Властелин ДНК. Как гены меняют нашу жизнь, а наша жизнь – гены Моалем Шарон
Проблема в том, что болезнь Гиппеля – Линдау может проявляться самыми разными способами и на любом этапе жизни. И даже если она диагностирована, никогда не знаешь, чего ожидать, то есть необходимо следить практически за всем. На практике это приводит к тому, что всю оставшуюся жизнь этот пациент должен делать неисчислимое множество тестов и анализов, и помогать ему в этом будет целая армия врачей и ассистентов.
Конечно, Михаэлю очень хотелось знать, чего ему ждать от будущего. И на его вопросы мне было очень нелегко ответить. Я мог только предложить ему продолжить обследование, чтобы выявить, каким типам опухолей и нарушений он подвержен в первую очередь.
– То есть, другими словами, – сказал он мне тогда, – мы не знаем, от чего я умру?
– Многие опухоли, вызванные болезнью Гиппеля – Линдау, легко поддаются лечению, особенно если их рано обнаружить, – заметил я. – И, конечно, мы не знаем, от чего ты умрешь.
– Все от чего-нибудь умирают, – рассмеялся он в ответ.
Я смутился.
– Да, но ведь при правильной терапии…
– Которая займет всю мою оставшуюся жизнь.
– Возможно, но всё же.
– Непрерывные обследования. Постоянный присмотр. Анализы крови. Рентген. И все равно неизвестность.
– Да, это непросто, но выбора ведь нет.
– Выбор есть всегда, – сказал он с улыбкой. И я понял, что он уже свой выбор сделал.
Я тогда очень расстроился и совершенно не удивился, когда через несколько лет узнал, что у Михаэля обнаружена ярко выраженная метастазирующая ренальная карцинома – один из типов рака почек. И снова он отказался от традиционного лечения и вскоре умер.
Вы, наверное, не понимаете, при чем тут вариации в экспрессивности? Ведь Михаэль умер рано и трагически, точно так же, как и его мать. Но он умер от рака совершенно другого типа и гораздо раньше ее. Разница в экспрессивности может приводить и к тому, что в следующем поколении гены экспрессируются или, наоборот, ломаются сильнее, чем в предыдущем. Если бы Михаэль воспользовался всеми преимуществами раннего обнаружения и позволил врачам следить за его здоровьем, его рак почек выявили бы и начали лечить намного раньше. Но он решил этого не делать. Если речь идет о вашей жизни и здоровье, только вы сами вправе принимать решения. Но дабы не ошибиться, надо знать, какие вопросы задавать и что делать с ответами{20}.
Чтобы лучше понять базовую концепцию гибкой наследственности, обратимся к истории библиотеки Реми в городе Нанте во Франции. Именно там несколько лет назад, разбирая старые записи, библиотекарь наткнулся на всеми забытый фрагмент нотного листа.
Бумага пожелтела и рассыпалась в руках. Чернила выцвели и стали почти невидимы. Однако ноты все еще можно было разобрать – и сыграть мелодию. Исследователям потребовалось совсем немного времени на изучение старого, более чем на столетие забытого всеми кусочка бумаги. Оказалось, что это подлинный и очень редкий образец записей, сделанных рукой самого Вольфганга Амадея Моцарта{21}. Считается, что Моцарт написал это и более 600 других своих известных сегодня произведений за несколько лет до смерти. И найденные в нантской библиотеке ноты в Dмажоре – инструкция для современных музыкантов от гениального классического композитора, дошедшая до нас через века.
Моцарт любил использовать долгие форшлаги. Это такое мелодическое украшение, при котором основной ноте такта предшествует другая. Именно этот прием добавляет особого шарма щемящей сердце балладе Адель «Такого, как ты» («Someone Like You»){22}. Большинство современных композиторов используют вместо него шестнадцатую ноту, но на самом деле это всего лишь небольшой шаг в эволюции музыки. Поэтому для пианистов не составит труда воскресить давно забытую мелодию. С этим справился Ульрих Лезингер – директор по исследованиям Фонда Моцарта в Зальцбурге. Более того, счастливчик Лезингер может исполнить мелодию на том самом 61клавишном клавесине, на котором сам Моцарт сочинял свои мелодии 220 лет назад{23}. И вот теперь старинный мотивчик, пронзая пространство и время, предстает перед нами во всем своем очаровании. Опытное ухо Лезингера, несомненно, распознало в получившейся музыке кредо – церковное песнопение. И это знание превращает нотный листок в своего рода письмо в бутылке. Ведь, несмотря на то, что в юности Моцарт писал много религиозной музыки, многие музыковеды убеждены, что позже вера играла незначительную роль в его жизни.
По почерку исследователи датировали записи 1787 годом. В то время Моцарт имел стабильный доход от своих опер и финансовых причин написания церковной музыки быть не могло. Лезингер считает, что находка в Нантской библиотеке подтверждает интерес Моцарта к теологии и в его последние годы.
И почвой для всех этих предположений послужили всего несколько дюжин нот.
Примерно так человечество долгие годы воспринимало ДНК. Музыкант может прочесть нотную запись и без малейших отклонений воспроизвести всю сложность, сокрытую в ней. Вот и жизнь казалась воспроизведением записей, содержащихся в ДНК. В какой-то мере так оно и есть.
Но только лишь отчасти. Сейчас рождается новое понимание генетической идентичности человечества и даже самого пути нашей эволюции. Настройки проигрывателя могут менять звучание мелодии. Так и мы в значительной мере можем изменять то, как будет сыграна «мелодия», записанная в наших генах. И тем самым освободиться от сковывающих уз менделевской генетики, которая убеждала, что наша жизнь полностью определена генетическим наследием предков.
Все дело в том, что жизнь и ее генетическая основа – не строчки на ветхой бумаге. Она скорее подобна полумраку клуба, в котором играют джаз. Такого, как например Джаззумба Лаунж в отеле Таиту, в самом сердце столицы Эфиопии – Аддис-Абебе. Месте, куда мужчины и женщины со всех концов света приходят пить, есть, курить, слушать музыку и заводить новые знакомства.
Вы только послушайте…
- Звон стаканов. Скрип стульев. Шум голосов.
- И вслед за всем с полутемной сцены бас:
- Баум-баум-баум бада баум-баум бада.
- Легкий шепот щетки по барабану:
- Ша-ссссс ша-ссссс ша-ссссс – ша-ша-ссссс.
- Приглушенный старый тромбон:
- Брааат брадер-да брааат-дер-дер-бра-да.
- И знойный голос певицы:
- Уууууу-йе бада баааааах. Ийах ийах ийах бада-йах.
И вот так слой за слоем на основной мотив ложится все великолепие и трагедия жизни.
Да, чтобы дойти от ранних этапов развития через все нужные шаги до зрелости, необходим аккомпанемент очень большого и сложного оркестра. И все начинается с записей. И записи эти куда старше произведений Моцарта. Некоторые ноты пришли к нам от самого начала жизни на Земле.
Вместе с тем в нашей жизни полно места для импровизации. Темп. Голос. Громкость. Тональность. Динамика. Путем множества мельчайших химических реакций ваше тело использует все ваши гены, как музыкант использует свой инструмент. Можно играть громко. А можно тихо. Можно играть быстро, а можно и не спеша. Можно даже играть одно и тоже, разными способами, если захочется. Как неподражаемый Йо-Йо Ма на своей виолончели 1712 года работы Страдивари может сыграть все, от Брамса до народной музыки.
Это экспрессия.
В глубине нашего организма мы все время, пусть тихонько и мало-помалу, но делаем то же самое. В ответ на происходящее мы меняем экспрессию наших генов. Так весь жизненный опыт великих музыкантов выливается в то, как они играют на своем инструменте. А в наших клетках экспрессия генов меняется в зависимости от того, что было с ними раньше и что происходит прямо сейчас.
Еще раз задумайтесь над тем, что я только что рассказал. А теперь давайте проведем небольшой эксперимент. Потянитесь. Подвигайтесь немного. Теперь расслабьтесь. Сконцентрируйтесь на дыхании. Вдох, а затем выдох. Вдохнув-выдохнув несколько раз, громко (ну или хотя бы вполголоса) скажите себе: «Все, что я делаю, очень важно и нужно для меня и окружающих!» Вы почувствуете себя вдохновленным. Или же наоборот, изрядно глупо.
И вот сейчас, да-да, прямо сейчас в вашем теле произошли едва заметные изменения. С того самого момента, как вы потянулись, гены начали работать в ответ. Осознанные движения контролируются нервными импульсами, идущими из головного мозга. Через всю нервную систему импульс проходит до моторных нейронов, которые запускают сокращение мышц. Внутри мышечных волокон белки актин и миозин биохимически сцепляются, затрачивая при этом энергию и производя механическую работу. И теперь в ответ на это ваши гены должны включиться в работу по восстановлению затраченных в процессе химических веществ. Ведь они нужны каждый раз, когда мозг посылает команду или набор команд. Всегда, будь то простое нажатие кнопки или забег на длинную дистанцию.
Даже ваши мысли непрерывно воздействуют на ваши гены. Ведь клеточная машинерия должна перестроиться в соответствии с вашими ожиданиями и в ответ на полученный опыт. Возникают воспоминания. Эмоции. Предчувствия. И все это записывается где-то в ваших клетках, как заметки на полях книги. Сотни триллионов синапсов мозга, благодаря которым это происходит, на самом деле просто контакты между нейронами и другими клетками. А сигналы, которые они передают, – всего лишь крошечные дозы химических веществ, выработанных вашим организмом. Нейроны образуют новые и новые связи, какие-то из них сохраняются десятилетиями.
Все это происходит в ответ на разные обстоятельства вашей жизни.
И все это вас меняет.
События вашей жизни меняют экспрессивность генетической мелодии.
Чувствуете себя особенным? И делаете это по праву. Но сильно гордиться не стоит, ведь, как мы увидим дальше, подобные изменения свойственны всем формам жизни. Большим и маленьким. Более того – реагировать на происходящее свойственно не только живым объектам. Например, многие корпорации используют сходные механизмы, чтобы управлять рынком или своевременно изменять свою продукцию.
Некоторые из таких методов саморегуляции появились задолго до нас с вами. Тем не менее они остаются актуальными и регулярно находят свое применение. Сейчас я предложу вам свй новый взгляд на то, как понимать переменчивость экспрессивности.
Когда вы впервые решитесь прикупить сверкающий камешек или захотите поменять старый на новый побольше, вам пригодится маленький секрет, который я вам сейчас открою: в отличие от остальных драгоценных камней, бриллианты на самом деле не так-то и редки.
Алмазы встречаются во множестве. Их очень много на Земле. Крупные и мелкие. Голубые, розовые и черные. Дюжина стран добывает их на всех континентах, кроме разве что Антарктиды. Впрочем, австралийские исследователи недавно сообщили об обнаружении кимберлита недалеко от Южного полюса{24}. А именно в этой породе часто находят алмазы. Так что, возможно, исключение просуществует недолго. Если вы когда-нибудь покупали алмазы и представляете себе существующие цены, спрос и предложение, у вас наверняка возникает вопрос: если алмазов так много, то почему бриллианты такие дорогие?
В первую очередь стоит поблагодарить корпорацию «Де Бирс».
Эта компания была основана в 1888 году, ее главный офис – в великом графстве Люксембург. «Де Бирс» владеет самым большим запасом сверкающих камушков в мире. И большая часть этого запаса надежно спрятана. «Де Бирс» контролирует все этапы процесса. Добычу и переработку руды. Первичную обработку и огранку. Компания сохраняла почти всемирную монополию на торговлю бриллиантами десятки лет. И на рынок она выпускала камешков ровно столько, чтобы цены оставались высокими, а спрос стабильным. Таким образом вполне обычный алмаз оставался драгоценным для глаз (и кошельков) простых обывателей{25}.
Остальное сделала хитроумная маркетинговая политика. До Второй мировой войны люди редко обменивались обручальными кольцами, а если и делали это, то далеко не обязательно эти кольца украшали бриллианты. Однако в 1938 «Де Бирс» наняла рекламщика с Мэдисон-авеню по имени Герольд Лаук. Его задачей было придумать, как убедить молодых людей, что только кусочек хорошо спрессованного углерода достоин стать символом верной любви и знаком помолвки. К началу 1940х годов волшебник Лаук справился со своей задачей и таки внушил значительной части Западного мира, что бриллианты и вправду лучшие друзья девушек{26}.
Промышленник Генри Форд мечтал сделать нечто подобное с авторынком. Техническая сложность его продукции и ее производства вынуждала его работать со множеством поставщиков, что его невероятно раздражало. Этот магнат, первый среди знаменитых рационализаторов промышленности, использовал те же стратегии оптимизации, что и геном, действующий посредством экспрессии генов. Форд много времени посвятил тому, чтобы максимально упростить технологические процессы.
«Занимаясь закупкой материалов, мы поняли, что имеет смысл приобретать только то, что нам нужно непосредственно сейчас, – писал Форд в своей книге 1922 года «Моя жизнь и работа» (My Life and Work). – Мы покупаем ровно столько, сколько требуется, чтобы, с учетом состояния транспорта на данный момент, выполнить рабочий план.»{27}
Форд признавал, что транспорт материалов далек от идеала. Но, как он говорил, «в ином случае не было бы никакой необходимости делать запасы. Поставки исходных материалов приходили бы точно по расписанию, в запланированном порядке и количестве, и прямо из вагонов поезда направлялись на производство. Это бы принесло огромное количество денег, ускорив оборот и тем самым снизив сумму, завязшую в сырье.»
Слова Форда были пророческими, но он ушел из жизни, так и не решив этой задачи. В итоге японские производители автомобилей первыми сделали скачок в организации системы связи «поставки – производство». Сейчас этот прием называют ТВС-производство, что значит «точно в срок». Менеджеры «Тойоты» впервые увидели ТВС в США в 1950х годах, но вовсе не у автомобильных компаний, посмотреть на которые они приехали. Все произошло почти случайно, когда они посетили магазин Piggly Wiggly. Одним из нововведений этой сети магазинов было то, что товар автоматически восполнялся, как только полки магазина пустели{28}.
У этого приема есть множество преимуществ. Если все идет, как надо, получается больше экономить и растет выручка. Конечно, существуют и определенные риски. И главная проблема в том, что у поставщиков внезапно могут возникнуть проблемы. Стихийные бедствия или забастовки работников способны оборвать цепь поставки сырья и, как результат, остановить фабрики, а клиентов оставить с пустыми руками.
У Apple был другой негативный опыт с ТВС-производством, когда внезапный рост спроса на iPad Mini заставил производство почти захлебнуться. А все оттого, что не удалось вовремя получить компоненты для создания новых линий сборки.
Зная, как работают стратегии, применяемые бизнесом, и что у них общего с регуляцией экспрессии генов, мы можем лучше понять, как наши клетки снижают «цену» поддержания жизнедеятельности. В точности как корпорации, наши тела поддерживают жесткий баланс. И только благодаря этому жизнь существует.
Тут наши тела значительно ближе к системам «Де Бирс», «Тойота» и Apple. Каждый раз, когда наши гены срабатывают, это имеет определенную биологическую цену. И потому жизнь старается получить от происходящего как можно больший полезный выход. Ферменты – пример того, что закодировано в наших генах. Эти белки, совсем как микроскопические машины, ускоряют и облегчают определенные процессы. Так, как делает P450, разлагающий токсины, или самый обычный пепсиноген, помогающий нам переваривать белковую пищу. В этом мы устроены совсем как корпорации, которые стремятся, чтобы производительность труда их работников была максимально высокой. Жизнь старается сделать так, чтобы как можно меньшее число ферментов выполняло всю необходимую работу.
Мы, как правило, производим только то, что нам нужно, и только тогда, когда это необходимо. И стараемся не делать лишних запасов. И все это благодаря экспрессии генов.
Чтобы получились алмазы, необходимы миллионы лет и высокое давление, а для производства ферментов нужно очень много биологических ресурсов. Чтобы снизить стоимость их создания, организм умеет перестраиваться для синтеза тех или иных веществ. Это позволяет при необходимости направить все мощности на производство именно того продукта, который нужен сейчас. И если у вас есть ген, позволяющий делать определенный белок, это еще далеко не значит, что такой белок будет синтезирован хоть раз за вашу жизнь.
С вами такое происходило, хотя вы даже и не подозревали о своем активном участии в процессе. Если вам на празднике случалось перебрать алкоголя, на утро с вами было именно то, о чем мы говорим. Вы хорошо повеселились, а потому клеткам вашей печени пришлось работать сверхурочно, чтобы создать ферменты, необходимые для борьбы с последствиями винных возлияний.
Это и есть увеличение производства в ответ на возрастающий спрос. В данном случае производства алкогольдегидрогеназы, нужной для расщепления этанола. Сколько-то этого фермента всегда запасено в неактивном виде в клетках печени в ожидании следующей попойки, но не слишком много. Хранение больших запасов деталей на складе имеет свою цену, вот и ферменты требуют место и энергию на поддержание в рабочем состоянии. Но если вы не злоупотребляете алкоголем, все это слишком затратно.
Почти все процессы в мире биологии вертятся вокруг одного. Всем движет необходимость урезать стоимость жизни. Это и вправду нужно. Чтобы тратить энергию на синтез ферментов, которые так и не будут использованы, пришлось бы обделить ею необходимые каждодневные процессы. Такие, например, как непрерывные перестройки работы мозга и циркуляцию крови.
Отличной иллюстрацией может стать жизнь астронавтов. Вскоре после того, как они прибывают на Международную космическую станцию, их сердца уменьшаются на четверть от первоначального объема{29}. Если вы пересели со скрывающего под капотом 00 лошадиных сил форда «Мустанг» на «Мини Купер», в котором меньше 150 этих «лошадок», вы очень много сэкономите на бензине. А в условиях пониженной гравитации астронавту нужно куда меньше усилий сердца, чтобы качать кровь[9]. И по той же причине, многие, побывав в космосе и вернувшись к земному притяжению, испытывают головокружение или даже теряют сознание. Ведь их ослабшее сердце не справляется теперь с тем, чтобы прокачать достаточно крови и вместе с ней кислорода, к головному мозгу.
И не обязательно лететь в космос, чтобы ваше сердце стало меньше. Достаточно всего нескольких недель в постели, чтобы оно начало атрофироваться{30}. С другой стороны, наши тела невероятно хорошо восстанавливаются. Нужно только убедить их, что дополнительные мощности нам необходимы. И это совсем нетрудно, наши клетки в изрядной степени пластичны. От того, что мы делаем каждый день, зависит, какие инструкции они получат от наших генов. Вот вам еще один, на этот раз генетически обоснованный повод встать с дивана.
А прежде, чем мы закончим говорить про экспрессию генов, я хочу рассказать вам еще одну историю.
На первый взгляд Ranunculus flabellaris не кажется чем-то примечательным.
Обычный лютик, обильно произрастающий в заболоченных лесах США и юга Канады. Распространенное и, казалось бы, не самое интересное растение. Однако этот лютик может делать поразительные вещи, к примеру полностью менять свое внешнее строение в зависимости от того, насколько близок он к источнику воды. Такое поведение называют гетерофилией.
Обычно этот цветок растет по берегам рек. Конечно, не самое безопасное для растений место, ведь реки, бывает, разливаются, и порой сильно. Для хрупкого цветка такое событие может быть фатальным. Однако для нашего лютика жизнь на самой кромке земли не проблема: изменение экспрессии генов позволяет ему в случае паводка изменять форму листьев. Из округлых они становятся длинными и нитеподобными, к тому же плавучими!{31} Кажется, что перед вами совсем другое растение, однако это не так.
Геном Ranunculus flabellaris остается без изменений. Изменился только получающийся фенотип (так ученые называют внешний вид).
И подобно тому, как сердце астронавта может сменять мощь «Мустанга» на «Мини Купер» и обратно в зависимости от условий среды, лютик может вернуться к прежней форме листьев – когда закончится паводок. Растению это необходимо сделать, чтобы выжить.
Экспрессия – лишь один из инструментов выживания растений, насекомых, зверей и даже людей в условиях постоянно меняющийся среды. Во всех способах главным остается одно: гибкость.
Постепенно становится ясно, что наши гены – часть огромной, сложной и гибкой сети. И это утверждение местами противоречит нашим прежним представлениям. Гены не закреплены и не неподвижны, как мы думали раньше. Если бы это было так, живые организмы не могли бы – как тот же лютик – приспосабливаться к постоянно меняющимся условиям среды.
Мендель, наблюдавший за горохом, и поколения генетиков, продолживших его работу, замечали только половину происходящего. То, как гены влияют на организмы, в которых они сидят. Но ведь все работает и в обратную сторону. Мы можем влиять, и влияем, на наши гены!
И, как я покажу вам дальше, это происходит постоянно.
Глава 3
Изменяя свои гены
Как травмы, хулиганы и маточное молочко меняют нашу генетическую судьбу
Большинство людей знает про опыты Менделя с горохом. Кое-кто слышал про его неоконченные эксперименты на мышах. Но почти никто не в курсе, что он занимался еще и пчелами, которых называл не иначе как «мои дорогие крошечные животные».
И с ним трудно не согласиться. Пчелы невероятно интересные, милые и просто красивые животные. А еще, глядя на них, человек может многое понять про самого себя.
Вот, к примеру, приходилось ли вам наблюдать роение пчел? Момент, когда целая колония куда-то движется. И в самом сердце этого живого торнадо – королева улья.
Чем она заслужила такой великолепный эскорт?
Приглядитесь к ней повнимательнее. У пчелиной матки, как у настоящей манекенщицы, большой рост и длинные ноги. Она изящнее других, ее вытянутое брюшко не покрыто волосками. У пчелиной королевы и жало устроено не как у всех – она может использовать его много раз подряд, в отличие от рабочих пчел, которые после первого же раза погибают. Ведь ей нужно защищать себя от своеобразных дворцовых переворотов, устраиваемых молодыми королевами. Матка может жить годами, а жизнь многочисленных рабочих пчел длится всего несколько недель. А еще она откладывает тысячи яиц в день, в то время как обо всех ее насущных необходимостях заботятся стерильные пчелы[10].
Да уж, матку никак не назовешь обычной пчелой.
Было бы логично предположить, что матки генетически отличаются от прочих пчел, ведь они очень не похожи на остальных обитателей улья. Но если разобраться получше и посмотреть на всю ситуацию на уровне ДНК, мы увидим, что тут отличий нет. И матка, и ее рабочие могут быть потомками одних и тех же родителей и иметь абсолютно одинаковую ДНК. Однако их поведение, анатомия и физиология при этом кардинально разные.
Почему? А потому что личинки маток питаются лучше.
Вот и вся причина. Еда меняет экспрессию генов. В данном случае, определенные гены включаются и выключаются. Подобные механизмы регуляции называют эпигенетическими. Когда пчелиное семейство решает, что пришло время выбрать новую королеву, оно отбирает несколько личинок-счастливчиков и буквально купает их в маточном молочке. Это особая субстанция, богатая белками и аминокислотами, которую выделяют специальные железы во рту молодых рабочих пчел. В самом начале всем личинкам дают маточное молочко. Но будущим рабочим пчелкам – недолго. Молодых же «принцесс» кормят им до тех пор, пока из них не выйдет новой «императрицы» голубых кровей. И та молодая матка, которая убьет всех своих сестер-претенденток, и становится в итоге королевой улья.
Ее гены ничем не отличаются от генов сородичей. А вот как обстоят дела с их экспрессией?
Пчеловоды уже очень давно поняли, что личинки, выкормленные маточным молочком, становятся матками. Однако как это все работает, оставалось тайной. И вот в 2006 году ученые секвенировали геном Apis mellifera – медоносной пчелы, а в 2011 году детально исследовали кастовую структуру пчелиного улья.{32}
У всех животных на планете Земля, включая человека, есть общие гены. Конечно, и пчелы не исключение. Одна из таких общих последовательностей ДНК – Dnmt3 – ген ДНК-метил-трансферазы. У млекопитающих этот фермент участвует в эпигенетических механизмах регуляции работы определенных генов.
Когда ученые химически заблокировали работу Dnmt3 у нескольких сотен личинок, они получили несколько сотен маток. Если же, наоборот, стимулировать работу фермента, из личинок получаются только рабочие пчелы. Так что, вопреки ожиданиям, у матки нет ничего особенного, а наоборот, кое-чего даже не хватает. И все поглощаемое ими маточное молочко, на самом деле просто выключает ген, который превращает личинок в рабочих пчел{33}.
Мы питаемся вовсе те так, как пчелы. Но на их примере, благодаря великолепному исследованию, о котором я только что рассказал, очень хорошо видно, посредством каких механизмов гены по-разному экспрессируются в ответ на то, что происходит с нами в жизни{34}. Человек в течение своей жизни играет разные социальные роли, причем в определенном порядке. Сначала мы учимся, потом работаем и в итоге становимся старейшинами-учителями. Так и жизнь пчел подчинена вполне познаваемому узору жизни и смерти. Сперва они работают уборщицами и санитарками – заботятся об улье и колонии. Очищают соты и при необходимости убирают тела погибших сестер, чтобы не дать распространиться болезням. Потом большинство из них становятся няньками, чтобы общими усилиями по тысяче раз на дню проявлять заботу о каждой личинке в огромной пчелиной семье. И только в конце, по достижении зрелого двухнедельного возраста, пчела покидает улей и отправляется на поиски нектара.
Давно известно, что иногда, если пчел-нянек не хватает, пчелы-медосборщицы возвращаются к прежней работе. Ученые из Университета Джона Хопкинса в штате Аризона (США) решили узнать, почему это происходит, и стали изучать различия в экспрессии генов. Такие различия можно увидеть по специфическим химическим «ярлычкам» на тех или иных последовательностях ДНК. Оказалось, что у пчелы-няньки и пчелы-сборщицы эти ярлычки отличаются в 150 генах.
Ученые провели остроумный эксперимент. Пока сборщицы собирали в полях нектар, из улья убрали всех нянек. И вот, как только сборщицы возвращались в улей, они, к удивлению биологов, сразу же начинали ухаживать за молодняком, оставшимся без необходимого ухода. При этом у сборщиц мгновенно менялся рисунок генетических ярлычков{35}. Гены, которые раньше не эксперссировались, начинали работать, а те, что работали раньше, замолкали! В результате пчелы не только меняли свое поведение, они начинали выполнять другую генетически предопределенную программу.
Разумеется, внешне мы не похожи на пчел. Да и не чувствуем себя пчелами ни в какой мере. Однако на генетическом уровне у нас с этими насекомыми очень много общего. Взять хотя бы тот же Dnmt3{36}. И точно так же, как у пчел, наша жизнь может быстро и сильно измениться изза перемен в экспрессии генов. Измениться к лучшему или к худшему.
Вот, например, шпинат. Листья этого растения богаты бетаином. Это химическое соединение помогает растению справляться с недостатком влаги, жарой, избытком солей в почве и прочими стрессовыми ситуациями. В человеческом организме бетаин служит донором метила и становится частью цепочки реакций, оставляющих след в генетическом коде. Исследователи из Университета штата Орегон (США) показали, что этот след помогает людям, любящим есть шпинат, бороться с мутациями. В частности с мутациям, вызванными канцерогенами, находящимися в жареном мясе. В экспериментах на лабораторных животных удавалось вдвое снизить число появлений опухолей кишечника{37}.
Шпинат дает нашему телу едва заметный, но очень важный сигнал. И тело начинает работать по-другому. Совсем как маточное молочко, направляющее развитие пчелы в другое русло. Так что да, по всей видимости, когда мы едим шпинат, мы меняем экспрессию наших генов.
Помните, я, рассказывая про Менделя и епископа Шаффтготча, упомянул, что во время опытов на мышах монах-ученый мог сделать открытие, не менее важное, чем законы наследственности? Теперь я расскажу вам о том, как эта революционная идея все-таки увидела свет.
Прошло более 90 лет с момента смерти Менделя, и в 1975 году генетики Артур Риггс и Робин Холидей, почти одновременно и независимо, поняли очень важную вещь. Американский и британский ученые предположили, что хоть гены и неизменны в течение жизни, их действие может меняться в зависимости от условий среды. В итоге получается вместо ожидаемого набора фиксированных состояний целый спектр характеристик. Именно изза этого несоответствия тогда считалось, что при рождении организмы представляют собой в генетическом смысле чистый лист.
И вот внезапно в научное сообщество была вброшена новая мысль. Что если гены меняются не только под действием невероятно медленного мутационного процесса? Но, как и идеи Менделя в свое время, теория Риггса и Холидея была всеми проигнорирована. Вновь теория генетиков, опередивших свое время, осталась без должного внимания.
И только четверть века спустя эти идеи и допущения, которые можно сделать полагаясь на них, нашли широкое признание. Произошло это благодаря потрясающей работе круглощекого весельчака Рэнди Джиртла.
Совсем как Мендель, Джиртл подозревал, что с наследственностью все не так просто, как может показаться на первый взгляд. И, как и Мендель, он принялся искать ответ в экспериментах на мышах.
Джиртл и его коллеги из Университета Дьюка экспериментировали на мышах агути. У этих зверюшек есть особый ген, изза которого они пухлее своих сородичей, а их шерсть светло-рыжего цвета. Полученные исследователями результаты просто поражали воображение. Оказалось, что достаточно изменить питание самок до зачатия, добавив немного дополнительных питательных веществ, таких как холин, витамин B12 и фолиевая кислота, и потомство будет выглядеть совсем иначе. Мышата будут меньшего размера, пестро-коричневые и в целом напоминать диких собратьев. Более того, как позже выяснилось, такие мыши еще и менее подвержены раку и диабету.
Абсолютно никаких различий в ДНК. При этом совершенно разные животные. И дело только в том, как экспрессируются гены. Всего лишь небольшая перемена в рационе матери помечала ген агути особым образом. В результате этот ген выключался и дальше передавался потомкам уже в выключенном виде.
А ведь это только начало. Исследования генетиков XXI века происходят в очень быстром темпе. Мышки Джиртла выглядят уже далеко не так впечатляюще на фоне многих последовавших более поздних работ по этой теме. Каждый день мы узнаем новые способы, позволяющие менять экспрессию генов. И не только у мышей, но и у людей тоже. Уже не стоит вопрос о том, можем ли мы хоть чего-то добиться на этом пути. Сейчас работа идет над тем, как в результате таких вмешательств достичь здоровья и долголетия нам и нашим потомкам.
То, что впервые предположили Риггс и Холидей, а потом Джиртл с коллегами подтвердили экспериментально, сейчас называется эпигенетикой. В широком смысле эпигенетика – это наука о том, как условия среды меняют экспрессию генов, не меняя при этом первичной структуры ДНК. Например, как в истории с пчелиными личинками и маточным молочком. Одно из самых захватывающих и быстро развивающихся направлений эпигенетики – изучение того, как и когда такие перемены наследуются. Причем не обязательно только на одно поколение.
Один из самых распространенных способов эпигенетического изменения экспрессии – метилирование ДНК. Есть много способов модифицировать нить ДНК, не затрагивая саму последовательность «букв». Когда происходит метилирование, к молекуле ДНК прикрепляется ярлычок из углерода и водородов в форме трехлистного клевера. В результате такого изменения – не важно, нового или унаследованного от предков – меняется программа поведения клеток. Ярлычки метилирования включают и выключают определенные гены. Так могут проявляться врожденные пороки, рак или диабет. Или же, напротив, изза изменения экспрессии у человека может быть крепкое здоровье, продлится время жизни или обнаружатся выдающиеся умственные способности.
И такие эпигенетические перемены происходят с нами в самые неожиданные моменты. Например, на летних занятиях для худеющих.
Ученые-генетики проследили за двумя сотнями испанских подростков, которые проходили десятинедельный курс интенсивных занятий, борясь с лишним весом. Выяснилось, что можно достаточно точно предсказать, кому из ребят удастся похудеть за лето. Как оказалось, скорость потери веса зависит от включения и выключения генов в 5 участках генома. Выходит, что часть занимавшихся была заранее эпигенетически запрограммирована на успех в похудании{38}. В то время как остальных ждала неудача, несмотря на занятия под руководством компетентных тренеров и строгое соблюдение правильной диеты.
Постепенно мы учимся использовать знания, получаемые в таких исследованиях, для непосредственной выгоды носителя тех или иных эпигенетических меток. На примере ярлычков метилирования ДНК у испанских подростков стало очевидно, насколько важно знать свой эпигеном, если вы собираетесь, например, худеть. Ведь теперь понятно, что именно нужно выяснить, прежде чем начинать применять ту или иную методу борьбы с лишним весом. И такое знаниепозволит не только достичь успеха, но и избежать траты сил, денег и времени на занятия, которые просто обречены на провал.
Однако не стоит забывать, что эпигеном далеко не стабилен. На него влияют многие генетические процессы. Более того, эпигенетические модификации вообще и метилирование в частности легко происходят при изменении внешней среды. В последние годы ученые разработали множество методов изучения и даже изменения метилирования генов. Сегодня мы можем не только включать и выключать определенные гены, но и регулировать их экспрессию более тонко.
А ведь даже небольшое изменение уровня экспрессии способно превратить безобидное отклонение в порок и наоборот.
Подобные эпигенетические изменения могут быть вызваны чем угодно. Принимаемыми лекарствами. Курением табака. Тем, что мы пьем и едим. Посещением занятий йогой. Рентгеновским излучением в кабинете рентгенолога.
И даже стресс может вызывать такие изменения.
Ученые из Цюриха решили проверить, как психологические травмы в раннем детстве влияют на экспрессию генов. Для этого они забирали только родившихся, еще слепых, глухих и голых мышат у их матерей и возвращали на место через три часа. И так каждый день.
Эксперимент шел две недели. Со временем эти мышата, как и все их сородичи в таком возрасте, стали видеть, слышать и покрылись шерстью. Одним словом, повзрослели. Однако после пережитых в младенчестве переживаний они выросли плохо приспособленными к жизни. В особенности плохо у них было с оценкой потенциальной опасности. Оказавшись в рискованной ситуации, они не пытались выбраться или как-то бороться, а просто сразу сдавались. И что самое удивительное, эту свою черту они передавали потомкам! Причем, даже если не принимали участия в их воспитании. Другими словами, как бы невероятно это ни звучало, эффект стресса, пережитого в детстве, передавался по наследству, по крайней мере, на два поколения!
Не забывайте, что геном мыши сходен с нашим примерно на 99 %[11]. Исследователи из Цюриха зарегистрировали изменение двух генов. Mecp2 и Crfr2. И оба этих гена есть как у мыши, так и у человека.
Конечно, нельзя полагать, что то, что происходит с мышами, будет происходить и с людьми, пока это не нашло фактических подтверждений. А сделать такое непросто, ведь мы живем долго и проследить изменения в нескольких поколениях крайне трудно. И для человека гораздо тяжелее понять, что является врожденным, а что – просто следствие воспитания.{39}
Впрочем, это не значит, что мы ничего не знаем о эпигенетических изменениях у человека, вызванных стрессом. Знаем и довольно много.
Помните, как в самом начале книги я просил вас в воспоминаниях перенестись в седьмой класс? Для некоторых подобные воспоминания могут быть не из самых приятных. А что-то, будь наша воля, мы бы вообще никогда не вспоминали. Нет объективной статистики о том, какая доля детей подвергается физическому насилию и хулиганским действиям со стороны сверстников или старшеклассников хотя бы раз в жизни. Однако число это оценивают примерно в три четверти от всех учащихся в школе. И велика вероятность того, что и с вами в детстве происходило нечто подобное. Вот почему многие, став родителями, так беспокоятся о безопасности своих детей на улице и в школе.
До недавнего времени о долгосрочных и серьезных последствиях грубого отношения сверстников рассуждали только психологи. Никто не сомневается, что полученная моральная травма может быть весьма и весьма серьезной. Невыносимые душевные страдания иногда даже приводят к тому, что дети и подростки причиняют себе физический вред.
Но что, если подобный опыт давит тяжким грузом не только на нашу психику? Чтобы дать ответ на этот вопрос, группа ученых из США и Канады решила изучить пары однояйцевых, «одинаковых», близнецов в возрасте от 5 лет и старше. Кроме абсолютно одинаковой ДНК было и еще одно условие. Все близнецы, принявшие участие в исследовании, до этого момента не подвергались насилию со стороны сверстников. Конечно, в отличие от швейцарцев, работавших на мышах, ученые не наносили сами моральных травм детям. Они просто позволили сделать за них грязную работу одноклассникам подопытных ребят.
После нескольких лет терпеливого ожидания для дальнейших исследований отобрали только те пары близнецов, в которых лишь один имел негативный опыт общения с другими детьми. И вновь проверив эпигенетику ребят, ученые обнаружили, что в 12 лет у таких пар возникло огромное количество эпигенетических различий, которых в пятилетнем возрасте не было и в помине. Причем в основном изменения появились у тех из близнецов, кто подвергался насилию. И это значит, что жертвы грубости и хулиганства страдают не только морально и физически. У них еще и заметно меняется работа их генов. А значит, меняется и их жизнь. Причем эти изменения, возможно, передаются последующим поколениям.
В чем конкретно заключаются такие изменения? Бывает по-разному, но чаще всего у близнеца-жертвы значительно повышается степень метилирования промоторного участка гена SERT. Этот ген кодирует белок, который помогает транспортировать медиатор серотонин в нейроны. По всей видимости, избыток метилирования снижает количество производимого белка, кодируемого этим геном. Проще говоря, чем сильнее метилирование, тем меньше работает ген.
Значимость этого открытия в том, что, по всей видимости, такие эпигенетические изменения остаются с человеком на всю его жизнь. А значит, если даже вы сами и забыли, как вас когда-то обидели, ваши гены об этом помнят.
И это далеко не все, что ученые выяснили в ходе своего исследования. Их интересовало, в чем будут заключаться не только генетические, но и психологические отличия между такими близнецами. Чтобы это проверить, ребятам предложили пройти серию тестов. Там в основном были ситуационные задачи, требующие говорить на публику и считать в уме. Ведь именно этих двух родов деятельности большинство людей стараются избегать, потому что они вызывают стресс. Оказалось, что у тех близнецов из пары, над которыми в детстве издевались сверстники (и последовали соответствующие эпигенетические изменения), значительно меньше повышался уровень кортизола, когда они оказывались в сложных или неприятных ситуациях. Так что пережитое насилие не только выключило им ген SERT, но и снизило выделение кортизола в ответ на стрессовые ситуации.
На первый взгляд, такие результаты могут показаться нелогичными. Ведь кортизол – «гормон стресса», и обычно его уровень повышается у людей в стрессовой ситуации. Так почему же его выделение сглажено у близнецов с негативным опытом в прошлом? Разве не должны они, наоборот, испытывать больший стресс в сложной обстановке?
Резкий выброс кортизола действительно помогает нам переживать непростые ситуации. Однако высокий уровень этого гормона на протяжении долгого времени приводит к физиологическому «короткому замыканию». Так что пониженное выделение кортизола – просто эпигенетическая реакция на частые стрессовые ситуации. И это изменение позволяет без последствий переживать частый или постоянный стресс, иначе уровень кортизола быстро бы зашкалил.
Дальше будет немного сложнее, но не пугайтесь. В ответ на повторяющиеся моральные страдания у ребенка ген SERT может вносить изменения в работу системы гипоталамус – гипофиз – надпочечники. В норме эта система помогает нам справляться со стрессами и жизненными неудачами. Напомню, что у тех из близнецов, которые подвергались насилию со стороны сверстников, ген SERT работает меньше изза повышенного уровня метилирования. И чем слабее работал ген, тем меньше кортизола выделялось в ответ на стресс. Кстати, подобная степень притупления выделения кортизола часто наблюдается у людей с посттравматическим стрессовым расстройством.
Многие генетические реакции в жизни человека работают сходным образом. И часто, чтобы избежать сиюминутного вреда, организм изменяется так, что это приводит к проблемам в отдаленном будущем. В тот момент было действительно очнь важно сгладить реакцию на стресс. Однако в итоге эпигенетические изменения, снижающие выделения кортизола, могут приводить к серьезным психиатрическим проблемам. Например, спровоцировать депрессию или алкоголизм. И как бы пугающе это ни звучало, такие эпигенетические изменения, по всей видимости, могут передаваться потомкам.
Мы видим значимые перемены у одного из близнецов, над которым издевались одноклассники, а что же произойдет с большими группами людей, пережившими страшные катастрофы, масштабные, трагические события?
Эта трагедия случилась в морозное и ясное утро, во вторник, 11 сентября 2001 года, в Нью-Йорке. Более 2600 человек погибли тогда во Всемирном торговом центре и около него. Многие жители города, находившиеся рядом с местом террористической атаки, еще долгие месяцы и даже годы испытывали посттравматическое стрессовое расстройство.
Для Рейчел Иегуда, профессора нейробиологии и психиатрии из Отдела травматического стресса Медицинского центра Горы Синай в Нью-Йорке, страшная катастрофа обернулась источником бесценных научных данных.
Иегуда давно знала, что синдром посттравматического стрессового расстройства приводит к тому, что у людей снижается уровень гормона стресса кортизола. Впервые она наблюдала этот эффект на ветеранах войны во Вьетнаме в конце 1980х. Так что она заранее знала, что искать, когда собирала образцы слюны беременных женщин, бывших 11 сентября около башен-близнецов или в самом здании.
Действительно, у женщин, страдавших синдромом посттравматического стрессового расстройства, уровень кортизола был заметно снижен. Но уровень гормона был снижен и у их новорожденных детей, в особенности у тех, чьи матери в момент катастрофы были на третьем триместре беременности.
Сейчас эти дети уже выросли, а Иегуда с коллегами продолжают наблюдать за тем, как теракт сказался на их жизни. Уже понятно, что дети матерей, переживших душевную травму, гораздо легче огорчаются от разных событий.{40}
Какие из всего этого можно сделать выводы? Вкупе с данными, полученными на животных, это позволяет с уверенностью утверждать, что наши гены хранят память о пережитом. И даже если мы уже давно оправились психологически и воспоминания больше не тяготят нас, на генетическом уровне последствия травмы все еще видны и ощутимы.
Остается самый важный вопрос: передаем ли мы результаты психологических травм нашим детям? Раньше считалось, что все эпигенетические пометки стираются с нашей ДНК в момент, когда происходит зачатие. Как каждое утро стирают вчерашнее меню на меловой доске у входа в кафе. Но мы постепенно понимаем, как работает неменделевское наследование, и нам приходится отказываться от старых представлений и об эпигенетике.
Уже ясно, что в эмбриональном развитии есть периоды, когда плод исключительно подвержен эпигенетическим переменам. В отдельные моменты факторы внешней среды особенно легко включают те гены, которые потом влияют на наш эпигеном. Другими словами, события, произошедшие на определенных этапах развития плода, могут повлиять, отразиться на том, как работают потом наши гены.
Что это за моменты, сейчас мы еще не можем говорить с полной уверенностью, так что пока будущим матерям из генетических соображений стоит избегать стресса и соблюдать правильную диету на всех этапах развития плода. Последние исследования показали, что даже такие факторы, как избыточный вес матери во время беременности, способны повлиять на метаболизм плода и привести к различным заболеваниям, например диабету.{41} Эти данные только подтверждают правильность новейших тенденций в перинатологии (науке о здоровье плода и беременной женщины). Вот почему врачи рекомендуют будущим матерям не есть за двоих.
А дети, рожденные вскоре после 11 сентября, постепенно дают нам информацию о том, как эпигенетические изменения передаются из поколения в поколение. И, несомненно, в ближайшие годы у ученых накопятся исчерпывающие доказательства того, что у людей, как и у мышей, последствия травмирующих событий нередко наследуются, причем именно так – по эпигенетическому механизму.
Учитывая те знания, которые у нас уже есть, мы имеем полное право сказать, что сегодня человек далеко не беспомощен в вопросах наследственности. Можно влиять на работу генома негативным образом, например через стресс. А можно и позитивным, скажем, поедая шпинат. Да, полностью изменить нашу генетическую природу нельзя, но чем больше мы узнаем, тем больше понимаем, как сделать правильный выбор, который неизбежно повлечет за собой существенные перемены в нашей жизни, жизни наших детей, а возможно, и всех наших потомков.
То, что происходит сегодня, – генетическое сосредоточение всего опыта жизни, нашей и всех наших предков. От самых радостных событий до самых печальных. И изучая нашу способность менять свою генетическую судьбу и судьбу потомков посредством правильного выбора в самых повседневных делах, мы готовимся бросить вызов традиционным менделевским представлениям о наследовании признаков.
Глава 4
Используй или отбрось
Как сплетение жизненных обстоятельств и генов строит и ломает нам кости
Что общего у врачей и наркоторговцев? Пожалуй, то, что только они до сих пор пользуются пейджерами. И каждый раз, когда я достаю свой в ресторане или у входа в театр, мне любопытно, что в этот момент обо мне думают окружающие?
Совсем недавно мой пейджер запищал, когда я утром стоял в очереди в «Старбаксе» в суетливом фойе больницы. Я уже почти был у цели и лишь один неторопливый посетитель отделял меня от вожделенного напитка.
И вот, пока он выбирал, сколько и чего ему купить, я вышел из очереди. Сообщение пришло от врача из команды педиатров, которая сейчас занималась пациенткой со множественными переломами. Меня как врача-генетика просили срочно проконсультировать эту девочку. Встреча была назначена через 15 минут. Я записал номер палаты на салфетку и встал обратно в очередь, которая за это время, как всегда бывает, заметно выросла.
Ну что ж, не так уж и плохо. Несколько лишних минут ожидания дадут мне возможность собраться с мыслями. Я начал мысленно перебирать вероятные причины повышенной ломкости костей. И в моей голове постепенно выстроился алгоритм, по которому я уточню диагноз больной девочки.
Мы все неплохо знакомы с устройством человеческого скелета. Вид человеческих костей привычен по маскарадным костюмам и фантастическому кино, наподобие «Пиратов Карибского моря». И даже если вы и не можете назвать ни одну из 206 костей человеческого скелета, набросать его общий план вам наверняка под силу. Поэтому на примере костей поговорим о том, как наше тело отвечает на разные жизненные потребности.
Как и большинство систем органов, скелет работает по общей для биологии схеме: используй или отбрось. В ответ на то, чем мы занимаемся, гены запускают процессы, благодаря которым наши кости становятся прочными и крепкими, или же, наоборот, пористыми и хрупкими, как мел. Это еще один пример того, как наша жизнь влияет на работу наших генов.
Однако не каждому достается полноценная генетическая инструкция по сборке всех типов костей. Похоже, с девочкой, к которой меня позвали, как раз такое и случилось. Взяв, наконец, долгожданный стакан чая, я поднялся на седьмой этаж и постучал в палату. На кроватке в больничной пижамке лежала крохотная черноволосая девочка. Ее звали Грейс, и было ей всего три года.
Лоб Грейс был покрыт испариной. Скорее всего, изза того, что переломы причиняли ей сильную боль. Отметив про себя этот факт, я приступил к осмотру по привычной схеме, которую обычно использую в своей работе.
И очень скоро мое внимание привлекла одна особенность Грейс.
Ее глаза.
Лиз и Дэвид не могли иметь своих детей. И довольно долго это их вполне устраивало.
Лиз была художником, а Дэвид финансистом, у него была своя собственная компания. Супруги были вполне счастливы, получая удовольствие и от работы, и от общения друг с другом. Во время отпуска они путешествовалипо миру, а приезжая домой, наслаждались покоем и достатком.
Детей у них не было, но они видели, с какими трудностями сталкивались их друзья, у которых росли дочери и сыновья. Каждый день приходилось решать, кто, кого, куда и когда должен отвезти на неделе. Школьное расписание. Родительские собрания, музыкальная школа, спортивные секции, летние лагеря. Бессонные ночи и подъемы рано утром. Казалось бы, ничего хорошего.
Но с другой же стороны, дети – это так здорово! Дети приносят в дом любовь, делают жизнь интереснее и веселее. И вот однажды, безо всяких к тому предпосылок, все в жизни Лиз и Дэвида переменилось.
Всюду в мире есть дети, которым очень нужны приемные родители. Особенно печальна статистика смертности девочек-сирот из Китая. И как только Лиз познакомилась с этой статистикой, она сразу приняла решение.
В 1979 году Китай, страна с самым большим населением в мире, установила новую демографическую политику: одна семья – один ребенок. Численность китайцев уже достигла почти миллиарда, но многие из них не имели нормальной крыши над головой, работы и еды. Чиновники от медицины запустили программу контроля рождаемости, а когда эта программа дала сбои, нормой жизни стали аборты[12]. Тем, у кого рождался второй или даже третий ребенок, часто не оставалось ничего, кроме как подбросить новорожденное дитя к ступеням государственного приюта для сирот. Однако горе для одной семьи может принести радость в другую. Китайская система создала избыток сирот, в особенности девочек. Их было куда больше, чем могли усыновить бездетные пары в самом Китае. Так, за 5 лет государственного контроля рождаемости страна, которая раньше чрезвычайно редко расставалась со своими сиротами, оказалась среди первых по числу детей, усыновляемых иностранцами.
К 2000 году Китай больше всех в мире отправлял своих сирот в семьи США и Канады. И даже несмотря на спад, наблюдаемый в последние годы, именно в Китае граждане Северной Америки в основном находят сегодня приемных детей.
Лиз и Дэвид понимали, что выбранный ими путь будет далеко не прост. Часто процесс усыновления сопряжен с коррупцией. И даже если все идет по закону, с момента, когда будущие родители начинают взаимодействовать с агентством, до момента, когда они привезут приемного ребенка к себе домой, порой проходят годы. Правда, когда пара готова взять ребенка с какими-либо проблемами со здоровьем (которые легко устраняются с помощью современной медицины), шестеренки бюрократической машины вертятся заметно быстрее.
К примеру – врожденная дисплазия тазобедренного сустава. Довольно часто дети рождаются с предрасположенностью к вывиху бедра. В развитых странах обычно удается все полностью вылечить еще в первые годы жизни ребенка. Однако, если вовремя не захватить болезнь, такие вывихи могут привести к весьма серьезным последствиям. И, как сказали Лиз и Дэвиду, именно в этом и состояли проблемы Грейс.
Но болезнь ребенка их не остановила. Они полюбили девочку сразу, как только увидели ее фотографию. И сразу поняли, что никакой другой ребенок им не нужен. Консультация с педиатром убедила их, что болезнь Грейс, скорее всего, легко вылечить, как только девочка окажется в США, и будущие приемные родители начали собирать документы.
Организация лечения казалась совсем небольшой платой за возможность стать родителями чудесного ребенка. И вот Лиз и Дэвид уже начали готовить свой дом к приезду девочки и забронировали билеты в Китай.
Они не так уж много знали о своей будущей дочери. Только то, что Грейс оставили на пороге приюта год назад и ей, по всей видимости, около двух лет. И что она не очень здорова. Вот и все, что было им известно о девочке.
Но когда Лиз и Дэвид приехали в город Куньмин на юго-западе Китая, чтобы забрать свою дочь, они поняли, что знают очень мало.
Они знали, что увидят Грейс в гипсе, закрывающем таз и фиксирующем ее ножки под углом примерно в 90°. Но гипс был больше, а сама девочка меньше, чем они ожидали. Казалось, что крошку, едва весящую 5 килограммов, заглотило чудище из бинтов и раствора.
И все же, полагаясь на слова врача, Лиз и Дэвид были уверены, что они быстро справятся с болезнью девочки. Увидев, что состояние девочки вовсе не пугает ее приемных родителей, работница сиротского приюта очень обрадовалась. По ее словам, новых родителей Грейс послала судьба. И воспитательница даже не понимала, насколько она была права.
Через несколько дней после прилета в США Грейс привезли к педиатру. После быстрого осмотра ей сняли гипс и назначили курс процедур, чтобы вылечить дисплазию раз и навсегда.
Как оказалось, под гипсом скрывались необычайно тощие ножки. Не успело пройти и дня, а Грейс уже сломала левую бедренную кость и правую большую берцовую.
Все решили, что гипсовая повязка вместо того, чтобы лечить дисплазию тазобедренного сустава, ухудшила ее и так незавидное положение. Кости от долгого отсутствия нагрузки истончились и стали хрупкими, как стекло. Но гипс пришлось наложить вновь.
Через несколько месяцев, когда гипс снова сняли, Лиз и Грейс были в спортивном магазине. Они выбирали байдарку для похода, запланированного на лето. Грейс сидела на руках матери и повернулась, чтобы повнимательнее посмотреть на приглянувшуюся ей розовую лодку.
Грейс закричала. А Лиз содрогнулась. Как она потом рассказала мне, звук, который она услышала, был громче ружейного выстрела. В считанные минуты взволнованная мать и ее плачущее дитя оказались опять в больнице.
У Грейс снова были переломаны кости ног.
Еще до того, как я услышал эту историю от родителей девочки, мне стало ясно, что дело тут далеко не только во врожденной дисплазии тазобедренного сустава.
Ответ я прочел в ее глазах. Глаза человека отличаются от глаз зверей. В них хорошо видна склера – так называемые белки глаз. У большинства других млекопитающих склера срыта за складками век и никогда не видна. Для дисморфологов это дополнительная возможность понимать, что происходит с их пациентами на генетическом уровне.
У Грейс склера была не белой, а светло-голубой. И вкупе с переломами этот факт говорил о том, что с большой вероятностью у нее один из типов несовершенного остеогенеза. При таком заболевании генетический дефект нарушает синтез коллагена или снижает его качество. А коллаген необходим для формирования крепких и здоровых костей. Тот же самый недостаток коллагена окрасил белки девочки в голубоватый цвет. И, как я быстро выяснил при дальнейшем осмотре, сделал прозрачными кончики ее зубов. Все сходилось один к одному.
Еще совсем недавно никто бы и не подумал, глядя на Грейс, про несовершенный остеогенез. Однако в последние годы это заболевание привлекает все больше внимания и не в последнюю очередь благодаря мальчику по имени Робби Новак. Он также известен по прозвищу Ребенок-президент. Серию видеозаписей его речей, в которых он призывал людей не быть такими скучными, посмотрели десятки миллионов человек по всей планете.
Сам Робби перенес более 70 переломов и 13 операций еще до того, как ему исполнилось 10 лет. Однако он записал свои обращения не для того, чтобы привлечь внимание к проблеме несовершенного остеогенеза. Как он сам сказал журналистам из CBS News, «я просто хочу, чтобы все знали, что меня не так-то легко сломать».{42} История Робби тем не менее привлекла внимание к его заболеванию и тому, что можно сделать, чтобы помочь таким, как он. На слуху остеогенез был и по другой причине. Это заболевание сыграло роль не в одной тысяче случаев, когда социальные работники подозревали родителей в насилии над детьми. Вот, например, случай британцев Эми Гарленд и Пауля Кромни. Их обвинили в насилии по отношению к их младшему сыну. В результате судья запретил им общаться еще и с их двумя старшими детьми без сопровождения соцработников. Младенца у Эми забрать не могли, потому что она еще кормила его грудью. Чиновники поместили все семейство в особые условия, где они могли наблюдать за происходящим круглосуточно. Семья прожила 18 месяцев в доме, нашпигованном скрытыми видеокамерами, как будто оказавшись в телевизионном шоу «За стеклом». И только после этого социальные работники и государственные чиновники осознали, что совершили чудовищную ошибку. Сын Эми и Пауля был жертвой не насилия, а нарушений остеогенеза.{43}
Рентгеновские снимки ребенка, страдающего нарушениями остеогенеза, действительно очень похожи на прямое свидетельство насилия: на них видны множественные переломы в разных стадиях заживления. Теперь, когда было уже столько прецедентов неверного обвинения совершенно невиновных родителей, суды требуют проверки на нарушение остеогенеза почти во всех случаях, когда подозревается насилие по отношению к маленьким детям.
Несмотря на то, что тестирование становится все более доступным, такое генетическое исследование – дело совсем не простое. Это только в телесериалах про полицейских тестирование ДНК ничем не сложнее минутного визита в лабораторию судмедэксперта, который все расскажет, просто взглянув в микроскоп. В реальных же случаях при подозрении на нарушения остеогенеза исследования порой требуют значительного времени. Кости могут стать хрупкими далеко не по одной причине. И на проведение всех генетических и биохимических исследований иногда уходят недели или даже месяцы.
Сейчас многие уже знают про несовершенный остеогенез и последствия этого заболевания, но оно все равно остается редким (в США – около 400 случаев в год). А случаи насилия над детьми довольно часты и становятся чаще с каждым годом (свыше 100 000 зарегистрированных случаев и около 1500 смертей за год){44}. Поэтому социальные службы и правоохранительные органы все еще предпочитают, возможно, и ошибившись, разлучить родителей с детьми, чем оставить малышей в потенциально неблагополучной семье. К счастью, в случае с Грейс никто всерьез не рассматривал насилие как возможную причину ее множественных переломов, а это значило, что мы могли сразу сконцентрироваться на том, что же с ней не так. Ее новые родители всеми силами старались помочь нам, делали все, только бы сделать жизнь малышки счастливой и здоровой. Такой, какую Грейс заслуживала.
Еще не так давно страдавшим от нарушения остеогенеза было трудно помочь. И сегодня это сделать непросто, но достаточно взглянуть на то, как закончилась история Грейс, чтобы понять: невозможного в мире нет!
Конечно, ни один конкретный метод лечения не исправит нарушение, возникшее глубоко на генетическом уровне. Но если собрать в правильной комбинации лекарства, процедуры и достижения современной медицинской техники, можно добиться очень существенных результатов. Благодаря врачам, собственной силе воли и неустанной заботе родителей Грейс выросла из хрупкой малышки в крепкую и полную жизни девочку. С каждым шагом, который она теперь делает, ее жизнь переиначивает ее генетический код и попирает, казалось бы, неизлечимую болезнь.
И уж если маленькая девочка смогла – сможете и вы. Ведь, хотя большинство людей об этом и не подозревают, у всех нас кости понемногу постоянно ломаются и срастаются. Небольшие надломы и трещинки в разных местах незаметны в повседневной жизни, однако процесс сборки и разборки костей идет постоянно. И в результате этого процесса наш скелет шаг за шагом становится совершеннее.
Чтобы понять, как ДНК влияет на рост и дефекты наших костей, надо сперва уяснить, как они устроены и как работают. Когда речь идет о скелете, многие представляют себе что-то твердое, крепкое, неподвижное, почти неживое. Но на самом деле все совсем не так. Кости наши очень даже живые, они постоянно обновляются и перестраиваются, чтобы лучше соответствовать нашим потребностям. Все эти перемены – результат непрерывной битвы между двумя типами клеток: остеокластами и остеобластами. Очень похоже на борьбу главных героев диснеевского мультфильма о героях видеоигры «Ральф».
Остеокласты выступают в роли Ральфа – они растворяют и разрушают кости, именно в этом состоит их задача. А остеобласты, как Мастер Феликс, непрерывно их чинят. Казалось бы, вот решение – уберем остеокласты, нашего Ральфа, и кости станут прочнее. Да только остеобласты не могут жить без остеокластов, как и герои диснеевского мультфильма – друг без друга.
Эта постоянная разборка и сборка костей приводит к тому, что наш скелет полностью обновляется примерно каждые 10 лет. Непрерывный цикл регенерации кости «сломай-построй-сломай-повтори» дает нам на выходе такой скелет, который годится именно для нашего образа жизни. Именно тот, который, если все пошло правильно, выдержит ваши прыжки, бег, катание на велосипеде, долгие прогулки, танцы – все, что вам захочется делать. Конечно, не помешает еще добавить немножечко кальция. И если вы, как многие, едите по утрам кукурузные хлопья, вы ежедневно получаете необходимую дозу этого полезного элемента.
Если вы любите готовые завтраки, вы наверняка знакомы с продукцией компании Kelloggs. Ее основал в 1906 году Уильям К. Келлог. У него был брат, доктор Джон Харви Келлог, и компании от него досталось куда больше, чем просто фамилия в названии. Для своего времени доктор Келлог был общепризнанным гуру в вопросах здоровья, хотя сегодня многие его идеи мы бы назвали по меньшей мере эксцентричными. (Он, например, считал, что несварение желудка – самая частая причина смерти людей, а секс, даже в моногамных парах, опасен для здоровья.)
Доктор Келлог был пионером в области вибрационной терапии. В своем печально известном санатории он сажал пациентов на трясущиеся кресла и табуреты. Доктор полагал, что болезнь из человека можно просто вытрясти.
Спустя столетие многие эксперты все еще смотрят на вибротерапию со скептицизмом. Более того, большинству людей крайне не рекомендуют подвергаться длительному воздействию вибрации. Однако есть особые случаи. Для некоторых групп пациентов вибрации, по всей видимости, могут быть полезны. У людей с нарушениями остеогенеза такие давно забытые процедуры, скорее всего, стимулируют совместную работу остеокластов и остеобластов, что, в свою очередь, способствует лечению остеохондроза – заболевания, от которого страдает не один миллион человек. Возможно, новый подход к вибрационной терапии позволит запускать экспрессию нужных генов и таким образом укреплять наши кости…
Но даже если у вас все идеально с генами, недостаток нагрузки, возраст и гормональные перестройки могут внести неразбериху в сложную и деликатную систему, поддерживающую наш скелет в нужном состоянии. Сегодня мы знаем, что и образ жизни существенно влияет на состояние наших костей.
То же самое справедливо и для мутаций в геноме. Вот, например, юная Али Маккин. У нее редкое генетическое заболевание: клетки ее эндотелия (те, что выстилают внутреннюю поверхность кровеносных сосудов) превращаются в остеобласты (в клетки, которые, как Мастер Феликс, непрерывно чинят наши кости). Другими словами, ее клетки все время пытаются переделать мышцы в кости. Страшное заболевание!
Самый известный случай прогрессирующей оссифицирующей фибродисплазии (сокращенно ПОФ), которую еще иногда называют синдромом каменного человека, произошел в Филадельфии. Тело Гарри Истлака начало окостеневать, когда ему было всего 5 лет. Он умер в 39 лет, когда его ткани настолько сцементировались, что он мог уже только шевелить губами. Сегодня его скелет находится в Музее медицинской истории Мюттера при Медицинском колледже Филадельфии. Он доступен для публичного просмотра и до сих пор вызывает живой интерес исследователей, пытающихся постичь природу ПОФ.
Синдромом каменного человека страдает примерно один из двух миллионов. И развитие заболевания напрямую связано с травмами. Каждый раз, когда Али заработает синяк или шишку, в это место устремляются остеобласты, которые вырастят там кость. И хирургическое вмешательство тут бессильно. На месте удаленной кости тут же вырастет новая.
В последние годы ученые сделали большие успехи в исследование ПОФ. Оказывается, ПОФ вызывают мутации в гене ACVR1.{45} По всей видимости, часть таких мутаций приводит к тому, что белок-переключатель, который должен получаться на основе ACVR1, производится во всегда включенном состоянии. В результате вместо здорового роста кости там и тогда, когда требуется, кости растут всегда, когда только возможно. Однако это открытие – только первый шаг к лечению людей с такими отклонениями. Пока что единственным путем остается ранняя диагностика – она помогает родителям и воспитателям следить, чтобы ребенок получал как можно меньше травм.
К сожалению, доктора поняли, что происходит с Али, только когда ей было уже 5 лет. Представьте, сколько синяков и ссадин она заработала к этому моменту. И эффект, который это окажет в будущем на ее здоровье, по-настоящему ужасен. А ведь кроме того были еще и медицинские процедуры. Пытаясь понять, что происходит с девочкой, доктора нанесли в итоге немало вреда.
Считается, что большинство мутаций в гене ACVR1 – de novo мутации. Они возникают заново, а не наследуются от родителей. Это только усложняет и замедляет диагностику, ведь у больных, скорее всего, нет предков, у которых тоже был ПОФ.
Однако в случае с Али был едва заметный признак болезни, который, к сожалению, пропустили. Большой палец ноги у девочки очень короткий и загнут к своим соседям.{46} Эта дисморфия в сочетании с прочими симптомами могла бы стать ключом к ранней постановке верного диагноза.{47}
Задумайтесь над этим: лучший способ диагностировать это непростое генетическое заболевание – тщательный внешний осмотр. Никаких инвазивных или технически сложных методов – нужно было просто долго и внимательно посмотреть на пальцы ног несчастной девочки.
Даже спустя долгие годы после смерти человека по его костям можно понять многое о том, что с ним происходило в его жизни и как на это влияли его гены. Скелет Гарри Истлака, изученный вдоль и поперек, – очевидный тому пример. Посетители Музея Мютерра с ужасом видят, как болезнь сплавила воедино его тело, – как паук заворачивает муху в паутину. Впрочем, есть и другие, куда более изящные примеры.
Например, представим, что мы только что нашли кости моряков, живших и бороздивших моря в XVI веке. Скажем, из команды «Мэри Роуз». Этот флагман английского флота Генриха VIII затонул 19 июля 1545 года в бою с французами. Что мы можем узнать, глядя на эти кости?
Несмотря на обилие записей, мы не знаем доподлинно, почему «Мэри Роуз» затонула. И не знаем, что за люди были на борту корабля и теперь оказались на дне пролива Солент к северу от острова Уайт в проливе Ла-Манш. Однако благодаря современной научной методике остеологического анализа мы можем понять, как эти кости использовались при жизни. Про моряков с «Мэри Роуз» их скелеты говорят многое: у всех них очень крупные левые плечевые кости{48}. Исследователи считают, что работа, которую выполняли матросы, требовала равной физической нагрузки на обе руки. Кроме, разве что, одного очень важного дела – стрельбы из длинного лука. В Англии времен Тюдоров умение стрелять из лука было обязательно для всех здоровых мужчин. И на борту «Мэри Роуз» было 250 длинных луков, большая часть которых, по-видимому, использовалась для стрельбы горящими стрелами по вражеским кораблям.
Сегодняшние луки, вроде тех, какие можно увидеть на олимпиадах, делают из современных материалов, легких сплавов и пластиков. В отличие от них, английские луки XVI века были очень тяжелыми. Многое поменялось с тех пор, как «Мэри Роуз» пошла ко дну, но если вы, как и большинство людей, правша, то лук при стрельбе, скорее всего, возьмете в левую руку.{49}
Конечно, уже довольно давно очевидно, что если человек использует одну руку чаще другой, то ее форма, тонус и размер мышц будут отличаться. Если вы сами играете в теннис или просто любите смотреть соревнования, вы наверняка замечали, насколько лучше развита та из рук, в которой игроки держат ракетку. (Прекрасным примером может послужить талантливый испанский теннисист-левша Рафаэль Надаль, ведущая рука которого выглядит так, как будто принадлежит уменьшенной и не такой зеленой копии Невероятного Халка.)
Постоянная работа, напряжение и нагрузка не только развивает мышцы – ускоряется работа остеокластов и остеобластов, что, в свою очередь, меняет экспрессию генов. Кости становятся крепче, и в их структуру вплетается история вашей жизни. Эта история живет, покуда остаются целыми ваши кости.