Восхождение человечества. Предисловие Ричарда Докинза Броновски Джейкоб

Это путешествие убедило меня в том, что в тропиках существует гораздо большее число видов и разнообразных форм растительности, чем в умеренных зонах.

Кроме долины реки Амазонки, пожалуй, ни один край в мире не может похвалиться таким количеством растений. Эти земли почти целиком покрыты густыми и высокими девственными лесами, наиболее обширными и нетронутыми из всех существующих на Земле.

Во всем великолепии эти джунгли можно увидеть только с высоты птичьего полета — например, если проплыть над ними на воздушном шаре. Вполне допускаю, что через некоторое время подобные путешествия будут предлагать туристам.

Впервые входя в индейскую деревню, Уоллес был одновременно взволнован и испуган. Но характерно для Уоллеса то, что преобладающим чувством было удовольствие:

…Моя первая встреча с людьми, которые живут в полной гармонии с природой, вызвала у меня самые неожиданные чувства удивления и восторга. Я увидел чистых дикарей!.. Они занимались своими делами с таким удовольствием, какое неведомо белым людям. Каждый индеец шел свободным шагом независимого лесного жителя и… не обращал никакого внимания на нас, иноземцев, случайно оказавшихся рядом с ним.

В каждом движении, в каждой детали они были оригинальны и самодостаточны, как дикие лесные животные. Абсолютно независимые от цивилизации, они жили здесь множество столетий до открытия Америки и могли бы жить дальше, передавая свои привычки и обычаи из поколения в поколение.

Оказалось, что индейцы не были жестоки, наоборот, они с удовольствием помогали Уоллесу в деле сбора образцов:

За время, которое я провел здесь (сорок дней), я раздобыл у индейцев по крайней мере сорок видов бабочек, совершенно новых для меня, и значительно пополнил свою коллекцию другими видами.

Однажды один из дикарей принес мне любопытный экземпляр. Это был Caiman gibbus — маленький аллигатор редкого вида с многочисленными гребнями и коническими бугорками. Индейцы с удовольствием внимательно наблюдали за тем, как я снял с него кожу и сделал чучело.

Время от времени среди лесных удовольствий и трудов Уоллес задавался одним и тем же животрепещущим вопросом: как сформировалось тропическое многообразие флоры и фауны? Почему представители родственных отрядов похожи внешне и различаются в деталях? Как и Дарвин, Уоллес был поражен этими обстоятельствами, и он стал искать ответы, чтобы понять, почему каждый вид стал развиваться по-своему.

В естественной истории нет ничего более интересного и поучительного) чем изучение географического распределения животных.

Зачастую на расстоянии в пятьдесят или сто миль проживают совершенно разные виды насекомых и птиц, которые не встречаются в другом месте. Значит, должна быть какая-то граница) замыкающая ареал каждого вида. Наверняка есть какая-то внешняя особенность) отмечающая эту линию, за которую насекомые и животные определенного вида не заступают.

Уоллес всегда интересовался географией. Позже, когда он был на Малайском архипелаге, он писал, что животные на западных островах напоминают виды из Азии, а на восточных островах — из Австралии, разделяющую их линию до сих пор называют линией Уоллеса.

Уоллес был тонким наблюдателем, которого интересовали и люди, и природа. Он остро подмечал малейшие отличия и сходства. В викторианскую эпоху жителей Амазонки называли дикарями, а Уоллес симпатизировал их культуре. Он понимал, что значат для них язык, изобретение, традиция. Пожалуй, он первым осознал, что культурное расстояние между цивилизациями гораздо короче, чем мы думаем. Он вывел принцип естественного отбора, который кажется не только верным, но и биологически очевидным.

Естественный отбор наделил дикаря мозгом, на несколько степеней превосходящим мозг обезьяны, и он почти не отличается от мозга философа. Таким образом, с появлением человека в мир вошло существо, обладающее той тонкой силой, которую мы называем «ум». В этом контексте мозг стал чем-то гораздо более важным, чем простая телесная структура.

Уоллес твердо отстаивал свое отношение к индейцам. Он написал в своем журнале идиллическую поэму, посвященную жизни в деревне Явита в 1851 году:

  • Стоит индейская деревня. Укутана
  • Плотным лесным покрывалом,
  • На котором найдешь все оттенки зелени.
  • Здесь я — единственный белый человек —
  • какое-то время обитал
  • Среди, наверное, двухсот живых душ.
  • Все дни они проводили в трудах: вот
  • Пошли все вместе валить лес, а вот в каноэ,
  • С крючками, копьями и стрелам, поплыли
  • на рыбалку,
  • Или вот собирают пальмовые листья,
  • Чтобы защититься от ураганов и дождей.
  • Женщины копают маниоку
  • И делают из нее хлеб,
  • Каждое утро и каждый вечер они купаются в реке,
  • Прекрасные, словно русалки.
  • Маленькие дети бегают нагие,
  • Подростки и юноши носят узкие набедренные
  • повязки —
  • Как приятно видеть их сильные торсы,
  • Сильные руки и сверкающую на солнце
  • красновато-коричневую кожу!
  • Их движения полны благодати и здоровья:
  • Бегут ли они наперегонки, прыгают
  • Или ныряют в бурные воды реки.
  • Глядя на них, мне жаль английских детей,
  • чьи руки и ноги
  • Упакованы в тесную, плотно облегающую
  • одежду и обувь.
  • Мне также жаль английских девушек:
  • Их талии и груди затянуты
  • Предметом пытки под названием корсет!
  • Хотел бы я родиться индейцем и жить здесь.
  • Ловить рыбу, охотиться и плыть на каноэ,
  • Видеть, как растут мои дети, похожие
  • на молодых диких оленей,
  • Со здоровыми телами и спокойными душами,
  • Богатые без сокровищ и счастливые без золота!

Чувства, которые вызвали у Уоллеса индейцы Южной Америки, отличаются от тех, что испытал Дарвин, встретившись с туземцами Огненной Земли, — он был в ужасе. Это ясно из его слов и зарисовок в его «Путешествии». Безусловно, сложные климатические условия полуострова сделали характер аборигенов суровым, а обычаи и обряды — страшными для чужеземцев. Хотя на фотографиях, сделанных во второй половине XIX века, жители Огненной Земли не выглядят настолько свирепыми, как показалось Дарвину. В Кейптауне Дарвин вместе с капитаном «Бигля» издал памфлет, в котором давались рекомендации миссионерам.

Уоллес тем временем после четырехлетнего пребывания в Амазонии упаковал свои коллекции, чтобы отправиться домой, в Англию. Однако не все шло гладко:

Лихорадка и озноб снова трепали меня, и я провел несколько очень тяжелых дней. Почти не прекращаясь, шли дожди. Добираться до моих многочисленных птиц и зверей было тяжело, и невозможно было как следует почистить клетки. Почти каждый день кто-то из них умирал, и часто мне даже приходила мысль выпустить всех на волю. Но ведь я взял на себя обязательство доставить коллекцию в Англию и должен был сдержать слово.

Из ста животных, которых я купил или поймал с помощью индейцев, на борту оставалось только тридцать четыре особи.

Да, путь домой не заладился с самого начала. Впрочем, Уоллес всегда был не из счастливчиков:

Десятого июня мы вышли из Манауса. Начало нашего путешествия, к сожалению, для меня стало малоприятным: когда мне оставалось загрузить свои личные вещи и попрощаться с друзьями, я упустил из виду клетку с туканом. Потом я нигде не смог найти ее. Без всякого сомнения, клетка с птицей свалилась за борт, никто этого не заметил, и несчастный тукан утонул.

Выбор судна был тоже очень неудачным: через три недели после начала похода, 6 августа 1852 года, корабль, груженный горючими смолами, загорелся. Уоллесу уже стало не до коллекции, он попытался спасти какие-то личные вещи:

Я спустился в каюту. Она уже была полна дыма, оттого в ней стало удушливо и жарко. Я стал быстро соображать, что я должен спасать в первую очередь. Я уложил в небольшую жестяную коробку часы, несколько рубах и пару старых записных книг с некоторыми рисунками растений и животных. С этим скудным багажом я и вышел на палубу. Много одежды и большой портфель рисунков и эскизов остались в каюте и в багаже. Однако я не хотел рисковать снова — на меня навалилась апатия, поэтому я перестал думать о спасении других своих вещей.

Капитан приказал всем садиться в лодки, а сам покинул судно последним.

Потом, после спасения, я с горечью размышлял о том, с каким удовольствием рассматривал каждого редкого и любопытного жука из своей погибшей в пожаре коллекции! Сколько раз, преодолевая приступы лихорадки, я ползал по лесу, чтобы добыть некоторых неизвестных и прекрасных насекомых и птиц! Сколько мест из тех, где не ступала нога ни одного европейца, я обошел! Все это я мог бы вспомнить, если бы моя коллекция сохранилась!

Теперь все пропало. У меня не было ни одного образца, чтобы проиллюстрировать неизвестные земли и вспомнить сцены из дикой жизни, свидетелем которых я стал! Однако я убедил себя в напрасности подобных сожалений, поэтому постарался меньше думать о том, что могло бы быть, и сосредоточиться на действительности.

Альфред Уоллес, как и Чарльз Дарвин, вернулся из экспедиций с твердой убежденностью, что родственные виды имеют общего предка, и озадаченный вопросом, почему они разошлись. Уоллес не знал, что два года назад Дарвин предложил объяснение, вернувшись из своего путешествия на «Бигле». По словам последнего, он прочел скуки ради (подобная литература не входила в сферу его научных интересов) эссе преподобного Томаса Мальтуса с изложением его теории народонаселения. Английский священник и ученый утверждал, что популяция увеличивается быстрее, чем запасы еды. Если это верно для животных, они вынуждены конкурировать, чтобы выжить: природа отсеивает слабых и формирует новые виды из выживших, лучше всего приспособившихся к окружающей среде.

«Наконец-то у меня есть теория, с которой можно работать!» — воскликнул Дарвин. Вы можете подумать, что человек, произнесший эти слова, немедленно приступил к написанию статей и выступлениям с лекциями. Ничего подобного не произошло. В течение четырех лет Дарвин даже не оформит теорию. Только в 1842 году он запишет свои выводы карандашом на тридцати пяти страницах, а спустя два года превратит их в двести тридцать, пользуясь уже чернилами. Этот труд и некоторую сумму денег он отдаст на хранение своей жене с просьбой опубликовать текст в случае его неожиданной кончины.

«Я только что завершил набросок моей теории видов», — написал он ей в официальном письме, направленном 5 июля 1844 года в Даун:

Вот почему на случай своей неожиданной кончины я и пишу это. Моя серьезная и самая последняя просьба к тебе, — а я знаю, что ты отнесешься к ней так же, как если бы она была юридически оформлена в моем завещании, — выделить 400 фунтов стерлингов на публикацию этого труда и затем, самой или через посредство Генслея, приложить все усилия для его распространения. Я желаю, чтобы мой труд попал в руки какого-нибудь компетентного лица и указанная выше сумма могла побудить его улучшить и расширить мою работу…

Я просил бы также, чтобы этому лицу были переданы все вырезки, разложенные примерно по восьми или десяти папкам из оберточной бумаги. Что касается редактора, то лучше всего было бы привлечь для этого дела мистера Лайеля, если бы он согласился, особенно при содействии Гукера.

Складывается впечатление, что Дарвин действительно хотел бы умереть, прежде чем его теория будет опубликована, но при этом он намеревался закрепить за собой авторство. Очень странный характер! Такой поступок может говорить о следующем: Дарвин был уверен, что его выводы шокируют общественность (и несомненно шокируют его жену!), и в определенном смысле был шокирован сам. Ипохондрия (он и правда подхватил какую-то инфекцию в тропиках, что его, конечно, извиняет), бесконечные баночки с лекарствами, удушливая атмосфера его дома и кабинета, обязательный дневной сон, отказ от публикаций и публичных выступлений на тему эволюции — все это, очевидно, говорит о том, что Дарвин не желал столкнуться с сопротивлением общественности.

Более молодого и решительного Уоллеса не сдерживало ни одно из этих соображений. Он, несмотря на все невзгоды, отправился в 1854 году на Дальний Восток и в течение восьми лет путешествовал по Малайскому архипелагу. Он продолжил собирать образцы, чтобы затем продать их в Англии. К этому времени он был совершенно убежден в том, что виды не являются неизменными, в 1855 году он опубликовал статью «О законе, который определил появление новых видов» и с тех пор, по словам Уоллеса, «вопрос о том, каким образом происходят изменения видов, редко покидал мои мысли».

В феврале 1858 года Уоллес находился на маленьком вулканическом острове Терпате, входящем в состав Молуккских островов, которые иногда называют Островами пряностей. Этот архипелаг расположен между Новой Гвинеей и Борнео. Уоллеса опять трепали приступы тропической лихорадки. Горячечный бред сменялся ознобом. Он беспокойно метался всю ночь. Отчего-то ему вспомнилась та же книга Томаса Мальтуса, и внезапно у него промелькнула мысль, которая когда-то посетила Дарвина:

Мне пришел в голову такой вопрос: почему некоторые умирают, а другие остаются в живых? И ответ был очевиден: потому что выживают более приспособленные. Наиболее здоровые — выздоравливают, самые хитрые, быстрые и сильные — спасаются от врагов, лучшие охотники или те, кто обладает отличным пищеварением, не голодают, и так далее.

И я сразу понял, что изменчивость видов всех живых существ объясняется естественным отбором, который заключается в том, что слабейшие особи погибают, а сильнейшие — сохраняются, чтобы продолжить род.

Вот так, внезапно, меня захватила идея выживания сильнейшего.

Чем больше я размышлял, тем больше убеждался, что я давным-давно искал именно этот закон природы, который разрешает вопрос происхождения видов… Я с тревогой дожидался окончания приступа, потому что не мог записать свои соображения. В тот же вечер я почти завершил работу и два последующих вечера тщательно редактировал текст, чтобы отправить его Дарвину со следующим почтовым судном, которое отплывает в Англию через день или два.

Уоллес знал, что Чарльз Дарвин занимается этой темой, и предположил, что Дарвин покажет бумаги Лайелю, если увидит в них рациональное зерно.

Дарвин получил статью Уоллеса четыре месяца спустя, 18 июня 1858 года, и был в растерянности, не зная, что теперь делать. Двадцать лет он осторожничал, молчал и искал подтверждения своей теории, и вот они упали как будто с неба. В тот же день он сделал такую краткую запись:

Я никогда не видел более поразительного совпадения. Если бы Уоллес прочел мою диссертацию 1842 года, то не мог бы лучше изложить ее суть!

Но друзья — Чарльз Лайель и Джозеф Долтон Гукер — разрешили сомнения Дарвина. Они договорились, что теории Уоллеса и Дарвина будут обсуждаться без авторов в июле, на следующем заседании Общества Линнея в Лондоне.

Бумаги мало чем различались. Однако Дарвина толкали под локоть. Уоллес, как писал Дарвин, был человеком благородным и великодушным. Так что Дарвин написал «Происхождение видов» и опубликовал в конце 1858 года. Книга сразу стала сенсацией и бестселлером.

Теория эволюции путем естественного отбора — безусловно, самая важная научная теория XIX века. Первоначально ее встретил шквал дурацких острот. Когда они стихли, мир стал другим — он стал миром движения. Творение не статично, оно изменяется со временем так, как физические процессы не изменяются. Физический мир 10 миллионов лет назад был таким же, как сегодня, и его законы были такими же. Живой мир — совсем иное, десять миллионов лет назад на Земле не было человека. Он появился в результате длительного процесса развития, получившего название «эволюция». В отличие от физики каждое обобщение в биологии — это срез во времени, эволюция — это настоящий создатель всего оригинального и нового во Вселенной.

Если это так, то существование каждого из нас восходит к возникновению жизни на Земле. Дарвин и, конечно же, Уоллес, отслеживая эволюционные процессы, изучали археологические находки (ископаемые окаменелости) и современные скелеты, сравнивали поведение. Однако кости, и окаменелости, и поведение — очень сложные системы, состоящие из простых и более древних частей. Какими были самые простые первые единицы? Предположительно, это были молекулы, являющиеся отличительными признаками жизни.

По этой причине, когда мы изучаем происхождение жизни на Земле, мы все глубже и глубже погружаемся в химию. Кровь, какая она есть сейчас, прошла через миллионы этапов, от самых первых молекул, способных к воспроизводству более чем три тысячи миллионов лет назад. Это эволюция в современном понимании. Процессы, приведшие к возникновению крови, частично определялись наследственностью (которую ни Дарвин, ни Уоллес не понимали), а частично химической структурой (которая опять же находилась в ведении французских ученых, а не британских натуралистов). Таким образом, объяснения даются сразу из нескольких областей, но их кое-что объединяет. Они описывают дивергенцию видов как происходящую поэтапно, последовательно, — это подразумевается, если принять теорию эволюции за верную. И с того момента больше невозможно стало верить, что жизнь можно воссоздать в любую секунду.

Теория эволюции подразумевает, что не все виды живых существ появились на Земле одновременно. Критики теории в основном ссылались на Библию. Но большинство людей считали, что творение не завершилось на Библии. Они думали, что крокодилы в Ниле появляются из ила и грязи под влиянием солнца, мыши разводятся сами по себе в кучах старой одежды, трупные мухи происходят из тухлого мяса, личинки фруктовых червей рождаются внутри плодов (а иначе как они туда попадают?). Все эти создания возникли спонтанно, без участия предков.

В очень древние сказания о самозарождении живых существ многие верят и сегодня, хотя Луи Пастер красиво опроверг их в 1860-х годах. Он проделал большую часть этой работы в родительском доме в Арбуа, департамент Юра, куда любил приезжать каждый год. До того он уже изучил процессы брожения, в частности молочного брожения (слово «пастеризация» напоминает нам об этом). Он был на пике своего расцвета в 1863 году (ему было 40 лет), когда французский император обратился к нему с просьбой решить проблему брожения вина. Задача была с блеском решена через два года. Это оказалось очень кстати, потому что 1864 год остался в истории французского виноделия как один из лучших.

«Вино — это море организмов, — писал Пастер. — За счет одних оно живет, за счет других оно портится». В этой мысли поражают две вещи. Во-первых, он обнаружил молекулы, живущие без кислорода. Именно они были основной проблемой виноградарей, и именно они сыграли решающую роль в нашем понимании того, как зарождалась жизнь, когда на Земле еще не было кислорода. Во-вторых, Пастер сумел создать уникальную технику, которая позволила увидеть признаки жизни в жидкости. В двадцатилетием возрасте он создал себе репутацию, показав, что это микроорганизмы с характерной формой. И затем он продемонстрировал, что они наложили свой отпечаток на весь процесс жизни. Открытие Пастера было настолько глубоким и захватывающим, что лучше дать возможность самому микробиологу рассказать о нем:

Как за один прием обработать большой объем урожая, заставить ли тесто подняться, превратить ли молоко в простоквашу, заделать ли прошлогоднюю листву в почву для получения перегноя? Должен признать, что в своем исследовании я давно руководствовался идеей, что структура вещества, с точки зрения леворукости и праворукости, играет важную роль в самых глубинных законах организации живых существ и проникает в самые темные уголки их физиологии.

Правая рука, левая рука, это была серьезная подсказка, которую Пастер использовал в своем изучении жизни. Мир полон вещей, чья правая версия отличается от левой: штопор для правшей, улитка с панцирем, закрученным вправо или влево, и прочие аналогичные объекты. В этом плане наиболее репрезентативны две руки человека — правая и левая. Структурно обе верхние конечности представляют зеркальное отображение друг друга, однако невозможно повернуть их так, чтобы они стали взаимозаменяемы. Во времена Пастера было известно, что аналогичной особенностью обладают виннокислые кристаллы, имеющие правые и левые версии.

Пастер изготовил деревянные модели таких кристаллов (он обладал незаурядными способностями рисовальщика, скульптора и художника-декоратора) и, что гораздо важнее, разработал их интеллектуальные модели. В первом исследовании он натолкнулся на мысль, что должны существовать также правые и левые молекулы, и это их свойство, а не кристаллов. Свойство должно находить отражение в поведении молекул в любой несимметричной ситуации. Например, если поместить эти кристаллы в раствор и направить поляризованный (несимметричный) луч света, то молекулы одного вида (Пастер называл их правыми) должны вращать плоскость поляризации света влево. Раствор кристаллов одного типа будет вести себя несимметрично по отношению к несимметричному лучу света, образуемому поляриметром.

Удивительно, но химический раствор из живых клеток ведет себя точно так же. Мы до сих пор не знаем, почему жизнь имеет столь странное химическое свойство. Остается несомненным факт его существования. Кроме того, именно эта особенность сохраняется на протяжении всей эволюции жизни во Вселенной.

Зеркальность, но не взаимозаменяемость правой и левой рук человека натолкнули Пастера на идею эксперимента с деревянными моделями правых и левых виннокислых кристаллов.

Заслуга Пастера заключается в том, что он сумел связать все формы жизни с одним типом химической структуры. Из этого фундаментального умозаключения следует, что мы можем связать эволюцию с химией.

Сегодня теория эволюции больше не является предметом баталий, потому что ее современные доказательства гораздо убедительнее, богаче и разнообразнее, чем это было по времена Дарвина и Уоллеса. Самый интересный аргумент основан на биохимических процессах, проходящих в нашем теле.

Давайте рассмотрим их на практическом примере: я могу поднять руку в любой момент, потому что мышцы содержат запас кислорода, который доносит белок миоглобин, состоящий из без малого ста пятидесяти аминокислот. Их число одинаково, что у человека, что у всех других животных, в обмене у которых присутствует миоглобин. Однако сами аминокислоты несколько отличаются: между человеком и шимпанзе разница в одной аминокислоте, между человеком и галаго (низшими приматами) — в нескольких, между человеком и овцой или мышью — разница в количестве аминокислот заметно возрастает. Таким образом, количество аминокислот — мера эволюционного расстояния между человеком и другими млекопитающими.

Из этого следует, что истоки эволюции следует искать в построении молекул, которое началось с веществ, бурливших на Земле в начале времен. Говорить всерьез об истоках жизни следует, опираясь на реальные факты. Для этого надо задать такой исторический вопрос: из чего состояла атмосфера на поверхности Земли четыре триллиона лет назад, когда планета была очень молода и безжизненна?

На сегодняшний день мы знаем приблизительный ответ: атмосфера нагнеталась из недр земли, поэтому особенно хорошо формировалась в тех районах, где были вулканы, паровые котлы, полные азота, метана, аммиака и других восстановительных газов, самый известный из которых — углекислый. Лишь один газ отсутствовал в атмосфере — в ней не было свободного кислорода. Это важно, потому что он производится растениями, значит, появляется только с возникновением жизни.

Эти газы и их продукты, слабо растворенные в океане, образовали восстановительную атмосферу. Как они реагировали на электрические разряды молнии и ультрафиолетовое излучение Солнца — крайне важное в любой теории происхождения жизни, так как оно проникает без кислорода? На этот вопрос ответил красивый эксперимент Стэнли Миллера в 1950-х годах. Он поместил в замкнутый цикл (стеклянные колбы, соединенные запаянными прозрачными трубками) смесь метана, аммиака, воды и других веществ и начал нагревать их день за днем, пропускать между ними электрические заряды (имитации молний) и воздействовать на них иными агрессивными способами. Через некоторое время смесь газов заметно потемнела. При анализе полученного «бульона» ученый установил, что в нем сформировались аминокислоты. Это было очень важным шагом вперед в теории эволюции, потому что аминокислоты являются строительными блоками жизни. Из них формируются белки, а белки — основной строительный материал всех живых существ.

Мы раньше думали, что жизнь зародилась в таких теплых и наэлектризованных условиях. Однако ученые доказали, что она могла возникнуть в другой экстремальной ситуации — во льдах. На первый взгляд эта мысль кажется странной. Однако стоит помнить, что лед имеет два ключевых свойства, делающих его пригодной средой для образования простых основных молекул. Во-первых, процесс замерзания формирует большие концентрации веществ, которые в начале времен были растворены в океане. Во-вторых, кристаллическая структура льда позволяет молекулам выстраиваться определенным образом, крайне важным для каждого этапа зарождения жизни.

Лесли Оргел провел ряд элегантных и остроумных экспериментов. Я опишу только самый простой из них. Он взял несколько основных компонентов, которые несомненно присутствовали в атмосфере Земли на заре времен. В их число вошли синильная кислота (цианистый водород) и аммиак (нитрит водорода). Ученый растворил их в воде, заморозил и выдержал полученный лед в морозильной камере несколько дней. По прошествии этого времени он увидел, что материал приобрел форму крошечного айсберга на верхушке, а небольшое количество цвета указывало на то, что были сформированы органические молекулы. Без всякого сомнения, Оргел получил аминокислоты. Больше того, он сумел получить одну из четырех главных аминокислот ДНК — аденин. Эксперимент Оргела позволил предположить, что ДНК формировалась не в условиях тропиков, а во льдах.

Таким образом, проблема происхождения жизни не в том, как молекулы стали усложняться, а в том, как появились простейшие молекулы, способные к самопроизводству. Вопрос о происхождении жизни — это вопрос о том, были ли основные молекулы, обнаруженные нынешним поколением биологов, образованы естественными процессами. Мы знаем, что ищем в начале жизни: простые основные молекулы, как так называемые основания (аденин, тимин, гуанин и цитозин), составляющие спираль ДНК, которая самопроизводится при делении любой клетки. В дальнейшем организмы все более усложнялись, поэтому изучение их стало статистической задачей. Ведь эволюция сложных структур — процесс статистический.

Естественным образом возникает следующий вопрос: могли бы эти самопроизводящиеся молекулы появиться много раз и во многих местах? Полного ответа пока нет. Ясно одно: жизнь сегодня управляется всего несколькими молекулами — теми самыми основаниями ДНК. Они могут объяснить, почему каждое живое существо — от бактерии до слона, от вируса до розы — наследует признаки своих предков. И вот вывод, который мы можем сделать уже сегодня: это единственные атомные образования, способные к самовоспроизводству.

Тем не менее такого мнения придерживаются далеко не все биологи. Большинство ученых считают, что природа наверняка способна изобрести другие образования с репликацией, и возможностей уж точно больше четырех. Если это верно, то наша жизнь зиждется только на известных нам четырех основаниях потому, что так случилось, что она началась именно с них. В этой интерпретации четыре основания считаются доказательством того, что жизнь зародилась лишь однажды. Если бы возникло новое образование, оно просто не могло бы связаться с уже существующими живыми формами. Теперь, конечно, уже никто не думает, что жизнь на Земле произошла из ничего.

Биология процветала в промежутке между двумя великими и продуктивными идеями, который продлился около ста лет. Одна из них — теория эволюции и естественного отбора, придуманная Дарвином и Уоллесом. Второй стало открытие, совершенное в XX столетии, позволившее выразить жизнь в химических формулах, которые демонстрируют ее неразрывную связь с природой в целом.

Уникальны ли химические вещества, обнаруженные на Земле? Мы привыкли думать именно так. Однако недавно обнаруженные доказательства заставляют нас пересмотреть эту точку зрения. Недавно в межзвездных пространствах обнаружены спектральные следы молекул цианистого водорода, цианоацетилена и формальдегида, которые предположительно не могли образоваться в столь ледяных областях. Мы были уверены, что подобные вещества существуют только на Земле, и нигде больше. Может оказаться, что жизнь во Вселенной имеет более разнообразные формы и источники. Однако из этого предположения отнюдь не следует, что эволюция в другом месте обязательно будет напоминать нашу, а также то, что мы обязательно распознаем ее как жизнь, а она признает в нас живых существ.

Глава 10. Мир внутри мира

В природе существует семь базовых форм кристаллов, окрашенных во множество разных оттенков. Формы всегда привлекали людей — и как фигуры в пространстве, и как характеристики материи. Древние греки полагали, что природные элементы были сформированы как правильные геометрические тела. И сейчас нам известно, что форма кристалла может рассказать кое-что об атомах, которые его составляют, они помогают классифицировать атомы по типам. Таков мир физики нашего века, а окно в него приоткрыли кристаллы.

Из всего многообразия кристаллов самым скромным на вид считается простой бесцветный хрусталик поваренной соли. Но он же остается одним из важнейших. В течение тысячи лет добывают соль в соляной шахте Величка, расположенной возле Кракова, древней столицы Польши. Здесь с XVII века сохранились деревянные стены шахт, машины и механизмы, работавшие на лошадиной тяге. Возможно, здесь бывал алхимик Парацельс во время своих восточных странствий. Он круто изменил направление алхимии, объявив в начале XVI века, что среди элементов, составляющих человека и природу, есть соль. Она необходима для жизни, поэтому всегда имела символическое значение во всех мировых культурах. Древнеримские воины получали за службу «соленые деньги» (salt money), отсюда произошло слово salary (зарплата). Во многих романо-германских языках устаревшее и современное названия жалованья остались однокоренными словами, потому что под словом «соль» наши предки подразумевали деньги. На Ближнем Востоке до сих пор скрепляют сделку солью, по «завету соли» в Ветхом Завете.

В одном Парацельс ошибался: соль не является химическим элементом в современном смысле. Она состоит из двух элементов — натрия и хлора. Само по себе достаточно примечательно, что обычную соль составляют шипучий и желтоватый ядовитый газ. Натрий относится к щелочным металлам, хлор — к активным галогенам. Кристаллы соли всегда остаются квадратными и прозрачными, даже если мы заменим элемент одной группы на другой. Например, натрий можно заменить калием: получится хлорид калия. Аналогично, в другой группе, вместо хлора можно взять бром: получится бромид натрия. Даже если произвести двойное изменение (вместо натрия взять литий, вместо хлора — фтор, получив фторид лития), все равно кристаллы на вид будет невозможно отличить.

Почему родственные элементы проявляют сходные химические свойства? В 1860-х годах все ломали голову над этим вопросом, и несколько ученых пришли к одинаковым выводам. Эту задачу решил Дмитрий Иванович Менделеев, который посещал упомянутую нами соляную шахту Величка в 1859 году. К тому времени ему исполнилось двадцать пять лет. Скромный, бедный, очень трудолюбивый и необыкновенно одаренный молодой человек, Менделеев происходил из многодетной семьи и был самым младшим из четырнадцати детей. Его рано овдовевшая мать, беззаветно любившая своего сына, отдала все свои силы и здоровье на то, чтобы он мог учиться и реализовать в науке свои блестящие задатки.

Менделеева отличала не только гениальность, но и страсть к химическим элементам.

Дмитрий Иванович Менделеев.

Однако Менделеева отличала не только гениальность, но и страсть к химическим элементам. Они стали его друзьями, ученый знал каждую причуду каждую особенность поведения любого из них. Элементы отличались по одному базовому свойству а именно атомному весу который был открыт Джоном Дальтоном в 1805 году Как свойства, которые отвечали за их одинаковость или разность, могут вытекать из одной заданной константы? Этот вопрос стал основной проблемой, над решением которой он старательно бился на протяжении долгих лет. Он изготовил карточки — по числу открытых элементов — и пытался понять, как их лучше разложить. Друзья Менделеева называли эту игру «Терпение».

Менделеев написал на карточках названия химических элементов и указал атомный вес каждого из них. Затем раскладывал их в вертикальные колонки, группируя в порядке увеличения атомной массы. С самым легким элементом — водородом — он не знал, что делать, и отложил карточку в сторону. Следующим шел гелий. К счастью, во времена Менделеева он еще не был открыт, иначе гелию пришлось бы стать индивидуалистом.

Менделеев начал свою первую колонку слития — самого легкого после водорода, за ним ученый поставил бериллий, потом бор, углерод, азот, кислород и завершил столбик фтором. Следующим по массе шел натрий, и поскольку он походил на литий, Менделеев решил начать заново и сформировать вторую колонку рядом с первой. В ту же колонку Менделеев поместил магний, алюминий, кремний, фосфор, серу и хлор. Она содержала, так же как и в первом случае, семь элементов, а хлор примыкал к фтору.

Очевидно, в последовательности атомных масс прослеживалась какая-то система. Он продолжил раскладывать карточки, ориентируясь на атомные массы. После хлора шел калий, затем кальций. Таким образом, первый ряд включал литий, натрий и калий — все щелочные металлы, а второй ряд — бериллий, магний и кальций — металлы, также обладающие сходными свойствами. То есть горизонтальные ряды были небессмысленны: они составляли группы. Менделеев подобрал математический ключ к классификации химических элементов.

Карточки для игры «Терпение», придуманной Менделеевым. Они разложены в порядке увеличения их атомной массы, элементы образуют группы.

Если классифицировать элементы по атомному весу отсчитать семь ячеек для вертикальной колонки и начать заново, то в горизонтальных рядах мы получим элементы, принадлежащие к одному классу.

До сих пор мы можем следовать схеме Менделеева без помех, как он и придумал ее в 1871 году два года спустя после первого наброска. Ничего не сбивается, пока мы не доходим до третьей колонки, — и тут мы неизбежно сталкиваемся с первой проблемой. Почему неизбежно? Как вы видели на примере гелия, Менделееву не были известны все элементы. К тому времени было открыто только 63 химических элемента из 92, которые знаем мы сегодня. Первый пробел образовался в третьей ячейке третьей колонки.

Я сказал, что Менделеев наткнулся на пробел, но на самом деле это слово свидетельствует о гениальности его размышлений. На третьей ячейке третьей колонки Менделеев столкнулся с трудностью и решил ее, интерпретировав как пробел. Он сделал так, потому что титан (следующий по атомной массе химический элемент) не обладает химическими свойствами и характеристиками бора и алюминия, с которыми он должен был бы встать в один ряд. Менделеев записал в дневнике: «После кальция перед титаном я оставил пробел, потому что элемент, который должен занять это место, пока еще не открыт. Титан же я поместил в одну группу с углеродом и кремнием».

Идея отсутствующих элементов была продиктована научным вдохновением. Эти было практической реализацией того, что Фрэнсис Бэкон в общих словах сформулировал давным-давно: убеждения, что новые законы природы могут быть выведены или угаданы на основании старых. Догадка Менделеева продемонстрировала, что индукция в руках ученого — более тонкий инструмент, чем предполагали Бэкон и другие философы. В науке мы не можем продвигаться строго линейно от известных случаев к неизвестным. Скорее, мы разгадываем кроссворд: есть данные по горизонтальным осям и вертикальным, в отдельных точках они пересекаются, давая подсказки. Менделеев исследовал упорядоченные по атомной массе элементы в колонках и их сходство в рядах, чтобы увидеть пробелы в пересечениях. Он сделал практические предсказания и показал, как ученые на самом деле пользуются индукцией.

Очень хорошо: наибольший интерес представляют пустые ячейки в третьей и четвертой колонке. Я не стану продолжать рассказ о том, как строилась система, ограничусь замечанием, что если учесть промежутки и пойти вниз, то колонка оканчивается где и должна — бромом из группы галогенов. Из всех пропусков Менделеев выделил три. Первый располагался в третьей строке третьей колонки, второй и третий — в третьем и четвертом ряду четвертой колонки. Менделеев предсказал, что в скором времени на месте этих пробелов будут вписаны химические элементы с теми же свойствами, которыми обладают классы веществ в третьем и четвертом горизонтальных рядах.

Последовательность атомных масс не случайна, а систематична.

Ранний набросок Периодической системы химических элементов Менделеева, 1869 год.

Самый известный из прогнозов Менделеева и последний из подтвержденных был третий, который он назвал «эка-кремний». Он описал свойства этого странного и очень важного вещества с огромной точностью за двадцать лет до его открытия в Германии. Но новый химический элемент не получил названия, предложенного Менделеевым, его стали именовать германием. Менделеев определил, что «эка-кремний будет иметь свойства, промежуточные между кремнием и оловом», что его атомная масса будет в 5,5 раза больше, чем у воды (и оказался прав!), а его оксид будет в 4,7 раза тяжелее воды (и опять же не ошибся!). Менделеев очень точно описал и другие химические свойства металла.

Предсказания Менделеева сделали его известным во всем мире, но не в России, потому что царь не одобрял его либеральных взглядов. Англичане открыли целый ряд новых элементов — гелий, неон, аргон, что упрочило его авторитет. Однако в Российскую академию наук его так и не приняли, хотя во всем мире его имя было широко известно.

Но давайте пройдем дальше. Мы установили, что классифицировать атомы можно по числу. Но все-таки не могло быть так, чтобы все свойства элемента выводились из одной цифры, его атомной массы, которая скрывает — что? Масса атома может служить мерой его сложности. А если это так, то она должна скрывать некую внутреннюю структуру, которая придает ему физическую форму и определяет его химические свойства. Конечно, такая идея была немыслима во времена, когда атом считался неделимым.

Переломный момент наступил в 1897 году, когда Джозеф Джон Томсон из Кембриджа открыл электрон. Да, у атома есть составные части, он не неделим, на что намекает перевод его названия с греческого. Электрон — малая толика его массы, вполне реальная, несущая электрический заряд. Значит, каждый элемент имеет еще одну характеристику — число электронов в атоме. И их количество в точности равно номеру позиции, которую элемент занимает в таблице Менделеева, если учесть, что водород и гелий расположены под номерами один и два.

Таким образом, у лития три электрона, у бериллия — четыре и т. д. Таким образом, каждый элемент получил атомный номер, который соответствует его месту в таблице Менделеева. Внимание сместилось с атомной массы на атомный номер, а следовательно, что важно, — на атомную структуру.

С этого интеллектуального прорыва начинается современная физика и ее серьезные, «взрослые» открытия. Физика становится грандиозным коллективным трудом в науке и даже шире — грандиозным коллективным трудом в искусстве XX века.

Идея о том, что у атома есть структура — целый мир, захватила воображение художников сразу. Это видно по работам, которые начали создавать живописцы с первых же годов XX века. Например, серии полотен Умберто Боччони «Силы улицы» или картина «Динамизм велосипедиста». Современное искусство зарождалось одновременно с современной физикой, поскольку берет начало в тех же идеях.

Со времен публикации Ньютоном «Оптики» художников завораживали цветные поверхности вещей. В XX веке все изменилось. Как рентгеновский аппарат, художник смотрел на кость, скрытую плотью, и другие структуры, которые изнутри определяют общую форму предмета или тела. Такие художники, как Хуан Грис, занимались анализом структуры. Вспомните природные формы в его «Натюрморте» или человеческие формы в «Пьеро».

Художники-кубисты были без ума от кристаллов. Жорж Брак, например, воплощает в их формах селение на склоне горы в пейзаже «Дома в Эстаке», Пабло Пикассо использует этот прием для изображения женских фигур в групповом портрете «Авиньонские девицы». Начинался кубизм со знаменитого холста Пикассо «Портрет Даниэля-Генри Конвейлера». Художник отказался от традиционного изображения лица в пользу геометрии: голова натурщика разобрана на математические элементы, затем собрана, как реконструкция, сотворена заново.

Поиск скрытой структуры манил живописцев Северной Европы. Франц Марк, например, выполнил в этой манере пейзаж «Олень в лесу». Полотно художника Жана Метценже «Женщина на лошади», любимого многими учеными, купил Нильс Бор. Он был известным коллекционером живописных работ и хранил их в своем доме в Копенгагене.

Есть два четких различия между произведением искусства и научной работой. Во-первых, художник разбивает мир на фрагменты, а затем собирает их на одном холсте. Во-вторых, в процессе работы вы можете наблюдать за его мыслью. (Например, Жорж Сёра написал «Портрет молодой женщины с пуховкой» и «Ле Бек-дю-Хок. Грандкамп», ставя одну цветную точку рядом с другой — и так до тех пор, пока не возникла картина.) Ни то ни другое не применимо к научной работе. Она зачастую носит строгий аналитический характер, и процесс мышления скрыт за обезличенными формулировками.

В качестве темы для беседы я избрал Нильса Бора — одного из отцов-основателей физики XX века, поскольку в обоих отношениях он был великим художником. У него никогда не было готовых ответов. Даже лекции он начинал со слов: «Каждое предложение, которое я произношу, следует рассматривать как вопрос, а не как категорическое утверждение». Первое, что он поставил под вопрос, — строение Вселенной. И все, кто работал с ним, — начинающие и опытные исследователи — раскладывали мир на части, анализировали и заново собирали.

Начинал Нильс Бор вместе со своим однокурсником Эрнестом Резерфордом в 1910-х годах в лаборатории Томсона, выдающегося экспериментального физика. (Томсон и Резерфорд занялись наукой, следуя воле своих овдовевших матерей, впрочем, как и Менделеев). Резерфорд стал впоследствии профессором Манчестерского университета. А в 1911 году он предложил новую модель атома. Он утверждал, что основная масса атома находится в тяжелом ядре в центре, вокруг которого по орбитам кружатся электроны, как планеты вокруг Солнца. Безусловно, блестящая концепция! И какая ирония: спустя три столетия возмутительные идеи Коперника, Галилея и Ньютона вошли в научный оборот как нечто совершенно очевидное и естественное. Такое нередко бывает с гипотезами, которые опережают свое время.

Тем не менее не все с моделью Резерфорда было гладко. Если атом представляет собой маленький механизм, что обеспечивает движение в нем? Это что, маленький вечный двигатель, единственный, которым мы располагаем? Планеты, двигаясь по орбитам, постоянно теряют энергию. Следовательно, их орбиты становятся с каждым годом немного меньше, а со временем эти небесные тела непременно упадут на Солнце. Если электроны двигались бы так же, как планеты, то падали бы на ядро. Либо что-то должно предохранять их от постоянной потери энергии. Должен быть какой-то физический закон, который ограничивал бы потерю электроном энергии определенной величиной.

Этот закон Нильс Бор обнаружил в работе Макса Планка, опубликованной в Германии в 1900 году. Планк показал, что в мире, в котором материя состоит из кусочков, энергия тоже должна быть кусочками, или квантами. Сегодня это не кажется таким уж странным, но в начале XX века идея Планка была революционной. Он это отлично осознавал, поэтому однажды, как обычно отправившись с сыном на прогулку, которую академики всего мира совершают после обеда, он сказал ему: «Я совершил революционное открытие, равное по значимости идеям Ньютона». И это было именно так.

В настоящее время задача, которую решил Нильс Бор, кажется нам очень легкой: с одной стороны, он имел модель атома, описанную Резерфордом, с другой — квант, открытый Планком. Что же замечательного в том, что в 1913 году он, будучи двадцатисемилетним молодым человеком, сумел составить современное представление о структуре атома? Ничего, кроме великолепного процесса мышления, великолепной и удачной попытки синтеза. И идеи поискать доказательство в том единственном месте, где оно может быть: в спектре, где поведение атома становится наблюдаемым для нас.

Чудесная, волшебная идея Бора! Внутрь атома мы заглянуть не можем, но есть окно, целый витраж: спектр атома. Каждый элемент имеет собственный спектр, но не непрерывный, как спектр белого света в опыте Ньютона. Спектр имеет некое число ярких линий, которые характеризуют конкретный элемент. Например, у водорода три достаточно яркие линии в видимом спектре: красная, сине-зеленая и синяя. Бор считал, что эти линии — след высвобождения энергии, которая образуется, когда электрон перескакивает с одной из внешних орбит на внутреннюю.

Пока электрон в атоме водорода остается на одной орбите, он энергии не излучает. Каждый раз, когда он перемещается с внешней орбиты на внутреннюю, разность энергий орбит создает квант света. Эти кванты, испускаемые миллиардами атомов одновременно, мы видим как характерную для водорода линию. Красная линия в спектре водорода означает, что поток электронов перескакивает с третьей орбиты на вторую, сине-зеленая черта демонстрирует, что происходит переход с четвертой орбиты на вторую.

Работа Нильса Бора «О строении атомов и молекул» сразу стала классической. Структура атома обрела математическое толкование, как некогда Вселенная Ньютона, и включала квант в качестве дополнительного принципа. Ученый построил мир внутри атома, расширив законы физики, которые выстояли два века после Ньютона. Его возвращение в Копенгаген было триумфальным. Отныне этот город станет постоянным местом его работы. В 1920 году благодарные земляки построят институт, которому присвоят имя Нильса Бора. Сюда, в это солидное научное учреждение, будут съезжаться молодые ученые из Европы, Америки, Дальнего Востока, чтобы обсудить проблемы квантовой физики. В институт часто приезжал из Германии Вернер Гейзенберг. Здесь при поддержке Бора и его учеников он разработал свои самые интересные идеи. По-другому и быть не могло — Нильс Бор не позволил бы никому остановиться на полпути.

Интересно проследить этапы подтверждения боровской модели атома, поскольку они воспроизводят жизненный цикл любой научной теории. Сначала она существует только на бумаге. Для подтверждения модели берутся известные данные. Конкретно, показывается, что у спектра водорода есть линии, давно известные, расположения которых соответствуют квантовым переходам электрона с одной орбиты на другую.

Следующий этап исследований — расширенное подтверждение нового феномена. В нашем случае это линии в высокоэнергетической рентгеновской области, невидимой глазу, но образуемой таким же образом электронными скачками. Этой работой занималась в 1913 году лаборатория Резерфорда и достигла прекрасных результатов, подтвердив все предсказанное Бором. Эксперимент проводил Гарри Мозли, двадцатисемилетний очень одаренный физик, к великому сожалению, не смог сделать в науке ничего, потому что в 1914 году был призван в армию и трагически погиб в 1915 году в ходе тяжелых боев на полуострове Галлиполи (Турция). Дарданелльская операция стоила жизни многим молодым людям, например поэту Руперту Бруку. Работа Мозли, как и Менделеева, предполагала отсутствие некоторых элементов, и один из них был открыт в лаборатории Бора и назван гафнием, по латинскому названию Копенгагена. Бор объявил о своем открытии в нобелевской речи в 1922 году. Тема его выступления знаменательна, потому что в ней Бор в деталях описал то, что почти поэтически изложил в другом выступлении, а именно как понятие кванта постепенно привело к систематической классификации видов стационарных связей электронов внутри атома, предлагая полное объяснение особенных отношений между физическими и химическими свойствами элементов, нашедших выражение в знаменитой периодической таблице Менделеева. Такая интерпретация свойств материи реализует и даже превосходит мечты пифагорейцев, создавших древний идеал сокращенной формулировки законов природы, изложенной в простых числах.

И как раз в момент, когда кажется, что все складывается как нельзя лучше, теория Бора, впрочем, как любая другая идея, достигает своих границ возможного. Она начинает чахнуть, испытывая своего рода ревматические боли. Затем вдруг приходит осознание того, что структура атома так и осталась для нас загадкой. Мы только разбили скорлупу. Но внутри есть яйцо с желтком (ядром), и мы совсем ничего о нем не знаем.

Нильс Бор был человеком, знавшим толк в созерцании и наслаждении. Полученную Нобелевскую премию он потратил на покупку дома в сельской местности. Его любовь к искусствам распространялась и на поэзию. Он говорил Гейзенбергу: «Когда дело доходит до атомов, надо переходить на язык поэзии. Поэта не волнуют описания фактов, он озабочен только созданием образа». Весьма неожиданная мысль, хотя верная: когда речь идет о невидимой материи (например, об атоме) в буквальном смысле, начинается игра образов. Иного способа поговорить о невидимом не придумано ни в природе, ни в искусстве, ни в науке.

Шагнув в мир атомов, мы оказываемся там, где наши органы чувств неприменимы. Мы можем только пытаться представить себе строение этого мира по аналогии с чем-то нам уже известным, пустив в ход воображение. Воображение опирается на личный опыт, который человек получает через органы чувств от внешнего материального и реального мира, потому что наши слова описывают только этот мир. Все остальное — невидимое — мы можем описать метафорами, сравнениями и другими фигурами речи.

После того как мы узнали, что атомы не являются конечными, неделимыми строительными блоками материи, мы можем только попытаться выстроить модели того, как эти блоки связаны между собой и как они действуют сообща. Модели призваны показать нам на аналогии, каково строение материи. Тестируя модели, мы разбираем материю на части, как будто раскалываем бриллиант, чтобы увидеть структуру кристалла.

Восхождение человека — это с каждым шагом все более богатый синтез, но каждый шаг — это попытка анализа: глубокого анализа, мира внутри мира. Когда выяснилось, что атом делим, появилось предположение, что он должен иметь неделимый центр, ядро. Потом, в 1930-х годах, модель стала нуждаться в новом уточнении, поскольку оказалось, что и ядро нельзя считать неделимой частицей реальности.

В сумерках, на шестой день Творения, согласно древнееврейским толкованиям Ветхого Завета, Бог дал человеку все необходимые для творчества инструменты. Будь создавшие те толкования мудрецы живы сегодня, они бы написали, что Бог создал нейтрон. Вот оно, в Оук-Ридже штата Теннесси — синее свечение, представляющее собой след от нейтронов: видимый палец Бога, касающегося Адама на картине Микеланджело — не дыханием, а энергией.

Однако ни к чему начинать историю с таких древних времен. Переместимся в 1930-й год. Ядро атома тогда казалось непоколебимым, каким когда-то казался и атом. Проблема заключалась в том, что его невозможно разложить: нужного количества частей не получается. Ядро несет положительный заряд (в противовес отрицательно заряженным электронам), равный атомному номеру. Но масса ядра по-разному соотносится с зарядом. Например, для самого легкого элемента (водорода) они равны, но в тяжелых элементах масса может превосходить заряд в два раза. Это было необъяснимо до тех пор, пока ученые не отказались от идеи, что все дело в электричестве.

Это глубоко укоренившееся представление разрушил Джеймс Чедвик, который в 1932 году доказал, что ядро состоит из частиц двух типов — протонов (положительно заряженных) и нейтронов (нейтральных). У всех химических элементов (за исключением водорода) обе частицы практически равны по массе. У водорода самое простое ядро — оно состоит из одного протона.

Нейтрон — новый вид исследования, своего рода пламя алхимика, потому что, не имея никакого электрического заряда, он, будучи запущен в ядра атомов без электрического возмущения, изменяет их. Современным алхимиком, который сумел воспользоваться этим новым инструментом, стал Энрико Ферми из Рима.

Энрико Ферми был весьма странной фигурой. Я в те поры не встречался с ним, потому что в 1934 году Рим находился под властью Муссолини, Берлин попал в руки Гитлера, и мне как еврею поездка в эти города была тогда категорически противопоказана. После войны мы с Ферми пересеклись в Нью-Йорке.

Тогда он поразил меня глубоким и тонким умом. Пожалуй, я могу назвать его умнейшим из всех людей, с которыми мне довелось встречаться, разве что за одним исключением. Он был некрупным человеком невысокого роста, но атлетического телосложения, с энергичными и резкими движениями. Решения всегда принимал очень четкие и правильные, уверенно действуя так, словно видел все вещи досконально.

Итак, Ферми начал облучать элементы нейтронами и приступил к изучению нейтронов, содержащихся в ядре каждого элемента, и миф о трансмутации в его руках начал сбываться. Ферми замедлил движение нейронов водой и создал ядерный реактор. Произошло это в городе Оук-Ридж, штат Теннесси.

Трансмутация была многовековой мечтой человечества. Меня, человека с теоретическим складом ума, больше всего поразили 1930-е годы, когда стала проясняться эволюция природы. Поясню свою мысль подробнее. Я начал с Сотворения мира, вернемся же к нему. Согласно теологическим толкованиям архиепископа Джеймса Ашера из Арма, сделанным в 1650 году, Вселенная была создана в 4004 году до н. э. Находясь в плену догм и невежества, архиепископ ни в коем случае не допускал опровержения этой даты. Он, а вслед за ним и другие клирики называли точно год, число, день недели и даже час, которые я, к счастью, забыл. Но вопрос о возрасте нашего мира оставался, и оставался парадокс, вплоть до 1900-х годов, потому что было ясно, что Земле много, много миллионов лет, но невозможно было понять, откуда в Солнце и в звездах взялось столько энергии, чтобы они смогли существовать так долго. Конечно, у человечества уже были уравнения Эйнштейна, из которых следовало, что потеря вещества производит энергию. Но как преобразуется материя?

Итак, дверь в понимание того, в чем заключается суть энергии, нам приоткрыл Чедвик. В 1939 году Ханс Бете, работавший в Корнельском университете, впервые точно описал процесс превращения водорода в гелий в недрах Солнца, при котором потеря массы стремится к нам как щедрый энергетический дар. Я так страстно и горячо рассказываю, потому что для меня это не просто воспоминания, а важное событие. Объяснения Бете я помню так же ярко, как день собственной свадьбы, а последовавшие за открытием американского физика шаги — как рождение своих детей. Ведь впоследствии обнаружилось (и, как я полагаю, было окончательно доказано в 1957 году), что в звездах происходят процессы, при которых атомы становятся все более и более комплексными структурами. Материя эволюционирует. Само слово «эволюция» связано с Дарвином и биологией, но именно оно изменило физику в современное мне время.

Первый шаг эволюции элементов происходит в молодых звездах, таких как Солнце. Водород превращается в гелий, и этот процесс требует очень высоких температур, то, что мы видим на поверхности Солнца, — это только бури, вызванные им. (Гелий был впервые идентифицирован по спектральной линии во время солнечного затмения в 1868 году, вот почему он был назван гелием, ведь тогда он не был найден на Земле.) Итак, время от времени два ядра тяжелого водорода сталкиваются, сливаются и образуют ядро гелия.

Со временем Солнце будет состоять практически из одного гелия, тогда оно станет более горячей звездой, в которой ядра гелия будут образовывать тяжелые атомы. Углерод, например, образуется в звезде, когда три свободных ядра гелия сталкиваются в одной точке в течение менее чем одной миллионной доли миллисекунды. Каждый атом углерода в живом существе — результат такого невероятного столкновения. Помимо углерода образуется кислород, кремний, сера и другие, еще более тяжелые элементы. Наиболее стабильные элементы расположены в середине таблицы Менделеева — между железом и серебром, грубо говоря. Однако процесс построения новых элементов огибает эту группу и продолжается за ее пределами.

Если элементы образуются постепенно один за другим, то почему природа остановилась? Почему мы обнаружили только 92 элемента, последний из которых уран? Чтобы ответить на этот вопрос, мы должны создать элементы за пределами таблицы и подтвердить, что по мере того, как элементы становятся больше, они усложняются и склонны распадаться. Но создавая их, мы должны понимать, что создаем что-то потенциально взрывоопасное. Плутоний, который Ферми получил в историческом графитовом реакторе X-10, стал рукотворным элементом, который продемонстрировал это миру в полной мере.

Первый графитовый реактор.

Экспериментальный графитовый реактор, разработанный группой под руководством Энрико Ферми, приступившей к выполнению проекта 2 декабря 1942 года на площадке для игры в сквош под футбольным стадионом Университета Чикаго.

Я думаю, что до некоторой степени он является данью богу Плутону, владыке подземного мира, который дал свое имя элементу, из-за которого сорок тысяч людей умерло в Нагасаки. Снова в истории человечества одновременно увековечены и великий человек, и множество усопших.

Я должен вновь вспомнить шахту Величку, чтобы разъяснить одно историческое противоречие. Элементы постоянно образуются в звездах, и все же мы привыкли думать, что Вселенная когда-то закончится. Почему? Или каким образом? Мы исходим из наблюдения за работой машин: механизмы всегда потребляют энергии больше, чем производят. Часть теряется при трении, другая уходит из-за износа. В некоторых более сложных машинах, чем древние деревянные кабестаны Велички, энергия теряется в амортизационном устройстве или радиаторе. Одним словом, есть множество причин, по которым она ослабевает. В этом случае мы безвозвратно теряем огромный объем энергии, расходуя на полезную работу только малую ее часть. И существует еще океан энергии, который для нас в этот момент недоступен.

В 1850 году Рудольф Клаузиус отразил эту мысль в основном законе. Он заявил, что есть энергия, которую мы используем, и есть ее остаток, который для нас недоступен. Последний он назвал энтропией и сформулировал знаменитый второй закон термодинамики: энтропия всегда возрастает. Во Вселенной тепло утекает в своего рода озеро, недоступное для нас.

Это была хорошая идея для науки второй половины XIX века, когда тепло считалось жидкостью. Однако оно не материал. По сути, тепло представляет собой случайное движение атомов. Эту простую истину установил австрийский физик Людвиг Больцман. Он дал блестящую новую интерпретацию того, что происходит в машине, в паровом двигателе и во Вселенной.

Когда энергия ослабевает, атомы приходят в более беспорядочное состояние. А энтропия — это мера хаоса: очень глубокий вывод, следующий из новой интерпретации Больцмана. Странно, что у хаоса может быть «мера», но это вероятность конкретного состояния, определенная как количество способов, которым оно может быть собрано из атомов. Больцман выразил это в формуле:

S=KlnW,

где S — энтропия, которая должна быть пропорциональна логарифму.

W — вероятность заданного состояния (К — коэффициент пропорциональности, который теперь называется постоянной Больцмана).

Конечно, хаотичные состояния более вероятны, чем упорядоченные, так как почти каждая совокупность атомов будет случайной, так что, как правило, любое упорядоченное скопление распадается. Но «как правило» не означает «всегда». Неверно, что упорядоченные состояния постоянно скатываются в хаос. Статистический закон утверждает, что порядок стремится к исчезновению. Однако к статистике неприменимо слово «всегда». Она допускает, что в каких-то местах Вселенной (на Земле, на небе, в вас, во мне, в звездах, где угодно еще) установится порядок, тогда как рядом будет царить энтропия.

Очень красивая концепция! Однако остается еще один не изученный нами вопрос, который следует задать. Если мы существуем благодаря вероятности, не может ли быть так, что она слишком мала, чтобы у нас было право здесь находиться?

Обычный человек, задающий этот вопрос, как правило, рассуждает так: мое тело в данный момент состоит из множества атомов. Как безумно малая вероятность, что они собрались вместе и образовали меня! Если бы так и было, мое существование было бы практически невозможным.

Конечно, природа устроена не так. Она творит каждое свое создание постепенно, продвигаясь шаг за шагом: атомы образуют молекулы, молекулы объединяются в аминокислоты, которые формируют в белки — основу клетки. Клетки составляют прежде всего простейших существ, а затем сложных, а затем еще более сложных. Стабильные единицы, составляющие один уровень, или слой, — это сырой материал для случайных слияний, которые производят более сложные образования, у и некоторых из них есть шанс стать стабильными. Пока остается потенциал для стабильности, который не реализовался, других шансов нет. Эволюция представляет собой восхождение по лестнице — от простого к сложному, со стабилизацией на каждой ступеньке.

Это очень близкая мне тема. Я даже придумал для нее название: стратифицированная стабильность — то, что заставляет жизнь развиваться, пусть медленно и постепенно, но непрерывно, все больше и больше усложняясь. Это центральная проблема прогресса и эволюции. Теперь мы знаем, что это правило относится не только к жизни, но и к материи. Практически невозможно, чтобы в звездах образовался тяжелый элемент, например железо, или супертяжелый элемент, например уран, путем случайного соединения всех частей. Нет. В звезде водород превращается в гелий, на следующей стадии в другой звезде гелий соединяется с углеродом, с кислородом, с тяжелыми металлами, шаг за шагом мы проходим всю лестницу из 92 элементов.

Мы не можем повторить процессы, происходящие в звездах, потому что не в состоянии достичь тех огромных температур, которые необходимы для сплава большинства элементов. Однако мы уже поставили ногу на первую ступеньку лестницы и скопировали первый шаг — от водорода до гелия.

Конечно, трудно воссоздать температуру в недрах Солнца: она превышает 10 000 000 °C. Еще труднее сделать контейнер, который выдержал бы такую температуру хотя бы долю секунды.

Сегодня нет таких материалов. Контейнер для газа в таком состоянии может иметь только форму магнитной ловушки. Это новая физика — физика плазмы. Ее значение в том, что это физика природы. Теперь преобразования, проводимые человеком, не идут вразрез с ней, а повторяют те же самые шаги, которые природа предпринимает относительно Солнца и других звезд.

Бессмертие и смерть — контраст, которым я хотел бы закончить эту главу. Физика XX века — это бессмертное творение. Никогда человеческое воображение не поднималось до таких высот, даже когда люди возводили пирамиды, сочиняли «Илиаду», писали баллады или строили храмы. Ученые, открывшие эти законы, стали героями нашей эпохи. Менделеев, перебиравший карточки, Томпсон, опровергнувший теорию древних греков о неделимости атома, Резерфорд, превративший идею в планетарную систему, Бор, который сделал модель рабочей, Чедвик, открывший нейтрон, и Ферми, который использовал его для изменения ядра. И во главе этой славной когорты стоят основатели принципиально новых концепций — Макс Планк, который дал энергии атомную характеристику как материи, и Людвиг Больцман, которому больше, чем кому бы то ни было, мы обязаны тем, что атом стал для нас такой же реальностью, как наш собственный мир, который мы чувствуем и осязаем.

Кто бы мог подумать, что еще в 1900 году ученые воевали между собой не на жизнь, а на смерть, решая вопрос, существует атом или нет. Великий австрийский физик, механики философ Эрнст Мах на этот вопрос однозначно отвечал: «Нет». Его мнение разделял знаменитый немецкий химик Вильгельм Оствальд. И только один человек в этот критический момент, совпавший с рубежом столетий, настаивал на реальности атомов, опираясь на фундаментальную теорию. Это был Людвиг Больцман, памяти которого я хочу поклониться.

Больцман был вспыльчивым, необычным, тяжелым человеком, ранним последователем Дарвина, неуживчивым и конфликтным. Восхождение человечества колебалось на тонкой интеллектуальной грани, потому что если бы антиатомные доктрины возобладали, научный прогресс затормозился бы на десятилетия. И не только в физике, но и в биологии, которая зависела от нее. Больцман не просто шел наперекор другим. Он жил идеей реальности атома и умер, не отступившись от своего. В 1906 году, в возрасте шестидесяти двух лет, ученый, чувствуя себя изолированным и проигравшим, решил, что дальнейшее сопротивление бесполезно (хотя до признания его идеи оставалось совсем немного), и совершил самоубийство. Нам в память об этом великом человеке осталась его бессмертная формула:

S = KlnW,

выгравированная на могильном камне.

У меня не хватает слов, чтобы отдать должное красоте лаконичной и точной мысли гения, поэтому я посвящаю ей четыре первые строки поэмы Уильяма Блейка «Прорицания невинности»:

  • В одном мгновенье видеть вечность,
  • Огромный мир — в зерне песка,
  • В единой горсти — бесконечность
  • И небо — в чашечке цветка.[11]

Глава 11. Знание или достоверность

Цель естественных наук — воссоздать точную картину материального мира. Однако важнейшим открытием физики XX века стало доказательство того, что эта цель недостижима.

Попробую объяснить вышесказанное на хорошем конкретном примере — на примере человеческого лица. Представьте, что его изучает слепая девушка. Попробуем прислушаться к ее мыслям в момент, когда она обследует лицо своими чувствительными пальцами: «Я бы сказала, что человек очень немолод. Вероятнее всего, он — не англичанин, потому что у него слишком круглое лицо. Думаю, что он европеец, и скорее всего, выходец из Восточной Европы. На лице есть давние шрамы. Обладатель лица — не слишком счастливый человек».

Мы вместе со слепой девушкой изучали лицо Стефана Борграевича, который, как и я, родился в Польше. Его портрет написал польский художник Феликс Топольский. Очень интересно, что он пытался не столько передать сходство, сколько изучить черты лица, как будто на ощупь. Каждая морщинка, каждое пятнышко только усиливают изображение, не делая его совершенным и конечным, — таков художественный метод живописца.

Еще один способ изучения объектов — физика, которая в настоящее время очень продвинулась в этом направлении. Абсолютного знания не существует. Тот же, кто пытается его обрести — будь он ученый или священник, — рискует столкнуться с жестоким разочарованием. Вся информация несовершенна. Мы должны принимать это со смирением. Многозначность явлений, знаков и символов в буквальном смысле роднит человеческое существование с квантовой физикой.

Давайте изучим лицо человека, используя весь спектр электромагнитных излучений. Сформулирую вопрос: насколько мелкие и тонкие детали мы сможем рассмотреть, пользуясь самыми совершенными инструментами в мире?

Мы можем изучить не только те детали, что освещены видимым глазу светом. Джеймс Клерк Максвелл в 1867 году предположил, что свет представляет собой электромагнитные волны, и написал для них уравнения. Спектр видимого света располагается в пределах семи цветов радуги — от красных до фиолетовых лучей, подобно тому, как ноты образуют семиступенную октаву. Но подобно тому, как за пределами октавы остается еще множество звуков, существует и множество невидимых излучений за пределами самых длинных и самых коротких световых волн. Мы будем изучать их по очереди, словно морщинки на портрете.

Существование самых длинных из невидимых волн — радиоизлучения — в 1888 году доказал Генрих Герц, полностью подтвердив теорию Максвелла. Радар-сканер, работающий в диапазоне метровых волн, не увидит лица, если только мы не увеличим его до нескольких метров в поперечнике, как у мексиканских каменных статуй. Только уменьшив длину волны до долей метра, мы сумеем рассмотреть смутные очертания обычной человеческой головы.

Переходим в следующий диапазон, более короткий. Эти волны, длиной меньше миллиметра, получили название инфракрасные лучи. Открыл их в 1800 году астроном Уильям ГершелЬ, который заметил, что разложенный в спектр солнечный свет нагревает предметы, помещенные за красным концом полоски спектра.

Инфракрасная камера преобразует полученное изображение в условные цвета: более теплые участки изображения представляются синим цветом, а более холодные — красным. В силуэте на снимке можно будет угадать глаза, нос, рот человека, которые мы видим благодаря тому что от его ноздрей идет инфракрасное (тепловое) излучение. Мы, безусловно, узнаем о лице нечто новое, но отнюдь не разглядим деталей.

В диапазоне совсем коротких волн, длина которых составляет сотые миллиметра и менее, инфракрасное излучение постепенно переходит в видимый красный цвет. Пленка, которую мы применим в таком случае, будет чувствительна и к инфракрасному и к коротковолновому излучениям. Лицо на снимке оживет. Теперь оно вполне узнаваемо — это Стефан Борграевич.

При белом свете мы можем разглядеть все в деталях: маленькие волоски, поры на коже, шрамы и другие изъяны. Этот дневной (или искусственный белый) свет представляет собой смесь длинных волн (от красных до оранжевых), средних (от оранжевых до желтых), коротких (от желтого до сине-зеленого) и сверхкоротких (ультрафиолетовых). По идее, в ультрафиолете мы должны видеть лучше, чем в инфракрасных лучах, однако на практике разница в октаву нисколько не меняет изображение.

Художник, рассматривая лицо натурщика, сравнивает, сопоставляет черты относительно друг друга, разделяет цвета, чтобы сделать акцент на нужных деталях. Возникает естественный вопрос: должен ли ученый использовать микроскоп, чтобы выделить и проанализировать более тонкие черты? Да, конечно, должен. Однако следует понимать, что микроскоп увеличивает изображение деталей, резкость же изображения определяется используемой длиной волны. Мы можем разглядеть только детали, размер которых больше или равен длине волны, меньшие детали останутся невидимыми.

Двухсоткратное увеличение позволяет рассмотреть отдельную пору кожи при белом дневном свете. Чтобы получить более подробную информацию, нам потребуется еще более короткая длина волны. Значит, пора переходить к следующему типу волн — к ультрафиолетовым. Если бы человеческий глаз был способен видеть в ультрафиолете, то мы могли бы наслаждаться призрачным флуоресцентным пейзажем.

Построенный на этом принципе ультрафиолетовый микроскоп позволяет рассмотреть клетку в невидимых глазу сверхкоротких лучах, увеличивая ее изображение в три с половиной тысячи раз — при таком увеличении видны отдельные хромосомы. Однако это — предел, потому что свет не позволяет разглядеть человеческие гены в хромосоме.

Чтобы двигаться дальше, мы должны снова сократить длину волны, достигнув длины рентгеновских лучей. Однако они настолько всепроникающи, что у нас не получится сфокусировать их, а значит, мы не сумеем собрать рентгеновский микроскоп. Таким образом, мы должны довольствоваться тем, что можем направить эти лучи на объект и получить своего рода тень. Детальность будет зависеть от способности луча проникать внутрь материи. Например, зубной врач, чтобы проанализировать состояние зубов, изучает вид костей черепа на рентгеновском снимке. Подобное свойство рентгеновских лучей сделало их очень популярными почти сразу после открытия в 1895 году. С этого времени физика и медицина пошли рука об руку, а первооткрыватель и отец-основатель прикладной науки Вильгельм Конрад Рентген в 1901 году был удостоен первой Нобелевской премии по физике.

Обследование тела в рентгеновском излучении стало популярным почти сразу же после открытия этих лучей Рентгеном.

Одно из первых оригинальных пластинок Рентгена, на которой снят человек в обуви и с ключами в карманах брюк.

Удача в науке значит очень много, потому что иногда она заменяет собой долгие размышления и исследования, позволяя почти случайно разглядеть то, что, кажется, увидеть невозможно. Рентген не сумел увидеть отдельный атом, потому что он слишком мал и не отбрасывает тени даже при такой короткой длине волны. Тем не менее однажды рентгеновские лучи образовали узор, в котором в 1912 году Макс фон Лауэ сумел увидеть положение атомов. Иначе говоря, немецкий физик изобрел способ, благодаря которому ученые смогли изучать расположение атомов в кристаллах. Дифракционные картины, образуемые рентгеновскими лучами, проходящими через кристаллы, получили название лауэграммы. Они принесли двойную пользу: во-первых, послужили подтверждением реальности атома, во-вторых, доказали электромагнитную природу рентгеновских лучей.

Рентгеновские лучи образуют регулярный узор, по которому может быть воссоздано положение атомов.

Картина дифракции рентгеновских лучей на кристалле ДНК.

Позволю себе небольшое отступление от темы. Рассмотрим электронные микроскопы, в которых лучи настолько концентрированы, что затруднительно назвать их волнами или частицами.

Эти приборы работают по такому принципу: электронная пушка открывает огонь по объекту очерчивая его силуэт, словно метатель ножей, выступающий на ярмарке. Самый маленький объект, который мне доводилось видеть в такой микроскоп, — атом тория. Зрелище было неповторимым и захватывающим. Тем не менее его изображение выглядело нечетким, словно обозначенный ножами метателя силуэт девушки на ярмарочном стенде. Значит, даже самые энергичные электроны не позволяют получить четкий контур. Совершенное изображение так же далеко от нас, как свет далеких звезд.

Таким образом, мы подходим к ключевому парадоксу познания. Каждый год человек изобретает все более точные приборы для наблюдения природы. Однако когда мы изучаем данные, полученные с их помощью, то видим расплывчатые и невнятные изображения, по которым ничего нельзя понять. И так случается всегда, когда нам кажется, что мы уже на грани великого открытия.

Парадокс познания возникает не только на атомарном уровне. Наоборот, он становится только убедительнее, если перейти к большему масштабу — уровню человека или даже планеты. Позвольте доказать это на примере построенной в 1807 году астрономической обсерватории Карла Фридриха Гаусса из Гёттингена. С тех пор ее инструменты непрерывно совершенствовались.

Сегодня мы наблюдаем звездное небо, пользуясь современными инструментами, и нам кажется, что наши расчеты и описания планет и звезд лучше, чем двести или сто лет назад. Однако если сравнить, то внезапно оказывается, что результаты наших наблюдений мало чем отличаются от полученных нашими предшественниками. То тут, то там мы вновь и вновь находим ошибки. Люди надеялись, что с развитием науки и техники ошибки исчезнут сами собой и что человечество сумеет постичь мир во всей его полноте. Но ошибки не исправить, опираясь только на наблюдения, как невозможно точно описать явление, глядя на чужую картину или слушая чужой доклад.

Гаусс понял это благодаря своему удивительному юношескому духу познания, который он сохранил почти до самой своей смерти в возрасте около восьмидесяти лет. Ему было восемнадцать, когда он в 1795 году поступил в Гёттингенский университет, и тогда же Гаусс решил проблему обработки наблюдений, содержащих внутренние ошибки. Сегодня метод Гаусса является основой статистики.

Когда астроном наблюдает за поведением звезды, он принимает во внимание множество причин, которые могут вызвать ошибку. Астроном проводит несколько измерений и выбирает среднее значение, надеясь, что оно окажется наиболее верным. Всё очевидно. Однако Гаусс пошел дальше. Он задался вопросом: что дает нам разброс отклонений положения звезды от средней орбиты? Ответом юного ученого стала кривая, построенная на основе значений разброса, который Гаусс назвал областью неопределенности. Это избавило нас от ложной уверенности в том, что истинное положение звезды окажется где-то посредине. Все, что мы знаем: оно находится в области неопределенности, которую мы вычисляем на основе наблюдений.

Парадокс познания возникает не только на атомарном уровне. Наоборот, он становится только убедительнее, если перейти к большему масштабу — уровню человека или даже планеты.

Кривая нормального распределения Гаусса.

Гаусс с его утонченными взглядами на познание был особенно неприятен для философов, которые утверждали, что им известен иной, более совершенный путь к истине, нежели наблюдения. Из многих примеров я приведу только один — остановлюсь на столкновении Гаусса и Гегеля. Гаусса я нежно люблю и восхищаюсь им, к Фридриху Гегелю, честно говоря, испытываю неприязнь. В 1800 году Гегель представил диссертацию, в которой доказывал, что хотя с античных времен определение планет изменилось, их число осталось постоянным: был открыт Уран, но Луна из разряда планет была переведена в разряд спутников, а вместо Солнца на должность планеты была назначена Земля. То есть планет как было, так и осталось всего семь. Отличная мысль, но не новая. По словам Гаусса, задолго до защиты Гегеля ее высказал Шекспир. Вспомните блестящий диалог из трагедии «Король Лир», в котором шут говорит королю: «А вот очень просто отгадать, почему в семи звездах всего семь звезд». В ответ король глубокомысленно ухмыляется и отвечает: «Потому что их не восемь?» Шут мгновенно реагирует на горькую иронию короля: «Совершенно верно. Из тебя вышел бы хороший шут». Так что Гегель своей диссертацией не сказал ничего нового. А 1 января 1801 года, когда в ней еще не высохли чернила, была открыта восьмая планета — астероид Церера.

История знает немало подобных парадоксов. Бомбой замедленного действия, заложенной в кривой Гаусса, оказалось то, что мы не стали богами, даже взглянув на мир с высоты птичьего полета. Наши ошибки неразрывно связаны с природой человеческого знания. Ирония состоит в том, что это открытие сделано в Гёттингене.

Старинные университетские города удивительно похожи друг на друга: Гёттинген напоминает и английский Кембридж, и американский Йель. Это провинциальные городки вдали от шумных трасс и мегаполисов, в них никто не стремится переехать, кроме профессуры и студентов. Преподаватели таких университетов уверены, что их город — центр мира. Над входом в пивную, расположенную в подвале, есть надпись на латыни: Extra Gottingam non est vita («За воротами Гёттингена жизни нет»). Эту эпиграмму или эпитафию (кому как нравится) не принимает всерьез никто, кроме очередного магистранта, который мечтает остаться здесь в качестве профессора.

Символом университета считается железная статуя босоногой гусятницы Лизы, стоящая перед пивной. Ее целует каждый выпускник. Университет для студентов — Мекка, в которую каждый из них приходит с чем-то чуть меньшим, чем абсолютная вера. Задача преподавателей воспитать в них духовную смелость оборванца, если хотите, босую непочтительность к учебе, потому что они здесь не для того, чтобы поклоняться известному, а для того, чтобы подвергать сомнению даже непоколебимые истины.

Как в каждом университетском городе, здешний пейзаж с его длинными улочками и переулками располагает к долгим пешим прогулкам, которые совершают после обеда почтенные профессора. Во время этих прогулок активные студенты стремятся договориться с преподавателями о совместных исследованиях. Вполне возможно, что в прошлом Гёттинген был довольно тихим, сонным местом. Маленькие университетские города вернулись в те времена, когда страна еще не объединилась и представляла собой отдельные государства. Например, Гёттинген основал Георг II как столицу Ганновера. Это придает подобным поселениям своеобразный флер бюрократического местного колорита. Даже после отречения кайзера от престола в 1918 году и падения военной мощи Второго рейха жители этих городков оставались большими конформистами, чем население кампусов за пределами Германии.

С внешним миром Гёттинген связывала железная дорога, которая начиналась в Берлине. По пути гости университета успевали обменяться новыми идеями, занимавшими лучшие умы ведущих ученых-физиков всего мира. В Гёттингене существует присловье, что наука рождается в берлинском поезде, потому что в купе и вагоне-ресторане спорят и соглашаются, а значит, рождаются новые и умирают нежизнеспособные идеи.

В годы Первой мировой войны научное сообщество в Гёттингене, впрочем, как и везде, активно обсуждало теорию относительности. Однако в 1921 году, с приходом на кафедру физики Макса Борна, ситуация изменилась: он предложил заняться атомной физикой. Для начинающего преподавателя Макс Борн был несколько староват — почти сорок лет. Его коллеги-физики, как правило, писали свои лучшие работы до тридцати, математики — еще раньше, биологи — чуть позже.

Однако Борн был исключительным человеком, одаренным, как Сократ. Он сразу привлек к себе молодых преподавателей и студентов и сумел создать благоприятную научную среду, в которой каждый из них смог максимально раскрыться и написать свои лучшие работы. В физический институт приезжали ученые из всех стран мира. Из учеников Борна я отмечу двоих. Один из них — Вернер Гейзенберг, сделавший в Гёттингене свои самые значительные открытия, которые принесли ему Нобелевскую премию. Второй, также Нобелевский лауреат — Эрвин Шрёдингер, сформулировавший в спорах с Борном многие основные положения квантовой физики, которой занимался всю свою жизнь.

Всё это странно звучит применительно к физике — науке, которая творится в полночь. Разве изучение квантовой механики в 1920-х годах действительно подразумевало публичное предъявление доказательств, споры, семинары, дискуссии? Да, это было именно так, это так и осталось. До сих пор люди, которые большую часть времени проводят в лабораториях, встречаются в больших аудиториях, чтобы обсуждать концептуальные проблемы субатомных частиц, а во время отдыха — решать логические и психологические задачи.

В начале XX века электрон был загадкой из загадок. Среди профессуры тогда ходила весьма распространенная острота о том, что по понедельникам, средам и пятницам электрон ведет себя как частица, по вторникам, четвергам и субботам — как волна (подобное распределение дней связано с университетским расписанием). Как совместить эти два аспекта, взятые из большого мира и втиснутые в микромир атома, словно Гулливер в страну лилипутов? Вот о чем шли споры. И решение требует не расчета, а понимания и воображения, если хотите, метафизического подхода. Я помню фразу, произнесенную Максом Борном после переезда в Англию: «Теперь я убежден, что теоретическая физика — это современная философия».

Макс Борн имел в виду, что развивающиеся идеи в физике помогают обществу формировать новые, различные точки зрения. Мир не статичная модель, не устойчивый массив объектов, потому что реальность невозможно отделить от нашего субъективного восприятия.

Мир изменяется под нашим влиянием, реагирует на нас, и мы должны интерпретировать знания, которые он нам дает. А значит, обмен информацией невозможен без акта суждения. Электрон — это частица? Он ведет себя именно так в модели атома, усовершенствованной Бором. Но Луи де Бройль в 1924 году создал красивую волновую модель, в которой устойчивые орбиты соответствуют целому числу длин волн, выстроенных вдоль орбиты. Макс Борн предложил представить движение электронов в виде цепочки, вращающейся как коленчатый вал, так что в совокупности они представляют собой ряд гауссовых кривых, образующих волну вероятности. Эта концепция родилась во время послеобеденных профессорских прогулок и в берлинском поезде, потому что помимо сильного всплеска эмоций, на фоне которого совершаются открытия, ее появлению предшествовала тонкая совместная работа ученых по разработке системы основных единиц.

Блестящей кульминацией прогулок и бесед стало начало 1927 года, когда Вернер Гейзенберг опубликовал новую характеристику электрона. «Да, — заявил он, электрон представляет собой частицу, которая дает нам только ограниченную информацию». То есть если можно узнать текущее местонахождение электрона, то измерить его скорость нельзя. И наоборот: если точно измерить скорость электрона, то его местоположение станет неопределенным.

На первый взгляд очень сырая характеристика. Однако это не так. Гейзенберг углубляет и уточняет ее: общее количество информации, которую несет в себе электрон, ограниченно. То есть, например, скорость электрона и его положение, взятые вместе, всегда ограничены квантовой неопределенностью. Очень глубокая мысль! Одна из самых великих идей во всей истории науки!

Гейзенберг назвал подобную зависимость принципом неопределенности. В некотором смысле он является надежным критерием повседневности. Мы понимаем, что не можем требовать от мира точности. Если некий объект (например, лицо знакомого) не будет сохранять постоянные характеристики, то мы перестанем его узнавать. При этом объект постоянно меняется и никогда не будет сегодня таким же, как вчера, завтра — таким же, как сегодня, и т. п. В этих изменениях заключается квантовый допуск, относящийся к области неопределенности. Значит, принцип Гейзенберга говорит о том, что не бывает событий, пусть даже самых мизерных, атомных, которые можно было бы описать без учета подобных допусков. Нулевых квантовых допусков не существует. Применение в качестве единицы измерения модуляций и трансформаций кванта, открытого Максом Планком, делает мысль Гейзенберга очень глубокой и точной. Таким образом, в мире атомов область неопределенности всегда измеряется квантами.

Тем не менее принцип неопределенности — плохое название для этого феномена. В науке и за ее пределами мы часто довольствуемся вполне определенным допуском, который ограничиваем на основе наших знаний. Значит, речь все-таки должна идти не об определенности, а о толерантности. При этом слово «толерантность» я использую в двух смыслах. Во-первых, в инженерном значении толерантностью мы называем допуски, которые обязательно должны существовать во время обмена информацией между человеком и природой. Исключать их нельзя, несмотря на то что наука продвинулась далеко вперед. Во-вторых, это слово нельзя исключить из лексикона человека, обобщающего характеристики реального мира. Обмен знаниями и информацией между людьми может строиться только на принципах толерантности. Это правило имеет отношение к науке, литературе, религии, политике — любой форме общественной мысли, стремящейся к догме. Величайшей трагедией моей и вашей жизни является то, что ученые Гёттингенского университета сумели выработать принцип толерантности и отказались от него, посчитав, что событиями второй половины XX века он разрушен и не подлежит восстановлению.

Та же беда творилась во всей Европе. Однако одна конкретная туча нависла над Гёттингеном в начале 1800-х годов. Дело в том, что знаменитый немецкий анатом и естествоиспытатель Иоганн Фридрих Блюменбах собрал коллекцию черепов, получая их от уважаемых джентльменов, проживавших в разных европейских странах.

В работах этого анатома, посвященных изучению и классификации черепов, принадлежащих разным расам, национальностям и народностям, не было и намека на расистское разделение человечества. Тем не менее с 1840 года (с момента смерти Блюменбаха) коллекцию превратили в основное доказательство состоятельности пангерманской теории, а национал-социалистическая партия после своего прихода к власти сделала ее официальной идеологией.

Это случилось в 1933 году, когда Адольф Гитлер пришел к власти. Традиции германской науки были почти в одночасье разрушены. Теперь берлинский поезд стал символом бегства. Европа перестала отзываться на научные идеи, основанные на фантазии и воображении.

В начале 1930-х годов Европа перестала быть подходящим местом для людей с воображением.

Энрико Ферми.

Страницы: «« 1234567 »»

Читать бесплатно другие книги:

Новый роман Орхана Памука рассказывает историю любви, случившуюся в небольшом городке недалеко от Ст...
Пожалуй, самая значимая и авторитетная книга в мире – руководство по обретению успеха, богатства, жи...
Наивно было бы полагать, что мы можем дать удовлетворительное определение понятию «мышление».В погон...
Всем известно, что жизнь – нелегкая штука. Буквально на каждом шагу нас подстерегают неприятности и ...
Равновесие – штука хрупкая, минуты спокойствия преходящи. Комиссар Франк Шарко, начиная расследовани...
Здравствуй. Этой мой первый сборник стихов. И он, конечно, про любовь. но здесь ты не найдешь возвыш...