Математика любви. Закономерности, доказательства и поиск идеального решения Фрай Ханна
Теоретически можно рассчитать вероятность прихода любого количества гостей, просто перебрав все возможные комбинации “да” и “нет”[12].
Если поместить рассчитанные вероятности для каждого числа гостей в график, то он будет выглядеть примерно так:
Вероятность того, что придет определенное количество гостей, резко возрастает в середине интервала, и в среднем вы можете ожидать, что придет сто человек.
Теперь нам гораздо легче разумно обозначить безопасную буферную зону. Если вы пригласите 150 человек, то можете быть более или менее уверены, что количество пришедших будет близко к пику кривой – в данном примере от 85 до 110 гостей. Вы можете поработать с графиком, чтобы посмотреть, как изменится кривая, а вместе с ней нижний и верхний пределы: например, что изменится, если пригласите не 150, а 120 или 130 человек? В результате вы определите для себя буферную зону, которая устроит вас даже при наихудшем сценарии.
Этот метод уже был опробован в реальной жизни. В 2013 году пара молодоженов с математическим складом ума, Дамьян Вукчевич и Джоан Ко, планируя свою свадьбу, использовали именно этот алгоритм. Они разделили своих потенциальных гостей на четыре категории и рассчитали вероятность для каждой категории. Дамьян и Джоан разослали 139 приглашений, и, согласно их модели, следовало ожидать, что на самом деле придут 106 гостей, поскольку с вероятностью 95 % число последних должно было составить от 102 до 113. Оказалось, что пришли 105 человек, хотя приглашений было разослано лишь 97.
Дамьяну и Джоан удалось правильно оценить число гостей, несмотря на то, что они совершили две ошибки (которые компенсировали одна другую): они переоценили вероятность того, что все живущие в том же городе друзья обязательно придут, но недооценили число тех, кто до последнего ждал приглашения, но в результате явился без него.
Как мы уже видели в главе 1, при статистической оценке то и дело возникает тема взаимной компенсации ошибок, и это одна из причин в пользу того, чтобы оценивать вероятность по отдельности для каждой группы в вашем списке гостей. Нет сомнений, что вы будете слишком оптимистичны в отношении одних своих знакомых, зато недооцените других. Вы можете слегка промахнуться, но в конце концов в целом все будет в порядке.
Невозможно придумать метод, в котором вообще нет риска. Но метод, который предлагаем мы, дает вам полезную отправную точку, оттолкнувшись от которой, вы сможете корректировать свой список приглашенных.
Математика рассадки за столом
К сожалению, когда речь идет о свадьбе, случаются и другие ошибки, которые потом долго не удается забыть. И если не считать совершенно провальной поздравительной речи друга жениха или неудачного платья невесты, то одна из самых непростительных ошибок – посадить рядом двух человек, которые не могут терпеть друг друга.
План рассадки – важнейший элемент подготовки к любой свадьбе. Останутся ли гости довольны праздником, в большой степени зависит от вашего решения, кого с кем посадить. Если вы все сделаете правильно, вам удастся успешно объединить друзей невесты и жениха. Если ошибетесь, будет трудно остановить недовольное ворчание в зале или даже небольшую потасовку за его пределами.
Ваша задача – усадить пары и семьи вместе, друзей, насколько возможно, – за одним столом, а врагов – как можно дальше друг от друга, чего бы это ни стоило. Это типичная задача оптимизации. Проблемы оптимального распределения – подобные той, о которой идет речь, – существуют во многих областях. Всякий раз, когда вы слышите, что нечто оказалось “наилучшим”, “самым дешевым”, “самым эффективным”, это, как правило, результат оптимизации. И те же самые алгоритмы оптимизации, которые используются самыми разнообразными структурами – от правительств до хедж-фондов и сетевых супермаркетов, – помогут вам избежать ссоры из-за мест за столом на вашей свадьбе.
Чтобы выбрать лучший план рассадки, нужно сначала определиться, что вы подразумеваете под “лучшим”, то есть какова ваша главная цель. Хотите ли вы, скажем, по большей части угодить VIPперсонам? Или предпочитаете, чтобы в среднем все гости были максимально удовлетворены? А может быть, даже хотите слегка насолить гостям, которых вы в глубине души терпеть не можете, но которых пришлось пригласить по соображениям этикета?
Всего этого (по отдельности) можно добиться (хотя последний пункт я бы не рекомендовала), но предположим, что вы задались целью достичь максимально высокого общего уровня удовлетворенности.
Теперь надо определиться с тем, что мы считаем “удовлетворенностью”. Самый простой способ сделать это – составить таблицу совместимости каждого гостя со всеми остальными, оценив определенным баллом их предполагаемые чувства в том случае, еслиони окажутся рядом друг с другом. Ставьте положительный балл, если два человека знакомы и были бы рады оказаться соседями. Чем выше балл у пары, тем важнее, чтобы эти люди оказались за одним столом.
Если два гостя не знакомы друг с другом, то их пара получает ноль, а те, которых лучше разделить, – отрицательную оценку. Самый низкий балл получают люди, которых нужно любой ценой держать подальше друг от друга.
Попробуем проверить этот метод на особенно сложном примере свадьбы всего с двумя столами. Имена мы, как обычно, придумали, причем совершенно случайным образом.
В данном случае решение очевидно: посадите Люка, Брюса и Щенка Далматинца за один стол, а тех, кто всегда всем портит настроение – Дарта, Джокера и Круэллу, – за второй.
Глядя на колонку Люка, мы видим, что он получает 20 “очков счастья” за удовольствие сидеть рядом с Брюсом и 60 – за Щенка, что в сумме дает ему 80 баллов.
По аналогичной системе Брюс получает 60 баллов, а Щенок будет абсолютно счастлив со своими новыми друзьями, получив в сумме 100 баллов.
За столом “ворчунов” Дарт получает 45 “очков счастья”, Джокер – 50, Круэлла – 35. По крайней мере, им будет приятно побрюзжать вместе. Если сложить баллы всех гостей, то в целом такой план дает нам 370 баллов. Для начала неплохо.
Но стоит нам поменять местами двух гостей, как разразится катастрофа. Если Щенок Далматинца поменяется с Дартом (и за первым столом окажутся Люк, Брюс и Дарт, а за вторым – Щенок, Джокер и Круэлла), сумма баллов обрушится до 120.
Конечно, это достаточно простой пример, и в данном случае идеальный план рассадки очевиден с самого начала, однако в принципе такой метод подсчета баллов для пар гостей действительно дает возможность рационально рассчитать гораздо более сложные и жизненные планы рассадки на многолюдных торжествах.
Основной принцип будет таким же, и теоретически проверить все возможные комбинации рассадки можно и вручную. Итак, проблема решена… если не считать того, что даже для совсем скромной свадьбы (17 приглашенных, два десятиместных стола) существует 131 702 различных вариантов рассадки!
Ох…
Компьютерная программа, способная обработать один вариант в секунду, будет перебирать все возможные комбинации свыше двух недель. На то, чтобы сделать это с помощью карандаша и бумаги, уйдут десятилетия (не отпугнет ли это одного из будущих супругов?). Чем больше гостей, тем больше нужно времени на вычисления. Свадьба на сто гостей и десять столов имеет 65 триллионов триллионов триллионов триллионов триллионов триллионов триллионов возможных вариантов рассадки. Если вы решите проверить их все в предвидении великого дня – желаю удачи, она вам понадобится…
И вот здесь и начинается собственно оптимизация.
Существует множество остроумных математических методов[13], которые позволяют исключить, не проверяя, огромные массивы ненужных комбинаций. Это означает, что вместо подсчета общего количества баллов для каждого возможного плана рассадки вы можете быстро и эффективно пройтись по комбинациям и определить лучшую – без необходимости проверять все.
В 2012 году Меган Беллоуз и Джей Ди Петерсон использовали эту стратегию, чтобы спланировать свою свадьбу. Они начали с того, что присвоили каждому из своих 107 гостей “оценку счастья”. Осознавая масштаб проблемы, они решили обойтись без карандаша и бумаги и сделали то, что и подобает сделать каждому уважающему себя организатору свадеб: использовали Общую систему алгебраического моделирования (GAMS) совместно с пакетом программного обеспечения CPLEX. Компьютер сделал свою работу, и через 36 часов жених и невеста получили оптимальный план рассадки.
Если ваши знания численных методов оптимизации находятся не на самом высоком уровне, вам придется обработать два-три самых “трудных стола” вручную. Либо обратитесь к кому-нибудь из друзей-математиков. Насколько мне известно, они всегда рады помочь.
Нельзя гарантировать, что результат будет идеальным. Программа выдаст настолько подходящий результат, насколько верными будут цифры, которые вы в нее заложите. Но вы получите решение, из которого можно будет исходить, пока вы не покажете план рассадки родителям с обеих сторон – и вот тут-то и начнутся настоящие сражения.
9. Как жить вместе долго и счастливо?
Кто же не любит хорошей свадьбы! Но сколь неуместными ни казались бы грустные мысли в столь великий день, удручающий факт современной жизни состоит в том, что многие браки не выдерживают испытания временем.
Несмотря на то, что большинство людей довольно оптимистично оценивают собственные шансы на успех, мало кому удается избежать столкновения с суровой реальностью: иногда отношения могут быть очень тяжелыми. И независимо от того, решили ли вы скрепить ваш союз узами официального брака, думаю, вам будет полезно немного узнать о том, как лучше вести себя в долгосрочных отношениях, чтобы сохранить их. Вам наверняка пригодятся некоторые приемы эффективного разрешения конфликтов, затягивающих вас в катастрофический порочный круг, или стратегия, при помощи которой каждый из вас сможет сохранить свою индивидуальность, но при этом остаться одним из членов маленькой сплоченной команды.
Прежде чем предложить вам эти приемы и стратегии, хочу рассказать об одном из самых моих любимых математических приложений и о том, каким образом оно было применено в самой настоящей истории любви. Это история об удивительно успешном сотрудничестве математиков и психологов, которая очень убедительно иллюстрирует, каким образом абстрактные математические модели могут обеспечить нам долгие и счастливые отношения в реальной жизни.
Математика брака
В любых отношениях время от времени случаются конфликты, но большинство психологов сегодня сходятся на том, что у каждой пары свой собственный стиль конфликтов и что по поведению супругов в ходе конфликта можно предсказать, суждено ли данной паре долгое счастье.
В тех союзах, где оба партнера считают себя счастливыми, “плохое” поведение рассматривается как необычное и имеющее серьезные причины: “У него сейчас такой стресс”, “Ничего удивительного, что она ворчит – она в последнее время совсем не высыпается”. Для этих пар (им можно только позавидовать) характерно глубоко укоренившееся положительное восприятие партнера, которое только укрепляется благодаря постоянным проявлениям “хорошего” поведения: “Какие чудесные цветы! Он всегда ко мне так внимателен” или: “Просто она очень хороший человек, ничего удивительного, что она так поступила”.
Если же партнеры взаимно воспринимают друг друга негативно, ситуация противоположная, и “плохое” поведение считается нормой: “Вот всегда он так” или: “Ну вот, опять. Все-таки она ужасная эгоистка”. А “хорошее” поведение рассматривается как необычное: “Это он просто пускает пыль в глаза, потому что ему повысили зарплату. Это ненадолго” или: “Как это на нее похоже! Она всегда так себя ведет, когда чего-то от меня хочет”.
Эти выводы интуитивно понятны, но кроме того, группа исследователей под руководством психолога Джона Готтмана разработала шкалу количественной оценки[14] позитивного или негативного отношения супругов друг к другу.
В течение нескольких десятилетий команда Готтмана наблюдала за сотнями разных пар и фиксировала массу параметров: от выражения лиц до пульса, электропроводимости кожи, артериального давления, не говоря уже о словах, которые в разных ситуациях произносили наблюдаемые.
Пары с низким риском развода набирали по шкале Готтмана гораздо больше положительных баллов, чем отрицательных, в то время как пары с неустойчивыми отношениями часто оказывались втянутыми в “порочный круг негатива”.
Даже если у вас дома не найдется переносного прибора для определения электрической проводимости кожи, вы можете использовать упрощенную версию метода, чтобы проанализировать свои собственные отношения[15].
Установите видеокамеру и примерно в течение пятнадцати минут записывайте, как вы обсуждаете какой-нибудь особенно болезненный или спорный вопрос. Когда закончите (и успокоитесь), просмотрите запись и оцените все, что сказал каждый из вас, по следующим категориям эмоциональных реакций:
Постарайтесь не препираться из-за баллов. Проанализируйте результаты и посмотрите, не заметите ли вы каких-нибудь закономерностей. Может быть, что-то, что вы сказали, запустило цепную негативную реакцию? Достаточно ли открыты вы были, чтобы понять точку зрения партнера? Я, конечно, не психолог, но мне кажется, что из объективной (то есть выраженной в числах) оценки вашего собственного поведения уже можно извлечь что-то полезное и понять, что бы вы могли сделать, чтобы дискуссия была более плодотворной.
Анализ разговоров и наблюдение за общением с использованием более сложной системы подсчета баллов (для этого таблица была расширена влево) позволили Готтману и его команде правильно предсказать развод в 90 % случаев. Но лишь после того, как к группе исследователей присоединился математик Джеймс Мюррей, ученые начали по-настоящему понимать, как формируется и развивается критически важный “порочный круг негатива”.
Хотя математические модели Мюррея используют термины “муж” и “жена”, они не основаны на каких-либо гендерных стереотипах и могут с одинаковым успехом применяться и к долгосрочным гетеросексуальным, и к долгосрочным однополым отношениям. Эти модели – пример того, с какой удивительной элегантностью математика может описывать закономерности человеческого поведения. По сути, их можно свести к следующим двум уравнениям:
Wt+1 = w + rwWt + IHM(Ht)
Ht+1= h + rHHt + IHM (Wt)
Пусть эти уравнения на первый взгляд кажутся непонятными, однако они описывают простой набор правил, позволяющих предсказать, насколько позитивно или негативно будут вести себя муж и жена в следующем раунде их разговора.
Возьмем верхнюю строчку – уравнение для жены – и посмотрим, как работают эти правила. Левая часть уравнения показывает, насколько позитивна или негативна будет следующая реплика жены. Ее реакция зависит от ее настроения в целом (w), ее настроения в обществе мужа (rwWt) и, самое главное, от того, насколько на нее влияют действия мужа (IHM). Фактор Ht в скобках в конце уравнения обозначает, что это влияние зависит от того, что муж только что сказал или сделал.
Уравнение для мужа имеет аналогичный смысл: h, rHHt, IHM – это, соответственно, настроение мужа, когда он один, его настроение в присутствии жены и влияние, которое его жена окажет на его следующую реакцию.
Стоит на минуту остановиться, чтобы заметить, что аналогичные уравнения, как было доказано учеными, успешно описывают и то, что происходит между двумя ядерными державами во время гонки вооружений. Таким образом, ссоры пары, втягивающейся в порочный круг негатива и балансирующей на грани развода, на самом деле математически эквивалентны сползанию в ядерную войну.
Но это не значит, что модель, созданную для анализа одной системы, бездумно приложили к другой. Поскольку доказано, что эти уравнения достаточно точно описывают оба сценария, аналогия означает лишь, что закономерности, обнаруженные в ходе изучения международного конфликта, могут обогатить наше понимание брака, и наоборот. Эта универсальность лишь подчеркивает мощь математики, а вовсе не умаляет ее значение.
Как и в модели конфликта ядерных держав, самое главное в уравнениях Готтмана и Мюррея – фактор влияния: в данном случае влияния, которое муж и жена имеют друг на друга.
Так как Готтман и Мюррей были первыми, кто применил математическую модель для прогнозирования супружеских конфликтов, они могли сами выбирать, как выразить этот фактор влияния, и решили, что данный график наилучшим образом соответствует всем наблюдениям за жизнью реальных супружеских пар:
Этот график иллюстрирует выбранную исследователями математическую модель, если в качестве показателя взять влияние, которое муж (Ht) имеет на жену (IHM).
Чем выше проходит пунктирная линия, тем более позитивно муж влияет на жену. Когда пунктирная линия опускается ниже нуля по оси IHM, это означает, что жена, скорее всего, негативно поведет себя на следующем этапе диалога.
Допустим, муж сделал очень небольшой шаг навстречу: согласился с последней репликой жены или слегка пошутил. Это действие будет иметь небольшой, но положительный эффект, который выразится в том, что жена будет более склонна ответить также в позитивном ключе.
Таким образом, процесс будет идти шаг за шагом до точки T+, пока муж не сделает что-нибудь по-настоящему хорошее – например, не скажет: “Я тебя люблю” или не согласится наконец пойти с ней в театр на спектакль, который она давно хотела посмотреть[16]. Любое действие, сдвигающее процесс в положительную сторону от точки T+, окажет на жену большое влияние и значительно повысит вероятность того, что супруги перейдут к дружелюбному и мирному диалогу.
Теперь рассмотрим противоположную часть спектра. Если муж допускает даже незначительные негативные проявления – например, перебивает жену, – он оказывает на нее строго определенное негативное влияние. Стоит отметить, что величина этого отрицательного влияния больше, чем его положительного эквивалента (то есть когда муж делает что-то столь же незначительное, но хорошее). Готтман с сотрудниками сознательно ввели эту асимметрию после того, как многократно наблюдали ее у ссорящихся пар.
В какой-то точке (обозначим ее T) муж начинает настолько раздражать жену, что та не выдерживает, полностью теряет контроль над собой и крайне негативно реагирует на все действия мужа. Эта точка получила название “порог негатива” и она очень важна для понимания порочного круга негативных реакций, в который могут быть затянуты пары.
Лично я всегда считала, что основа хороших отношений – это компромисс и готовность встать на точку зрения друг друга, и поэтому готова была предположить, что чем выше “порог негатива” (то есть чем левее точка T расположена на горизонтальной оси), тем лучше. Иными словами, это отношения, в которых партнеры предоставляют друг другу возможность быть самими собой и начинают неприятный разговор, только когда становится уже совсем невмоготу.
Однако исследователи доказали, что на самом деле все наоборот!
Для самых счастливых союзов характерны очень низкие значения “порога негатива”[17]. Партнеры в таких союзах позволяют друг другу высказывать недовольство по любым поводам, после чего они совместно работают над тем, чтобы разрешить возникающие между ними разногласия – даже самые незначительные. Такие партнеры не загоняют внутрь свои чувства, и поэтому ситуации, когда из мухи незаметно вырос слон, тут невозможны.
Но это еще не все. Для того чтобы жить вместе долго и счастливо, недостаточно с легкостью выражать взаимные претензии. Для начала добавим, что вести себя в диалоге нужно открыто, стараясь понять собеседника, уважать его как личность, но ни в коем случае не позволять себе чувствовать себя жертвой его поведения. Со своей стороны могу сказать: мне очень нравится, что месседж, который посылает нам математика, поддерживает вековую мудрость о том, что вы не должны ложиться спать, не помирившись.
Эпилог
Во многих отношениях эта книга – просто дань уважения тем математикам, котрые старались понять и объяснить ускользающую суть любви. Порой они слишком фокусировались на игривой стороне предмета. Порой им удавалось предложить разумные советы, которые могут пригодиться всем нам. Все эти подходы – от уравнения Питера Бакуса для расчета ваших шансов найти любовь до математически обоснованных советов Джона Готтмана и Джеймса Мюррея о том, как ее сохранить, – кажутся мне одинаково красивыми и элегантными. Какими бы разными ни были эти попытки понять любовь, их объединяет одно: они существуют всего лишь как абстрактные модели реальности. Но, как сказал статистик Джордж Бокс, “все модели ошибочны, но некоторые из них – полезны”.
Конечно, проще всего было бы отвергнуть приведенные в этой книге примеры как поверхностные и легкомысленные, неприменимые в реальной жизни. Но я считаю, что в этом случае есть риск не заметить полезных идей, которые в них содержатся. Потому что, несмотря на все оговорки, я уверена, что в совокупности эти примеры говорят нам что-то важное о математике – и о любви.
Математика – это абстракция реальности, а не ее воспроизведение. И в процессе этого абстрагирования мы можем узнать нечто по-настоящему ценное. Позволяя себе абстрактный взгляд на мир, мы создаем уникальный язык, способный распознать и описать закономерности и механизмы, которые иначе оставались бы скрытыми. И, как подтвердит вам любой ученый или инженер последних двухсот лет, понимание этих закономерностей – первый шаг к возможности их использования.
Описав электричество и магнетизм, математики создали основу для технологической революции наших дней. Заложив основы строгой проверки гипотез и оценки доказательств, математика сыграла огромную роль в развитии современной медицины. И сегодня многие математики (и я в том числе) изучают закономерности поведения человека, что позволяет по-новому взглянуть на очень многие проблемы – от терроризма до урбанизма.
В то же время математики, решающие прикладные задачи, не только сознают мощь своей науки – они видят ее пределы. Они понимают, что не все можно уместить в уравнения, они уважают другие точки зрения.
Во время финансового кризиса 2008 года мы наблюдали худший сценарий того, что может случиться, когда люди не видят слабых мест математических моделей, когда они слепо следуют уравнениям, не учитывая предупреждений и оговорок, которые сделал бы математик. На мой взгляд, эти провалы стали следствием ложного понимания математики, потому что переоценивать ее возможности столь же фатально, как и полностью ей не доверять.
Но если осознавать пределы возможностей этой науки, то мы увидим, что в математике есть красота, и составные части этой красоты – реалистичность, своеобразие и абстракция. И я никогда не устану искать – и находить – все новые скрытые закономерности и неожиданности в реальном мире, какие бы гипотезы и допущения для этого ни требовались.
Что еще почитать
1. КАКОВЫ ШАНСЫ НАЙТИ СВОЮ ВТОРУЮ ПОЛОВИНКУ?
Backus, Peter. “Why I Don’t Have a Girlfriend”. Warwick Economics Summit, 2010.
Drake, Frank. “The Drake Equation” (1961): http://www.activemind.com/Mysterious/Topics/SETI/drake_equation.html.
2. НАСКОЛЬКО ВАЖНА ВНЕШНОСТЬ?
Ariely, Dan. Predictably Irrational: The Hidden Forces That Shape Our Decisions. New York: HarperCollins, 2008.
Devlin, Keith. “The Myth That Will Not Go Away”. The Mathematical Association of America, 2007.
Johnston, Victor S. “Mate Choice Decisions: The Role of Facial Beauty”. Trends in Cognitive Sciences, 2006.
Perrett, David. In Your Face: The New Science of Human Attraction. London: Palgrave Macmillan, 2010.
Perrett, David I., D. Michael Burt, Ian S. Penton-Voak, Kieran J. Lee, Duncan A. Rowland, and Rachel Edwards.
“Symmetry and Human Facial Attractiveness”. Evolution and Human Behavior, 1999.
Thornhill, Randy, and Steven W. Gangestad. “Facial Attractiveness”.
Trends in Cognitive Sciences, 1999.
3. КАК ИЗВЛЕЧЬ МАКСИМАЛЬНЫЙ ЭФФЕКТ ИЗ ВЕЧЕРИНКИ?
Gale, David, and Lloyd Shapley. “College Admissions and the Stability of Marriage”. The American Mathematical Monthly 69 (1), 1962.
Huang, Chien-chung. “Cheating by Men in the Gale-Shapley Stable Matching Algorithm”. Algorithms– ESA, 2006.
McVitie, D. G., and L. B. Wilson. (1971). “The Stable Marriage Problem”. Communications of the ACM 14 (7), 1971.
Roth, Alvin E., and Marlinda A. Oliviera Sotomayor. TwoSided Matching: A Study In GameTheoretic Modeling and Analysis. Cambridge: Cambridge University Press, 1992.
4. ЗНАКОМСТВА В ИНТЕРНЕТЕ
Статистика: http://www.statisticbrain.com/online-dating-statistics/.
Ireland, Molly E., Richard B. Slatcher, Paul W. Eastwick, Lauren E. Scissors, Eli J. Finkel, and James W. Pennebaker. “Language Style Matching Predicts Relationship Initiation and Stability”. Psychological Science 22 (1), 2011.
Rudder, Christian. “Inside OKCupid: The Math of Online Dating” (2013): http://www.youtube.com/watch?v=m9PiPlRuy6E.
–. “We experiment on human beings!” (2014): http://blog.okcupid.com/index.php/we-experiment-onhuman-beings/.
5. НАУКА СВИДАНИЙ
Axelrod, Robert M. The Evolution of Cooperation (Revised Edition). New York: Basic Books, 2009.
Guth, Werner, Radosveta IvanovaStenzel, and Elmar Wolfstetter. “Bidding Behavior in Asymmetric Auctions: An Experimental Study”. European Economic Review, 49 (7), 2005.
Sozou, Peter D., and Robert M. Seymour. “Costly but Worthless Gifts Facilitate Courtship”. Proceedings of the Royal Society B: Biological Sciences 272 (1575), 2005.
6. МАТЕМАТИКА СЕКСА
Bearman, Peter S., James Moody, and Katherine Stovel. “Chains of Affection: The Structure of Adolescent Romantic and Sexual Networks”. American Journal of Sociology 110 (1), 2004.
Newman, M. E. J. “Spread of Epidemic Disease on Networks”. Physical Review E 66 (1), 2002.
Liljeros, Frederik, Christofer R. Edling, Luis A. Nunes Amaral, H. Eugene Stanley, and Yvonne Aberg. “The Web of Human Sexual Contacts”. Nature 411 (6840), 2001.
Pastor-Satorras, Romauldo, and Alessandro Vespignani. “Epidemic Spreading in Scale-Free Networks”. Physical Review Letters 86 (14), 2001.
7. НЕ ПОРА ЛИ ОСТЕПЕНИТЬСЯ?
Ferguson, Thomas S. (1989). “Who Solved the Secretary Problem?” Statistical Science 4 (3), 1989.
Todd, Peter M. “Searching for the next best mate”, in Simulating Social Phenomena, edited by Rosaria
Conte, Rainer Hegselmann, Pietro Terna, 419–36. Berlin: Springer Berlin Heidelberg, 1997.
8. КАК ОПТИМИЗИРОВАТЬ СВАДЬБУ?
Alexander, Ruth. “A Statistically Modeled Wedding” (2014): http://www.bbc.co.uk/news/magazine-25980076.
Bellows, Meghan L., and J. D. Luc Peterson. “Finding an Optimal Seating Chart”. Annals of Improbable Research, 2012.
9. КАК ЖИТЬ ВМЕСТЕ ДОЛГО И СЧАСТЛИВО?
Gottman, John M., James D. Murray, Catherine C. Swanson, Rebecca Tyson, and Kristen R. Swanson. The Mathematics of Marriage: Dynamic Nonlinear Models. Cambridge, Mass.: Basic Books, 2005.
Благодарности
Хотя эта книга и не “Война и мир”, но для ее создания все равно потребовалась поддержка и помощь целого ряда замечательных людей. У меня огромный долг благодарности перед Джеймсом Фалкером, Лиз Адлингтон и Робом Леви – они неоднократно выручали меня на этом пути. Равным образом Мишель Квинт и команда TED заслуживают медалей за терпение и поддержку в течение всего этого времени.
Мои родители Мардж и Пардж, а также сестры Трейси и Натали тоже заслуживают многих добрых слов, и не только за эту книгу, а просто за то, что они такие чудесные.
Огромное спасибо Анне Грегсон, Питеру Бодейну и Томасу Эвансу – я бесконечно признательна за ваши полезные комментарии и неиссякающий энтузиазм. От всего сердца благодарю также Энди Хадсон-Смит, которая поддержала не только этот, но и другие мои безумные проекты. Спасибо Джеффу Далу, который вообще-то почти не участвовал в создании книги, но которого я просто очень люблю. Спасибо Адаму Деннету и Эмме Уэлш за смешные печенья, которые вы пекли для меня, когда я больше всего в этом нуждалась. И последними по счету, но не по важности я благодарю Фила и мисс Макги – мне действительно очень повезло, что вы входите в мою команду.