Глазами физика. От края радуги к границе времени Левин Уолтер
После Ван Гога, Гогена и Матисса уже никто не может смотреть на цвет так же, как прежде, а после Энди Уорхола – на банку из-под супа Campbell или образ Мэрилин Монро.
Новаторские произведения искусства могут быть красивыми, даже потрясающими, но гораздо чаще – поначалу, конечно, – они озадачивают, сбивают с толку и даже кажутся многим уродливыми. Истинная красота новаторского произведения искусства, пусть даже на первый взгляд некрасивого, в его смысле. Новый способ смотреть на мир никогда не бывает знакомой и уютной теплой постелью, это всегда отрезвляющий холодный душ. Я лично считаю этот душ бодрящим и освобождающим.
Точно так же я отношусь и к новаторству в области физики. После того как эта наука сделала очередной чудесно разоблачительный шаг в прежде невидимую, туманную сферу, мы уже никогда не будем видеть мир таким, как раньше.
Многие потрясающие открытия, описанные в этой книге, на момент их совершения глубоко озадачивали и сбивали людей с толку. Если бы я заставил вас изучать математические принципы, лежащие в их основе, вам было бы действительно сложно. Но я надеюсь, что мое доступное изложение смогло показать вам, насколько некоторые из самых важных, революционных прорывов в физике захватывающи и красивы. Так же как Сезанн, Моне, Ван Гог, Пикассо, Матисс, Мондриан, Малевич, Кандинский, Бранкузи, Дюшан, Поллок и Уорхол протаптывали новые тропы, бросая вызов миру искусства, Ньютон и все те, кто шел за ним, дали нам новое видение физики.
Пионеры физики начала ХХ века – Антуан Беккерель, Мари Кюри, Нильс Бор, Макс Планк, Альберт Эйнштейн, Луи де Бройль, Эрвин Шредингер, Вольфганг Паули, Вернер Гейзенберг, Поль Дирак, Энрико Ферми и многие другие – предлагали идеи, которые в корне меняли взгляд на реальность, доминирующий на протяжении многих столетий, а то и тысячелетий. До появления квантовой механики мы считали, что частица – это частица, повинующаяся законам Ньютона, а волна – это волна, подчиняющаяся совсем другим физическим законам. Теперь мы знаем, что все частицы могут вести себя как волны, а все волны могут вести себя подобно частицам. Таким образом, один из главных физических вопросов XVIII века, является свет частицей или волной, который, казалось, был раз и навсегда решен в 1801 году Томасом Юнгом в пользу волны (см. главу 5), сегодня и вовсе не считается вопросом, ибо свет и то и другое одновременно.
До появления квантовой механики считалось, что физика наука детерминированная – в том смысле, что проведите вы один и тот же эксперимент хоть 100 раз, каждый раз получите точно такой же результат. Теперь-то мы знаем, что это неправда. Квантовая механика имеет дело с вероятностями, а не с несомненностями. Это открытие было настолько шокирующим, что даже Эйнштейн так и не смог его принять. «Бог не играет в кости», – как известно, сказал он по этому поводу. Что ж, тут великий Эйнштейн ошибался!
До появления квантовой механики мы полагали, что положение частицы и ее импульс (произведение ее массы и скорости) можно, в принципе, одновременно определить с любой степенью точности. Именно этому нас учили законы Ньютона. Теперь мы знаем, что это не так. Хотя это и противоречит интуитивному выводу, чем точнее определено положение частицы, тем менее точно определяется ее импульс; сегодня это известно каждому физику как принцип неопределенности Гейзенберга.
Эйнштейн в своей специальной теории относительности утверждал, что пространство и время образуют одну четырехмерную реальность, пространственно-временной континуум. Он постулировал постоянство скорости света (300 тысяч километров в секунду) во всех системах отсчета. Даже если какой-то человек приближается к вам на сверхскоростном поезде, движущемся со скоростью половины скорости света (150 тысяч километров в секунду) и светящим дальним светом вам в лицо, вы с этим человеком получите для скорости света одну и ту же величину. Это абсолютно противоречит интуиции, поскольку каждый человек наверняка подумает, что поскольку поезд приближается к вам, то, видя свет, направленный на вас, вы должны сложить 300 тысяч и 150 тысяч и получить в итоге 450 тысяч километров в секунду. Но это не так – согласно Эйнштейну 300 тысяч плюс 150 тысяч по-прежнему дает 300 тысяч! А его общая теория относительности оказалась, пожалуй, еще более ошеломляющей: она предполагала полное переосмысление силы, удерживающей вместе астрономическую Вселенную, утверждая, что сила тяжести искажает ткань самого пространственно-временного континуума, выталкивает объекты на орбиту с помощью геометрии и даже заставляет изгибаться в этом искаженном пространстве-времени сам свет. Эйнштейн показал, что ньютоновская физика нуждается в серьезных изменениях, и открыл нам путь к современной космологии – к теории Большого взрыва, расширению Вселенной и черным дырам.
Начав в 1970-е годы читать лекции в МТИ, я не мог не уделять больше внимания красоте и эмоциональности физики, чем ее деталям, которые все равно не задержались бы надолго в головах студентов. В каждой теме я старался по мере возможности соотносить материал с собственным миром студентов, то есть пытался помочь им увидеть то, о чем они никогда не думали, но что постоянно находилось в поле их зрения. Всякий раз, когда ученики задают мне какой-то вопрос, я обязательно говорю, что он отличный. Самое последнее, что должен делать учитель, – это заставлять ученика чувствовать, что он глуп, а преподаватель умен.
В моем курсе по электричеству и магнетизму есть один очень ценный для меня момент. На протяжении большей части курса мы постепенно, шаг за шагом, подходим к уравнениям Максвелла, потрясающе элегантным описаниям взаимосвязи электричества и магнетизма – разными аспектами одного и того же явления, электромагнетизма. В способе соединения этих уравнений друг с другом содержится невероятная внутренняя красота. Они неделимы и вместе представляют собой единую теорию поля.
Так вот, я проецирую эти четыре прекрасных уравнения на разные экраны на всех стенах лекционного зала. «Смотрите на них, – говорю я студентам. – Вдыхайте их. Позвольте им проникнуть в ваш мозг. Только раз в жизни вы увидите все четыре уравнения Максвелла так, чтобы оценить их во всей полноте, красоте и тесной взаимосвязи. Больше это никогда не повторится. И вы уже никогда не будете прежними. Вы только что потеряли девственность». Чтобы ознаменовать этот великий день в жизни студентов и отпраздновать интеллектуальную встречу на высшем уровне, я приношу в аудиторию шестьсот нарциссов – по одному для каждого студента.
Студенты часто пишут мне много лет спустя, давно забыв детали уравнений Максвелла, что помнят тот день нарциссов, которыми я отметил их переход к новому способу восприятия мира. С моей точки зрения, это и есть преподавание на самом высоком уровне. Для меня гораздо важнее, что студенты помнят красоту того, что они тогда увидели, чем то, смогут ли они через пару лет точно воспроизвести написанное профессором на доске. Важно не то, что вы рассказываете, а то, как вы это делаете!
Моя цель – заставить студентов полюбить физику и сделать так, чтобы они стали смотреть на мир по-другому – на всю оставшуюся жизнь! Я хочу расширять их кругозор, чтобы побудить их задавать вопросы, которые они никогда не задали бы ранее. Моя задача – разблокировать мир физики таким образом, что он соединился с реальным интересом студентов к окружающему миру. Вот почему я всегда стараюсь показать им лес, а не заставляю лазить вверх и вниз по каждому дереву. То же самое я пытался сделать и для вас в этой книге. И искренне надеюсь, что у меня получилось и вам понравилось наше путешествие в мир физики.
Приложение I
Бедренная кость млекопитающего
Логично было бы предположить, что масса млекопитающего пропорциональна его объему. Сравним, например, щенка с матерым псом в четыре раза большего размера. Предположим, что все линейные размеры взрослой собаки в четыре раза больше размеров щенка: высота и длина тела, длина и толщина лап, объем головы – в общем, все. Если это так, то объем (и, следовательно, масса) взрослой собаки приблизительно в 64 раза больше объема щенка.
Для того чтобы все яснее представить, возьмем параллелепипед со сторонами a, b и c. Его объем будет равен a b c. Если увеличить все его стороны в четыре раза, его объем составит 4a 4b 4с, то есть 64abc. Выражаясь более математическим языком, можно сказать, что объем (и, следовательно, масса) млекопитающего пропорционален его размеру в кубе. Если большая собака в четыре раза больше щенка, то ее объем должен быть в четыре в кубе (4) раз больше, то есть в 64 раза. Таким образом, обозначив длину бедренной кости l, при сравнении млекопитающих разного размера получаем, что их масса должна быть примерно пропорциональна l в кубе (l).
Ну хорошо, с массой разобрались. Далее, прочность бедренной кости млекопитающего, поддерживающей весь его вес, должна быть пропорциональна ее толщине, не так ли? Более толстая кость способна поддерживать больший вес – это интуитивный вывод. Если перевести данную идею на язык математики, то прочность бедренной кости должна быть пропорциональна площади ее поперечного сечения. Данное сечение, грубо говоря, представляет собой круг, а мы знаем, что площадь круга равна r, где r – радиус круга. Таким образом, если d диаметр круга, площадь пропорциональна d.
Обозначим толщину бедренной кости буквой d (от слова диаметр). Тогда, следуя идее Галилео, масса млекопитающего будет пропорциональна d (чтобы кости могли выдержать его вес), но она также пропорциональна l (это всегда так, независимо от идей Галилея). Стало быть, если идея Галилея верна, d должно быть пропорционально l, что равнозначно заявлению о том, что d пропорционально l/2.
Если сравнить двух млекопитающих, одно из которых в пять раз больше другого (следовательно, длина l его бедренной кости примерно в пять раз больше), можно ожидать, что толщина d его бедренной кости будет приблизительно в 53/2 = 11 раз больше толщины бедренной кости меньшего животного. На своих лекциях я показываю, что длина l бедренной кости слона примерно в 100 раз больше длины бедренной кости мыши; следовательно, если идея Галилео верна, следует ожидать, что толщина d бедренной кости слона приблизительно в 1003/2 = 1000 раз больше кости мыши.
Таким образом, на определенном этапе роста и развития толщина бедренных костей очень тяжелых млекопитающих должна была бы сравняться с длиной этих костей – или даже стать больше ее, – что сделало бы, по сути, этих животных нежизнеспособными. Очевидно, именно по этой причине мудрая природа ввела максимальные ограничения на размеры млекопитающих.
Приложение II
Законы Ньютона в действии
Закон всемирного тяготения Ньютона можно записать следующим образом:
Fтяг – сила гравитационного притяжения между объектами с массой m1 и m2, а r – расстояние между ними. G – это так называемая гравитационная константа.
Законы Ньютона в принципе позволили нам вычислить по крайней мере массу Солнца и некоторых планет.
Давайте посмотрим, как это работает. Начну с Солнца. Допустим, m1 – масса Солнца, а m2 – масса планеты (любой). Предположим, что орбита планеты представляет собой окружность с радиусом r, а ее орбитальный период равен Т (Т составляет 365,25 дня для Земли, 88 дней для Меркурия и почти 12 лет для Юпитера).
Если орбита круговая или почти круговая (что характерно для пяти из шести планет, известных ученым в XVII веке), темп вращения планеты на орбите будет стабильным, но направление ее скорости постоянно меняется. Однако при изменении направления скорости любого объекта, даже без изменения ее величины, непременно имеет место ускорение, и, следовательно, согласно торому закону Ньютона, должна быть сила, обеспечивающая его.
Эту силу называют центростремительной (Fц), и она всегда направлена точно от движущейся планеты к Солнцу. Конечно, поскольку Ньютон был Ньютоном, он знал, как вычислить эту силу (я вывожу это уравнение на своих лекциях); ее величина такова:
Здесь v – скорость планеты на орбите. Но эта скорость равна окружности орбиты, 2r, поделенной на время, T, требуемое для одного оборота вокруг Солнца. Таким образом, мы можем также записать:
Откуда же берется эта сила? Каково ее происхождение? Ньютон понял, что это должно быть гравитационное притяжение Солнца. Следовательно, две силы в приведенных выше уравнениях являются, по сути, одной и той же силой и друг другу равны:
Еще немного поиграв с перестановкой переменных (кстати, отличный шанс освежить школьные знания алгебры), получаем, что масса Солнца составляет:
Обратите внимание, что массы планеты (m2) в уравнении 5 больше нет; она не входит в эту модель. Следовательно, для расчетов нам достаточно знать среднее расстояние от планеты до Солнца и ее орбитальный период (Т). Ну разве не удивительно? В конце концов, m2 есть и в уравнении 1, и в уравнении 2. Но именно тот факт, что данная переменная присутствует в обоих уравнениях, и является причиной, по которой m2 исключается путем установления равенства между Fтяг и Fц. В этом красота данного метода, и всем этим мы обязаны сэру Исааку Ньютону!
Уравнение 5 указывает на то, что r/T одинаково для всех планет. Хотя все они находятся на совершенно разных расстояниях от Солнца и имеют разные периоды орбитального движения, соотношение r/T у всех одинаково. Немецкий астроном и математик Иоганн Кеплер обнаружил этот удивительный факт в 1619 году, задолго до Ньютона. Но почему это отношение – куба радиуса к квадрату орбитального периода, – величина постоянная, он объяснить не смог. Только гениальный Ньютон 68 лет спустя показал, что это естественное следствие его законов.
В общем и целом уравнение 5 говорит нам о том, что если мы знаем расстояние от любой планеты до Солнца (r), орбитальный период этой планеты (Т) и гравитационную константу (G), то мы можем вычислить массу Солнца (m1).
Орбитальные периоды планет с достаточно высокой степенью точности были известны ученым задолго до XVII века. Расстояния между Солнцем и планетами также были известны с высокой степенью точности задолго до XVII века, но только в относительном масштабе. Иными словами, астрономы знали, что среднее расстояние от Венеры до Солнца составляет 72,4 процента от расстояния между Землей и Солнцем, а среднее расстояние от Юпитера до Солнца в 5,2 раза больше, чем от Солнца до Земли. Но абсолютные значения этих расстояний – совершенно другая история. Например, в XVI веке, во времена великого датского астронома Тихо Браге, считалось, что расстояние от Земли до Солнца в 20 раз меньше, чем оно было на самом деле (около 150 миллионов километров). В начале ХVII века Кеплер дал более точную оценку этого расстояния, но оно по-прежнему было в семь раз меньше правильного.
Поскольку, согласно уравнению 5, масса Солнца пропорциональна кубу его расстояния (до планеты), то если расстояние r не дотягивает до реального в семь раз, масса Солнца будет меньше фактической в 7, то есть в 343 раза – много ли проку в таких данных?
Прорыв произошел в 1672 году, когда итальянский ученый Джованни Кассини измерил расстояние от Земли до Солнца с точностью до 7 процентов (весьма внушительный по тем временам результат), а это означало, что погрешность r составляла лишь около 22 процентов. Но и погрешность определения G все еще была не менее 30 процентов. Так что получается, что к концу ХVII века масса Солнца могла быть определена с точностью не выше 50 процентов.
Поскольку относительные расстояния от Солнца до планет были известны довольно точно, знание абсолютного расстояния от Солнца до Земли с 7-процентной точностью позволяло к концу ХVII века приблизительно с такой же точностью рассчитать и абсолютные расстояния от Солнца до пяти других известных астрономам планет.
Описанный выше метод для расчета массы Солнца можно использовать и для определения массы Юпитера, Сатурна и Земли. Все три планеты имеют на своих орбитах спутники; еще в 1610 году Галилео Галилей обнаружил четыре спутника Юпитера, которые ныне известны как галилеевы луны. Если m1 – масса Юпитера, а m2 – масса одного из его спутников, то мы можем вычислить массу Юпитера с помощью уравнения 5 – так же, как вычисляли массу Солнца, только на этот раз r будет расстоянием между Юпитером и его спутником, а Т – орбитальным периодом этого спутника при вращении вокруг Юпитера. Четыре галилеевых луны (всего у Юпитера 63 спутника!) имеют орбитальные периоды 1,77 дня, 3,55 дня, 7,15 дня и 16,69 дня.
Со временем точность оценки расстояний между планетами и величины G существенно повысилась. К XIX веку константа G была известна с точностью до 1 процента. В настоящее время она оценена с точностью до 0,01 процента.
Приведу пример с конкретными числами. Предлагаю с помощью уравнения 5 вместе вычислить массу Земли (m1), взяв для этого данные об орбите нашей Луны (масса m2). Чтобы использовать уравнение 5 правильно, расстояние r должно быть выражено в метрах, а период T в секундах. И при G, равном 6,673 1011, мы получим массу в килограммах.
Среднее расстояние от Земли до Луны (r) составляет 3,8440 108 метров; ее орбитальный период Т равен 2,3606 106 секунды (27,32 дня). Если подставить эти числа в уравнение 5, масса Земли будет равна 6,030 1024 килограмма. Самая точная на сегодняшний день оценка массы Земли составляет около 5,974 1024 килограмма, то есть всего на 1 процент меньше, чем то значение, которое мы только что рассчитали! Откуда же взялась эта разница? Одной из причин погрешности является то, что в использованном нами уравнении предполагается круговая орбита Луны, в то время как на самом деле она вытянутая, эллиптическая. В результате наименьшее расстояние до Луны составляет 363,1 тысячи километров, а наибольшее – 405,7 тысячи километров. Конечно, для законов Ньютона эллиптические орбиты не проблема, но, боюсь, сложность этих расчетов может взорвать ваш мозг. Если уже не взорвала!
Есть еще одна причина, по которой полученный нами результат массы Земли немного отличается от фактического. Дело в том, что мы основывались на предположении, что Луна вращается вокруг Земли и что Земля находится в центре ее круговой орбиты. Таким образом, в уравнениях 1 и 3 мы исходили из того, что r – это расстояние между Землей и Луной. Для уравнения 1 это верно; однако, как мы обсуждали в главе 13, на самом деле и Луна, и Земля вращаются вокруг центра масс системы Луна-Земля, расположенного примерно на 1700 километров ниже поверхности Земли. Таким образом, r в уравнении 3 чуть меньше, чем в уравнении 1.
Поскольку мы живем на Земле, у нас есть и другие способы расчета массы родной планеты. Один из них заключается в измерении гравитационного ускорения вблизи поверхности. Падая, любой объект массой m (m может иметь любое значение) наращивает скорость с ускорением, g, то есть около 9,82 метра в секунду за секунду[29]. Средний радиус Земли приблизительно 6,371 106 метра.
Теперь вернемся к уравнению 1 Ньютона. Поскольку F = ma (второй закон Ньютона), то
Здесь r – радиус Земли. При G = 6,673 1011, g = 9,82 метр в секунду за секунду и r = 6,371 106 метра мы можем вычислить mземл в килограммах (обязательно попробуйте!). Если несколько упростить уравнение 6, получаем
Я подсчитал, что mземл составляет 5,973 1024 килограмма (впечатляет, не правда ли?).
Обратите внимание, что массы m брошенного нами объекта в уравнении 7 вообще нет! Это не должно вас удивлять, потому что масса Земли не может зависеть от массы объекта, который вы на нее роняете.
Вам, возможно, будет также интересно узнать, что, по мнению Ньютона, средняя плотность Земли составляет от 5000 до 6000 килограммов на кубический метр. Следует отметить, что эта гипотеза не основывалась на какой-либо астрономической информации; он предложил ее полностью независимо от всех своих законов. Это была наилучшая «обоснованная» прикидка великого физика. Средняя плотность Земли действительно составляет 5,540 килограмма на кубический метр. Если записать предположение Ньютона как 5,500 ± 500 килограммов на кубический метр, получится, что погрешность его оценки – всего 10 процентов (просто невероятно!).
Я не знаю, воспринималась ли эта идея Ньютона кем-либо из его современников всерьез, но допустим, что да. Так как радиус Земли был в XVII веке известен, ее массу можно было вычислить с точностью до 10 процентов (масса – это объем, умноженный на плотность). Следовательно, уравнение 7 можно использовать для расчета G тоже с точностью до 10 процентов. Я говорю вам это потому, что меня лично очень интригует тот факт, что при условии принятия оценки средней плотности Земли Ньютоном гравитационная константа G тоже могла быть известна в конце XVII века с точностью до 10 процентов!
Благодарности
Без интеллекта, предвидения, деловых талантов и моральной поддержки нашего поистине исключительного литературного агента Венди Стротман эта книга осталась бы лишь несбывшейся мечтой. Венди свела нас вместе, нашла правильный дом для книги в издательстве Free Press, прочла бесчисленные черновики глав глазом опытного редактора, дала книге название и помогала нам сохранять четкий фокус на конечном продукте. А еще мы счастливые и удачливые получатели ее верной дружбы, что стимулировало и подстегивало нас на протяжении всего проекта.
Трудно переоценить вклад редактора Эмили Луз из Free Press, чье видение книги оказалось заразным и чье на редкость пристальное внимание к стилю повествования стало источником просвещения для нас обоих. Несмотря на огромное давление в современной издательской среде, заставляющее издателей срезать углы во имя финансовых показателей, Эмили настаивала на качественном редактировании книги, неизменно подталкивая нас к большей ясности, к более плавным переходам от темы к теме и более четкому фокусу. Ее мастерство и напористость существенно улучшили эту книгу. Мы также благодарны Эми Райан за отличное техническое редактирование рукописи.
От Уолтера Левина
Каждый день я получаю замечательные, порой очень трогательные электронные письма от десятков людей со всего мира, которые смотрят мои лекции в интернете. Их просмотр стал возможен благодаря дальновидности Ричарда (Дика) Ларсона. В 1998 году, будучи директором Центра перспективных образовательных услуг и профессором кафедры электротехники Массачусетского технологического института, Дик предложил записать мои довольно нетрадиционные лекции на видео и сделать их доступными для студентов других учебных заведений. И ему удалось добиться очень неплохого финансирования этого проекта от фонда Lord Foundation в Массачусетсе и фонда Atlantic Philanthropies. Инициатива Дика стала предшественником современного электронного обучения! Когда ресурс OpenCourseWare МТИ распахнул в 2001 году свои двери, мои лекции стали доступны во всех уголках мира, и в настоящее время их смотрят более миллиона человек в год.
Мою фотографию 19 декабря 2007 года поместили на первой полосе New York Times; она сопровождала статью Сары Ример, озаглавленную так: «В 71 год профессор физики стал веб-звездой». Этот материал запустил цепную реакцию событий, которые в итоге привели к написанию этой книги. Спасибо вам, Сара!
В течение последних двух лет, даже в те семьдесят дней, которые я провел в больнице (и чуть не умер), эта книга неизменно присутствовала в моей голове. Дома я, не переставая, говорил о ней с женой, Сьюзан Кауфман. Мысли о книге не давали мне уснуть много ночей. Сьюзен терпеливо переносила все это и даже умудрялась подбадривать меня. Она также бросила свой проницательный редакторский глаз на ряд глав книги и заметно улучшила их, за что ей большое спасибо.
Я также очень благодарен своей двоюродной сестре Эмми Арбель-Каллус и родной сестре Бее Блоксма-Левин за то, что они поделились со мной некоторыми весьма болезненными воспоминаниями о событиях Второй мировой войны. Я отлично понимаю, как это тяжело было для них обеих, потому что это очень трудно и для меня. Я благодарю Нэнси Штибер, моего близкого друга вот уже на протяжении тридцати лет, за поправки в моем английском, и ценные комментарии и предложения. Я также хочу выразить признательность моему другу и коллеге Джорджу Кларку, без которого никогда бы не стал профессором Массачусетского технологического института. Именно Джордж дал мне прочитать оригинальное предложение компании American Science and Engineering, представленное в Кембриджские научно-исследовательские лаборатории ВВС, которое со временем привело к рождению нового направления астрофизики – рентгеновской астрономии.
Я благодарен Скотту Хьюзу, Энектали Фигероа-Фелисиано, Натану Смиту, Алексу Филиппенко, Оуэну Джинджеричу, Эндрю Гамильтону, Марку Уиттлу, Бобу Джаффе, Эду ван ден Хеувелю, Полу Мердину, Джорджу Вудроу, Джеффу Мак-Клинтоку, Джону Белчеру, Максу Тегмарку, Ричарду Лью, Фреду Разио, ныне покойному Джону Хакре, Джеффу Хоффману, Уотти Тэйлору, Вики Каспи, Фреду Базанову, Рону Ремилларду, Дэну Клеппнеру, Бобу Киршнеру, Амиру Ризку, Крису Давлантесу, Кристин Шерратт, Марку Бессетту, Маркосу Хэнкину, Билу Сэнфорду и Эндрю Нили за то, что все они подставили свое плечо, когда я нуждался в их помощи.
И наконец, я никогда не смогу в полной мере отблагодарить Уоррена Гольдштейна за терпение и гибкость; временами он, без сомнения, должен был чувствовать себя перегруженным (и возможно, раздраженным) чрезмерным объемом физики на единицу времени.
От Уоррена Гольдштейна
Я хотел бы поблагодарить следующих людей за их готовность говорить со мной об Уолтере Левине: Лауру Блоксма, Беа Блоксма-Левин, Полин Брогберг-Левин, Сьюзан Кауфман, Эллен Крамер, Виса де Хира, Эмануэля (Чака) Левина, Дэвида Пули, Нэнси Штибер, Питера Стрюкена. Даже если их отзывы и воспоминания не вошли в эту книгу, каждый из них внес ценный клад в мое понимание этого человека. А Эдвард Грей, Джейкоб Гарни, Лоренс Маршалл, Джеймс Макдональд и Боб Селмер сделали все от них зависящее, чтобы удержать нас с Уолтером от ошибок в их областях деятельности, так что за все оставшиеся ошибки мы с Уолтером берем полную ответственность на себя. Я также хочу поблагодарить Уильяма Дж. Лео, выпускника Университета Хартфорда 2011 года, за помощь в критический момент. Три самых умных автора из всех мне известных – Марк Гюнтер, Джордж Каннар и Леннард Дэвис – дали ценные советы в самом начале этого проекта. Спасибо Дину Воелкеру и помощнику ректора Фреду Свайцеру из Университета Хартфорда, которые каждый по своему помогали мне выкроить время, чтобы закончить эту книгу. Я глубоко благодарен моей жене Донне Шапер – экстраординарному организатору и автору, по последним подсчетам, тридцати книг, – за понимание и высокую оценку моего погружения в чужой для меня мир. Наш внук, Калеб Бенджамин Лурия, пришел в этот мир 18 октября 2009 года; было неописуемым удовольствием наблюдать за тем, как малыш изо дня в день проводит свою собственную серию замечательных физических экспериментов. И наконец, хочу выразить огромную признательность Уолтеру Левину, благодаря которому я за последние несколько лет узнал о физике больше,чем многие из вас сочли бы возможным, и разбудил во мне страсть, которая так долго спала.
Об авторах
Уолтер Левин родился и вырос в Нидерландах. Получив в 1965 году докторскую степень в области физики в Технологическом университете Делфта, он в 1966-м прибыл в Массачусетский технологический институт (МТИ) в качестве постдокторанта. В том же году он стал доцентом, а в 1974-м занял должность ординарного профессора. Уолтер Левин очень опытный астрофизик, пионер в области рентгеновской астрономии, автор более четырехсот пятидесяти научных статей. Больше тридцати лет Уолтер преподавал в МТИ три основных курса физики; его лекции пользовались такой популярностью, что со временем их сняли на видео, и они покорили интернет, став настоящими хитами OpenCourseWare в МТИ, YouTube, ITunes U и Academic Earth. Их ежегодно смотрят свыше миллиона человек из самых разных уголков мира, а лестными отзывами в их адрес пестрят многие известные медиа, в том числе New York Times, Boston Globe, International Herald Tribune, Guardian, Washington Post, Newsweek, U.S. News и World Report. Левин – обладатель множества наград, включая медаль «За выдающиеся научные достижения» НАСА (1978), премию Александра фон Гумбольдта, стипендию Гуггенхайма (1984), премию Научного совета МТИ за выдающиеся заслуги в университетском преподавании (1984), премию У. Бюхнера физического факультета МТИ (1988), групповую премию НАСА за открытие взрывного пульсара (1997) и мемориальную премию Эверетта Мура Бейкера за выдающиеся достижения в университетском преподавании (2003). В 1993 году Уолтер Левин стал членом-корреспондентом Королевской академии искусств и наук Нидерландов и членом Американского физического общества.
Уоррен Голдштейн – профессор истории, заведующий кафедрой исторического факультета в Университете Хартфорда, где получил премию имени Джеймса и Фрэнсис Бент за творческий подход к преподаванию (2006). Всю свою жизнь Уоррен увлекается физикой. Плодовитый, удостоенный множества наград историк, публицист, журналист и преподаватель, ранее он уже опубликовал такие книги, как Playing for Keeps: A History of Early Baseball («Игра всерьез: история начального этапа развития бейсбола») и весьма восторженно принятую критиками биографию Уильяма Слоуна Коффина-мл., William Sloane Coffin, Jr.: A Holy Impatience. Его статьи об истории, образовании, религии, политике и спорте печатались в New York Times, Washington Post, Chronicle of Higher Education, Boston Globe, Newsday, Chicago Tribune, Philadelphia Inquirer, Nation, Christian Century, Yale Alumni Magazine, Times Literary Supplement и Huffington Post.