Мир на пике – Мир в пике Анпилогов Алексей
– Почему?
– Есть логика человеческого поведения, которую невозможно отменить или изменить».
Похожий выбор сейчас и у нефтяного динозавра. Ему нужна энергия. Но ему нужна дешевая энергия, знакомая ему энергия старой нефти. Ему не нужна сложная ядерная энергия, и ему не нужен дорогой сжиженный природный газ. А вот нищий Юг согласен и эту ядерную энергию, и этот дорогой сжиженный газ покупать. Ведь альтернатив у Юга не так и много – дя него и уран, и природный газ – это гораздо прогрессивнее, чем каменный уголь, дрова и кизяки. И я не шучу, кизяк – это пока очень уважаемое и очень востребованное топливо в южных странах, где нет леса.
Отсюда и выводы (собственно, как и всегда): «Чем больше выпьет комсомолец, тем меньше выпьет хулиган». Вот приговор Западу, вот реквием по нефтяному динозавру:
Около 2016 года потребление энергии коллективным Западом сравняется с потреблением энергии коллективным Востоком. Но уже сейчас мы видим, что Россия сделала разворот и выбрала для себя тот путь, который она считает справедливым – помогать бедным и нуждающимся в энергии. Тем более, что они уже готовы платить за энергию справедливую цену, и каждый джоуль энергии, потраченный там, это спасенная человеческая жизнь, а каждый джоуль энергии, потраченный сейчас нефтяным динозавром, это продление его неизбежной агонии.
А ведь всем нам надо прорываться через завтра, которое у нас может продлиться, благодаря энергии урана и тория, еще несколько сотен лет, в совершенно невозможное послезавтра, в котором мы сможем жить тысячами лет.
Ключевые слова: картина мира, контролировать, геополитика, ответственность.
Ключевые смыслы: требуются изменения.
Приложение к главе: «Снова о парадигмах и сценариях их смены».
Юстас Алексу, 14 июля 2014:
ОАО «ГСПИ» завершило создание проектной документации по сооружению термоядерного комплекса «Байкал». Работа была проведена в рамках реализации Федеральной целевой программы «Ядерные энерготехнологии нового поколения на период 2010–2015 годов и на перспективу до 2020 года». Комплекс «Байкал» предназначен для исследований в области инерционного термоядерного синтеза. Речь идет и о зажигании термоядерных мишеней, и об организации термоядерного микровзрыва, и о проведении экспериментов по горению термоядерного топлива. Проект предполагает проведение фундаментальных исследований в области физики высоких плотностей энергии. Комплекс «Байкал» по мощности будет вчетверо превышать крупнейшую в мире установку Z (США) и станет самым мощным в мире комплексом такого типа. Так ты об этом говорил? Я тут читал:
http://www.atomic-energy.ru/news/2014/07/14/50205!
Так этот мир реальный?!
Алекс Юстасу:
Работаем, поехали дальше!
Глава 18. Ядерное завтра. Термоядерное послезавтра
Как будет выглядеть мир после пика нефти, угля и газа человечество сможет увидеть в ближайшее время на территории Украины. Уже осенью 2014 года в Херсонской области вполне официально предложено переходить на альтернативные источники топлива в виде дров. Пока они еще есть. Горячей воды в октябре по-прежнему нет, а промышленное производство падает на десятки процентов по сравнению с годом ранее. К счастью, у страны была возможность посеять весной урожай. Будет ли она следующей весной 2015 года большой вопрос.
Да, события на Украине показывают пик энергоресурсов в сжатые сроки, в гиперболизированном виде. Пик отягощен войной, борьбой олигархов за власть. Однако глупо надеяться, что в мировом масштабе все будет проходить мирно и страны, которым станет не доставать нефтегазового коктейля, по собственному желанию вернутся в каменный век с соответствующими плотностью населения и уровнем жизни. Глобальный пик энергоресурсов будет проходить (а может быть уже проходит) в не менее, а скорее всего в гораздо более тяжелых условиях.
Весьма вероятно, что именно конвульсии нефтяного динозавра и привели к данным событиям. Очень нужно отрезать Европу от российского газа, очень нужно отрезать Россию от европейских технологий, рынков сбыта энергоресурсов. Дыхалка динозавра уже заканчивается, нужно спешить.
Спешить нужно еще и потому, что кроме наличия развитых технологий обогащения урана и производства ядерных реакторов на тепловых нейтронах, в последние годы у России появилось еще одно преимущество. Называется оно проект «Прорыв» – создание новой технологической платформы атомной отрасли с замкнутым топливным циклом. Реальное воплощение ядерного завтра.
Описывая ядерную энергетику, всегда ловишь себя на простой мысли: «Ну вот тут, в принципе, можно вставить такое коротенькое научное пояснение…», а потом вдруг осознаешь, что фраза:
«…спектр захвата нейтронов у четно-четных ядер (например, 238U) существенно резонансный, характеризующийся массой узких и высоких пиков в окрестностях 1,6 МЭв, а вот спектр захвата нейтронов у ядра 239Pu и спектр деления 235U – наоборот, пологий, с существенным максимумом значений в тепловой области, что соответствует сечению деления 235U тепловыми нейтронами в 580 барн, а вот сечение захвата тех же тепловых нейтронов для 238U составит всего 2,3 миллибарна…»
будет смотреться в книге для широкой аудитории приблизительно так же, как фраза из Конфуция на китайском языке в меню хорошего китайского ресторана в Москве.
Вроде бы и к месту. Вроде бы и по делу. Но только никто не прочитает. А кто и попробует прочитать – все равно мало что поймет из этой «китайской грамоты».
Поэтому – постараемся быть попроще в объяснениях, хотя, конечно, кое-где весьма существенные детали нашего повествования останутся за кадром. Однако, при этом, большая часть умолчаний или неких упрощений, как я надеюсь, не очень повлияет на дальнейший рассказ о ЗЯТЦ.
Что это вообще такое – замкнутый ядерный цикл? Зачем он нужен? Что мы замыкаем в рамках этого цикла и что это за ядерная алхимия, которая помогает нам буквально «делать топливо из ничего»?
ЗЯТЦ, по своей сути, в его урановом варианте, это постоянный, многостадийный и многотрудный процесс превращения урана в плутоний.
И сжигание полученного плутония совместно с ураном, которое снова-таки дает нам дополнительные количества плутония, полученные, опять-таки, из урана.
В рамках механики изотопов я уже разбирал эту магию в главе 12.
В рамках же использования и переработки топлива этот «изотопный хоровод» выглядит и того интереснее.
Во-первых, сегодняшние конструкции реакторов подразумевают периодические погрузки и выгрузки ядерного топлива. В силу того, что плутоний у нас в «дикой природе» не водится, в реактор загружается либо природный, либо обогащенный уран.
На природном уране сегодня в мире работает только один тип промышленных реакторов – канадские реакторы CANDU и их клоны еще в нескольких странах (например, Индии):
Это, по сути дела, единственный на сегодняшний день тяжеловодный реактор – только реакторы CANDU могут работать на природном уране, не нуждаясь в каких-либо сложных процессах по разделению изотопов урана.
Кроме того, реакторы CANDU, в принципе, могут даже «подъедать» при небольшой доработке и доводке даже отработанное ядерное топливо (ОЯТ) за водо-водяными реакторами типа ВВЭР или PWR.
«Э? А как это – жечь заново то, что уже сгорело?» – спросит читатель. И будет безусловно прав – для случая нефти, газа или каменного угля. Эти химические топлива и в самом деле полностью сгорают в процессе получения энергии. А вот в случае ядерного топлива, как говорил товарищ Сталин: «нэ так все было, савсэм нэ так».
Все дело в том, что ни в одном из реакторов топливо не сгорает полностью. В какой-то момент времени содержание делящегося изотопа в активной зоне просто падает ниже неких критических уровней и самоподдерживающаяся цепная реакция просто становится невозможной – даже на полностью выдвинутых из активной зоны поглощающих стержнях, нейтроны от деления какого-нибудь ядра 235U просто не могут найти следующие ядра для продолжения цепной реакции.
Все дело в том, что, как я уже писал в главе о механике изотопов, часть нейтронов из цепной реакции деления урана неизбежно поглощается конструкциями реактора, часть задерживается замедлителем и теплоносителем, и еще немалая часть нейтронов потихоньку превращает содержащийся в ТВЭЛах 238U в тот самый 239Pu.
Какой же величиной характеризуется процент сгорания топлива? Как вы понимаете, взвешивать «сгоревший» ТВЭЛ практически бесполезно – в отличии от вагона качественного угля, который почти полностью переходит в форму углекислого газа (СО2), оставляя нам только горстку несгораемой золы, ТВЭЛ практически не теряет своей исходной массы.
Вся его исходная масса, за исключением потерь нейтронов и небольшого выделения инертных газов, образующихся, как продукты реакции, остается внутри ТВЭЛа.
Поэтому для измерения процента сгорания исходного топлива атомщики придумали хитрый параметр: мегаватт в сутки на тонну топлива или, сокращенно – МВт·сутки/тонна.
Что остается после сгорания ядерного топлива, что скрывается за скромной аббревиатурой ОЯТ?
Различные экологические организации любят расшифровать это сокращение, как «отходы ядерного топлива», в то время как правильная его расшифровка звучит совсем иначе: «отработанное (или облученное) ядерное топливо».
Именно в различии этих двух расшифровок и заключена разность в подходах к ОЯТ: либо это отходы – и тогда им место на свалку, либо это – топливо, которое лишь потеряло часть своих свойств и может быть с затратой каких-либо усилий возвращено в ядерный цикл для того, чтобы продолжать служить людям.
Из чего же состоит ОЯТ? Скажу сразу, что он разный для разных видов реакторов, но, в целом, ОЯТ можно упрощенно представить в виде следующей простой составной схемы: в ОЯТ содержится 0,8–1,0 % 235U, 0,95–1,20 % плутония всех видов (в основном – изотопов 239Pu и 240Pu), 3–4 % продуктов деления урана и плутония и 94–95 % 238U.
Только недобросовестные политики-популисты и больные на голову экологи могут называть этот продукт отходом.
То, что весьма условно можно назвать «отходом» ядерного цикла заключено в тех самых 3–4 %, относящихся к продуктам деления урана и плутония. Именно эта доля ОЯТ и есть та «ядерная зола», которая уже непригодна для дальнейшей работы ядерного реактора.
Однако, именно эта зола и доставляет максимум неприятностей при работе ТВЭЛа – многие из образовавшихся в результате деления атомов урана и плутония элементов вредны для дальнейшего протекания цепной реакции, являясь активными поглотителями нейтронов, часть из них токсичны или же влияют на прочность урановой таблетки, часть являются газами или же альфа-источниками, а часть и лучат во все стороны целебным гамма-излучением.
В общем, от всего этого адского коктейля после кампании ТВЭЛа в реакторе желательно бы избавится и, конечно же, обогатить отработанное ядерное топливо свежими делящимися изотопами, которые снова позволят запустить его в бой.
Сторонниками переработки ОЯТ в мире являются Россия, Великобритания, Франция, Япония и Индия. Несмотря на потенциальную опасность, ОЯТ является ценным продуктом, содержащим различные элементы, которые можно использовать повторно, в том числе и для производства энергии.
Ведь даже исключив «ядерную золу», которую все же нельзя заново засунуть в обычный ядерный реактор, мы все равно получаем на выходе из переработки ОЯТ более 96 % от его веса в виде полноценного полуфабриката ядерного топлива.
Радиохимическая переработка ОЯТ обеспечивает полное использование энергетического потенциала урана, плутониевые загрузки будущих реакторов на быстрых нейтронах или же изготовление МОХ-топлива (МОХ (или МОКС) топливо, сокращенно от слов «смешанные оксиды» (mixed oxides)) для обычных реакторов, а также минимизирует количество и объем образующихся отходов. Ресурсы вторичного сырья в ядерной энергетике, по сути дела, даже в случае частично замкнутого цикла безумно велики.
Так, реактор с графитовым замедлителем, по сути дела выгружает из себя по завершению кампании около 70–80 % от загруженного в него урана в виде смеси урана и плутония, а легководный, обычный и массовый ВВЭР обеспечивает воспроизведение, как минимум от 50 до 60 % от начального топлива.
Кроме того, надо учитывать, что накопление ОЯТ пошло отнюдь не вчера. Так, например, запасов ОЯТ, уже накопленных в Канаде, достаточно для обеспечения работы всех канадских АЭС в течение 1000 лет.
Более того, самое скромное содержание изотопа 235U, характерное для ОЯТ легководных реакторов (около 1 %) превышает его содержание в природном уране (0,72 %). Поэтому, даже если не вовлекать в ЗЯТЦ наработанный плутоний, переработанный ОЯТ гораздо лучшее сырье для центрифуг, нежели природный уран.
История с переработкой ОЯТ началось мартовским утром 1959 года возле бельгийского городка Мол, которое и запечатлено на этом старом архивном фото:
Это фото стройки бельгийского экспериментального реактора BR-3, который был частью теперь уже многими забытой бельгийской ядерной программы.
Реактор BR-3 был по-своему уникален для истории атомной отрасли.
Кроме участия в нашем рассказе о ЗЯТЦ, он стал, в 1962 году, первым легководным реактором под давлением (PWR), который был запущен в строй за пределами США.
Надо сказать, что первый советский легководный реактор под давлением, «прадедушка» нынешнего ВВЭР-1200, был запущен в СССР только в 1964 году. Это был ВВЭР-210, первый реактор будущей Нововоронежской АЭС.
Ну а сегодня вшестеро более мощный ВВЭР-1200 начинает историю уже другой, российской станции – Нововоронежской АЭС-2.
Впервые в мире MOX-кассета была загружена в энергетический легководный реактор именно в Бельгии. Это произошло в 1963 году – на том же реакторе BR-3.
Именно Бельгия, как это ни странно, весь XX век была впереди всех в мире в вопросе переработки реакторного плутония в МОХ-топливо.
И вот тут нам надо в своем рассказе развеять еще один досужий миф: о том, что плутоний, полученный в результате работы ЗЯТЦ можно, якобы, как-то использовать для производства «ядреной бомбы».
Все дело в том, что обыватель часто путает оружейный и реакторный плутоний.
И дело тут, как и всегда, в изотопах. А их у плутония, как и у урана, сразу несколько. Главные и самые долгоживущие среди них – три: 238Pu, 239Pu и 240Pu.
Разберем детально их физические свойства, попутно рассказав, как их получают.
Самый легкий и одновременно самый зрелищный «вживую» – это, несомненно, изотоп 238Pu. Период полураспада этого монстра всего 86 лет, в силу чего брать его в руки категорически не советуют. Да и сделать это затруднительно – в силу его темно-вишневой наружной поверхности с температурой около 1000 °C.
Чистый металлический плутоний просто не выдержит разогрева до таких высоких температур – в отличии от весьма тугоплавкого урана, плутоний плавится уже при температуре в 639 °C. Поэтому на фотографии вы видите топливную таблетку, изготовленную из тугоплавкого химического соединения – диоксида плутония.
При этом надо понимать, что 238Pu разогревается до таких высоких температур отнюдь не за счет цепной реакции деления – источником его нагрева служит банальный, но очень интенсивный альфа-распад 238Pu, который и обеспечивает удельное тепловыделение в 560 Ватт на килограмм изотопа.
Как говорится: «Вот за это, Сеня, мы тебя и любим!».
Именно 238Pu прижился как идеальный радиоизотопный термический источник для различных вариаций РИТЭГов – радиоизотопных термоэлектрических генераторов.
«238-й» служил на арктических маяках вдоль трассы СМП, много раз летал в космос, побывав на Марсе, Луне, слетав к кольцам Сатурна и к Титану, выйдя за пределы Солнечной системы вместе с «Вояджерами» и находясь сейчас на подлете к Плутону с зондом «Новые горизонты».
Везде, где человечеству нужен был компактный и мощный источник тепла и электроэнергии – безумно горящий своей живительной альфой «238-й» спешил на помощь.
Проблема с 238Pu состоит в ином: это очень сложный и капризный в получении изотоп. Не утомляя вас изречениями Конфуция о «множественных захватах нейтронов ядром изотопа 235U» скажу лишь, что на сегодняшний день количества полученного всем человечеством 238Pu исчисляются десятками килограмм, а стоит этот килограмм просто безумных денег – более миллиона долларов США.
Кстати, именно от доброй воли России сегодня, в общем-то, зависят и успехи тех же США и ЕС по исследованию дальнего, холодного космоса, поскольку именно Россия сегодня является крупнейшим производителем изотопа 238Pu. Почему – чуть ниже.
Два других изотопа – 239Pu и 240Pu ведут себя гораздо более спокойно, обладая уже длительными периодами полураспада в 24 360 и 6580 лет соответственно, и тоже идущего с излучением альфа-частиц.
Эти изотопы, при желании уже можно даже потрогать в защитных перчатках – удельное тепловыделение у них исчисляется всего лишь единицами ватт на килограмм изотопа, в силу чего слитки из них могут нагреться только до приятно-теплой, комнатной температуры. Зачем нужны защитные перчатки и герметичная упаковка даже в этом случае – повторять не буду, уже писал.
Вот от соотношения этих изотопов в ОЯТ и зависит то, будет ли полученный из реактора плутоний оружейным (то бишь пригодным для производства ядерного оружия) – или же он будет реакторным, то есть обреченным вечно гореть в реакторном аду, снова и снова возвращаясь туда в виде МОХ-сборок.
Первые реакторы-наработчики плутония и в СССР, и в США были спроектированы именно так, чтобы максимизировать выход по изотопу 239Pu, но, в то же время, практически не нарабатывать 240Pu. Это связано с различием их по физическим свойствам и способам радиоактивного распада. Опять-таки, не приводя тут полного текста высказывания Учителя Истины, скажу лишь вывод – военные даже в 1940-х годах дураками не были, эти свойства учли и получали именно нужный им изотоп – 239Pu, который и есть тот самый, жуткий и ужасный оружейный плутоний, который собираются сбросить нам на головы ядерные террористы.
Если же мы посмотрим на тот плутоний, который нам выдает не специализированный, а обычный, энергетический реактор, не оптимизированный под производство 239Pu, то мы на выходе получим весьма пеструю смесь различных изотопов, включая и очень вредный для производства оружия 240Pu. Почему 240Pu вреден для производства оружия – вам, опять-таки, может рассказать Учитель Кун, я же вам скажу, что такой, состоящий уже из смеси изотопов 240Pu и 239Pu плутоний, уже носит название реакторного плутония и пригоден только для ЗЯТЦ, но никак – не для бомбы.
Именно такой, «грязный», плутоний и начал скапливаться во Франции и в других европейских странах в 1960-х – 1970-х годах, когда бельгийцы поняли, что их собственная ядерная программа, которую они начали реактором BR-3, внезапно оказалась без источников сырья.
Неожиданность этого события была связана с другой страной, появившейся на карте Африке через год после момента, запечатленного на фотографии постройки реактора BR-3, относящейся к весне 1959 года.
30 июня 1960 года бывшая колония Бельгии, так называемое Бельгийское Конго, с месторождений которого и был добыт первый в мире оружейный уран, использовавшийся для изготовления бомб, сброшенных на Хиросиму и Нагасаки, объявила независимость.
Урановые копи конголезской Катанги стали для Бельгии столь же недостижимы, как и гелий-3 в лунном реголите.
Оставшись «на бобах» со своей только стартовавшей программой ядерной энергетики, бельгийцы, надо сказать, не растерялись.
И помогла им в этом начавшаяся практически везде в Европе и в мире массовая постройка легководных энергетических реакторов.
Суммарное содержание изотопов плутония в отработанном топливе легководного реактора составляет около 1 %. При ежегодной выгрузке 24 тонн облученного ядерного топлива из одного блока ВВЭР-1000 получается, что реактор производит примерно 240 килограмм реакторного, непригодного для производства оружия, плутония в год.
Поэтому, внимательный читатель, помня, что на сегодняшний день в мире пыхтит, за вычетом последних закрытий в Японии, Германии, Литве и США, более 400 реакторов, может легко посчитать, что ежегодно, только на энергетических реакторах весь мир производит около 100 тонн реакторного плутония.
Много это или мало?
Мировая добыча урана в 2012 году составила, по сумме изотопов, около 55,7 тысяч тонн. Однако, по понятным, чисто природным причинам, доля природного, «легкого» урана изотопа 235U в этом уране составила всего 0,72 % – или же всего около 400 тонн. Если добавить к этому количеству 50 ежегодных тонн российского оружейного урана по уже завершившейся программе ВОУ-НОУ, то мы получим, что весь мир использовал в 2012 году приблизительно (да простит меня учитель Кун Цю) около 450 тонн урана 235U, попутно наработав минимум 100 тонн изотопов 240Pu и 239Pu.
Однако, в принципе, учитывая глубину выгорания 235U в сборках и реакторов на природном уране, и реакторов на обогащенном уране на уровне не более 50 %, мы приходим к простому факту: в рамках сегодняшнего мира плутоний уже с нами – на ежегодные 225 тонн реально сгоревшего в топках реакторов урана – за этот же год мы уже, сегодня, ежегодно и абсолютно бесплатно получаем дополнительно 100 тонн реакторного плутония.
Каждый год.
А это, согласитесь, уже радикально меняет дело!
Именно о таком «окне возможностей» и задумалась Бельгия в 1960-х годах.
Если часть уранового топлива в реакторе на тепловых нейтронах заменить на MOX-топливо, то, экспериментируя с размещением ТВС даже в рамках легководного реактора, в принципе можно значительно уменьшить загрузку по изотопу 235U, и, в перспективе, добиться даже примерно равного количества плутония и урана в свежем топливе и продолжать нарабатывать плутоний во время кампании, сжигая только эти, уменьшенные количества изотопа урана 235U.
Всего, с 1960-х годов, построенный в бельгийском Десселе завод по производству MOX-топлива переработал около 670 тонн ОЯТ, поставленных в основном с легководных реакторов Франции. Плутоний, выделенный при переработке первой партии ОЯТ, которая составляла 140 тонн, был использован, согласно отчетам МАГАТЭ «должным образом», уйдя, в основном, на экспериментальные сборки, загруженные в бельгийский реактор BR-3 и ряд других опытных реакторов.
Плутоний же, выделенный из оставшихся 530 тонн ОЯТ (что составило около 4,8 тонн плутония), был загружен в тепловые реакторы в виде MOX-топлива. Изготовлением кассет из смешанного оксида занимался завод компании «Belgonucleaire» в Десселе. Последняя сборка, сделанная из этой партии плутония, была загружена в активную зону блока бельгийской АЭС «Доэль» (Doel) с реактором PWR мощностью в 1000 МВт в 2006 году.
Заключения новых контрактов на переработку французского ОЯТ в Бельгии пока не предполагается, и поэтому дальнейшая фабрикация MOX-кассет для бельгийских АЭС производиться не будет. Бельгия, имеющая на сегодняшний день около 55 % производства электроэнергии в АЭС, все-таки приплыла к пустынному берегу безурановой Европы от урановых копей Катанги, от которой бельгийскую лодку оттолкнули еще в 1960-м году.
Завод в Десселе исполнял также заказы для других государств – Германии, Франции, Швейцарии и Японии. Однако вследствие падения объемов переработки ОЯТ, в первую очередь в государствах Евросоюза, а также отказа Франции продолжать переработку французского ОЯТ в Бельгии, его возможности по выпуску MOX-топлива снизились, и в июле 2006 года бельгийский завод по МОХ-топливу, работавший более полувека, был окончательно закрыт. Перед закрытием завод выработал по максимуму имевшийся у него оперативный запас плутония.
В то же время, принадлежащий французской группе Areva завод FBFC в Десселе продолжает свою работу. В его цехах осуществляется сборка кассет из топливных элементов, которые продолжают поставляться на АЭС Франции, Швейцарии, Германии и той же Бельгии.
Ведь, как мы помним, «кто сдает продукт вторичный, тот питается отлично».
Вторичный продукт ядерного цикла – это плутоний. Но прежде чем поместить плутоний в таблетку МОХ-топлива, его нужно извлечь из ОЯТ. Выполняется это в настоящее время путем пьюрекс процесса (Purex – Plutonium – Uranium Recovery by EXtraction, регенерация урана и плутония посредством экстракции).
Пьюрекс-процесс превращает адский коктейль ОЯТ в уран, плутоний и еще кучу других изотопов, пригодных для чего-то путного. Кого – в РИТЭГ, а кого – в MOX-топливо.
Сегодня им реально владеют только Россия и Франция.
Поэтому, когда я говорю о конкурентах России в атомном проекте, я говорю в основном только о Франции. У всех остальных участников гонки чего-то и где-то, да и не хватает. То нет урана, то нет центрифуг. То нет реакторов, то нет МОХ-топлива. То нет бридеров, то нет процессинга ОЯТ – того самого, пресловутого PUREX-процесса.
К сожалению, в рамках данной книги мы не сможем подробно рассмотреть пьюрекс-процесс в силу его сложности. Упрощенно его можно представить в виде такой вот схемы:
Процесс этот очень трудоемкий и грязный. На выходе дает большое количество воды с радиоактивными элементами. При этом, на данный момент он стремительно устаревает, давая дорогу новым технологиям извлечения урана и плутония из ОЯТ путем электролиза. То есть вопрос получения этих полезных в хозяйстве элементов таблицы Менделеева хоть и сложен, но решаем.
Но на этом чудеса науки и техники совсем не заканчиваются. Реакторы на быстрых нейтронах дают человечеству практически неограниченные объемы топлива.
Как я уже сказал в начале главы, в реакторах на быстрых нейтронах можно добиться воспроизводства большего количества топлива (плутония), чем было загружено в сам реактор. Конечно, оно берется не из воздуха, а из бесполезного ранее 238U через несколько волшебных превращений:
В качестве топлива при этом используется плутоний, который при расщеплении дает 2–3 нейтрона, один из которых идет на поддержание цепной реакции, а остальные поглощаются 238U, давая новый плутоний. Так как каждое деление обеспечивает более 1 дополнительного нейтрона, то на выходе получается больше плутония, чем мы изначально загрузили в реактор.
Таким образом, суть ЗЯТЦ заключается в том, что загрузив однажды в реактор на быстрых нейтронах плутоний (или MOX-топливо), мы кроме огромного количества энергии получим обратно плутоний, который для этого сожгли. Согласитесь, что было бы неплохо иметь автомобиль, который кроме того что ездит, так еще и дает бензин, который можно продавать другим автолюбителям на традиционных машинах. Как не фантастически звучит, но именно это и пытается сейчас сделать Россия в рамках проекта «Прорыв». Это и есть наше ядерное завтра, которое обеспечит теплом и светом сотни лет человечества, чтобы люди успели перейти к новой термоядерной эре.
Рассказ о термоядерном послезавтра нам стоит начать с термоядерного реактора, который мы видим собственными глазами каждый Божий день. Термоядерного реактора под названием Солнце.
Исходя из такого срока существования природного термоядерного реактора у нас над макушкой, все споры между «зелеными» троллями, ненавидящими ядерную энергию, и приверженцами концепции «мірный атомъ в каждый домъ» можно уже смело списывать в утиль.
Вся разница между «зелеными» и «ядерными» ровно в том, что первые предпочитают оставаться от естественного термоядерного реактора на почтительном расстоянии, а вторые предлагают все-таки подобраться к нему поближе и начать утилизировать его энергию хоть чуток более эффективно.
Причем подбираться к энергии Солнца надо именно так, как это предлагает сейчас атомное лобби. И я объясню почему.
По началу кажется, что всегда лучше скопировать что-то готовое у природы. Просто исходя из того, что это уже сделано где-то до нас и нам надо только творчески повторить готовое (собственно это и есть основной принцип дизайна как такового).
Однако в жизни иногда легче сделать что-то совершенно новое, нежели стараться бездумно копировать живую или неживую природу. Просто из-за того, что неживая природа действует исключительно по законам физики и химии, потихоньку увеличивая свою энтропию, а живая природа вплоть до появления человека часто останавливалась на каком-то «промежуточном» варианте, который отнюдь не был столь совершенным, как идеально возможный.
Например, врачи и ученые долго возились с искусственным человеческим сердцем. Почти 40 лет люди пытались выдумать различные клапанные и пульсирующие системы, которые должны были досконально копировать сложный ритм работы человеческого сердца. Пока, наконец, в 2011 году не решились создать-таки «сердце без клапанов, человека без пульса».
Крейг Льюис (Craig Lewis) 55 лет, находился в предсмертном состоянии из-за амилоидоза, сердечного заболевания, вызванного нарушением белкового обмена, которое сопровождается скоплением в тканях специфического белка, разрушающего мышцы. Состояние мужчины было настолько серьезным, что даже электрокардиостимулятор не мог спасти его жизнь. Сердце Крейга перестало бы биться в течение месяца-двух, и он решился на эту смелую операцию.
До операции на Льюисе такие вспомогательные насосы, похожие на небольшие турбины, лишь помогали больным с сердечной недостаточностью, подталкивая кровь к больному сердцу и все. Хотя счет пациентов с такими насосами уже шел на тысячи и тысячи, но заменить двумя микротурбинками полное человеческое сердце решились только в апреле 2011 года. И – получилось!
Жена Льюиса была удивлена, когда она попыталась нащупать его пульс. «Я хотела почувствовать пульс Крейга, но услышала лишь странное жужжание», – сообщила она журналистам. «У него не было пульса», собственно и сердца как такового не стало, но появилась жизнь.
В общем, конечно, не термоядерный реактор рядом с сердцем, как у «Железного человека» Тони Старка-Дауни младшего, но зато – в реальности. И не как в Голливуде, где термоядерный реактор можно собрать в горах Афганистана из консервных банок, синей изоленты и коробки спичек. Ну а потом вставить себе в грудь рядом со своим шалящим и барахлящим биологическим сердцем.
Впрочем, мы ведь говорили о Солнце. И о том, что строить солнечный термоядерный реактор в земных условиях нам не стоит. Почему?
Да потому, что в Солнце идет очень специфическая ядерная реакция и стараться повторить ее на Земле – это пытаться прикрутить термоядерный реактор посередине грудной клетки с помощью синей изоленты, как в Голливуде.
Вот эта реакция. Я вначале нарисую ее в упрощенной форме, а потом покажу вам, где нам категорически не хватает магической синей изоленты, чтобы прикрутить где-нибудь на Земле этот природный термоядерный реактор к прочному бетонному фундаменту.
Два ядра атомов водорода, простые протоны, которые рано или поздно встречаются между собой где-нибудь в центре нашего Солнца, в результате этой реакции образуют… снова водород. Правда, уже не обычный, «легкий» водород, еще называемый протием, а «тяжелый» водород, дейтерий.
Самое интересное, что нейтрон, который образуется из одного из протонов в результате этой реакции, чуть тяжелее протона. Масса нейтрона – 939,57 МэВ, а масса протона – 938,27 МэВ.
Один МэВ – это очень маленькая масса, 1 МэВ равен 1,781030 килограмма. Поэтому-то и получается, что в одном килограмме водорода собрана такая бездна атомов, которые и состоят, в основном, из своих ядер – протонов. Для того чтобы собрать килограмм комариных крылышек атомов водорода приходится оперировать числом с 26-ю нулями. Скажу лишь, что число людей на всей нашей Земле – это число с девятью нулями. Комаров по всей Земле я не считал, но думаю, что тоже не больше, чем протонов в килограмме водорода.
Но как же получается, что образовавшийся нейтрон тяжелее протона, вступившего в реакцию? Все дело в том, что это масса покоя нейтрона. И если взять «сферический нейтрон в вакууме», то он будет весить именно 939,56 МэВ. Точно так же, как и одинокий «сферический протон в вакууме» будет весить 938,27 МэВ. А вот вместе они будут весить меньше, чем по отдельности, в одиночестве друг от друга.
И да, одинокий нейтрон без протона – не жилец.
Время жизни свободного нейтрона без протона вблизи него – всего около 15 минут. За это время большая часть нейтронов успевает распасться обратно на протон, электрон и антинейтрино.
Но в рамках ядра дейтерия нейтрон «связан» с протоном силами сильного взаимодействия. Это взаимодействие и в самом деле очень сильное – настолько, что значительно меняет массу участвующих в нем частиц. И не просто меняет, а уменьшает их наблюдаемую массу.
Если брать «сферический» протон и «сферический» нейтрон, то для ядра дейтерия (дейтрона) у нас получится по математике вот такой формальный расчет:
938,27 + 939,57 = 1877,84 МэВ.
По факту же ядро дейтерия весит чуть меньше – 1875,61 МэВ. Разница между значениями массы, полученной путем механического сложения массы свободных протона и нейтрона и точным измерением реальной массы дейтрона и дает нам значение энергии связи или дефекта массы. Ее точное значение для дейтрона равно 2,22 МэВ. Это и есть масса (или энергия) магической синей изоленты, которая и прикручивает частицы в ядре друг к другу. Ну а поскольку энергия связи у нас понятие отрицательное (для того чтобы оторвать нейтрон от протона, надо затратить энергию), то правильно энергию связи дейтрона писать как —2,22 МэВ.
И вот тут у нас на арене появляется знаменитая формула: E=mc2.
Та самая, которую и придумал камрад Эйнштейн.
Что мы имеем? В начале реакции у нас два протона с массой по 938,27 МэВ каждый, а в конце – ядро-дейтрон, которое весит 1875,61 МэВ.
Нетрудно посчитать, что в чистом выходе по энергии мы имеем что-то около 0,93 МэВ в расчете на одно слияние.
Ура? Победа?
Нет, нам по-прежнему не хватает магической синей изоленты, чтобы привязать два протона друг к другу и заставить их, наконец-то, сделать для нас ядро дейтрона, которое отдаст нам лишнюю энергию, которую мы уже можем потратить на всякие разные приятные вещи.
Это связано с тем, что протон-протонный цикл в недрах нашего Солнца идет по более сложной схеме, чем нарисовано на первом рисунке. И она как раз и ставит для нас крест на всех наших попытках примотать протон-протонный цикл к нашим скромным нуждам где-нибудь на нашей скорлупке-Земле. Все дело в том, что два столкнувшихся протона образуют в начале реакции слияния не дейтрон, а очень экзотическое ядро – дипротон. Пока это просто два протона, слитых в единое целое. И, как и положено двум заряженным частицам, они не прочь оттолкнуться друг от друга.
В нашей Вселенной нет стабильных дипротонов. Это объясняется тем, что сила взаимного отталкивания двух положительно заряженных протонов чуть-чуть больше, чем энергия связи их гипотетического ядра, определяемая из формул сильного взаимодействия. Кстати, формально это ядро должно было бы называться гелий-2 или 2He в традиционной записи для изотопов.
В таком уникальном соотношении основных взаимодействий есть еще один интересный факт. Если бы сильное взаимодействие частиц было бы лишь чуть-чуть сильнее (наша синяя изолента была бы чуть попрочнее), то мы бы не увидели Тони Старка этого мира вообще. Расчеты показывают, что в таком мире сразу после Большого Взрыва все протоны объединяются в пары и во Вселенной не остается водорода, а значит, не будет ни воды, ни знакомой нам жизни. Только гелий-2, от которого потом и надо начинать цепочки синтеза ядер.
Гелий-2 был экспериментально найден в опытах, включающих в себя распад неона-18 в кислород-16 только в 2008 году. Поскольку получающийся в результате этой реакции дипротон был, как и положено дипротону, жутко нестабильным, его нашли исключительно по факту вылета двух протонов одновременно и в одном направлении из ядра распадающегося неона.
Конечно же, собрать килограмм ядер 2He в условиях их крайней нестабильности практически невозможно. Это как собирать «килограмм комариных крылышек». Как же наше Солнце умудряется нарабатывать энергию, заставляя упрямые протоны превращаться в дейтроны, и светит нам вот уже 4,5 млрд лет?
Все дело в том, что у дипротона есть еще один вариант дальнейшей судьбы, кроме тривиального «прощай, нам не жить вместе, я полетел дальше». У дипротона есть очень маленькая вероятность превратиться в дейтрон в результате действия уже третьего, слабого взаимодействия. В силу невозможности получения самого 2He или дипротона в сколь-либо значимых количествах, вопрос точного определения этой вероятности пока открыт. Скажем так – это не просто мало, а очень мало. Поскольку до сих пор все попытки воспроизвести протон-протонный синтез где-либо в земных лабораториях не увенчались успехом. Протоны просто отскакивают друг от друга, как горох, не образуя ни дипротонов, ни тем более дейтронов.
Кроме неприятного осадка в виде невозможности «зажечь звезду» прямо у себя в синхрофазотроне, ученые убедились, кстати, и еще во многих проблемах. Например, в 1960-е годы очень активно обсуждался так называемый прямоточный двигатель Бассарда, который представлял собой просто громадный черпак, движущийся с околосветовой скоростью. Такой черпак смог бы собирать водород прямо из межзвездного газа и позволил бы не беспокоиться о запасах топлива на борту корабля.
Однако впоследствии выяснилось, что межзвездный газ, как и наша вода, состоит в основном из протия, который хрен зажжешь просто так, «на коленке».
Как же умудряется это делать наше Солнце? В Солнце, судя по всему, все же часть дипротонов успевает превратиться в дейтроны в результате слабого взаимодействия. Связано это, в первую очередь, с громадным объемом нашего светила. Все дело в том, что превращение протона в нейтрон в результате слабого взаимодействия – вещь невероятная. Нейтрон немного тяжелее протона, поэтому на преобразование свободного протона в нейтрон надо затратить энергию. Скорее уж нейтрон превратится в протон в результате -распада.
Однако то, что невыгодно для двух протонов по отдельности, выгодно для дипротона, поскольку дейтрон (ядро дейтерия), как мы посчитали выше, все же чуть легче двух протонов. Вероятность «мутации» одного из протонов в нейтрон внутри дипротона очень маленькая. Сейчас ее оценили как 1/1030, однако это лишь оценка. Ибо лишь малая часть соударений протонов внутри Солнца приводит к образованию дейтерия. Однако синтез протия дает нашему Солнцу около 60 % всей энергии. Оставшиеся 40 % энергии Солнца дает цикл на ядрах углерода, азота и кислорода, или CNO-цикл, но о нем – чуть ниже. В общем, для того чтобы заставить этот упрямый протий все-таки отдать нам хоть чуть-чуть вожделенного E=mc2, приходится брать молоток побольше, а газовый шарик – помассивнее. В результате такого большого скопления протонов, которые сталкиваются и разлетаются снова, в результате +-распада одного из протонов ядра превращается в нейтрон, дипротон – в дейтрон (ядро дейтерия), а из новорожденноо, уже стабильного ядра «тяжелого» водорода вылетают антиэлектрон (или позитрон) и нейтрино. Короче, все не совсем и просто в этих реакциях.
Ожидаемо, по закону сохранения энергии, часть энергии такой реакции уносится с нейтрино, которое уже очень трудно поймать, а основная часть из E=mc2, полученного за счет дефекта массы, улетает вместе с позитроном.
После этого, обычно очень быстро, позитрон полностью аннигилирует с каким-нибудь соседним электроном, образуя два гамма-кванта с энергией в 0,51 МэВ.
Вот так. Основная начальная реакция, которая разогревает наше Солнце, наряду с другими, которые уже идут на основе полученного дейтерия, это аннигиляция.
Отсюда, если приматывать протон-протонный цикл где-нибудь синей изолентой к бетонному фундаменту у нас на матушке-Земле, то надо быть готовым к жесткому гамма-излучению от аннигиляции излучаемых позитронов. А она целебна (точнее не совсем вредна) только в очень-очень малых количествах. Например, позитронная томография использует именно +-распад многих искусственных изотопов и позволяет детально рассмотреть многие мягкие ткани человека.
В общем, не получается собрать термоядерный реактор, как на Солнце, в наших убогих земных условиях. То ли мы не Тони Старки, то ли синяя изолента у нас слабовата.
Ну и пусть слабовата. Зато мы живы и с нормальной «легкой» водой. А не с гелием-2 в какой-то непонятной, безжизненной Вселенной.
Ладно, звезду не зажгли. Ну а что там можно сделать дальше, с дейтерием?
Многие из читателей слышали о токамаках и о том, что ими пытаются «зажечь» термоядерную энергию у нас, на Земле. К сожалению, понимание проблем токамакостроения и плазмоудержания у современных обывателей, находится на весьма убогом уровне. Те светлые времена, когда журнал «Наука и Жизнь» выходил тиражом в 3 миллиона экземпляров и нес просвещение в массы, уже позади. Сейчас тираж «Науки и Жизни» скатился до жалких 40 000 экземпляров, а сам журнал представляет собой убогую тень своего славного прошлого – с «юбилейными» статьями и колонкой «на заметку домохозяйке».
Я попробую рассказать вам об инженерных проблемах термоядерной энергетики максимально доступно, но в то же время – с сохранением всего объема технической информации, необходимого для понимания того, во что и где уперлись ученые, инженеры и строители в деле создания «рукотворного Солнца» на Земле.
Вначале о понятном простым людям – о размерах. Вот сравнение (чисто в рамках геометрии установок!) того пути, который уже был пройден и который еще предстоит пройти термоядерной энергетике.
Блоха в левом нижнем углу рисунка – это первый настоящий токамак Т-3, созданный в СССР в 1960-е годы и продемонстрировавший миру принципиальную возможность создания электростанции, основанной на магнитном удержании высокотемпературной плазмы для создания термоядерной реакции. Маленькая палочка под трубой большого ITERa (справа), который сейчас строит весь мир, это человек. Вот он же в сравнении с токамаком Т-3 на старом архивном фото для понимания размеров ITERa.
Как видите, наши отцы даже и не представляли, насколько трудная и масштабная задача предстоит им в деле будущего покорения термоядерной энергии.
Причем если кто-либо думает, что путь прогресса от Т-3 до ITERа – это лишь вопрос нахождения молотка побольше и организации рабов на заливку бетонного основания токамака, то он глубоко ошибается.
ITER гораздо технологичнее самого последнего и самого большого современного токамака JET во столько же раз, во сколько раз и сам JET технологичнее старого, доброго, «лампового» Т-3.
Надо сказать, что даже ITER еще будет, несмотря на всю свою технологичность, всего лишь «наскоро сделанным на коленке» прототипом. Конечно, не на коленке, конечно не наскоро, но именно прототипом. Например, охлаждение первой стенки реактора в нем будет вестись с помощью обычной воды, в то время как в серийной термоядерной станции DEMO, строительство которой начнут сразу же после постройки и успешного пуска ITERа, первая стенка плазменной камеры будет охлаждаться уже жидким гелием. То есть ученые спешат. Ученые очень спешат, пытаясь сделать реакторы на термоядерной энергии, но это отнюдь не так просто, как это представляется многим.
Надо сказать, что и с Т-3 ситуация была тоже не в виде «сегодня решили, завтра построили». Первое постановление о начале работ по мирной термоядерной энергии подписал еще Иосиф Сталин в 1952 году. А рекордные 10 миллионов градусов температуры, которые удивили весь мир, советские ученые получили на токамаке Т-3 только в 1968 году.
И вот тут мы подходим к одному интересному моменту, который часто не осознается многими людьми, которые слышали о термоядерной энергии только в рамках школьного курса физики.
Поясню, в чем состоит тонкий момент термоядерной реакции, которую сейчас хотят запустить в экспериментальном реакторе ITER.
Как вы поняли, напрямую повторить реакции по слиянию ядер протия, которые идут в недрах нашего Солнца, или же сложный CNO-цикл, который тоже понемногу превращает «легкий» водород в гелий, в земных условиях невозможно. Хотя бы потому, что размеры реактора для таких циклов и реакций необходимы просто безумные – речь идет о том, что термоядерные реакции на легком водороде нуждаются в реакторе размером с наше Солнце.
А в целом, если мы начнем в известном нам космосе искать варианты минимальных условий для создания самоподдерживающейся ядерной реакции на легких элементах (так, чтобы ничего не строить, а только смотреть на готовое, созданное самой природой), то мы упремся в такие необычные объекты, как коричневые карлики.
Коричневый карлик – это звездоподобный объект, размеры которого будут сравнимы с размерами нашего Юпитера, но масса будет уже в 10–30 раз больше, что позволит коричневому карлику ненадолго зажечь в своих недрах эрзац-реакцию на легких элементах.
По размеру небольшой коричневый карлик лишь немногим больше Юпитера. Основное его отличие – это плотность и масса. Большая масса коричневого карлика создает более сильное гравитационное поле, гравитация сжимает карлик, плотность и температура внутри него растут, и voil – в нем начинается термоядерная реакция.
Если красные карлики – это все еще полноценные звезды (хоть и очень маленькие), то коричневые карлики – это что-то среднее между планетами типа Юпитера и настоящими светилами. Из-за своей наружной температуры около 1200 К (900 °С) коричневые карлики светятся темно-вишневым светом. Самые яркие и самые массивные из них могут даже разгореться до темно-красного свечения, набрав на пике своей «мощности» температуру до 3000 К (или около 2700 °С).
Отличаются от настоящих звезд главной последовательности и реакции, которые идут в коричневых карликах. В нашем Солнце реакции «протий+протий» и CNO-цикл вносят где-то по 60 и 40 % в общее энерговыделение нашего светила. Но проблема в том, что реакция «протий+протий» стартует в звездах где-то от температуры в 4 млн К, а CNO-цикл и при того более высоких температурах – при 12 млн К.
При температурах же, характерных для коричневых карликов, ни реакцию «протий-протий» ни тем более CNO-цикл не зажечь. Совершенно так же невозможно для коричневого карлика зажечь и реакцию синтеза углерода из ядер гелия-4, которую предстоит пройти и нашему Солнцу где-то через 3,5 млрд лет, в момент его превращения в красный гигант. Для реакции синтеза гелия в углерод надо поднять температуру внутри звезды «всего лишь» до 100миллионов градусов Кельвина, чем даже наше Солнце пока, к счастью, похвастаться не может. И слава Богу. Иначе бы граница Солнца начиналась бы где-то на орбите Марса. Отсюда промежуточный вывод – лучше пока подождать еще где-то 3,5 млрд лет.
Что же жгут в своих недрах коричневые карлики? Ведь их уже нашли больше трех десятков, в основном, по понятным причинам, у ближайших к нам звезд. А жечь протий или что-то другое у себя в недрах они физически не могут.
Для того чтобы понять, что жгут коричневые карлики, посмотрим на несколько диаграмм. Первая – это энергия связи ядер различных химических элементов в расчете на один нуклон – нейтрон или протон.
График начинается с ядра дейтерия, нелегкое образование которого из протия мы рассмотрели чуть выше. Сам протий – это ядро 1H, или одиночный протон. На этом графике он не показан по понятной причине – энергия связи одиночного протона по определению равна нулю.
Энергия связи ядра «тяжелого водорода» – дейтрона составляет около 1 МэВ на нуклон. А уже для следующего химического преображения гелия, энергия связи в расчете на один нуклон резко возрастает до 7,03 МэВ. Такая энергия связи характерна для «магической частицы» всей ядерной физики – ядра гелия-4 или 4He, часто называемого еще и альфа-частицей (-частица).
Альфа-частица – это сверхустойчивый ядерный организм. Как я уже сказал, превращаться во что-либо иное она согласна только при температурах более 100 млн градусов, в недрах достаточно массивных звезд. Кроме того, альфа-частица – это постоянный спутник многих радиоактивных распадов тяжелых ядер.
Почему? Это тоже очень легко наблюдать на графике. Энергия связи атома урана, например, составляет всего 7,6 МэВ на один нуклон. Разница между энергией связи нуклонов в уране и в альфа-частице – всего около 0,57 МэВ. Рано или поздно ядро урана не выдерживает ужасов социалистического общежития и скученности 238 нуклонов на ограниченной жилплощади – и выталкивает из себя альфа-частицу. Альфа-частица, со своим «блэкджеком и поэтессами», успешно улетает, ну а 238U превращается через пару быстрых -распадов… в тот же уран, изотопа 234U. В то же самое социалистическое общежитие, но уже с 234 жителями.
Исходя из такой мощной энергии связи альфа-частицы, мы можем теперь по-настоящему понять график распространенности химических элементов во Вселенной.
Как видите, «магистральное шоссе» синтеза ядер у нас четкое и однозначное.
Водород горит в гелий, гелий горит в углерод и кислород, кислород и углерод горят в кремний, а кремний горит в железо.
Железо – это термоядерные угли, которые уже не могут гореть сами по себе, поскольку имеют максимально возможную для ядер энергию связи.
Практически все элементы группы железа и все, что тяжелее этого химического элемента, попадает во внешний мир только при взрывах сверхновых звезд. Если это вас утешит, то каждый атом углерода, кислорода или азота в вашем теле уже как минимум один раз побывал в звезде, ну а вся Земля в целом – это звездный пепел. По большей части, конечно.
И в этом звездном пепле можно все-таки отыскать немного недогоревших головешек. Именно эти головешки и жгут коричневые карлики и собираются поджечь хитрые ученые.
Это атомы, которые притаились в первой части таблицы, но которые имеют энергию связи меньшую, чем наша магическая альфа-частица.
Вот, поименно, весь этот список: дейтерий и тритий (это у нас изотопы водорода), литий, бериллий, бор.
Все.
Всего пять головешек оставила нам природа для того, чтобы поджигать наш земной костер из легких ядер. Причем это именно что «огарки», по сравнению с легким водородом – протием или по сравнению с гелием-4 таких элементов и изотопов у нас до обидного мало.
Но людишки бы не были Homo Sapiens, если бы не нашли интересный выход из сложившейся ситуации с недостатком легких ядер в составе Земли.
Энергия связи ядра протия, как мы помним, равна нулю. При встрече двух протонов должно произойти невероятное событие: один из протонов должен виртуально превратиться в нейтрон (за счет слабого взаимодействия) и тут же образовать устойчивое ядро дейтерия – дейтрон, энергия связи в котором чуть больше, чем разница в массах протона и нейтрона.
По сути, конечно, окончательное состояние двух протонов в ядре дейтрона энергетически более выгодно. Но вот в начале процесса вопрос того, кто превратится в нейтрон, отнюдь не столь очевиден.
А что будет, если протону подсунуть под нос уже готовый нейтрон?
Любой протон, который окажется достаточно близко с тепловым (то есть медленно идущим) нейтроном, тут же быстро захватит его и образует устойчивое ядро дейтерия – дейтрон.
Ну а дейтрон уже, в принципе, может захватить и еще один нейтрон и образовать ядро трития.
В общем, был бы у нас годный источник тепловых нейтронов – то задача наработки термоядерного горючего из обычной воды не стояла бы в принципе. Хочешь – дейтерий получай, хочешь – тритий, а хочешь – подожди 12,5 лет полураспада трития – и гелий-3 тоже получишь.
Что же у нас является самым мощным источником тепловых нейтронов, который был создан человечеством? Да он же, любимый, и является. Наш старый добрый «атомный самовар». С балалайкой и ручным медведем. Наш ядерный реактор на распаде тяжелых ядер – урана, тория и плутония. На каждое деление он выдает по два-три нейтрона, плюс еще немножко – от осколков деления урана.