года, если мы все сделаем как надо. Отличная работа, сэр! Не уверен только насчет покачиваний, но, похоже, вы все сделали правильно.

– Как всегда, – просиял Чудакулли. – Безусловно, мы – те самые, кто все делает правильно. А что мы сделали правильно на сей раз?

– Вращение!

– А все мое солнце, – самодовольно изрек Декан.

Думминг готов был пуститься в пляс, но вдруг посерьезнел.

– Правда, успех нашего предприятия зависит от того, удастся ли одурачить тамошних людей, – произнес он. – Хотя… Там же никого нет… ГЕКС!

Послышалось механическое покашливание, и появился ответ ГЕКСа:

+++ Да? +++

– Можем ли мы как-нибудь попасть в этот мир?

+++ Никакой Физический Объект Не Может Войти В Проект +++

– Но я хочу, чтобы кто-то туда спустился и понаблюдал изнутри.

+++ Это Возможно, Поскольку Находится В Пространстве Виртуальной Возможности +++

– Виртуальной?

+++ Вам Нужен Энтузиаст. Кто-то, Кого Можно Обмануть +++

– Ну, за этим дело не станет, – сказал Аркканцелер. – Мы же как-никак в Незримом университете.

Глава 16

Земля и огонь

НЕИЗВЕСТНО, ЯВЛЯЕТСЯ ЛИ НАША ЗЕМЛЯ ОБЫЧНОЙ ПЛАНЕТОЙ. Мы не знаем, как часто встречаются обводненные планеты, с океанами, континентами и атмосферой. По крайней мере в Солнечной системе она – одна-единственная. И вообще, выражение «планета земного типа» стоит использовать с осторожностью, поскольку около половины своего существования Земля совершенно не походила на ту сине-зеленую планету с белыми облачками, кислородной атмосферой и всем остальным, какой мы привыкли ее видеть на спутниковых снимках. Чтобы получить планету земного типа в прямом смысле этого слова, мы должны будем взять подходящую планету и подождать несколько миллиардов лет. То, что при этом получится, наверняка будет сильно отличаться от наших недавних представлений о прошлом Земли.

Прежде мы думали, что наша планета – чрезвычайно стабильное место и, отправившись в прошлое, в ту эпоху, когда начали разделяться континенты и океаны, мы найдем все на тех же местах, что и сейчас. Нам казалось, что и внутри Земля довольно проста.

Как мы ошибались!

Люди много узнали о поверхности Земли, но куда меньше о том, что у нее внутри. Поверхность изучать несложно, надо просто отправиться в нужное место, – это если, конечно, вам не требуется непременно попасть на вершину Эвереста. Используя специальные устройства, защищающие нежные людские тела от огромного давления, можно спуститься в океанские глубины. Еще можно вырыть в земле норы и послать туда людей. Мы можем получить немного больше информации, пробурив несколько миль земной коры, хотя это лишь тонкая корочка по сравнению со всем остальным объемом планеты. Нам остается лишь догадываться о том, что находится там, внизу, пользуясь косвенными инструментами, главными из которых являются сейсмические волны, генерируемые землетрясениями, лабораторные эксперименты и теоретические выкладки.

В целом поверхность нашей планеты выглядит спокойно, если не считать погоды и кое-каких неприятных эффектов, связанных со сменой времен года. Однако частые извержения вулканов и землетрясения напоминают, что под нашими ногами не все ладно. Вулканы возникают там, где на поверхность поднимаются расплавленные породы и извергаются под большим давлением в сопровождении густых облаков газа и пепла. В 1980 году вулкан Сент-Хеленс в американском штате Вашингтон взорвался, словно скороварка с заклинившей крышкой, и половина горы ушла в небытие. Землетрясения происходят, когда массивы земной коры смещаются вдоль глубинных разломов. Позже мы разберемся, в чем причина того и другого, но вначале взглянем на все это в целом: несмотря на отдельные бедственные участки, поверхность Земли вполне благоприятна для развития и существования жизни уже в течение нескольких миллиардов лет.

Форма Земли близка к сферической: диаметр ее экватора – 7928 миль (12 756 км), тогда как расстояние от полюса к полюсу – 7902 мили (12 714 км). Небольшое расширение на экваторе – это результат действия центробежных сил, связанных с вращением Земли. Они появились еще тогда, когда наша планета находилась в расплавленном состоянии. Земля – самая плотная планета в Солнечной системе: ее средняя плотность в пять с половиной раз больше плотности воды. Когда Земля конденсировалась из первичного газопылевого облака, химические элементы и соединения разделились на два слоя: плотные материалы ушли в глубину, а легкие – всплыли на поверхность, так же как слой легкого масла плавает на поверхности более плотной воды.

В 1952 году американский геофизик Фрэнсис Берч предложил описание общей структуры нашей планеты, которое с тех пор почти не изменилось. Земля внутри очень горячая, и, кроме того, там чрезвычайно высокое давление. Наиболее экстремальные условия в самом ее центре, где температура – около 6000 °C, а давление в 3 миллиона раз выше атмосферного. Обычно от такого жара горные породы и металлы плавятся, однако давление удерживает их в твердом состоянии, то есть имеется комбинация двух противоположных факторов, определяющих жидкую или твердую фазу материи. В центре Земли находится ядро – довольно плотная сфера, состоящая преимущественно из железа, с радиусом примерно 2 220 миль (3500 км). Внутреннее ядро радиусом 600 миль (1000 км) – твердое, тогда как внешняя его часть – расплавлена. Самый верхний слой Земли – это тонкая оболочка, так называемая кора, толщиной всего в несколько миль. Между корой и ядром располагается мантия, в осноном состоящая из твердых силикатных пород. Она также делится на внешнюю и внутреннюю часть, граница между которыми проходит на глубине в радиусе 3600 миль (5800 км). Выше этой «переходной зоны» находятся главным образом оливин, пироксены и гранаты, а ниже – их кристаллическая структура уплотняется, образуя такие минералы, как перовскит. Наружный край мантии и соприкасающиеся с ним нижние области коры также могут находиться в расплавленном состоянии.

В коре, толщина которой примерно от 3 до 12 миль (5–20 км), происходит много интересного. Те ее части, которые образуют континенты, состоят в основном из гранита, а под океанским дном в основном залегают базальты, причем этот базальтовый слой продолжается и под материковым гранитом. Таким образом, континенты – это тонкие и обширные пласты гранита, размещающиеся на базальтовой «подложке». Самым заметным свидетельством наличия гранитного слоя на поверхности Земли являются горы. Нам они кажутся ужасно высокими, но их высота не превышает пяти миль (9 км) над уровнем моря, то есть немногим более одной десятой процента – 1/7 от одного процента – земного радиуса. Самая глубокая впадина – Марианская – в северо-западной части Тихого океана достигает 7 миль (11 км) ниже уровня моря. Общее отклонение от идеальной сферы (точнее, сфероида, поскольку полюса приплюснуты) составляет примерно 1/3 процента. Таким образом, отличие Земли от идеальной сферы примерно такое же, как и у баскетбольного мяча, покрытого «пупырышками» для лучшего захвата. В общем, за исключением этих небольших вмятинок и выступов, наша родная планета на удивление круглая и гладкая. Такой она стала под воздействием гравитации. Разве что незначительные, но очень любопытные движения в ее мантии и коре добавили пару-тройку морщинок.

Откуда нам все это известно? В основном благодаря землетрясениям. Когда происходит землетрясение, Земля дрожит, словно колокол, по которому ударили молотком. По ней проходят сейсмические волны, то есть вибрации, вызванные землетрясением. Они преломляются, когда пересекают зоны с различными свойствами и составом, такие, как кора и мантия или верхняя и нижняя мантия. Они отражаются от земной коры и возвращаются вниз. Существует несколько типов сейсмических волн, и распространяются они с разными скоростями; таким образом, короткий и резкий толчок при землетрясении порождает очень сложную волновую картину. Когда сейсмические волны достигают поверхности, их можно зарегистрировать, потом сравнить записи, сделанные в разных местах, и на их основании попытаться сделать выводы о подземной географии нашей планеты.

* * *

Магнитное поле Земли является одним из следствий ее внутренней структуры. Мы знаем, что стрелка компаса указывает примерно на север. Стандартные «враки детям» сводятся к утверждению, что Земля – это такой здоровенный магнит. Что же, давайте попробуем разобраться получше.

Магнитное поле Земли долгое время оставалось загадкой, ведь каменных магнитов не бывает, правда? Но как только вы открываете, что внутри Земли имеется колоссальное количество железа, все вроде бы становится на свои места. Железо не образует «постоянный» магнит вроде прикрепленных к пластиковым поросяткам и медвежаткам, которых мы, сами не зная зачем, покупаем, чтобы прицепить на холодильник. Земные недра больше походят на динамо. Кстати, это так и называется – геомагнитное динамо. Как мы уже упоминали, железо в ядре Земли находится по большей части в расплавленном состоянии, за исключением твердого плотного «шарика» в самом центре. Жидкая часть до сих пор продолжает нагреваться. Прежде это явление объясняли тем, что радиоактивные элементы, будучи плотнее всего остального в химическом составе планеты, погрузились в самый центр, оказавшись запертыми там, а тепло дает излучаемая ими радиоактивная энергия. Современная же теория предлагает совершенно иное объяснение: жидкая часть ядра нагревается, поскольку твердая – остывает. Расплавленное железо на контакте с твердым ядром само понемногу застывает, при этом высвобождается тепло. Это тепло должно куда-то деться, оно не может просто исчезнуть, словно дуновение теплого воздуха, – вокруг тысячи миль сплошной горной породы. Тепло передается расплавленному слою ядра, нагревая его.

Возможно, вас удивит факт, что та часть, которая вступает в контакт с твердым ядром, может охлаждаться и затвердевать и, одновременно с этим, нагреваться в процессе этого затвердевания. Объяснение простое: горячее расплавленное железо поднимается вверх по мере разогрева. Вспомните воздушный шар. Когда вы нагреваете воздух, он поднимается. Это происходит потому, что при нагревании воздух расширяется, становится менее плотным, а менее плотные вещества всплывают над более плотными. Воздушный шар удерживает воздух в огромном шелковом мешке, часто ярко окрашенном и разрисованном эмблемами банков или агентств недвижимости, и поднимается вместе с воздухом. Горячее железо ничем не разрисовано, но поднимается точно так же, как горячий воздух, удаляясь от твердого ядра. Оно медленно всплывает, остывая, а потом, когда становится слишком холодным, точнее сравнительно холодным, начинает снова погружаться в глубину. В результате земное ядро находится в непрерывном движении, раскаляясь внутри и остывая снаружи. Оно не может подняться все разом, то есть одни области ядра всплывают, в то время как другие – заново погружаются. Такой вид циркулирующей теплопередачи называется конвекцией.

По мнению физиков, при соблюдении неких трех условий движущиеся жидкости могут создавать магнитное поле. Вопервых, жидкость должна проводить электрический ток, и железо прекрасно с этим справляется. Вовторых, изначально должно присутствовать хотя бы небольшое магнитное поле, а есть веские основания полагать, что нашей Земле, тогда еще совсем юной, была присуща некая толика личного магнетизма. Втретьих, что-то должно вращать эту жидкость, искажая исходное магнитное поле, и у Земли такое вращение происходит за счет силы Кориолиса, похожей на центробежную силу, однако действующей более слабо и возникающей в результате вращения Земли вокруг своей оси. Грубо говоря, вращение искажает исходно слабое магнитное поле, закручивая его, как спагетти на вилку. Затем магнетизм поднимается наверх, пойманный всплывающими массами железного ядра. В результате всего этого коловращения магнитное поле становится намного сильнее.

Да, в каком-то смысле можно сказать, что Земля ведет себя так, словно внутри у нее имеется огромный магнит, но на самом деле все гораздо сложнее. Чтобы немного конкретизировать нарисованную картину, напомним, что существуют по меньшей мере семь других факторов, обусловливающих наличие у Земли магнитного поля. Так, некоторые составляющие земной коры могут быть постоянными магнитами. Подобно стрелке компаса, указывающей на север, они постепенно выстроились вдоль более сильного геомагнитного динамо, дополнительно усиливая его. В верхних слоях атмосферы имеется слой заряженного ионизированного газа. До того как были изобретены спутники, ионосфера играла важнейшую роль в обеспечении радиосвязи: радиоволны отражались от заряженного газа, а не уходили в космос. Ионосфера находится в движении, а движущееся электричество создает магнитное поле. На высоте примерно 15 000 миль (24 000 км) течет кольцевой ток – слой ионизированных частиц низкой плотности, образующий огромный тор. Это немного ослабляет силу магнитного поля Земли.

Следующие два фактора – это так называемые магнитопауза и магнитный хвост, возникшие под влиянием солнечного ветра на магнитосферу Земли. Солнечный ветер – это постоянный поток частиц, испускаемых гиперактивным Солнцем. Магнитопауза – это головная волна земного магнитного поля, идущая против солнечного ветра, а магнитный хвост – след этой волны с противоположной стороны планеты, где собственное магнитное поле Земли «утекает» наружу, к тому же разрушаясь под воздействием солнечного ветра. Кроме того, солнечный ветер вызывает своеобразную тягу вдоль орбиты Земли, создавая дополнительное искажение линий магнитного поля, известное как продольный ток в магнитосфере. И, наконец, существуют авроральные потоки. Северное сияние,или aurora borealis, – это восхитительные, таинственные полотнища бледного света, переливающиеся в северном полярном небе. Аналогичный спектакль, aurora australis, можно наблюдать неподалеку от Южного полюса. Полярные сияния создаются двумя полосами электрического тока, текущими от магнитопаузы в магнитный хвост. Это, в свою очередь, создает новые магнитные поля и два электрических потока – западный и восточный.

Значит, говорите, Земля – просто большой магнит? Ну да, а океан – это миска с водой.

Магнитные материалы, найденные в древних породах, свидетельствуют, что время от времени магнитное поле Земли меняет свою полярность, северный магнитный полюс становится южным и наоборот. Это происходит примерно один раз в полмиллиона лет, хотя строгую закономерность проследить так и не удалось. Никто точно не знает, почему это происходит, однако математические модели показывают, что магнитное поле Земли может быть ориентировано равновероятно и в том и в другом направлениях, причем ни одно из них не является устойчивым. Любое положение рано или поздно теряет устойчивость и передает эстафетную палочку противоположному. Переходы происходят быстро, в течение примерно 5 тысяч лет, тогда как периоды между ними в сто раз длиннее.

Магнитные поля имеются у большинства планет, и этот факт еще более сложнообъясним, чем земное поле. Нам с вами предстоит еще много узнать о планетарном магнетизме.

Одно из самых впечатляющих свойств нашей планеты было обнаружено в 1912 году, но не принималось во внимание до 60х. Наиболее убедительным доказательством в ее пользу стала именно смена магнитных полюсов. Речь идет о том, что земные континенты не стоят на месте, но медленно дрейфуют по поверхности планеты. По мнению немецкого ученого Альфреда Вегенера, первым опубликовавшего свою теорию, нынешние отдельные континенты раньше являлись одним суперматериком, который он назвал Пангея (то есть «Вся земля»). Он существовал около 300 миллионов лет назад.

Наверняка Вегенер не первым додумался до этого. Его идея, по крайней мере отчасти, возникла под влиянием удивительного сходства очертаний берегов Африки и Южной Америки. На карте это особенно бросается в глаза. Естественно, Вегенер опирался и на другие данные. Он был не геологом, а метеорологом, специалистом по древнему климату, и его удивляло то, что в регионах с холодным климатом обнаруживаются горные породы, явно возникшие в регионах с теплым, и наоборот. Например, в Сахаре до сих пор можно отыскать остатки древних ледников, возраст которых 420 миллионов лет, а в Антарктиде – окаменевшие папоротники. В те времена любой бы ему сказал, что просто поменялся климат. Однако Вегенер был убежден, что климат остался практически тем же, за исключением ледникового периода, а изменились, то есть переместились, сами континенты. Он предполагал, что они разделились в результате конвекции в земной мантии, но не был в этом уверен.

Эту идею посчитали безумной, тем более что предложена она была не геологом, и к тому же Вегенер игнорировал все факты, не влезающие в его теорию. И то, что сходство между Африкой и Южной Америкой не столь уж идеальное, и то, что дрейф материков невозможно было объяснить. Конвекция тут явно ни при чем, так как она слишком слаба. Великий А’Туин, может, и несет на своей спине целый мир, но он – всего лишь выдумка, а в реальном мире, похоже, такие силы просто немыслимы.

Слово «немыслимы» мы употребили не случайно. Множество блестящих и уважаемых ученых частенько повторяют одну и ту же ошибку. Они путают выражение «Я не понимаю, как это может быть» с «Это совершенно невозможно». Одним из таких, как это ни стыдно признавать одному из нас двоих, был математик, причем великолепный, но когда его расчеты показали, что земная мантия не может перемещать континенты, ему даже не пришло в голову, что теории, на которых строились расчеты, были ошибочны. Звали его сэр Гарольд Джеффрис, и его проблема была в том, что ему явно не хватало полета фантазии, потому что не только очертания материков по обе стороны Атлантики совпадали. С точки зрения геологии и палеонтологии тоже все сходилось. Возьмем, к примеру, окаменевшие останки бестии по имени мезозавр, жившей 270 миллионов лет назад одновременно в Южной Америке и Африке. Вряд ли мезозавр переплыл Атлантический океан, скорее он просто жил на Пангее, успев расселиться по обоим континентам, когда они еще не были разделены.

Однако в 60х годах ХХ века идею Вегенера признали, и его теория «дрейфа материков» утвердилась в науке. На встрече ведущих геологов некий молодой человек по имени Эдвард Баллард, весьма напоминающий Думминга Тупса, и двое его коллег продемонстрировали возможности нового тогда устройства, называемого компьютером. Они поручили машине отыскать наилучшее соответствие не только между Африкой и Южной Америкой, но и Северной Америкой, а также Европой, учитывая возможные, но небольшие изменения. Вместо того чтобы взять нынешние очертания береговой линии, что с самого начала было не слишком блестящей идеей, позволяя противникам теории дрейфа утверждать, что материки не совпадают, молодые ученые использовали контур, соответствующий глубине 3200 футов (1000 м) ниже уровня моря, поскольку, по их мнению, он меньше подвергся эрозии. Контуры подошли хорошо, а геология так просто великолепно. И хотя люди на конференции все равно не пришли к единому мнению, теория континентального дрейфа получила наконец определенное признание.

Сегодня у нас имеется куда больше доказательств и четкое представление о механизме дрейфа. В центральной части Атлантического океана, на полпути между Южной Америкой и Африкой, с юга на север протянулся один из срединных океанических хребтов (такие, кстати, есть и во всех других океанах). Вулканические материалы поднимаются из недр вдоль всего хребта, а затем растекаются по его склонам. И так происходит уже в течение 200 миллионов лет. Можно даже отправить подводную лодку и просто понаблюдать за процессом. Конечно, всей человеческой жизни не хватит, чтобы это заметить, однако Америка удаляется от Африки со скоростью 3/4 дюйма (2 см) в год. Примерно с такой же скоростью растут наши ногти, тем не менее современная аппаратура способна регистрировать эти изменения.

Наиболее яркое доказательство континентального дрейфа получено благодаря магнитному полю Земли: горные породы по обе стороны хребтов имеют любопытный узор из магнитных полос, меняющих полярность с севера на юг и обратно, причем узор на обоих склонах симметричен. Это означает, что полоски застыли в магнитном поле по мере остывания. Когда время от времени земное динамо меняло свою полярность, горные породы хребта намагничивались в его поле. Затем, после разъединения намагниченных пород, одинаковые узоры оказались по разные стороны хребта.

Поверхность Земли – это не твердая сфера. И континенты, и океанское ложе плавают на огромных, особенно твердых плитах, которые могут разъехаться в стороны, когда между ними просачивается магма. (Причем чаще всего это происходит из-за конвекции в мантии. Просто Джеффрис не знал о движении мантии всего того, что знаем мы.) Существует около десятка плит, шириной от шестисот (1000 км) до шести тысяч (10 000 км) миль, и они все время поворачиваются. Там, где их границы соприкасаются, трутся и скользят, постоянно происходят землетрясения и извержения вулканов. Особенно в Тихоокеанском огненном поясе, протянувшемся по всему периметру Тихого океана и включающему в себя западное побережье Чили, Центральную Америку, США и дальше Японские острова и Новую Зеландию. Все они находятся на краю одной гигантской плиты. Там, где плиты сталкиваются, возникают горы: одна плита оказывается под другой и приподнимает ее, дробя и сминая ее край. Индия – это вовсе не часть Азиатского континента, она просто врезалась в него, сотворив высочайшие в мире горы – Гималаи. Она так разогналась, что до сих пор продолжает свое движение, и Гималаи растут.

Глава 17

Главное, чтобы костюмчик сидел!

РАННИМ УТРОМ ПОЖИЛЫЕ ВОЛШЕБНИКИ ТАЩИЛИ по пустынным университетским коридорам упирающуюся фигуру в длинной белой ночной рубахе и ночном колпаке с кояво вышитой на нем надписью: «ВАЛШЕБНИК». Это был наименее квалифицированный, зато немало повидавший мир (в основном убегая от чего-нибудь) сотрудник университета. И он снова был в беде.

– Тебе ни капельки не будет больно, – внушал ему Главный Философ.

– Предприятие как раз на твой вкус, – добавил Профессор Современного Руносложения.

– У тебя прямо на лице написано, что ты у нас – доброволец, – пояснил Декан.

– Это что же, ГЕКС так сказал? – спросил Главный Философ, когда непроспавшуюся фигуру наконец вытолкнули за угол.

– Что-то вроде того. Но в его словах было куда меньше четкости, – ответил Декан.

Они быстро перебежали через газон и ввалились в двери факультета Высокоэнергетической Магии.

Наверн Чудакулли, закончив набивать трубку, чиркнул спичкой о купол Проекта, потом повернулся к ним и улыбнулся.

– А, Ринсвинд! – сказал он. – Молодец, что пришел.

– Меня заставили, сэр.

– Вот и прекрасно! А у меня отличные новости. Я принял решение назначить тебя Бесподобным Профессором Жестокой и Необычной Географии. Место как раз вакантно.

Ринсвинд обреченно перевел взгляд за спину Чудакулли. В дальнем конце комнаты работали несколько молодых волшебников, окутанных магической дымкой, из-за которой было не разобрать, чем именно они занимались, но выглядело оно словно… словно… Скелет!

– О, – сказал Ринсвинд. – Эхм… Но мне нравится быть ассистентом библиотекаря. И я достиг значительных успехов в чистке бананов.

– А между тем по новой должности тебе полагается собственная комната, питание и стирка белья, – сказал Аркканцлер.

– Но все это у меня уже есть, сэр.

Чудакулли неторопливо затянулся и выдохнул облачко голубоватого дыма.

– Было. До сегодняшнего дня, – сказал он.

– О, понимаю. Вы собираетесь послать меня в какое-то опасное место, сэр?

– Как это ты догадался? – просиял Чудакулли.

– Это было довольно несложно.

По счастью, Декан был начеку и заранее вцепился в подол Ринсвиндовой ночной рубахи, так что шлепанцы волшебника лишь без толку елозили по плитам, когда он попытался рвануть к двери.

– Пусть немного побегает, – сказал Главный Философ. – Это все нервы.

– А знаешь, что здесь самое хорошее? – произнес Чудакулли в спину Ринсвинду. – При том что мы собираемся послать тебя в невероятно опасное место, где не выживет ни одно живое существо, на самом деле тебя там не будет. В каком-то смысле, конечно. Разве это не здорово?

Ринсвинд замер в нерешительности.

– А в каком именно смысле?

– Это будет что-то наподобие… повествования, – сказал Аркканцлер. – Ну, или сна, если я правильно все понял. Господин Тупс! Подойди-ка сюда и объясни нашему герою!

– Привет, Ринсвинд, – поздоровался Думминг, выходя из тумана и вытирая руки тряпкой. – ГЕКС уже скомпилировал для этой цели воедино целых двенадцать заклинаний! Выдающееся достижение чародейной инженерии! Вы только взгляните сюда!

Есть создания, приспособившиеся обитать в коралловых рифах, они просто не могут выжить в суровом открытом море, заполненном зубастыми существами. Они прячутся в смертоносных щупальцах актиний, шныряют прямо под носом у гигантских моллюсков, – в общем, живут во всяких сомнительных щелях, от которых нормальная рыба старается держаться подальше.

Университет очень похож на коралловый риф. Он обеспечивает безопасные воды и сносную пищу хрупким и необыкновенным созданиям, которые не смогли бы выжить в бурном море реальности, где ординарные люди задают вопросы вроде: «Ну и какая польза от твоей работы?» и тому подобные глупости.

На самом деле именно благодаря Незримому университету Ринсвинд пережил такие приключения, от которых бывалые герои давно превратились бы в кучку обглоданных костей. Но Ринсвинд продолжал верить, несмотря на явные доказательства обратного, что только здесь он находится в безопасности. Он пошел бы на что угодно, лишь бы здесь остаться.

Сейчас для этого требовалось смотреть на предмет, напоминающий скелетообразные доспехи, выкованные вроде как из тумана, и слушать непонятный бубнеж Думминга Тупса. Насколько сумел уяснить Ринсвинд, эта подозрительная штуковина переносила куда-то все чувства человека, в то время как сам он оставался на месте. Что же, это еще куда ни шло. Ринсвинд всегда считал, что если уж приходится отправляться на край света, то лучше бы весь путь проделать, не выходя из дома. Правда, оставалось неясным, где останется та часть, которая чувствует боль.

– В общем, мы тебя кое-куда отправим, – точнее, твои чувства, – сказал Чудакулли.

– Куда? – спросил Ринсвинд.

– В одно удивительное место, – пояснил Думминг. – Ты просто будешь рассказывать нам, что там увидишь. А потом мы заберем тебя обратно.

– А когда именно все пойдет наперекосяк? – продолжал допытываться Ринсвинд.

– Такого не случится.

– Ага, – Ринсвинд вздохнул. С подобными утверждениями спорить было бессмысленно. – Могу я хотя бы позавтракать напоследок?

– Конечно же, старина! – похлопал его Чудакулли по спине. – Иди, покушай на здоровье.

– Да, пожалуй, сейчас самое время, – мрачно сказал Ринсвинд.

Как только он ушел, под конвоем Декана и пары университетских привратников, волшебники сгрудились вокруг Проекта.

– Мы подобрали подходящее по размеру «солнце», – сказал Думминг тоном, не оставляющим сомнения в наличии кавычек. – А сейчас раскручиваем вокруг него мир.

– Какая-то ходульная идея, – сказал Аркканцлер. – Это солнце должно вращаться вокруг мира. Мы каждый день наблюдаем это своими глазами. Это тебе не какая-нибудь там оптическая иллюзия. По-моему, мы просто-напросто сооружаем здесь карточный домик.

– По-другому ничего не получается, сэр.

– Я вот что имею в виду: вещи падают потому, что они – тяжелые. Ты следишь за моей мыслью? Иначе говоря, то, что заставляет их падать, поскольку они тяжелые, это именно то, что они – тяжелые. «Тяжелый» – это как раз значит «склонный к падениям». Ты, конечно, можешь считать меня болваном…

– О, я бы никогда себе такого не позволил, сэр, – поспешно вставил Думминг, радуясь, что Чудакулли не видит его лица.

– …Но здравый смысл подсказывает мне, что каменную корку, плавающую поверх раскаленного куска железа, назвать «твердой почвой» можно лишь с большой натяжкой.

– Мне кажется, сэр, в этой вселенной имеется собственный универсальный свод правил, заменяющих собой нарративиум, – сказал Думминг. – Она… так сказать… подражает нашей вселенной, как вы изволили на днях прозорливо заметить. В соответствии со своими правилами она создает только те солнца, которые могут там выжить, и только те миры, которые могут существовать без черепахиума.

– Даже если и так… Но это вращение вокруг солнца… Разве это не то, чему учат омнианские жрецы? Мол, ничтожное человечество плывет в пространстве на какой-то пылинке, и тому подобная суеверная муть. Ты знаешь, что они жестоко преследовали людей, утверждавших, что черепаха существует? Хотя любой дурак может просто пойти и посмотреть на нее.

– Несомненно, сэр.

И проблемы, конечно, возникли.

– Ты уверен, что это подходящее солнце? – спросил Чудакулли.

– Сэр, но вы же сами попросили ГЕКСа разыскать такое «миленькое, желтенькое, смирное и не пытающееся взорваться каждую секунду», – ответил Думминг. – Такие, по-моему, самый распространенный тип в этой вселенной.

– Даже если так… Но десятки миллионов миль… Далековато, я бы сказал.

– Да, сэр. Однако когда мы поместили несколько экспериментальных миров поближе, те просто попадали на солнце. А те, которые не попадали, стали похожи на сухие галеты. Да, и был еще один, – настоящая клоака. Кстати, наши студенты научились замечательно ловко лепить разные миры. Мы… эээ… называем их планетами.

– Планета, Тупс, это кусок камня диаметром несколько сотен ярдов, который делает ночное небо немного… Словами не опишешь… Но что-то в нем есть je ne sais quoi.

– У нас все получится, сэр. К тому же у нас их много. Как я уже не раз упоминал, лично я полностью согласен с вашей теорией, в соответствии с которой материя внутри Проекта самостоятельно стремится сделать то, что в реальном мире создано искусственно, посредством нарративиума.

– Так это была моя теория? – удивился Чудакулли.

– Разумеется, сэр! – заверил его Думминг, который немного уже учился лавировать в бурных водах университетских рифов.

– Вообще-то звучит скорее как насмешка, но полагаю, что со временем мы переварим и эту шутку. А вот и наш отважный исследователь! Доброе утро, профессор. Ну, вы готовы?

– Нет! – воскликнул Ринсвинд.

– Тут все совсем несложно, – принялся объяснять Думминг, подтаскивая к Проекту упирающегося путешественника. – Можешь быть уверен: этот комплект заклинаний, оформленных в виде костюма, – очень и очень хорошие доспехи. Как только все вокруг тебя замерцает, ты окажешься… где-то там. Но в действительности ты останешься здесь, это, надеюсь, понятно? А все, что ты увидишь, будет не здесь. Тебе совершенно ничего не угрожает, поскольку слишком сильные ощущения будут амортизироваться ГЕКСом, и на твою долю останутся только слабенькие их отражения. Скажем, если там будет смертельно холодно, ты почувствуешь лишь легкий озноб, а если жарко – чуть вспотеешь. Если на тебя свалится гора, тебе покажется, что это был маленький камешек. Время там течет намного быстрее, но, пока ты будешь там, ГЕКС его замедлит. ГЕКС говорит, что, вероятно, сумеет привести в действие некоторые силы внутри Проекта, значит, ты тоже сможешь поднимать и толкать какие-нибудь предметы. Это будет ощущаться так, словно у тебя на руках огромные перчатки. Но уверен, ничего такого не понадобится, так как все, что мы хотим… эээ… от вас, профессор, – описание того, что вы увидите.

Ринсвинд покосился на костюм. Сделанный под контролем ГЕКСа, он состоял преимущественно из заклинаний, весь переливался и выглядел совершенно нематериальным. Причем свет отражался от него весьма затейливым образом. Шлем же был излишне широк и полностью закрывал лицо.

– У меня есть три… То есть четыре… Нет, пять вопросов, – сказал Ринсвинд.

– Валяй.

– Могу я подать в отставку?

– Нет.

– Следует ли мне понять то, что ты сейчас наговорил?

– Нет.

– Там, куда вы меня отправляете, водятся чудовища?

– Нет.

– Ты в этом уверен?

Страницы: «« 12345678 ... »»

Читать бесплатно другие книги:

В командировке в Нижний Новгород режиссеру Максиму Озерову и его напарнику Феде Величковскому предст...
Жена приводит мужа в тренажерный зал, требуя, чтобы он начал качаться, иначе его выгонят с работы за...
По моим романам снова будут снимать сериал! Меня, писательницу Арину Виолову, в миру Виолу Тараканов...
Монография посвящена разработке теоретических основ системного анализа, прогнозирования, управления ...
О Второй мировой войне продолжают думать, говорить, читать. Почему? Наверное, потому, что уроки, кот...
В книге объединены миниатюры, написанные автором в середине девяностых годов прошлого столетия, и те...