Никола Тесла. Наследие великого изобретателя Фейгин Олег

Попробуем разобраться в этом вопросе подробнее. Надо сказать, что для астрофизиков аналоги черных дыр уже давно являются привычными объектами исследования, и астрономы легко могут предложить широкий выбор подобных объектов. Среди них можно встретить и карликовые экземпляры в несколько солнечных масс, которые возникли при гравитационном коллапсе отдельных звезд, и сверхмассивные объекты в сотни солнечных масс, которые появились в результате последовательного слияния целых звездных ассоциаций (чаще всего подобные явления происходят в галактических ядрах).

Итак, мы теперь в самых общих чертах можем представить, что же такое черные дыры застывших звезд, и снова вернуться к главному вопросу: что произойдет, если микроскопический аналог этих очень странных объектов возникнет на Земле? Есть ли у нас основания для утверждения о том, что микроколлапсары своевременно и благополучно распадутся? А вдруг они стремительно вырастут настолько, что поглотят все вещество нашей планеты? На первый взгляд, эти опасения могут быть вполне обоснованными, ведь многие детали строения микроколлапсаров глубоко неоднозначны. Тем не менее большинство физиков-теоретиков сходятся во мнении, что микроколлапсары не могут быть достаточно устойчивы и обязательно должны распадаться, испуская потоки элементарных частиц.

Большой адронный коллайдер (ЦЕРН, Женева, Швейцария)

Еще один аргумент в пользу безопасности генерации искусственных микроколлапсаров дает физика космических лучей. Ведь поверхность нашей планеты непрерывно бомбардируют частицы очень высоких энергий, еще не достижимых на сверхмощных ускорителях типа того же БАК. При этом ничего угрожающего не происходит, хотя вполне возможно, что природа сама каждый миг весьма успешно создает микроскопические черные дыры. Самые осторожные и намеренно заниженные оценки показывают, что сверхвысокоэнергетические космические лучи могут порождать в земной атмосфере сотни микроколлапсаров в год.

Существует большая группа ученых, которые предлагают принципиально иное направление прорыва в физике коллапсаров. Их прогнозы основаны на физике элементарных частиц и связаны с новыми образцами ускорительной техники. Прежде всего они надеются на результаты использования крупнейшего в мире ускорителя элементарных частиц — Большого адронного коллайдера, построенного международным исследовательским консорциумом в Швейцарии. Теоретически столкновения частиц с очень высокими энергиями способны привести к возникновению микроскопических черных дыр.

Черные дыры различных размеров могли бы проникнуть в дополнительные измерения, которые иначе нам недоступны. Поскольку гравитация, в отличие от прочих сил, простирается и в те измерения, черные дыры тоже их чувствуют. Физики могли бы изменять размер дыр, настраивая ускоритель частиц на разную энергию. Если дыра пересечет параллельную вселенную, то станет распадаться быстрее и выделять меньше энергии, поскольку ее часть будет уходить в другую вселенную.

С другой стороны, генерация микроколлапсаров в ускорителях элементарных частиц позволила бы узнать очень интригующие тайны окружающей нас материи. Ведь исследуя микроскопические черные дыры, мы вторгаемся в такие сверхмалые масштабы микромира, где уже просматриваются очертания фундаментальных ячеек пространства — времени. За этими пределами сами понятия пространства и физических размеров, по-видимому, начинают утрачивать свой обычный смысл. Любая попытка исследовать меньшие расстояния, осуществляя столкновения частиц при более высоких энергиях, теоретически вполне может закончиться рождением микроколлапсара. А подводя энергию к нестабильному коллапсару, можно попытаться «раздуть» его в миниатюрную метастабильную черную дыру, существующую секунды или даже минуты. Вот тут наконец мы и пришли к результату, укладывающемуся в схему возникновения Тунгусского дива! Дело в том, что микромиром элементарных частиц, к которому относятся и микроколлапсары, управляют законы квантовой механики, отрицающие, что в природе существуют точечные объекты в точном математическом смысле. Вот и центральная сингулярность гравитационного коллапсара в квантовой физике имеет хоть и чрезвычайно малый, но вполне определенный радиус, приблизительно равный 10–35 см. При подобных масштабах, которые называют «планковские», обычное пространство приобретает крайне необычный вид, фактически прекращая свое существование. Свойства подобного квазипространства, чем-то напоминающего пузырящуюся пену (физики так и говорят — «квантовая пена»), еще очень мало изучены.

Как уже говорилось, есть достаточно большая вероятность генерации микроколлапсаров при взаимных соударениях (у физиков — «рассеянии») быстрых элементарных частиц. При достаточно мощном столкновении двух элементарных частиц в верхних слоях земной атмосферы мог родиться микроколлапсар. Правда, эта сверхнестабильная микроскопическая черная дыра должна была бы тут же испариться, но… произошло еще одно крайне редкое событие — на новорожденном микроколлапсаре рассеялась третья сверхвысокоэнергичная частица, пришедшая из глубин Вселенной. Любопытно, что одним из наиболее вероятных источников таких частиц может быть сверхгигантская дыра — радиопульсар, расположенная в ядре нашей Галактики. Итак, образовалась метастабильная миниатюрная черная дыра, живущая уже не неизмеримо малые доли микросекунды, а минуты и даже, при некоторых допущениях, десятки минут. Далее, следуя извилистой траекторией, испаряясь и рассыпая на своем пути потоки всех существующих в природе элементарных частиц, мини-коллапсар исчез в чудовищном взрыве над Подкаменной Тунгуской…

Тут надо честно признать, что при всей внешней фантастичности подобный сценарий Тунгусского дива объясняет многие странные сопутствующие явления. В частности, становится понятной аномально высокая активность земной ионосферы, выразившаяся в магнитных суббурях и феноменальных полярных сияниях, вызванных потоками жесткого электромагнитного излучения и шквалом ионизирующих частиц в ходе испарения миниатюрной черной дыры. При этом исключаются многие контраргументы, вполне справедливые для характера явлений, которые должны были бы наблюдаться при столкновении Земли с обычной макроскопической черной дырой, пусть и совершенно незначительных размеров.

Совершенно по-иному могли бы развиваться события при появлении над Тунгусским плато мини-коллапсара. К тому же тут теряет силу главный «антидырочный» аргумент критиков этой гипотезы — испарение миниколлапсара полностью исключает необходимость «австралийского дива», которое бы неминуемо возникло при проходе макродыры сквозь земной шар. Совершенно по-иному может выглядеть и загадка появления сверхмощного плазмоида Теслы, вызвавшего колоссальный всплеск энергии. Достаточно лишь предположить, что вместо третьей сверхвысокоэнергетической частицы новорожденный мини-коллапсар встретил на своем пути гигантский всплеск энергии пучности стоячей волны от «глобального электроэфир но го резонатора» Теслы.

Сам изобретатель неоднократно подчеркивал, что в его опытах постоянно возникали искусственные огненные шары «круглого электричества» во время появления вынужденных колебаний, независимых от вторичной обмотки. Это явление смещало точку максимума электрического давления ниже повышенной пропускной способности станции и вызывало генерацию огненных шаров, «прыгающих» на большие расстояния.

Внутреннюю энергию своих молниеносных плазмоидов Тесла рассчитывал по элементарным оценкам, основанным на причиняемых ими разрушениях. Обычно это были довольно небольшие взрывы, разбрасывающие тестовые кучи кирпичей с торчащими из них незаземленными стержнями. Однако с некоторого времени Тесла неожиданно начал рассуждать о каких-то необычных «шарах электричества», обладающих поистине колоссальной энергией. Изобретатель считал, что плотность энергии у подобных прообразов шаровых молний в сотни, если не в тысячи раз превосходит самые сильные из известных взрывчатых веществ. В последующих своих высказываниях Тесла уверенно, как будто за этим стояла большая экспериментальная работа, обрисовывал «энергетические шары», которые, по его словам, могли бы послужить «универсальными аккумуляторами будущего» и их можно было бы применять в любых электрических двигателях наземного транспорта, авиации и, при достаточной степени экранирования от водной среды, на новом электрическом флоте. Тесла утверждал, что посвятил очень много времени созданию гибридной аккумулирующей системы, состоящей из плазменного аккумулятора и подпитывающего его резонансного излучателя, наподобие того, от которого приходили в ужас обитатели окрестностей Колорадо-Спрингс. Легендами обросла и история о том, как Тесла поставил изобретенную им плазменно-резонансную систему на стандартный фордовский кабриолет и почти месяц ездил без заправки! После этого он с большим пафосом рисовал перед пораженными журналистами перспективы преобразования всего городского транспорта в электромобили с силовыми аккумуляторами плазменно-резонансного типа, отдаленно напоминающими по аккумулирующим свойствам шаровую молнию. При этом Тесла подчеркивал, что мог бы устранить основное препятствие, из-за которого жители больших городов и по сей день не могут освободиться от шумных и вредных для здоровья автомобилей с бензиновыми двигателями, — отсутствие достаточно емких электрических аккумуляторов, ограничивающее скорость и пробег электромобилей без подзарядки.

Еще более перспективными в рассказах изобретателя выглядели самолеты с подобными аккумуляторами и электромоторами — «электролеты», ведь, имея даже небольшой по массе запас такого «плазменного топлива», электрические аэропланы могли бы преодолевать десятки тысяч километров без дозаправки. Но, пожалуй, самым поразительным в мечтах изобретателя выглядел проект создания флота космических кораблей, оснащенных особыми ионными двигателями, которые могли бы легко разлететься по всей Солнечной системе!

О втором типе «взрывных круглых молний» изобретатель говорил очень осторожно, все время полунамеками давая понять, что все началось еще на исследовательской станции в Колорадо-Спрингс, когда были проведены некоторые необычные опыты над высокочастотными токами, получаемыми с помощью резонансного трансформатора.

Вот тут-то, по воспоминаниям Теслы, в один прекрасный день совершенно неожиданно для всей команды исследователей и был получен первый «взрывной» искусственный плазмоид. Произошло это в тот момент, когда потенциал между электродами на кварцевой трубке внезапно возрос и из нее со страшной скоростью вырвалось огненное кольцо, удивительно напоминавшее шаровую молнию. Сначала изобретатель предположил, что центростремительным силам, способным разорвать огненный шар на куски, противостоят появляющиеся на большой скорости вращения силы притяжения между расслоившимися зарядами, но впоследствии он отказался от данной гипотезы.

Позже, уже вернувшись в Нью-Йорк, Тесла приступил к разработке достаточно мощного генератора сверхвысоких частот непрерывного действия. Предварительно ему пришлось решить с помощью своего соотечественника, видного электрофизика Петра Пупина, сложную задачу о движении зарядов при генерации сверхвысокочастотных колебаний. В одном из испытаний генератора Теслы для микроволнового диапазона излучение пропускалось сквозь специальные вакуумированные газоразрядные лампы. Некоторые из них вспыхивали фантастическим призрачным сиянием, а однажды возникло сильное переливающееся сине-желтыми цветами свечение, и через несколько мгновений лампы разлетелись вдребезги. Это необычное явление навело изобретателя на мысль о сходстве процессов внутри газоразрядных ламп с естественными явлениями, протекающими в шаровой молнии.

Следующим логическим шагом стало составление принципиальной схемы шаровой молнии в виде объемного колебательного контура. Сравнив шаровую молнию с обычным линейным разрядом, изобретатель предположил, что раз шаровая молния мгновенно не высвечивает свою энергию, то ее запасы постоянно должны пополняться из какого-то источника. Так Тесла пришел к предположению, что «круглое электричество» может подпитываться энергией высокочастотного излучения обычных линейных молний. Следуя логике Теслы, получалось, что шаровая молния как искусственного, так и естественного происхождения может эффективно улавливать высокочастотные электромагнитные колебания, которые распространяют вокруг себя грозовые разряды. Надо сказать, что при всей своей фрагментарности теория изобретателя удачно объясняла многие особенности поведения молний; так, частое появление круглого электричества вблизи всевозможных труб и дымоходов можно было объяснить притяжением молний волновыми каналами для передачи энергии. Правда, были тут и обстоятельства, которые Тесла так и не смог до конца объяснить, — в частности, тот факт, что шаровые молнии наблюдались и вне всякой связи с грозовой активностью, к тому же, по многим наблюдениям, молнии продолжали нагревать и испарять жидкость, уже погрузившись в нее целиком. А ведь в жидкой среде шаровая молния уже никак не смогла бы получать энергию электромагнитных колебаний в режиме объемного резонатора.

Значительно позже, уже после серии экспериментов на вышке Ворденклиф, Тесла разработал новую модель для шаровых молний в виде структур из тороидальных токовых оболочек и кольцевых магнитных полей, взаимодействующих с колебаниями локального геомагнитного поля. В результате такого взаимодействия из внутренних полостей электрических плазмоидов улетучивался воздух и создавалось сильное отрицательное давление. Устанавливался такой баланс сил, при котором электромагнитные силы стремились разорвать оболочку плазмоида, противостоя давлению внешней воздушной среды. Тесла считал, что эти силы могут полностью уравновешиваться, а шаровые молнии — приобретать высокую стабильность. По его оценкам, ток может циркулировать по внешней оболочке, слабо затухая в течение получаса. При этом наличие разряженного внутреннего пространства будет препятствовать интенсивному энерговыделению шаровой молнии в окружающую среду. Именно поэтому такая модель электрического плазмоида совершенно не требует каких-либо новых, неизвестных источников энергии. При этом Тесла считал, что именно быстро изменяющееся магнитное поле может объяснить такие сопутствующие явления, как переключение реле, вспыхивание газоразрядных ламп и намагничивание окружающих металлических предметов.

Тесла считал, что главным подтверждением его теории является имнульсная генерация в луче модернизированного высокочастотного излучателя в течение некоторого времени светящихся электрических плазмоидов размером в несколько сантиметров, которые упруго сталкивались, сливались и даже проходили друг через друга! Постепенно изменяя режимы облучения, изобретателю удалось получить плазменные сгустки, очень напоминающие большую шаровую молнию. Однако он честно признавался, что в его экспериментах были очень опасные моменты, когда на расстоянии резонансных пучностей стоячих волн возникали зловещие многометровые шары фиолетового оттенка, тут же со взрывом уходившие в землю или уносившиеся воздушными течениями. В одной из серий подобных опытов огненный шар унесло в сторону Атлантического океана, и уже на следующий день газеты писали о чудовищном сполохе взрыва в открытом море в отсутствие грозовых туч, а рыбаки сообщали о целых островах оглушенной снулой рыбы, обнаруженных недалеко от побережья.

На большой пресс-конференции в феврале 1910 г., пытаясь спасти гибнущий проект «Мировой системы», Тесла красочно расписывал, как искусственные электрические шары гроздьями возникали на высокочастотном оборудовании, подобно мыльным пузырям, выдуваемым колебаниями высокого напряжения на вышке Ворденклиф. Эти странные колеблющиеся плазмоиды медленно разносились порывами ветра почти параллельно земле. По странной ассоциации изобретатель сопоставил свои опыты с первым сообщением о наблюдении шаровой молнии на борту низко летящего через грозовую тучу аэроплана, когда небольшой плазмоид зловеще пролетел параллельно полу кабины и с громким хлопком сжег все немногочисленные авиационные приборы. Свой рассказ Тесла закончил сообщением, что на днях известный физик Меснер прислал ему свой труд по теоретической плазменной физике. В нем он объясняет, что шаровая молния получает свою энергию из окружающего пространства путем естественно образующегося электромагнитного поля и что диаметр плазменной сферы зависит от частоты внешнего поля, определяясь возникающим резонансом. Но тут же профессор Меснер добавляет, что единого мнения все еще нет и ученые продолжают расходиться в своих объяснениях этого удивительного природного феномена.

Тут Тесла признал, что многие его рассуждения сильно расходятся с гипотезами официальной науки, добавив, что и он сам когда-то считал, что изначальная энергия несущественна для сохранения шаровой молнии, а ее генезис определяется параметрами инициирующего линейного разряда. Однако воззрения изобретателя существенно изменились, после того как он сам научился создавать искусственные плазмоиды.

Глава 7. На волнах электрического эфира

Явления, на которые мы раньше взирали как на чудеса, явления, которые трудно было объяснить, теперь мы видим в ином свете.

Искровой разряд в индукционном кольце, светимость лампы накаливания, проявления механических сил потоков и магнитов теперь уже не остаются вне пределов нашего понимания. Вместо прежнего непонимания, наблюдая за их действием, наш ум предлагает простое объяснение. И хотя по поводу их конкретной природы мы имеем лишь гипотезы, тем не менее мы уверены, что истина не сможет оставаться скрытой, и инстинктивно мы чувствуем, что близится заря понимания. Мы все еще восхищаемся этими прекрасными явлениями, этими странными силами, но мы больше не беспомощны…

Н. Тесла. Статьи и лекции

До сих пор еще не объяснено, каким образом марсиане могут умерщвлять людей так быстро и так бесшумно. Многие предполагают, что они как-то концентрируют интенсивную теплоту в абсолютно не проводящей тепло камере. Эту конденсированную теплоту они бросают параллельными лучами на тот предмет, который они избрали целью, при посредстве полированного параболического зеркала из неизвестного вещества, подобно тому как параболическое зеркало маяка отбрасывает снопы света. Но никто не сумел убедительно это доказать. Несомненно одно: здесь действуют тепловые лучи. Тепловые невидимые лучи вместо видимого света. Все, что только может гореть, превращается в языки пламени при их прикосновении; свинец растекается, как жидкость; железо размягчается; стекло трескается и плавится, а когда они падают на воду, она мгновенно превращается в пар.

Г. Уэллс. Война миров

«Лучевое орудие» в действии

После головокружительного путешествия в недра микроколлапсаров и искусственных плазмоидов давайте вернемся в самое начало 1920-х гг.

Немного оправившись от страшного удара, вызванного разрушением Радио-Сити, Тесла снова приступил к обширной серии экспериментальных исследований «электроэфирной субстанции». В сохранившихся дневниковых записях можно встретить такие образы, как «сияющие перистые кисти электрических разрядов в вакуумированном баллоне» (сейчас мы это явление называем свечением канала пучка электронов в плазме ионизированных атомов газа, находящегося под очень низким давлением). В других опытах изобретателя можно распознать принципы действия бетатрона — ускорителя электронов. Тесла вплотную подошел и к созданию циклотрона, разгоняющего «изолированные атомы электричества[5] до невообразимых скоростей». Среди интересов изобретателя можно выделить описание космических лучей, радиоэлектронных ламп, рентгеновского излучения, полученного задолго до Рентгена, плазмохимических приборов и, конечно же, разнообразнейших флуоресцентных ламп. Поразительно, но Тесла не только построил один из первых в мире детекторов ионизирующего излучения в виде вакуумированной колбы с тлеющим разрядом, но и высказал блестящую идею, что высокоэнергетические космические частицы должны оставлять следы — треки в стопках фотопластинок.

Проводя публичные демонстрации наиболее значимых изобретений, Тесла со свойственной ему патетикой говорил о таинственном очаровании электромагнитных явлений:

Их сущность кажется двойственной, уникальной среди других сил природы, а их притяжение, отталкивание и вращение проявляют таинственные факторы, возбуждающие умственное воображение…

Больше всего Тесла гордился своей беспроводной и безэлектродной газоразрядной лампой. Вызывая непередаваемый восторг зрителей, он любил демонстрировать, как такие лампы продолжали гореть, будучи перемещенными в любую точку зала. В те времена Тесле так и не удалось найти им коммерческое применение, однако спустя столетие они трудятся в миллионах портативных индикаторах тока, загораясь в работающих розетках, и на них до сих пор подают авторские заявки!

Надо сказать, что в своих демонстрационных лекциях Тесла не забывал упомянуть предшественников, начиная с Фарадея и Максвелла. Так, демонстрируя вакуумные баллоны и колбы, он всегда отмечал, что многим обязан Уильяму Круксу, сконструировавшему в 1880-х гг. особый вакуумированный баллон с двумя парами электродов внутри. Конечно, больше всего внимания изобретатель уделял высокочастотным переменным токам, записывая в своем лабораторном журнале:

Мы наблюдаем, как проявляется энергия переменного тока, проходящего по проводу — не столько в проводах, как в окружающем пространстве — наиболее удивительным образом, принимая формы тепла, света, механической энергии и, что поражает более всего, даже химического средства…

Вот подключенная лампочка, висящая на одном проводе… Я сжимаю ее, и выступающая платиновая пуговка сильно раскаляется…

А здесь присоединенная к подводящему напряжение проводу другая лампа. Если я дотрагиваюсь до ее металлического цоколя, она заполняется великолепным многоцветным фосфоресцирующим сиянием…

Вот я стою на изолированной платформе и привожу свое тело в контакт с одним концом вторичной обмотки электрического реактора… и вы видите потоки света, пробивающиеся с его дальнего конца, который приведен в состояние сильной вибрации…

Еще раз я присоединяю эти две пластины из металлической сетки к концам обмотки электрического реактора, и вы видите великолепный разряд, принимающий форму сияющих потоков света.

Он демонстрировал небольшой двигатель, питаемый единым электропроводом со вторым контактом, присоединенным через жгут антенны к «мировому эфирному пространству». При этом изобретатель много фантазировал о создании электрических летательных аппаратов с компактными, но чрезвычайно мощными моторами, питаемыми напрямую высокочастотными волнами энергии, свободно передаваемыми через «электроэфирную среду». А однажды он представил восторженной аудитории проект межпланетного корабля — ионолета, черпающего энергию прямо из «глубин космоса» и отталкивающегося от «мирового пространства» струями раскаленной плазмы.

Асинхронная динамо-машина переменного тока конструкции Н. Теслы

Вполне возможно, что созданные мною беспроводные электродвигатели, как их можно называть, могут напитываться энергией на значительных расстояниях благодаря электропроводности разряженного воздуха. Переменный ток. особенно высокочастотный, с поразительной легкостью проходит даже через чуть разряженный газ. А ведь вверху воздух разряжен. Чтобы подняться на несколько миль в космос, конечно, требуется преодолеть некоторые трудности — преимущественно механической природы. Нет сомнения, что благодаря высоким частотам… светящиеся электрические разряды могут распространяться на многие мили в разряженном воздухе. И путем такой передачи электричества через огромные расстояния двигателями мощностью во многие сотни лошадиных сил или лампами можно управлять из стационарного источника…

Н. Тесла. Статьи и лекции

Выступая с лекциями и на пресс-конференциях, Тесла гордо подчеркивал, что многие из его будущих изобретений в принципе могут изменить направление научно-технического прогресса. В качестве одного из доказательств своих амбиций он приводил принципиальную идею создания «электрического реактора переменного поля разрядов». Любопытно, но изобретатель никогда не показывал детальную схему своего «реактора», мотивируя это тем, что в недобрых руках с его помощью можно без особых усилий получить страшное лучевое оружие, действующее на очень больших расстояниях в масштабе всей планеты.

Главный физический образ, который Тесла настойчиво предлагал слушателям в качестве исчерпывающего объяснения своих поразительных опытов, был прост, таинственен, но сильно отличался от новейших научных воззрений того времени:

Это все наполненный энергией светоносный электрический эфир, пронизывающий все вокруг — атмосферу и твердь нашей планеты, небесные просторы, иные миры и звезды.

Проследить шаг за шагом деятельность изобретателя в этот финальный всплеск его творческой активности, за которым последовало «второе великое молчание Теслы», невозможно. Здесь пасуют все признанные биографы, не говоря уже о непрофессиональных исследователях его творчества. Кажется, будто он одновременно присутствует везде, работая в разных областях, которые перекликаются и взаимосвязаны, но всегда с электричеством, основой его исследований. Электричество всегда оставалось для него самой таинственной материей в окружающем мире, некой «электроэфирной субстанцией» с непостижимым переплетением полей и сил. Именно поэтому Тесла всегда отвергал «грубый материальный образ» потоков заряженных частиц — волн из квантовой механики, в то же время отмечая привлекательность «сверхсложной диалектики» корпускулярно-волнового дуализма микрочастиц и в особенности «волн материи» де Бройля.

В конце 1920-х гг. тема загадочных «лучей смерти» достигла своего пика популярности, причем в еженедельных газетных сенсациях можно было встретить самые фантасмагорические проекты создания смертоносных излучений, предлагаемые не только учеными и инженерами-изобретателями, но и простыми техниками, гуманитариями и даже фокусниками.

Между тем из дневниковых записей Теслы видно, что он не только внимательно следил за дискуссией вокруг «лучей смерти», но и крайне интересовался влиянием микроволнового излучения на растения, животных и особенно на человеческий организм. В частности, изобретатель считал, что с помощью высокочастотных импульсов можно регулировать не только сердечный ритм, но и влиять на высшую нервную деятельность, на работу головного мозга. Тесла знал, что с увеличением напряжения, при постоянном электрическом сопротивлении человека, сила тока становится опасной за стовольтной отметкой. Опасность переменного тока зависит от его частоты, и электромагнитные колебания очень высокой частоты не оказывают действия на человека, подобно видимому свету. Как настоящий ученый Тесла исследовал действие переменного электрического тока на себе. Скоро он выяснил, что действие высокочастотного электротока затрагивает в основном поверхность тела, нагревая ее и воздействуя на рецепторы. При этом нагревание может быть и безболезненным, а нервные окончания не реагируют на частоты свыше 700 Гц. Изобретатель считал, что это чем-то напоминает ультразвук, который мы не слышим, и ультрафиолет, который мы не видим.

Кроме того, он открыл новую область медицины — электрическую физиотерапию, включающую диатермию, УВЧ-прогревание и электротерапию. Тесла создал ряд уникальных электротермических медицинских приборов, получивших впоследствии самое широкое распространение.

Однажды, тестируя сверхмощный генератор «высокочастотных колебаний электрического эфира», изобретатель случайно приблизил к раструбу излучателя медную окрашенную деталь. В то же мгновение ее окутал туман и тут же рассеялся, а деталь засверкала. Пораженный, Тесла многократно повторил опыт с разными металлами и красками, в конце концов догадавшись, что он открыл оригинальный способ очистки проводящих ток материалов от краски и любых иных поверхностных наслоений токами высокой частоты. На этом ученый, конечно же, не остановился и стал исследовать действие высокочастотных токов на кожу человека. Первые же опыты показали, что с помощью такой необычной «электромагнитной щетки» можно успешно очищать руки от трудноудалимых лаков и эмалей.

Дальнейшие исследования показали, что этими же токами можно удалять с кожи мелкую сыпь, очищая поры и уничтожая микробов, а также залечивать язвы и нарывы. Кроме всего прочего, Тесла считал, что его излучатель «электроэфирных колебаний» способен также благотворно действовать на зрение и нервную систему человека, а задолго до этих опытов Тесла открыл, что его изобретение высокоэффективно озонирует воздух.

Занимаясь опытами и с очень высокими напряжениями до двух миллионов вольт, Тесла случайно обнаружил знаменитый скин-эффект ослабления высокочастотного электромагнитного поля по мере проникновения вглубь проводника. Попутно изобретатель установил границы безопасности высокочастотных токов даже при очень высоких миллионвольтных напряжениях со стотысячными частотами. Так, оперируя с токами очень высоких частот и напряжений, изобретатель был всегда предельно осторожен, требуя от своих ассистентов неуклонного соблюдения разработанной им системы правил безопасности. Например, при манипуляциях с напряжением в сотни тысяч вольт при частотах в несколько сотен герц он обучал их работать только одной рукой во избежание превращения человеческого организма в замкнутый контур. Это и многие другие правила, впервые установленные Теслой, уже более столетия сохраняют здоровье и жизнь людей, прочно войдя в современную технику безопасности при работе с высоким напряжением.

В середине 1920-х гг. среди вездесущих репортеров нью-йоркских газет стали распространяться слухи, что Тесла изобрел некие таинственные «лучи смерти», способные уничтожать тысячи самолетов на расстоянии в сотни километров. Сам ученый долго не комментировал подобную информацию, но в одном из интервью корреспонденту The New York Times упомянул, что им разработан некий «осциллятор очень высоких частот колебаний мирового электрического эфира», позволяющий «эффективно транслировать энергию в атмосфере, фокусируя ее на самых различных стационарных и движущихся целях». Тут же он заявил о своей полной готовности раскрыть перед американским правительством секрет своего «осциллятора телесилы, использующего совершенно новые физические принципы, отличные от воплощенных в его изобретениях для беспроводной переброски электроэнергии». И вот тут начинается самое любопытное, поскольку, по словам Теслы, новый тип его электромагнитного излучателя генерирует тончайший луч диаметром в доли миллиметра, который не будет расходиться в пространстве, подобно лучу прожектора, а концентрируя свою энергию, способен прожечь даже самую прочную броневую сталь…

У современного читателя подобные заявления сразу же вызовут вполне определенные ассоциации из истории современного лучевого оружия. Между тем основы соответствующего раздела физики, получившего название «квантовая оптика» и описывающего, как сделать самое настоящее «лучевое оружие», заложил именно в те годы сам Альберт Эйнштейн!

Еще в 1913 г. этот великий теоретик высказал гипотезу, что в недрах далеких звезд могут происходить процессы порождения света светом, когда излучение генерируется под воздействием вынуждающих квантов электромагнитного поля — фотонов. В классической статье «Квантовая теория излучения», опубликованной в 1917 г., ученый развил свою гипотезу, обосновав возможность получения излучения строго определенной частоты, фазы и поляризации, которое физики называют когерентным. Интуиция подсказывала Эйнштейну, что созданная им квантовая теория излучения вполне может иметь различные технические приложения. Например, можно построить микроволновый генератор, использующий пучок атомов или молекул, имеющих несколько энергетических уровней. Для этого атомы нужно «просеять» электростатическими полями, направив их поток в некую проводящую полость, где они, перейдя на более низкий энергетический уровень, излучат электромагнитные волны.

Увы, мы уже не раз видели, как тернисты пути истинной науки. Вот и построения Эйнштейна поняли всего лишь несколько человек, и среди них — выдающийся теоретик Поль Дирак, который развил и дополнил основные положения квантовой оптики. В 1928 г. видный немецкий физикохимик Рудольф Ладенбург и его коллега Ганс Копферманн поставили ряд экспериментов, которые должны были бы ознаменовать рождение самого настоящего «луча смерти» из «Войны миров» и «Гиперболоида инженера Гарина». Однако открытие не состоялось — необходимо было сделать еще один небольшой шаг к созданию квантового генератора излучения, но исследователям этого не удалось…

Путь к созданию квантового генератора когерентного излучения был продолжен радиофизиками, которые очень хорошо умели строить усилители и генераторы электромагнитных волн, используя различные резонаторы на обратной связи. Им и удалось разработать конструкцию первого квантового генератора когерентного излучения, только не светового диапазона, а радиомикроволнового, так называемого мазера (MASER — Microwave Amplification by Stimulated Emission of Radiation). Но все это состоялось уже в послевоенные 1950-е гг., последние годы жизни великого физика, когда он удалился от всего мира, пытаясь объединить его в одной системе уравнений «Единой теории поля»…

Глава 8. Гульельмо Маркони и Майкл Пупин

Контакт с разумом с других звезд когда-то станет возможным, и исходя из того, что планеты этих звездных систем должны быть древнее нашей, то и существа, их населяющие, должны обладать большей информацией, которая представляет для нас огромную ценность…

Из интервью Г. Маркони газете The Washington Post

Схема первых в мире опытов по передаче радиосигналов А.С. Попова

В одном из своих докладов на тему «Новейшие исследования о соотношении между световыми и электрическими явлениями» Александр Попов впервые указал на возможность использования электромагнитных волн для передачи сигналов на расстояние. Как видно, великолепная идея осуществления беспроволочной связи на расстояние волновала его с самого начала, когда только начал заниматься токами высокой частоты. Ближайшее будущее показало, что идея эта вполне осуществима, доказательством чего явился сконструированный им грозоотметчик.

Выступая с публичным докладом по этой теме, Попов выразил надежду, что его «прибор при дальнейшем усовершенствовании сможет быть применен к передаче сигналов на расстояние». День этого доклада, во время которого был впервые продемонстрирован изобретенный Поповым радиоприемник, является датой изобретения радио…

Р. Собесяк. Шеренга великих физиков

Разумеется, разработка загадочных «лучей смерти», суливших немалые барыши и славу, интересовала не только Теслу, и в своеобразный марафон за право предложить «лучевое оружие» включилось много изобретателей, среди которых, в силу специфики темы, хватало и просто темных, малообразованных личностей. Не мог пройти мимо потенциальных военных заказов и широко рекламировавший на каждом углу свои «беспримерные достижения» Гульельмо Маркони. Этот нечистый на руку итальянский делец-радиотехник фактически скопировал принципиальную идею создания «беспроводного телеграфа» у гениального русского ученого-электротехника и изобретателя А.С. Попова. Подкрепив свои «изобретения» в области радио патентами Теслы (разумеется, без ведома последнего), Маркони организовал «Компанию беспроволочного телеграфа Маркони», на которой и стал выпускать незначительно доработанные радиоприборы других изобретателей. Кипучая энергия этого плагиатора и авантюриста позволила ему с началом Первой мировой войны возглавить целый ряд военных миссий и даже стать командующим военно-морским флотом Италии. Командовал новоиспеченный адмирал так, что вскоре итальянский флот проиграл целый ряд сражений, и Маркони был вынужден переключиться на разработку беспроводного телеграфа для итальянской армии. Тем не менее увертливость и беспринципность «радиоадмирала» в очередной раз сыграли свою роль, и он был назначен на «исторический пост» полномочного представителя Италии на Парижской мирной конференции.

Конечно же, такой выдающийся конформист не мог не привлечь внимание пришедшего к власти Муссолини. Дуче высокомерно потребовал создать для него невиданное чудо-оружие, способное сокрушить мир, и Маркони с большим энтузиазмом принялся за дело. Вскоре итальянскому диктатору лег на стол проект, в котором красочно расписывалось, как на основе «собственных гениальных патентов» несостоявшийся адмирал и «отец радио» собирался на большой дистанции поражать живую силу противника и даже выводить из строя его боевую технику. Для осуществления своих грандиозных планов изобретатель-плагиатор собирался использовать некую «новую составляющую эфирной субстанции». Надо заметить, что, несмотря на щедро рассыпаемые в его адрес похвалы, Маркони в глубине души прекрасно осознавал свою несостоятельность как изобретателя, так и ученого. Не сомневался он и в том, что будущие историки прекрасно разберутся с его «судьбоносным вкладом в развитие цивилизации», как захлебывалась в восторге итальянская пресса. А открыть нечто грандиозное так хотелось… Поэтому уже после первых успешных радиотелеграфных опытов на «заимствованных» из чужих изобретений приборах Маркони стал при каждом удобном случае с очень таинственным видом намекать в своих бесчисленных интервью о своем «новейшем открытии силового эфирного взаимодействия, которое можно было бы применить в военных целях, создав на его основе „лучи смерти“».

Однако, как говорил Хаджа Насреддин, «сколько ни говори „халва“, во рту сладко не станет», и вскоре на ничем не подкрепленные таинственные намеки просто перестали бы обращать внимание. Поэтому Маркони совершает следующий бесчестный поступок, бросая свою жену с тремя детьми без средств к существованию и вступая во второй брак с графиней Бецци-Скали, близкой родственницей дуче. Одновременно он становится членом фашистской партии. Благожелательная реакция диктатора последовала незамедлительно, и новоиспеченный фашист получил практически неограниченные полномочия в разработке лучевого «чудо-оружия». К тому же этот делец получил наследственный титул маркиза, был награжден Большим крестом ордена Короны Италии, а в 1930 г. даже стал президентом Итальянской академии наук. Ко всему прочему до самой своей кончины Маркони состоял членом Большого совета фашистской партии.

Что бы хоть как-то отвлечь внимание от своей аферы с созданием «лучей смерти», изобретатель-фашист в очередной раз ступил на скользкую стезю беззастенчивого плагиата и стал уверять, что засек радиосигналы, поступившие с Марса, и даже создал удивительный прибор, способный, по его словам, «уверенно улавливать голоса из далекого прошлого и общаться с душами умерших». Естественно, он при этом «забыл» упомянуть об авторстве идеи межпланетной связи, высказанной несколько десятков лет назад Теслой. Европейские, и в особенности итальянские, газеты легко стали раздувать пузырь этой дешевой сенсации, а вот американские журналисты тут же подняли свои архивы и вспомнили о своем великом соотечественнике. The New York Timesписала:

Фашистский сенатор Гульельмо Маркони поднял вопросы, о которых еще в конце прошлого (XIX) века сообщал предтеча современной радиосвязи Никола Тесла, которому удалось зафиксировать с помощью своих радиоприемных устройств то, что он без колебаний определил как разумные сигналы с Красной планеты.

Маркони пришлось оправдываться, и он высокопарно заявил римскому корреспонденту The New York Times, что он якобы имел в виду гораздо более значительное открытие, поскольку ему удалось принять сообщение, посланное далекой звездной цивилизацией и уловленное с помощью его собственного изобретения, включающего сверхчувствительный радиоприемник секретной конструкции… Отвечая на следующий вопрос репортера о сущности эфирных волн, передающих электросигналы, Маркони ловко ушел от ответа и предался безудержному фантазированию:

Дирижабль, оснащенный приемником-передатчиком Маркони для приема «звездных радиосигналов»

Мои послания, отправленные десятки лет назад в бездну мирового пространства, уже давно должны были достигнуть ближайших звезд и вызвать ответную реакцию населяющих их существ…

Я давно уже принимаю сильные сигналы откуда-то не с Земли, предположительно со звезд. Вполне вероятно, что, именно основываясь на данной информации, которая просочилась с борта моей яхты — лаборатории «Электра» такие известные ученые, как Тесла и Эгшштейн, смело стали делать заявления, что верят в возможность обитаемости Марса и других планет. Пока еще я не располагаю достаточно решающими доказательствами конкретного происхождения этих сигналов, но, проводя научные экспедиции на своей яхте по Средиземному морю, я часто детектировал некие внеземные сигналы, которые не смог расшифровать, хотя и подозреваю, что они пришли издалека и их источники расположены гораздо дальше Марса.

Из интервью Г. Маркони итальянской газете La Stampa

О таинственной плавучей лаборатории Маркони стоит рассказать более подробно. Свою знаменитую паровую яхту «Электра» радиоделец приобрел после Первой мировой войны у итальянского флота, которым недавно он так бездарно командовал, за сущий бесценок. Вскоре после столь удачной покупки Маркони решил переоборудовать военное посыльное судно в своеобразную радиолабораторию, на борту которой он подальше от любопытных журналистов, сможет спокойно проводить различные эксперименты с чужими изобретениями. И вот здесь начинается очень странная история, связанная с именем довольно известного в свое время электрофизика Майкла Пупина.

Михаил (Майкл) Пупин родился 4 октября 1858 г. в семье неграмотного крестьянина из деревни Идвора вблизи маленького сербского городка Панчево — центра автономного края Воеводина и одноименной общины в Южнобанатском округе. Он закончил местную сельскую, а затем среднюю школу в Праге. В 1874 г., после смерти отца, Михаил эмигрировал в Соединенные Штаты Америки. В кризис ему пришлось заниматься тяжелым физическим трудом, как и Тесле: копать траншеи, убирать мусор и т. п., но в 1879 г. молодой эмигрант смог поступить в Колумбийский колледж, в 1883 г. он окончил учебу с отличием, получив гражданство США. Будучи постдоком, он проходит стажировку в Берлинском университете и, получив докторскую степень в 1889 г., начинает преподавать физику на недавно открытой кафедре электротехники Колумбийского университета. Долгое время профессор Пупин был близким другом Теслы, поддерживал его изобретения в теоретическом плане и помогал писать научные статьи, однако друзей поссорила история с катушками индуктивности.

Дело в том, что на заре развития телефонной связи довольно часто из-за внутренней индуктивности проводников возникали сильные помехи при передаче на большие расстояния. И если телеграммы, использующие низкочастотные коды, проходили без особых проблем даже через Атлантический океан, то телефонные разговоры несли сильные искажения, в результате чего уже на расстоянии в несколько десятков километров собеседники с трудом разбирали речь друг друга. Задача требовала скорейшего решения из-за стремительного расширения телефонных сетей, по которым требовалось передавать сигналы тысячегерцевого диапазона.

Одним из первых решение проблемы предложил выдающийся британский физик Оливер Хевисайд. Будучи довольно резким и желчным человеком, он резко выступал с критикой оппонентов, причем среди них оказался и Уильям Прис. Это был довольно влиятельный эксперт технического департамента Главного почтового управления Соединенного Королевства. Прис совершенно пренебрежительно относился к теоретикам электросвязи, не воспринимая современную ему математическую электрофизику. Он опубликовал статью с ошибочными расчетами максимальной длины телефонного кабеля, по которому можно было бы общаться без искажений. Это задержало развитие дальней телефонии в Великобритании чуть ли не на пару десятилетий. В своих уравнениях Прис хотел получить наименьшее значение индуктивности системы, но, даже постоянно подгоняя свои параметры под нужные значения, ему все равно не удалось добиться какого-либо успеха. Рассчитанные по его формулам линии вели себя совершенно непредсказуемым образом, создавая большие помехи на близких расстояниях и не давая искажений на таких значительных расстояниях, как между Бостоном и Чикаго.

Проанализировав работы своего коллеги, Хевисайд решительно выступил против расчетов Приса, опубликовав разгромную статью на страницах журнала Electricity. В ней он впервые указал, каким же в действительности условиям должна удовлетворять оптимальная телефонная линия связи. В характерной для себя манере Хевисайд чередовал свои математические выкладки с язвительными ремарками в адрес Приса, величая его «лжеученым» и «просто неучем». Еще большее негодование вызвало у Приса утверждение Хевисайда о необходимости не уменьшать, а, наоборот, увеличивать индуктивность телефонной линии, чтобы избавиться от искажений сигнала.

Во время своего первого лекционно-демонстрационного тура по Европе Тесла встретился с Хевисайдом и после того, как тот рассказал ему о проблемах дальней телефонии, предложил ему оригинальное устройство. Это была одна из многих вариаций катушек Теслы, представляющая собой многовитковый медный контур со сравнительно высокой индуктивностью и незначительным активным электросопротивлением. Хевисайд незамедлительно подал докладную записку в Главное почтовое управление Великобритании. В ней он предлагал изготовить и установить по всем телефонным линиям емкостно-нагрузочные катушки Теслы. Однако, получив резко отрицательное предварительное заключение Приса, британские чиновники даже не стали рассматривать предложение Хевисайда.

Прошли годы, и один из американских электротехнических журналов опубликовал схему телефонной линии с разгрузочными катушками Теслы, а еще через некоторое время патент на такую же схему получил профессор Колумбийского университета Майкл Пупин. Первая промышленная партия этих изделий была изготовлена в самом конце XIX века на американской фирме «Белл», контролируемой злейшим врагом Теслы Эдисоном. При этом ни Хевисайд, ни Тесла не получили ни вознаграждения, ни признания…

Мало того, саму катушку стали называть «пупиновская», процесс размещения подобных катушек по телефонной линии — «пупинизацией», после чего кабель считался «пупинизированным».

Между тем катушки Хэвисайда — Теслы как изобретения Пупина вернулись на берега Туманного Альбиона, и тот же Пирс рекомендовал почтовому ведомству приобрести соответствующий патент для начала «пупинизации» телефонных сетей Великобритании.

В свое время не встретив поддержки на родине, Маркони отправился пристраивать свои «радиоизобретения» в Лондон, где и встретил Пирса, который убедил нужных высокопоставленных чиновников помочь в финансировании совместной «компании беспроволочного телеграфа и сигналов». Так Пирс познакомил Пупина и Маркони, дружба которых продолжалась долгие годы. Пупин неоднократно выступал на стороне Маркони в патентных спорах, окончательно предав своего бывшего друга Теслу, а Маркони щедро оплачивал его услуги. Более того, колумбийский профессор под влиянием своего итальянского покровителя изрядно «заразился» фашистской идеологией, став одним из ее американских апологетов.

Естественно, что Пупин содействовал Маркони и в поисках «лучей смерти». Но тут, несмотря на массу сведений об исследованиях и изобретениях Теслы, предоставленных его бывшим соратником, единственное, что мог придумать фашистский сенатор, — это огромное устройство, размером со столитровую бочку, которое он назвал «радиосверхмина». Несмотря на помпезное название, это устройство только и могло что единичным радиоимпульсом временно прерывать работу автомобильных магнето…

Патентная схема Теслы для «утилизации лучевой энергии»

Решающую демонстрацию своего «чудо-оружия» Маркони провел в июне 1936 г. прямо на глазах самого дуче, превратив ее в настоящее шоу.

При этом он убеждал фашистского диктатора, что сейчас он увидит действие «удивительного прибора, основанного на волновом эфирном принципе и представляющего собой прообраз мощного лучевого оружия». Изобретатель продемонстрировал действие своего устройства на оживленной автостраде к северу от Милана, по которой Муссолини попросил проехать в строго определенное время свою жену Ракель. Едва Маркони в присутствии дуче, окруженного военными экспертами и генералами, включил свой прибор, как на несколько мгновений заглохли двигатели всех автомобилей, включая и машину Ракель.

Как и планировал Маркони, Муссолини с большим вниманием отнесся к демонстрации «силовых лучей смерти», однако посоветовал изобретателю испытать их действие на противнике. Маркони тут же высокопарно пообещал уже в недалеком будущем представить подобные устройства, для которых у него уже якобы разработана вся техническая документация и проведены все необходимые расчеты.

Между тем успех был совершенно смехотворный по сравнению с самыми простыми конструкциями обычных мин! Однако это не помешало плагиатору в академической мантии до конца своих дней утверждать, что именно он изобрел не только радио, но и самые настоящие «лучи смерти».

Еще более странно, если не сказать больше, выглядела «мистическая составляющая» «исследований» Маркони. Так, свои последние годы он тайно работал над созданием устройства для прослушивания… голосов из прошлого. При этом своим близким изобретатель признавался, что его неотступно преследует маниакальная идея узнать, что произнес распятый Христос…

У нас не будет необходимости передавать энергию по проводам. Нам совсем не надо будет передавать энергию. Еще до того, как минет несколько поколений, наши механизмы будут приводиться в движение силой, доступной в любой точке Вселенной. Эта идея не нова… Мы встречаем ее в чудесном мифе об Антее, который получал энергию от земли; мы встречаем ее среди тончайших рассуждений одного из ваших блестящих математиков… Во всем космосе есть энергия. Кинетическая это энергия или статическая? Если она статическая, то наши надежды напрасны; если кинетическая, а мы знаем, что так оно и есть, то это просто вопрос времени, когда люди смогут подключать свою технику к механизму природы…

Н. Тесла. Статьи и лекции

Подобно Маркони, огромное количество жуликов и проходимцев умело использовали ажиотаж бульварной прессы вокруг таинственного «лучевого сверхоружия». Печатались книги, статьи и масса интервью с самыми разнокалиберными представителями науки и техники. При этом, надеясь на новые военные заказы, энергично поддерживали дутые сенсации о «лучах смерти» воротилы военно-промышленного комплекса. Естественно, что живой интерес встречали подобные «изобретения» в военных ведомствах многих стран. Ну а досужие репортеры бульварной прессы в конце концов сумели довести тему «лучей смерти» до полного абсурда.

Выдающийся французский физик Поль Ланжевен дал совершенно точную характеристику исканиям «новых» и «таинственных» излучений полчищами дилетантов:

Все это блеф, или, выражаясь точнее, жульничество. Прежде всего, подобные лучи должны были бы обладать большей мощностью. Как ее достичь, если длина волны измеряется сантиметрами? Высокая частота, которой они требуют, является препятствием для увеличения их мощности. Подобно радиоволнам, «лучи смерти» могут вступить в действие только в том случае, когда на объекте, на который они направлены, имеется приемник.

Между тем идея создания своеобразных, но самых настоящих «лучей смерти» уже созрела, только никто об этом еще не догадывался…

Тут надо вспомнить, что большинство опытов Теслы включало использование различных схем его резонансного трансформатора, основанных на модели стоячих электромагнитных волн в особых катушках индуктивности («катушках Теслы»), Первичная обмотка такого трансформатора (который впоследствии назывался «трансформатором Теслы») обычно содержит небольшое число витков. Она входит в состав искрового колебательного контура, содержащего конденсатор и искровой промежуток, а вторичной обмоткой служит прямая многовитковая катушка.

Если в первичной цепи резонансного трансформатора конструкции Теслы возникают электрические колебания, они тут же порождают переменное магнитное поле, индуцирующее во вторичной катушке переменную электродвижущую силу. Путем долгих проб и ошибок изобретателю удалось подобрать частоту электрических колебаний в первичной цепи, полностью совпадающую с частотой собственных колебаний вторичной катушки индуктивности. При этом во внутренней катушке возникала резонансная электромагнитная стоячая волна, а между концами многовиткового контура появлялось высокое переменное напряжение. В этот момент Тесла и демонстрировал свои многочисленные «электрические фокусы», извлекая искры и коронарные разряды, а также зажигая лампы и газоразрядные трубки на большом расстоянии от трансформатора.

Высокочастотные резонансные трансформаторы Теслы до сих пор применяются в электрофизических исследованиях, когда нужно получить очень высокое напряжение при небольшой мощности. Разумеется, построить с их помощью эффективные тесловские «эфирные каналы перекачки электроэнергии» невозможно, это просто противоречило бы законам электродинамики. Однако достаточно мощная установка вполне могла бы (и Тесла это успешно демонстрировал) создать вокруг себя очень сильное электрополе, электризующее предметы и зажигающее лампочки. Вот только КПД такого «эфирного резонатора» весьма мал, к тому же при этом возникают разные неприятные побочные эффекты.

В многочисленных интервью можно найти высказывания изобретателя о том, что «карборудная вакуумированная колба», действующая за счет проводимости тока через безвоздушную среду, представляет собой оригинальный «электроэфирный прибор» с еще далеко не раскрытым потенциалом своих «чудесных свойств и возможностей». Предшественниками этого аппарата были первые вакуумные лампы, изобретенные русскими инженерами Лодыгиным и Петровым. Тесла также отмечал:

Я и сам крайне озадачен теми необычными эффектами, которые демонстрирует мой электровакуумный прибор, но надеюсь, что придет время и он принесет свою пользу в будущих системах передачи энергии и информации…

Мой новый английский друг, сэр Дж. Дж. Томпсон, после ряда демонстрационных экспериментов, проведенных мною в Лондонском королевском обществе, высказал предположение, что некоторые из наблюдаемых явлений могут быть вызваны эмиссией корпускул негативного электричества, или по-современному — электронов, испускаемых с горячего элемента на холодный электрод. Мне кажется, что впечатляющие опыты с подобными электронными трубками произвели неизгладимое впечатление на сообщество интеллектуалов научного мира.

Со своей стороны заметим, что Тесла стал разрабатывать электронные лампы еще в конце 1880-х гг. Вначале их практическое применение планировалось изобретателем в «детекторных установках электрических колебаний мирового эфира», которые впоследствии стали детекторами радиосигналов в первых приемопередатчиках. Надо сказать, что создание электронно-вакуумных приборов настолько увлекло великого изобретателя, что он вполне освоил профессию стеклодува и в конечном итоге изобрел много разновидностей электронных ламп для радиофизических исследований и флуоресцентных ламп.

До определенного момента Тесла совершенно не делал секрета из своих «электроламповых» изобретений, подробно описывая свою работу с вакуумированными лампами и токами высокой частоты. Вспоминая свое последнее мировое лекционное турне, изобретатель в своих дневниковых записях отмечал:

Нет слов, чтобы выразить то восхищенное недоумение, с которым аудитория приветствовала мои показательные опыты с различными типами электронных ламп!

Так, однажды я поместил длинную стеклянную трубку, частично вакуумированную, внутрь более длинной медной трубки с закрытым концом. Предварительно в металлической оболочке был сделан длинный узкий разрез, чтобы раскрыть стекло, находящееся внутри. Когда я подсоединил медь к клемме высокого напряжения, то сильно разряженный воздух во внутренней трубке начинал ярко светиться, хотя, казалось бы, что никакого тока через короткозамкнутую внешнюю медную трубку быть не должно. Но он был! Казалось, что электричество протекало через стекло в результате индукции и проходило через воздух, находящийся под низким давлением, а не через металл по металлическому внешнему корпусу.

Это направление исследований в конечном итоге привело Теслу к одному из самых его грандиозных проектов — «глобальному ночному освещению», предполагающему создание светящихся атмосферных слоев на уровне нижней ионосферы. Это освещение должно было больше напоминать небесную иллюминацию во время ионосферных сияний сильнейших магнитных суббурь. Тесла считал, что газы в стратосфере и в нижних слоях ионосферы находятся точно в таком же состоянии, как и разряженный газ в его вакуумированных лампах, служа неплохим проводником высокочастотным токам. Этот впечатляющий проект увлекал изобретателя многие годы. При его воплощении в жизнь Тесла видел реальную возможность обезопасить судоходство и воздухоплавание в ночное время суток, а также электрифицировать все населенные пункты — от поселка до мегаполиса, резко сократив потребление энергии на уличное освещение.

Для фактической реализации своего фантастического проекта изобретатель намеревался построить несколько тысяч особых вертикальных излучателей микроволновых колебаний, способных передавать СВЧ-токи на многокилометровую высоту. Любопытно, что Тесла видел возможность и военного применения своего изобретения. Для этого он предлагал монтировать излучатели на гусеничном ходу («танки Теслы»), которые, находясь в нескольких сотнях километров от поля боя, накрывали бы вражеские позиции плотной завесой «электромагнитного тумана».

Впоследствии «танки Теслы» дополнили «летающие корабли» очень странной конструкции с необычными движителями, «питаемыми внутренней энергией атомных структур». Что бы при этом ни говорили критики невоплощенного в реальность наследия изобретателя, но это было гениальное предвидение будущего атомной энергетики!

Надо сказать, что скрытые резервы внутриатомной энергии в конце 1920-х- начале 1930-х гг. обсуждались многими учеными. Вот и в канун своего 75-летнего юбилея, пришедшегося на 1931 г., Тесла сделал громкое заявление о том, что им открыт новый источник энергии, неизвестный современной науке. В своей обычной манере анонсировать новые идеи и изобретения он не стал расшифровывать свои слова, но в его дневниковых и лабораторных записях встречаются пространные рассуждения о сущности энергии, скрытой в атомах и ядрах. Некоторое время изобретатель рассматривал проект создания сверхмощного излучателя электромагнитных микроволн, которые смогли бы эффективно расщеплять «мельчайшие материальные корпускулы». При этом Тесла полагал возможным неким еще не доступным образом утилизировать высвобожденные внутриядерные силы, используя их исключительно в мирных целях.

Через несколько лет на очередной пресс-конференции, посвященной своим последним изобретениям, Тесла опять вернулся к разработке атомной энергетики, заметив, что ее исследования должны пролить свет на многие загадочные явления, происходящие в безвоздушной эфирной среде, и иметь колоссальное промышленное значение… при создании нового и совершенно неограниченного рынка стали. На настойчивые просьбы репортеров хоть как-то прояснить последнее высказывание изобретатель только уточнил, что его новая энергия будет поступать из совершенно неожиданного для всех источника, постоянно действующего в любое время суток и года. А аппаратура, требуемая для производства, передачи и преобразования данной энергии, будет совершенно простой по своим электромеханическим характеристикам.

Глава 9. Обмен идеями

Практический успех идеи, независимо от своего неотъемлемого достоинства, зависит от отношения современников. При своевременной поддержке идея быстро принимается, а в противном случае она уходит в забвенье, подобно ростку, пробившемуся из земли к теплу и солнечному свету, а попавшему под каблук на морозе…

Из интервью Н. Теслы еженедельнику «Эпоха», 1930 г.

Вихревое электромагнитное поле в «корундовой» электронной лампе Теслы (современная реконструкция на основе компьютерного моделирования)

Открытый мной источник энергии не имеет ничего общего с внутриатомными силами, которых с точки зрения моей энергоэфирной доктрины просто не существует. С помощью созданных мною резонансных источников миллионволътного напряжения я легко расщеплял атомы, но при этом не происходило взрывного выделения энергии.

Н. Тесла. Дневники

После ряда скандальных разоблачений «смертоубийственных излучений» внимание желтой прессы к сенсационным проектам нового «лучевого оружия» несколько спало. Уменьшился ажиотаж и среди изобретателей-дилетантов, понявших, что физика генерации и передачи лучевой энергии является далеко не простой наукой. Одновременно появились и грамотные публикации, в которых научные обозреватели обращали внимание читателей на новые «телемеханические» приборы и устройства, позволяющие управлять на больших расстояниях кораблями, автомобилями и самолетами с помощью радиоволн. При этом простейшая, хотя и не совсем правильная, логика рассуждений приводила журналистов к любопытным выводам: раз энергия «радиолучей» позволяет приводить в действие массивные механизмы, то эти лучи могут таить и некую смертельную силу, которую легко открыть и применить в военных целях.

Между тем в середине 1920-х гг. о великом изобретателе систем переменного тока стали постепенно забывать. Не было больше эпатажных поступков героя светской хроники, не будоражили общественное мнение проекты осветить ночное небо, установить межпланетную радиосвязь и транслировать энергию прямо по воздуху. И вдруг передовицы газет заполнила новая сенсация: знаменитый изобретатель рассылает по всему миру предложения создать «сверхсмертоносное лучевое оружие». Когда споры вокруг этих странных слухов достигли точки кипения, Тесла неожиданно созвал большую пресс-конференцию. В переполненном холле гостиницы «Нью-Йоркер» изобретатель сделал следующее заявление пораженным журналистам:

Предлагая к продаже всем желающим свои военные изобретения глобального оружия лучей смерти, я хочу установить абсолютный баланс сил между разными странами и таким образом предотвратить все войны в мире.

Это стратегическое равновесие позволит достичь полного паритета сил сдерживания между большими и малыми странами, навсегда устранив угрозу взаимного истребления человечества…

Естественно, что репортеры тут же засыпали Теслу вопросами о сущности его «стратегического оружия сдерживания», но изобретатель в своей обычной манере ограничился самыми общими рассуждениями о возможности «объемной резонансной концентрации электроэфирных эманаций».

Самое удивительное, что через некоторое время вездесущие бульварные репортеры действительно отследили встречи Теслы с дипломатическими представителями целого ряда стран. Причем одними из первых выразили свой интерес, переросший в долговременные консультации с ученым, уполномоченные сотрудники акционерного общества «Армторг», по слухам выполнявшего роль внешнеторгового представительства Советского Союза.

Секрет частично открылся лишь в конце 1930-х. Именно тогда близкий знакомый Теслы научный обозреватель Кеннет Свизи рассказал, что после провала переговоров с представителями западных держав изобретатель устремил свой взор на Восток. И тут обращение к правительству Советского Союза оказалось на редкость успешным. С Теслой тут же связался специальный представитель организации «Армторг». Что же это была за странная «посредническая контора», умудрявшаяся эффективно действовать в условиях жесткого политического противостояния, наполненного взаимными обвинениями во всех смертных грехах?

Тут надо заметить, что торговые отношения между двумя странами практически никогда не прекращались, хоть и велись в основном через третьих лиц. Конечно, подобное положение вещей в целом выглядело совершенно ненормально, и здравомыслящие политики-бизнесмены настойчиво искали приемлемые варианты сотрудничества. Так между странами, не имеющими не только дипломатических, но и вообще каких-либо официальных отношений, появился «неформальный коммерческий связной» в виде акционерного общества с иностранным капиталом «Армторг». Официально эта организация была основана в 1924 г., сразу же расположившись в солидном офисе на Пятой авеню в центре Нью-Йорка. В налоговой декларации «Армторг» позиционировал себя как коммерческого посредника в обоюдном бартере советских и американских товаров. Все это стало достоянием гласности лишь после установления дипломатических отношений между США и СССР в 1933 г. Очевидно, что до этого кто-то из очень влиятельных американских политиков всячески прикрывал деятельность этой довольно странной фирмы.

Более того, подлинной сенсацией в свое время стало раскопанное журналистами структурное подчинение экспортно-импортного отдела «Армторга» Государственному департаменту США! При этом подавляющее большинство сотрудников организации составляли советские специалисты, попавшие в Америку как частные лица. Вообще говоря, ситуация сложилась довольно странная и запутанная, ясно только, что «Армторг» вел бартерную торговлю со многими странами, такими как Япония, Польша и Румыния. При этом самое пристальное внимание специалисты этой фирмы уделяли всяческой научно-технической и проектной документации на самые различные приборы и оборудование. Особенно ценилась руководством «Армторга» инженерно-конструкторская документация на различные системы новейших вооружений и, как сейчас говорят, «продукцию двойного назначения». Кроме промышленного шпионажа в завуалированной форме, «Армторг» проводил мену произведений искусств, антиквариата, драгоценностей и банковских металлов на самые разнообразные системы вооружения, танки, самолеты и даже военные корабли. Причем в таможенных декларациях это выглядело как бартерные операции по товарам сугубо промышленного и сельскохозяйственного назначения. В спецификацию американского экспорта входили вполне безобидные сильно подержанные нефтеналивные трубы, трактора, автомобили, станки и списанные суда. Любопытно, что этот транспортно-индустриальный хлам за бесценок поставлялся в Африку, Латинскую Америку и Юго-Восточную Азию. Американская общественность узнала всю правду лишь в 1950-х гг., когда действующие лица и исполнители этой масштабной аферы были уже вне досягаемости федерального правосудия.

Специальное расследование, проведенное в начале 1950-х гг. Комиссией по расследованию антиамериканской деятельности, возглавляемой сенатором Джозефом Маккарти, показало, что в период с конца 1920-х до середины 1930-х гг. произошло по меньшей мере три встречи Теслы с советскими дипломатами. В отчете комиссии утверждается, что в результате этих странных контактов изобретатель якобы передал за рубеж схемы и чертежи специальной вакуумной камеры для генерации узконаправленного пучка «лучей смерти», а также «массу сопутствующей документации», получив в обмен какие-то радиотехнические чертежи, которые «вполне могли быть взяты из открытых печатных источников». На основании полученной информации комиссия Маккарти сделала вывод, что «деятельность известного изобретателя носила все признаки промышленного шпионажа и противоречила американским интересам».

Ну а что же произошло на самом деле и какими именно материалами мог обменяться Тесла с представителями «Армторга», если отбросить в сторону всю риторику о «сверхсмертельном оружии сдерживания» и «промышленном шпионаже»?

Подобно тому как в современных шпионских сериалах агенты всяческих разведок охотятся за электронными микрочипами, в конце 1920-х гг. одним из самых «модных» секретов были конструкции электронных ламп. В то время сразу несколькими учеными и изобретателями из разных стран была предложена принципиальная схема действия «сердца» любой радиолокационной установки — магнетрона.

Название этого электровакуумного прибора происходит от слов «магнит» и «электрон», а служит он для генерации радиоволн сверхвысокой частоты (СВЧ, или микроволн). Магнетрон является очень важным объектом нашего повествования, и в довоенные годы с ним было связано множество шпионских страстей. В те далекие годы все без исключения промышленно развитые страны охотились за новыми конструкциями этого прибора, наподобие того как в современном мире шпионы крадут друг у друга микрочипы.

В начале 1930-х гг. группа американских военных радиоинженеров успешно повторила давние опыты Теслы по определению направления движущегося объекта с помощью дециметровых волн. При этом, в частности, было обнаружено, что, когда над передающей антенной пролетает самолет, радиосигнал сильно искажается. Это натолкнуло американских исследователей на мысль использовать декаметровые волны для предупреждения о приближении аэропланов и дирижаблей, и уже через полгода Авиационная радиолаборатория ВМС в Вашингтоне приступила к выполнению сверхсекретного проекта по обнаружению судов и летательных аппаратов с помощью направленного потока радиоволн.

Узнав о воплощении своих давних идей, Тесла попытался в очередной раз доказать свой приоритет, но Федеральное патентное ведомство США приняло решение, что идея радиолокации основана на общеизвестных принципах. Исходя из этого заключения высшей патентной инстанции, суть приоритетных заявок в области радиолокации должна основываться не на первичности практического опосредования идеи, а на первичности нахождения наиболее приемлемого инженерного решения. После публикации этого решения в прессе многие американские научно-исследовательские центры и лаборатории начали проводить обширные научно-исследовательские и опытно-конструкторские работы по созданию радиолокационного оборудования.

Одной из первых значительных результатов добилась в 1935 г. группа советских инженеров, спроектировавших несколько модификаций импульсных радиолокационных станций, оснащенных осциллографическими индикаторами. В это время в Америке и Европе только начинали приступать к разработке аналогичного оборудования. Фактически советские инженеры впервые разработали принципы импульсной радиолокации, а изготовленная ими аппаратура позволяла фиксировать отраженный сигнал от самолета на расстоянии в десятки километров. По отрывочным архивным сведениям, эта разработка начиналась где-то в середине 1920-х гг. в знаменитой Нижегородской радиолаборатории. Это и могло быть первой порцией «обменной документации», переданной сотрудниками «Армторга» Тесле.

Теперь обратимся к серии оригинальных электронных приборов на основе вакуумированных стеклянных колб с электродами, изобретенными Теслой еще в начале 1880-х гг. Изобретатель много экспериментировал с этими прообразами последующих электронных вакуумных ламп, догадываясь, что они могут стать в будущем важнейшими элементами «беспроволочного телеграфа». Так родилась «радиотрубка Теслы», действующая за счет проводимости тока через замкнутый объем сильно разряженного газа. Тесла продолжал разрабатывать электронные лампы вплоть до 1930-х гг., надеясь создать с их помощью систему сверхдальней связи, может быть, даже в межпланетном масштабе. Он также никогда не забывал задачи радиолокации и детекции сверхслабых радиосигналов. Надо заметить, что многие вакуумированные приборы Теслы имели весьма необычную конструкцию и цели их создания до сих пор неясны: например, среди них встречаются своеобразные «электронные пушки», иногда очень значительной мощности.

Многие ученые того времени очень интересовались этими исследованиями Теслы. Так, знаменитый английский физик Дж. Томпсон опубликовал обширную работу, описывая наблюдаемые в трубках Теслы явления с помощью разработанной им модели эмиссии «негативного электричества» (так в то время называли потоки электронов) с раскаленного катодного элемента на холодный электрод анода. Сам Тесла, как это ни странно, никак не комментировал подобные публикации. Судя по всему, у него было свое объяснение электрофизики эффектов, происходивших в электронных лампах, и он лишь с сарказмом замечал, что «электрические эффекты при сильно пониженном давлении, похоже, произвели определенное впечатление на интеллектуальную элиту ученого мира».

Итак, конструкции подобных вакуумированных электронных приборов вполне могли стать встречным пакетом информации со стороны Теслы в обмене с «Армторгом», что и привело к последующему прорыву в создании радиолокационного оборудования советскими учеными.

Одна из самых главных частей магнетрона представляет собой анодный блок в виде металлического толстостенного цилиндра с прорезанными полостями — объемными резонаторами. Данные резонаторы формируют кольцевую колебательную систему с анодным блоком и соосно закрепленным цилиндрическим катодом с внутренним подогревателем. Магнитное поле генерируется параллельно продольной оси прибора системой мощных электромагнитов. Резонаторы магнетрона, через отверстие в которых СВЧ-излучение вырывается наружу, по своей сути являются замедляющей системой, в которой и происходит торможение потоков электронов с генерацией электромагнитных волн.

Вакуумированные лампы Теслы

По своей сути это электровакуумный генератор электромагнитных колебаний сверхвысокочастотного диапазона. Принцип работы прибора основан на взаимодействии электронов, движущихся в магнитном поле, с возбуждаемыми ими же электромагнитными полями. Основу конструкции магнетрона составляет коаксиальный цилиндрический диод с внутренними электродами, находящимися в однородном магнитостатическом поле, направленном вдоль его оси. Испущенные с катода электроны дрейфуют поперек скрещенных электростатических и магнитостатических полей, образуя замкнутый поток вокруг катода.

Анод многорезонаторного магнетрона представляет собой массивный полый цилиндр, во внутренней части которого находятся объемные резонаторы с щелевидными отверстиями, выходящими на поверхность.

Моя аппаратура отражает частицы, которые могут быть достаточно большими или микроскопическими, позволяя перенести на малую площадь, находящуюся на огромном расстоянии, в триллионы раз больше энергии, чем это можно сделать при помощи лучей любого вида. Многие тысячи лошадиных сил можно таким образом передавать посредством потока, более тонкого, чем волос, при этом ничего не сможет противодействовать этому потоку.

Н. Тесла. Статьи и лекции

При включении магнетрона начинается эмиссия электронов из катода в область действия постоянного электрического поля между катодом и анодом, магнитного поля и электромагнитных волн. Вначале электроны движутся в скрещенном электрическом и магнитном поле по особым кривым — эпициклам, напоминающим движение точки на ободе катящегося колеса. При этом они генерируют электромагнитные колебания, усиливаемые резонаторами. Электрическая составляющая возникшей электромагнитной волны в зависимости от направленности может ускорять или замедлять движение электронов. При торможении электронов их энергия передается электромагнитной волне, причем если средняя скорость вращения электронов вокруг анода будет совпадать с фазовой скоростью электромагнитной волны, электроны могут непрерывно находиться в области торможения, эффективно подпитывая энергию микроволнового излучения. Такие электроны формируют продолговатые сгустки — «спицы», вращающиеся вместе с электромагнитным полем и многократно взаимодействуя с излучаемым высокочастотным полем. Собственно говоря, от этого взаимодействия и зависит коэффициент полезного действия магнетрона, а также возможность получения большой мощности микроволнового излучения.

Дневниковые записи изобретателя показывают, что некий прообраз магнетрона оригинальной многоконтурной конструкции он пытался создать, еще только готовясь к своим опытам на башне Ворденклиф. И здесь он был пионером, но не принципа действия магнетрона (такие устройства уже разрабатывались в Германии, Англии, России, Франции и Италии) — Тесла был первооткрывателем именно военного применения этого замечательного радиотехнического прибора.

И Тесла начал одну из самых загадочных серий экспериментов с «вакуумными трубками, колбами и лампами, помещенными в эфирные вихри электрического и магнитного поля». Проще говоря, основываясь на довольно туманных теоретических рассуждениях (разумеется, туманных для немедленной постройки излучателей, а не по своей физической сути), изобретатель начал создавать вакуумированные газовые излучатели, помещая их в вихревые электромагнитные поля.

Вскоре Тесла изобрел замечательное устройство для создания неоднородного в пространстве электрического поля — квадрупольный конденсатор. Этот замечательный прибор представлял собой четыре стержня, попеременно заряженные положительным и отрицательным зарядом до высокого напряжения. Если поместить в такое устройство трубку с разряженным газом, то произойдет разделение молекул газа по энергиям. Наиболее энергичные молекулы сконцентрируются у оси конденсатора, а менее энергичные сосредоточатся у стенок в полном соответствии с распределением электрических зарядов. Именно так Тесла получил модель молекулярного пучка, пролетающего в электрическом поле конденсатора.

Феноменальная научная интуиция изобретателя позволила ему как всегда обойти многие подводные камни столь необычного инновационного конструирования. Ведь для того, чтобы молекулы газа (к глубокому сожалению, мы так и не знаем, какое конкретное газовое «рабочее тело» использовал Тесла) пролетели через поле конденсатора и разделились по энергиям, необходим довольно высокий вакуум, да и еще и глубокое охлаждение стенок прибора. После пролета-сепарации пластин конденсатора молекулы попадали в резонатор, где и происходило излучение «сверхтонкого невидимого луча, вызывающего многие еще неведомые нашей науке эффекты».

Однако в дневниковых записях изобретателя можно найти только приблизительную схему прибора, нет там даже простенького эскиза резонатора, а ведь Тесле пришлось одному из первых решать очень непростые технические задачи. К примеру, резонатор нужно было настроить на излучаемую длину волны, подобно тому как органист настраивает трубы органа на определенные звуковые колебания. Поэтому сам по себе резонатор должен был иметь не только строго определенные размеры, но и быть способным отражать во внутренней полости все попавшие туда электромагнитные волны. Сегодня радиофизики говорят, что подобные конструкции должны быть «высокодобротными», то есть их КПД должен быть достаточно высок.

По свидетельству еще одного американского исследователя наследия изобретателя Морриса Джессупа, Тесла при разработке своих схем магнетронов совершенно случайно наткнулся на одну из работ Эйнштейна по квантовой оптике (скорее всего, это была перепечатка уже упомянутой статьи «Квантовая теория излучения»). По Джессупу, в этот период великий изобретатель как раз решал вопрос о том, как развивать дальнейший поиск: разрабатывать все более мощные и сложные магнетроны? Попытаться нащупать пути управления резонансом стоячих электромагнитных волн в земной атмосфере? Или же пойти по совершенно новому пути проектирования сверхмощного генератора когерентного излучения? После долгих раздумий Тесла решил все же пойти по первому пути и приступить к созданию своей знаменитой «лучевой пушки», или «орудия Теслы». Однако Джессуп считал, что и теория вынужденного квантового излучения каким-то образом существенно повлияла на последующие проекты Теслы.

Схема устройства магнетрона

Коллега Джессупа Винсент Гэддис считает, что именно после знакомства с работами Эйнштейна Тесла почему-то пошел по пути создания сложнейших многокамерных поликонтурных магнетронов. В скудных на технические детали комментариях самого изобретателя можно только встретить пространные рассуждения о важности применения при генерации «направленных самофокусирующихся потоков излучения» схем с использованием «многократной ступенчатой электромагнитной обратной связи». Далее Тесла говорит об открытом им некоем универсальном принципе конструирования излучателей, когда резонатор превращает усилитель в генератор «очень мощного потока лучей, способного преодолевать громадные расстояния». При этом первоначальные весьма незначительные по мощности колебания многократно подаются «на вход» схемы, все более и более усиливаясь. Так процесс генерации начинает преобладать над потерями релаксации, и если в данный момент связать резонатор с излучателем, то в «толще мирового электрического эфира как носителя любого электромагнитного действия» сформируется тот самый «сверхтонкий луч электрической природы», о котором впоследствии многократно упоминал изобретатель.

В принципе нечто подобное через 35 лет сделали выдающиеся советские ученые А.М. Прохоров и Н.Г. Басов, назвав свой прибор квантовым генератором радиодиапазона — мазером.

И здесь нам, чтобы понять логику дальнейших событий и судьбу разработок Теслы, переданных «Армторгу», придется перенестись в крупнейший промышленный и научный центр молодой советской Украины — Харьков и поприсутствовать на одной из первых международных конференций по теоретической физике, организованной в СССР.

Глава 10. Гений Дау

Из всех людей, которых я сам видел или знал, могу сравнить Ландау лишь с Ричардом Фейнманом, который многим известен по его книгам. Конечно, в нашем веке жили великие физики — Эйнштейн, Бор, Планк, Шредингер, Гейзенберг, сейчас жив Дирак.[6] Ландау, несомненно, не превосходил их своими научными достижениями и сам оценивал себя правильно, ставя упомянутых и некоторых других физиков выше себя «по достижениям». Он отводил себе более скромное место. И если я выделяю Ландау из всех, то потому, что оценка его «класса» складывается из многих ингредиентов. Во-первых, это научные достижения. Научные достижения Ландау первоклассны — это квантовая теория жидкостей (в частности, теория сверхтекучести гелия), теория фазовых переходов и ряд других прекрасных работ. Во-вторых, это редкая универсальность знаний, знание всей физики. И, в-третьих, он был Учителем с большой буквы, Учителем по призванию. Произведение трех таких «множителей» исключительно велико.

В.Л. Гинзбург. Замечательный физик

«Жизнь человека, — говорил Ландау, — слишком коротка, чтобы браться за безнадежные проблемы; память ограниченна, и чем больше научного сора будет засорять твою голову, тем меньше останется места для великих мыслей» (он говорил это с улыбкой).

Ю.Б. Румер. Странички воспоминаний о Л.Д. Ландау

Лев Давидович Ландау

Весна 1929 г. выдалась на Слободской Украине ранней и теплой. С помощью нэпа стране наконец удалось хоть как-то залечить кровавые раны революции и гражданской войны. Началась эпоха первых пятилеток и индустриализации, покрывшая новую украинскую столицу Харьков облаками строительной пыли. Вместе с промышленностью двинулась вперед и наука во главе со своим признанным лидером — инженерной и технической физикой. Везде в крупнейших индустриальных центрах страны стали возникать отделения столичных вузов, сопровождаемые «десантами» молодых сотрудников, рвавшихся поднять «периферийную» науку на небывалую высоту. В Харькове возник Украинский физико-технический институт (УФТИ, впоследствии — Харьковский физико-технический институт, а сегодня — Национальный исследовательский центр ХФТИ), отпочковавшийся от ленинградского физтеха, и уже вскоре на его основе было решено провести первую в стране международную конференцию по теоретической физике.

Организатором этого представительного форума советских и зарубежных ученых стал молодой выходец из ленинградского физтеха Д.Д. Иваненко (1904–1994). Вместе с первым директором УФТИ И.В. Обреимовым (1894–1981) и его заместителем А.И. Лейпунским (1903–1972) молодой ленинградский физик самым активным образом принимал участие в организации института и особенно его теоретического отдела, который он впоследствии и возглавил. Итак, в мае 1929 г. празднично убранный Харьковский деловой клуб встретил свыше 60 делегатов конференции. Среди собравшихся было много ведущих отечественных и зарубежных ученых, таких как Паскуаль Иордан (1902–1980), Вальтер Генрих Гайтлер (1904–1981), Якоб Громмер (1879–1933). В ходе пленарных заседаний и секционных докладов бурно обсуждались разные вопросы еще окончательно не сформировавшейся квантовой физики, общей теории относительности, а также попытки Альберта Эйнштейна создать единую теорию поля. Не прошло мимо внимания участников конференции и обсуждение работы Эйнштейна по спонтанному вынужденному излучению, открывавшей дверь в мир квантовой оптики, а также несколько секционных докладов, посвященных разным моделям генерации и концентрации электромагнитного излучения. Судя по всему, это было прямым откликом на «эпидемию лучевой лихорадки», захлестнувшую изобретателей всяческих «гиперболоидов». В ходе бурных дискуссий физики решительно раскритиковали все эти попытки «обмануть природу» и заставить сойтись «расплывчатую» волновую среду в кинжально узкий клинок луча, питаемого электромагнитными пакетами высокоэнергетического излучения. Это был очень важный результат, и хотя он попал в газеты в самом общем и урезанном виде, как «…мировые величины в области физики решительно отрицают реальность создания „лучей смерти“ и основанного на них „лучевого оружия“…», смысл критики ученых был вполне ясен.

Символично, что это собрание теоретиков, как первая ласточка, принесло «весну теорфизики», ведь многие участники конференции были ознакомлены с обширными планами развития теоретического отдела Харьковского физтеха, впоследствии став его сотрудниками.

Через два года Иваненко, уже в ранге заведующего теоретическим отделом ХФТИ, созвал вторую теоретическую конференцию, в плане работы которой были вопросы квантовой теории ферромагнетизма, электропроводимости металлов и полупроводников, а также электромагнитного излучения. На это собрание Дмитрий Дмитриевич, или просто Димус, как звали молодого завотделом его друзья, пригласил своего близкого друга по Ленинградскому университету и физтеху — Л.Д. Ландау (1908–1968), или просто Дау. Эта встреча бывших однокашников оказалась воистину судьбоносной, и через некоторое время после успешного завершения конференции Иваненко оставил ХФТИ и переехал в Ленинград. Здесь он разработал протонно-нейтронную модель ядра и заложил основы квантовой теории гравитации, а руководителем теоротдела в Харькове стал Ландау.

Что же такое произошло между Димусом и Дау, что окончательно рассорило бывших друзей и даже разбросало по разным городам? Вообще-то ни тот ни другой никогда не вдавались в подробности произошедшего, но близкие знакомые из их окружения рассказывали, что, помимо некоторых личных причин, тут сыграла определенную роль и полярность их научных интересов.

В начале прошлого столетия после опытов Резерфорда стало окончательно ясно, что атомы вовсе не являются «неделимыми элементарными кирпичиками материи», как писали в учебниках того времени, а имеют сложную структуру, состоящую из ядра, погруженного в облака электронов. И одну из важнейших гипотез по этому поводу высказал именно молодой доктор физико-математических наук Иваненко, предположив, что ядра атомов содержат еще более элементарные частицы — нейтроны и протоны, вокруг которых и вращаются электроны. Кроме этого Иваненко разработал еще и новую теорию тяготения, рассматривая ее с точки зрения квантовой физики. Здесь он опередил даже самого Эйнштейна, который пришел к аналогичным выводам гораздо позже и в ином ключе, так что именно исследования Иваненко привели в конечном итоге к выработке концепции квантовой гравитации. Надо сказать, что Ландау относился к подобному «беспочвенному теоретизированию» крайне отрицательно и совсем необоснованно называл подобные построения «полной ахинеей» (одно из любимых выражений Дау), совершенно оторванной от физической реальности.

Надо сказать, что будущий великий теоретик обладал весьма своеобразным характером, любил остро насмехаться над не симпатичными ему личностями и очень редко прощал обиды. С выдающимся основателем советской и в значительной мере русской физической школы А.Ф. Иоффе (1880–1960), руководившим Ленинградским физико-техническим институтом, отношения у него, мягко говоря, не сложились.

Еще в 1920-е гг. академик Иоффе стал развивать в Физико-техническом институте перспективные исследования физики ядра, полимеров и полупроводников. Особенно существенные успехи были достигнуты в области физики полупроводников, что связано с исследованием механизмов проводимости на границе «металл — полупроводник», теорией термоэлектрогенераторов и получением новых полупроводниковых материалов. Это положило начало целым направлениям в физике твердого тела, полупроводников и диэлектриков.

Протонно-нейтронная модель ядра Д. Д. Иваненко

Атомное ядро является очень компактной областью в самом центре атома, включая практически всю его массу и положительный электрозаряд. Ядро, удерживая вблизи себя кулоновскими силами электроны в количестве, компенсирующем его положительный заряд, образует нейтральный атом. Средний размер ядер колеблется около 10–12 см, более чем на четыре порядка уступая диаметру всего атома — 10-8 см. При этом плотность ядерного вещества может достигать 230 млн тонн в кубическом сантиметре.

Атомное ядро было открыто в 1911 г. в серии экспериментов по рассеянию альфа-частиц тонкими золотыми и платиновыми фольгами, выполненных в Кембриджском университете Э. Резерфордом. Ядерный состав был неизвестен до 1932 г., когда после открытия Дж. Чедвиком нейтрона выдающийся советский физик Д.Д. Иваненко создал модель ядерной структуры, состоящей из протонов и нейтронов.

Совершенно необдуманно Ландау решил превратить в объект шуток фамилию своего директора и на манер идиша называл его не иначе как «жопффе», ну и Абрам Федорович, не оставаясь в долгу (характер у него тоже был далеко не сахар), величал Дау «выскочкой, сосунком, у которого еще молоко на губах не обсохло», а всю, тогда еще неразлучную, троицу друзей — Ландау, Гамова и Иваненко — не иначе как «хам, хамов и хамелеон».

Вот так в распоряжении директора И.В. Обреимова оказался один из самых выдающихся теоретиков современности, отправленный подальше с глаз долой из Ленинградского физтеха академиком Иоффе. Сразу же по приезде в Харьков Ландау был назначен заведующим теоротдела, или, как тогда считалось по системе бригадного подряда, бригадиром бригады теоретиков Физико-технического института. Вскоре стало ясно, какой неоценимый подарок сделал харьковчанам Иоффе, ведь под руководством молодого профессора Харьков превратился в центр теоретической физики мирового уровня. Вскоре сюда стали съезжаться ученые из других городов, как для неформального общения, так и для обсуждения самых разных научных проблем, включая совместную разработку перспективных планов организации теоретических исследований и постановки новых экспериментов. Понимая важность научных связей, в том числе личного характера, Обреимов всячески содействовал организации на базе Харьковского физтеха различных школ, семинаров, коллоквиумов, симпозиумов и конференций, в которых участвовали и видные зарубежные физики.

Особенно представительной и интересной была третья Всесоюзная конференция по теоретической физике, состоявшаяся весной 1934 г. В ней Ландау принимал самое активное участие; на ней собралось множество представителей научного мира из Москвы, Ленинграда и Харькова, при этом участвовало несколько иностранных делегатов, среди которых был сам Нильс Бор (1885–1962). На открытии конференции с пламенным приветствием «пролетариям умственного труда» выступил тогдашний нарком просвещения В.П. Затонский, а после него Бор сделал блестящий научно-популярный доклад «Проблемы причинности в атомной физике».

Тематика этого международного теорфизического форума была настолько обширна, что охватывала почти все основные разделы физической науки того периода. Особенно выделялось направление, включавшее доклады по расчетам передачи, приема и взаимодействия мощных потоков электромагнитной энергии. Здесь чувствовались не только отголоски уже пошедшего на убыль ажиотажа вокруг «лучей смерти», но и первые зерна будущей теории квантовой электродинамики (КЭД).

Сегодня именно КЭД как квантово-полевой раздел физики электромагнитных взаимодействий является теоретической основой всех без исключения проектов по созданию тех или иных генераторов мощного и сверхмощного излучения. И это в общем-то понятно, ведь если классическая электродинамика Максвелла рассматривала исключительно непрерывные свойства электромагнитных полей, то в основу КЭД заложены представления о том, что электромагнитное излучение обладает как непрерывными, так и дискретными свойствами, носителей которых выявил еще Эйнштейн, строя теорию фотоэффекта. Речь идет о квантах электромагнитного поля — фотонах, и само взаимодействие частиц, обладающих зарядом, таких как электроны и протоны, с электромагнитным излучением в рамках КЭД рассматривается как поглощение и испускание микрочастицами фотонов.

Причем КЭД не только прекрасно объясняет все основные эффекты взаимодействия излучения с веществом, но и последовательно описывает электромагнитные взаимодействия между самими заряженными микрочастицами. Фактически КЭД разрешает все теоретические проблемы, с которыми сталкивалось большинство незадачливых изобретателей «лучей смерти», включая тепловое излучение тел, рассеяние рентгеновских и гамма-фотонов на электронах, протонах и прочих заряженных частицах, излучение и поглощение фотонов молекулами и атомами, испускание фотонов при пролете быстрых электронов в электромагнитных полях и другие процессы генерации, рекомбинации и взаимодействия элементарных заряженных частиц.

Ландау и Гамов (стоят в центре второго ряда) вместе со своим научным руководителем Я. Френкелем (сидит ниже в первом ряду) среди сотрудников Ленинградского физтеха

Будущая школа физиков уверенно развивалась, становилась на ноги. К Ландау устремилось много молодых людей различных способностей и различных вкусов. Неизбежно возникла необходимость научиться сортировать желающих и отбирать тех из них, которые смогли бы стать теоретиками-профессионалами.

Ландау считал, что заниматься теоретического физикой без предварительных глубоких и прочных знаний бессмысленно. Но изучать физику, по мысли Ландау, значило прежде всего уметь выбирать, что стоит и чего не стоит изучать.

Ю.Б. Румер. Странички воспоминаний о Л.Д. Ландау

Прослушав целый ряд докладов, где так или иначе затрагивались вопросы будущей теории КЭД, Ландау продолжал относиться к подобным попыткам теоретизирования с большой предвзятостью, но тон его реплик с неизменным «ахинея» стал несколько неуверенным. Много интересного можно было услышать в кулуарах конференции, здесь не только продолжались обсуждения новых радиоэлектронных приборов, но затрагивались и принципы радиолокации, межпланетной радиосвязи и даже прием радиоизлучения планет, Солнца и далеких звезд. Обсуждался здесь и сборник статей знаменитого физика Поля Дирака, одна из которых носила весьма многообещающее название «К вопросу о возможности электромагнитной фокусировки высокоэнергетического излучения атомных корпускул»…

Один из учеников, коллег и соавторов Ландау, человек трудной судьбы Ю.Б. Румер (1901–1985), прошедший тюрьмы и сталинские лагеря, так вспоминал о тех бурных годах становления советской физики:

В Харькове около 1936 г. стала возникать школа Ландау. Появились первые ученики. Своеобразие возникавшей школы заключалось в том, что учениками Ландау были его однолетки или люди моложе его лишь на несколько лет. Все ученики были на «ты» друг с другом и с учителем. Когда они собирались вместе, то эти собрания напоминали по духу собрания способных студентов, готовящих свои дипломные работы, а не семинары у знаменитого на весь мир ученого.

Очень часто ученики вступали в спор с учителем. Иногда Ландау терпеливо опровергал мнение какого-нибудь из своих ретивых оппонентов, а иногда заканчивал спор вопросом: «Кто кого обучает: ты меня или я тебя? Не мое дело искать ошибки в твоих рассуждениях. Укажи мне лучше ошибки в моих»…

Между тем, даже не подозревая, что ступает на драматический путь в лубянские застенки НКВД, профессор Ландау, немного остыв от накала страстей на теоретических конференциях, где он окончательно и бесповоротно поругался со своим самым близким другом Иваненко, широко развернул педагогическую деятельность. Он преподает целый ряд физических курсов, заведуя кафедрой теоретической физики на физико-механическом факультете Механико-машиностроительного института (бывшей «техноложки», а ныне политеха), а потом и кафедрой общей физики Харьковского университета.

Его ученик и соавтор, впоследствии академик И.Я. Померанчук (1913–1966) писал:

Он[7] считал, что без свободного владения математическим аппаратом в теоретической физике делать нечего. Причем степень этого владения должна быть такой, чтобы возникающие математические затруднения не отвлекали внимания и не уводили в сторону от физического содержания задачи. Искусство же владения техникой вычислений могло быть достигнуто только достаточными тренировками. И первое, что требовалось от претендентов в теоретики, — это выдержать испытание по математике в ее практических аспектах. Кто успешно проходил через это испытание, тот мог приступить к сдаче экзаменов по физической части программы теорминимума, включающей основные знания по семи разделам теоретической физики: механике, теории поля, квантовой механике, статистической физике, механике сплошных сред, электродинамике, релятивистской квантовой теории. По мнению Л.Д. Ландау, этими знаниями должны обладать все теоретики вне зависимости от будущей специальности.

Но главным местом работы Ландау оставался УФТИ, в котором первоначально, когда там только появился молодой ленинградский теоретик, превалировала тематика физики низких температур. Но в харьковский период у Ландау возник глубокий интерес не только к низкотемпературным свойствам веществ и материалов, ведь из семнадцати опубликованных Ландау в те годы работ только четыре касались в той или иной степени низкотемпературной тематики.

Какие же еще проблемы могли заинтересовать Льва Давидовича в те годы? Выяснить это довольно просто, зная, что далее произошло с основной тематикой теоротдела. Через несколько десятилетий от УФТИ, ставшего уже к тому времени ХФТИ, последовательно отпочковались два исследовательских центра — ФТИНТ (Физико-технический институт низких температур) и ИРЭ (Институт радиофизики и электроники им. А.Я. Усикова). Какие же научно-исследовательские работы 1930-х гг. могли развиться в последующую спецтематику одного из самых загадочных НИИ нашего города? Единственно, о чем я твердо знал после работы на «фирме Королева», это то, что ИРЭ имел самое непосредственное отношение к сверхсекретному проекту «Гранит-М», в свое время сильно попортившему нервы американским стратегам «звездных войн». Сколько бы Рейган ни устраивал разгонов аэрокосмическому командованию США, американским военным инженерам при невообразимо раздутом, многомиллиардном бюджете Пентагону так и не удалось продвинуться в создании аналога «изделия № 2013» — квантового агрегата «Терра». Причем теоретики ИРЭ во главе с М.И. Кагановым задолго до устрашающих американских экспериментов с ядерной накачкой оптического квантового генератора (ОКГ) убедительно доказали полную бесперспективность «атомных рентгеновских сверхлазеров», сэкономив тем самым государству сотни миллионов, если не миллиардов рублей…

О многих профессиональных интересах харьковских теоретиков в 1920-е и 1930-е гг. можно узнать по тематике соответствующих статей, публиковавшихся в новом институтском издании «Физический журнал Советского Союза». Надо заметить, что это был один из первых послереволюционных журналов, выходивших на английском и немецком языках, что сделало его весьма популярным среди ученых, стремившихся заявить свой приоритет в мировой науке. Высокий уровень журнала поддерживала весьма не простая процедура апробации всех без исключения публикуемых материалов, включавшая обсуждение работы на внутриотдельском семинаре, а затем доклад на ученом совете физтеха. Пройти все эти этапы было не так уж и просто, ведь в ученый совет входили все ведущие научные сотрудники института, заседавшие два раза в месяц и достаточно придирчиво рассматривавшие все рукописи, по которым, кроме докладчика, выступал еще и официальный оппонент, назначавшийся из основных сотрудников УФТИ.

Итак, в записях УС УФТИ можно найти довольно любопытные темы, такие как доклад Л.Д. Ландау и Я.С. Кана «О концентрации тормозного излучения в переменных силовых полях», причем ученый совет рекомендовал доработать статью в плане практического приложения и для этого организовать совместное исследование теоретической и радиофизической бригад. Чтобы понять смысл этой рекомендации для сугубо теоретического исследования, надо уточнить, что кроме обсуждения научного творчества сотрудников на ученом совете УФТИ заслушивались планы работ всех лабораторий института, решались вопросы о развитии той или иной тематики, определялись перспективные направления исследований, а также проблемы «воплощения науки в практику».

Конечно, ведущие научные сотрудники как руководители бригад-отделов имели льготы при подаче материалов в печать, но некоторые из них, подобно Ландау, никогда не пользовались своими привилегиями. Бывали случаи, когда эта чрезмерная щепетильность сильно вредила публикации. С Ландау нечто подобное произошло при разработке теоретической модели сверхнового взрыва. Проведя все необходимые расчеты на основе имеющихся на то время астрофизических данных, Лев Давидович пришел к выводу, что в результате взрыва сверхновой должно возникнуть новое физическое тело в виде сверхплотной звезды, состоящей исключительно из ядерных элементарных частиц — нейтронов.

В 1930-х гг., после создания основ квантовой механики и открытия нейтрона, астрофизики интенсивно исследовали эволюцию звездных объектов. После того как английский физик Джеймс Чедвик (1891–1974) открыл нейтрон, судьба массивных звезд значительно прояснилась, поскольку тут же появились теоретические работы, показывающие, как гигантское тяготение могло бы вдавить свободные электроны в протоны, превратив их в еще одни ядерные частицы, электрически нейтральные нуклоны — нейтроны. Так могли бы рождаться удивительные небесные тела, названные нейтронными звездами, состоящие из вещества совершенно невероятной плотности. Кубический сантиметр такой материи может весить миллиард тонн, а нейтронная песчинка уравновесила бы мощный локомотив.

Позднее известные астрономы Фриц Цвики и Вальтер Бааде выдвинули гипотезу о том, что вспышки сверхновых звезд представляют собой совершенно особый тип звездных взрывов, вызванных катастрофическим сжатием ядра звезды.

Между тем к аналогичным выводам Ландау пришел еще в конце 1920-х гг., развивая свои идеи о том, к чему же может привести гравитационный коллапс звезд на промежуточных этапах. Но самое интересное, что постановка задачи у Льва Давидовича была более чем оригинальная. Великий теоретик рассматривал гравитационный коллапс некоего сверхгигантского плазмоида в виде сфероида, состоящего из закрученных слоев нестабильной плазмы, который находился в очень мощном пульсирующем электромагнитном поле, «накачивающем» его колоссальной энергией. Забегая вперед, заметим, что к данной задаче, в том или ином ее аспекте, Ландау придется возвращаться снова и снова, рассматривая не только естественные звездные плазмоиды, но и их искусственные аналоги, в том числе состоящие из «холодной» плазмы шаровые молнии. Надо сказать, что Ландау очень редко комментировал постановочную фазу своих оригинальных решений, но именно в данном случае заметил, что данную задачу он рассматривал, еще когда стажировался в Цюрихе у Вольфганга Паули (1900–1958). В своих мемуарах Пайерлс отмечал, что изначальная постановка задачи принадлежала самому Паули, который «очень живо интересовался проблемами беспроводной переброски гигантских энергетических импульсов». А мы уже знаем, что единственным человеком в мире, который весьма серьезно относился к данной проблеме как в теории, так и в практике, был именно Никола Тесла. Получается, что еще в период своих зарубежных стажировок великий теоретик соприкоснулся с творчеством великого изобретателя.

Надо сказать, что в те времена еще доносились отзвуки революционной вольницы, поэтому и в научной среде проводилась масса собраний. Вот и институтские семинары проходили довольно оживленно, интересно и, можно даже сказать, весело. Конечно же, по своему характеру Дау в подобных мероприятиях принимал всегда самое активное участие. Помимо общеинститутского, он сразу же по переезде из Ленинграда организовал еще и теоротдельский семинар. Правда, посторонних лиц он туда старался не приглашать, ведь члены его бригады могли говорить там довольно странные вещи…

Патриарх харьковской физической школы, действительный член Украинской академии наук А.И. Ахиезер, как свидетель становления научных исследований Харьковского физтеха, вспоминал, что к началу деятельности Ландау в УФТИ развивались экспериментальные исследования в следующих направлениях: ядерная физика и ускорители, физика низких температур, физика твердого тела, радиофизика. И если первые два направления широко известны, то вопрос о том, какие же специальные проблемы решались в радиофизике и как в них участвовал Ландау, все еще обсуждаются историками науки.

Между тем стремительно надвигалась середина 1930-х, знаменующая собой начало «эпохи большого террора» и унесшая с собой жизни столь многих замечательных ученых, составлявших, без всякого преувеличения, цвет советской науки. Попал в кровавые жернова политических репрессий и Ландау, но произошло это по необычным причинам и довольно странным образом — при опосредованном участии все того же… творческого наследия Теслы…

Глава 11. Дело УФТИ

После переезда Ландау в Харьков УФТИ стал одним из лучших мировых центров физической науки.

Цели Ландау были ясны и определенны с самого начала: создание теоретического отдела, выявление творческой молодежи и работа с ней, научная деятельность в области теоретической физики, педагогическая работа в вузах Харькова, написание книг и обзоров по теоретической и общей физике, взаимодействие с экспериментаторами УФТИ.

А ему было в это время 24 года!

А.И. Ахиезер. Учитель и друг

Школа Ландау возникла не стихийно, она была задумана, запрограммирована, как теперь говорят, а теорминимум стал механизмом, позволявшим производить в течение многих лет селекционную работу — собирание талантов.

И.М. Халатников. Школа Ландау

Сотрудники института работали с огромным энтузиазмом. Творческий накал был характерен буквально для всех исследований, проводимых в институте, и он соответствовал тому духу энтузиазма, который господствовал в стране. В 1932 г. в УФТИ впервые в СССР была произведена ядерная реакция расщепления ядра лития (К.Д. Синельников, А.И. Лейпунский, А.К. Вальтер, Г.Д. Латышев). Об этом событии институт рапортовал «самому» Сталину. В рапорте говорилось:

«Украинский физико-технический институт в Харькове в результате ударной работы к XV годовщине Октября добился первых успехов в разрушении ядра атома. 10 октября высоковольтная бригада разрушила ядро лития: работы продолжаются».

А.И. Ахиезер. Учитель и друг

Памятный знак в честь расщепления атомного ядра

Для того чтобы хоть как-то осмыслить логическую канву последующих трагических событий, развернувшихся в Харьковском физтехе и известных в истории отечественной науки как «дело УФТИ», надо поближе познакомиться с довоенными планами научной работы института. Первое, что бросается в глаза, когда листаешь пожелтевшие архивные листки с выцветшими фиолетовыми чернилами и «слепой» машинописью, — это то, каким необычным и сверхдемократичным, даже по современным понятиям, было руководство и самоуправление научно-исследовательской работой. Главная стратегическая линия научного поиска формировалась на основании решений институтского директората, по представлению необходимых материалов научными руководителями отделов-бригад. При этом обязательно учитывалось мнение рядовых членов бригады, штатных и внештатных консультантов и даже участников научных конференций. После учета всех конструктивных предложений план научного поиска окончательно согласовывался на так называемых отраслевых конференциях. Долгое время, вплоть до введения пропускного режима, на эти мероприятия мог попасть любой желающий и выступить со своими соображениями. Рекомендации отраслевых конференций суммировались и выносились на общее собрание УФТИ, где и верстался годовой план научно-исследовательской деятельности.

Таким образом, получалось, что все бригады-отделы участвовали как в формировании индивидуального плана работ, так и в составлении генерального общеинститутского годового плана. Уточнив все детали своих рабочих планов, каждая бригада получала квартальный наряд с конкретным перечнем и сроками выполнения научных исследований, а также списочным составом всех задействованных исполнителей. После этого расчетно-сметный отдел институтской бухгалтерии проводил калькуляцию стоимости всех работ и материалов, выдавая научному руководителю — бригадиру расходную чековую книжку на соответствующую сумму. Еженедельно начальник отдела как обыкновенный бригадир проводил закрытие нарядов на ту или иную работу из квартального плана, на основе чего составлялась «оперативная шестидневка выполняемых заданий» в виде недельного плана с индивидуально-групповой разбивкой научно-исследовательской тематики.

Все участники тех далеких событий вспоминали, с каким энтузиазмом молодые ученые выполняли свои научно-технические задания. Вначале рабочий день научных сотрудников был совершенно не регламентирован и энтузиасты намного превышали установленные средние нормы. С первых дней существования УФТИ в нем была создана весьма приличная научная библиотека, укомплектованная всеми ведущими мировыми периодическими изданиями по физике. Почти у каждого научного сотрудника был свой ключ от научной библиотеки, и он мог пользоваться ею в любое время дня и ночи.

Первый директор УФТИ ИВ. Обреимов вспоминал:

…Ядро института состояло почти исключительно из молодежи, инициативной, работоспособной, дружной, легко понимающей друг друга и работающей с полной творческой самоотдачей. Заведующие отделами и лабораториями были товарищами членов своей бригады… вместе с ними работали и проводили досуг. Не ощущалось бюрократических порядков, и не было надобности регистрировать время прихода и ухода с работы, сколько было нужно, столько и работали, даже ночью. Лишь начиная с 1935 г., после того как институту был поручен целый ряд работ оборонного значения, включавших разработку мощных генераторов коротких волн, авиационных двигателей на жидководородном топливе и ядерных центрифуг, в УФТИ начал внедряться режим секретности. Территория института была огорожена, выставлена охрана, и появилась пропускная система с проходными и вахтерами. Правда, в течение некоторого времени ведущие научные сотрудники института пытались игнорировать пропускную систему, что привело к усилению конфронтации между учеными и режимным отделом и сыграло определенную роль в последующих трагических событиях.

Страницы: «« 12345 »»

Читать бесплатно другие книги:

Иисус хотел основать церковь отдельно от иудаизма? Кто были первые последователи Иисуса? И почему во...
Учебник представляет теоретические и практические аспекты детской логопсихологии. Даются характерист...
Жестокий мир крупных бизнесменов. Серьезные игры взрослых мужчин. Сделки, алкоголь, смерть друга и б...
Поэма. Основано на реальных событиях. О взаимопроникновении разных миров. О неизбежности встреч и не...
«Библия комедии» – книга, необходимая любому человеку, который мечтает зарабатывать на жизнь собстве...
В 1970-х годах появилась новая мода на воспитание: детей стали убеждать, что каждый из них особенный...