На грани возможного: Наука выживания Эшкрофт Фрэнсис
В тех дисциплинах, где физические характеристики вроде скорости и силы не так важны, женщины соревнуются на равных с мужчинами, например, в конкуре. Отсюда следует, что догнать мужчин в легкой атлетике женщинам не позволяют именно физические способности, а не отсутствие решительности, закалки и напора. Между женщинами и мужчинами имеются (помимо очевидных) четко документированные физические различия. Среди участников лыжных гонок мирового уровня максимальная утилизация кислорода у женщин составляет лишь 43 % от мужских показателей. Даже принимая во внимание весовые различия, все равно результат получается на 15–20 % меньше. Отчасти это объясняется тем, что у женщин больший процент массы тела занимает жировая прослойка, и соответственно меньше – мышцы. И действительно, согласно некоторым исследованиям, если учитывать разницу в мышечной массе, показатели утилизации кислорода у женщин сравняются с мужскими. Однако у мужчин имеется еще одно преимущество – количество гемоглобина, на 10–14 % превышающее количество гемоглобина у женщин и увеличивающее транспортную способность крови. Поскольку женщины обычно меньше мужчин, у них меньше размер сердца, а значит, и систолический объем (примерно на 25 %). Поскольку выносливость зависит от минутного объема сердца, женщины автоматически оказываются в проигрышном положении на длинных дистанциях.
Всплеск славыПлавание отбирает примерно в четыре раза больше энергии, чем бег на ту же дистанцию. Отчасти в этом виновато сопротивление воды, которое, в отличие от сопротивления воздуха, достаточно существенно влияет на результат. Участники соревнований по плаванию даже сбривают волосы на теле, чтобы уменьшить сопротивление. Еще сильнее увеличить скорость позволяет гидрокостюм, повышающий обтекаемость.
В плавании скорость обеспечивается прежде всего движениями рук, ноги играют менее важную роль. Это очень заметно по мышечным волокнам – в мышцах рук у пловцов гораздо больше медленных волокон, чем в ногах. Толчок ногами в кроле на груди нужен лишь для обеспечения обтекаемости, а не для движения вперед, как вы легко убедитесь сами, если попробуете просто толкаться ногами в воде, не задействуя руки. Однако плыть на одних руках довольно утомительно, поскольку ноги начинает тянуть вниз, замедляя тем самым движение.
Некоторые физические различия и отставание женщин от мужчин в мировых рекордах объясняются преобладанием в мужском организме гормона под названием тестостерон. Примечательно, что некоторые из мировых рекордов были установлены спортсменками, которые либо признались в приеме анаболиков (имитирующих воздействие тестостерона на мышечную массу), либо подозревались в этом.
Однако есть одна дисциплина, в которой женщины опережают мужчин. Это плавание на длинные дистанции. И причина, опять-таки, кроется в физиологических различиях. Жир обладает меньшей плотностью, чем вода, поэтому держится на плаву, тогда как мышцы, будучи плотнее, тянут на дно. По этой причине женщинам, обладающим большей жировой прослойкой, легче держаться на воде, чем мужчинам. Соответственно, пловчихи тратят меньше энергии на движение в воде, и их ноги тоже оказываются ближе к поверхности, тем самым обеспечивая более обтекаемую форму. Именно поэтому мировые рекорды в плавании у женщин ближе к мужским, чем в легкой атлетике. В плавании на длинные дистанции женщины обладают еще большим преимуществом, поскольку жир лучше держит тепло. Так, текущий рекорд в пересечении Ла-Манша (21,5 мили) вплавь, составляющий 7 ч 40 мин., принадлежит именно женщине. Мужской рекорд равен 8 ч 12 мин. – разница очевидна.
Улучшить результаты
Практика применения препаратов, улучшающих спортивные показатели, восходит к античным временам. В эпоху крестовых походов мусульмане-исмаилиты посылали своих воинов на битву или на заказное убийство, накачав гашишем. Их жестокость и бесстрашие остались увековеченными в слове «ассасин» (наемный убийца), происходящего от арабского «хашиши», то есть «употребляющий гашиш». В XIX в. морякам британского флота полагалось ежедневно по «боевому» глотку рома, «чтобы поджилки не тряслись». В жутких условиях вьетнамской войны многие американские солдаты подсаживались на марихуану, героин и кокаин. С одной стороны, все эти наркотики способствовали достижению результата, поскольку прогоняли страх перед опасностью. Некоторые, такие как кокаин, помогали также снять усталость и боль (с той же целью южноамериканские индейцы веками жевали листья коки, подавляя голод и повышая выносливость). Однако ни мышечную массу, ни силу ни один из них не увеличивал.
В XIX в. прием препаратов стал у спортсменов обычным делом. В надежде улучшить показатели потреблялись кофеин, алкоголь, кокаин, опиум, эфир, героин, наперстянка и даже ядовитый стрихнин. Разумеется, не обходилось без смертельных исходов. Один английский велосипедист, погибший в 1886 г. от передозировки триметила во время гонки Бордо – Париж, обладает теперь сомнительным титулом первого спортсмена, ставшего жертвой допингового препарата.
Знания о человеческой физиологии расширялись, в спорте на первый план выходила победа, а не только участие, и постепенно увеличивалось количество препаратов, с которыми экспериментировали спортсмены. Тестостерон и синтетические анаболики вышли на сцену в начале 1950-х, когда стало известно, что они наращивают мышечную массу. К середине 1960-х они уже получили широкое распространение среди тяжелоатлетов и толкателей ядра, а к концу 1960-х на них подсели и бегуны. В 1967 г. Международный олимпийский комитет решил положить этому конец. Были изданы правила, запрещающие употребление допинговых препаратов, и введен выборочный допинг-контроль. В данный момент список запрещенных МОК веществ насчитывает более ста пунктов.
Растущая коммерциализация спорта, со спонсорством и большими денежными призами, положенными только лучшим из лучших, делает победу еще более желанной. Прибавьте к этому скоротечность спортивной карьеры, и станет ясно, почему некоторые спортсмены все равно экспериментируют с допингом в нарушение всех правил. Чем больше их число, тем труднее остальным бороться с соблазном. Как высказался один спортсмен: «Если ты ничего не принимаешь, чувствуешь себя так, будто встал на стартовые колодки в кедах, тогда как остальные все в шиповках». Однако допинг запрещен не только потому, что это «нечестно». Его запрещают в силу серьезных побочных эффектов. Парадоксально, что спортсмены прикладывают столько усилий, чтобы улучшить физическую форму, а потом губят организм препаратами, которые могут вызвать и бесплодие, и рак печени, и скоропостижную смерть от сердечной недостаточности.
Самые печально известные из всех допинговых препаратов – это стероиды-анаболики, синтетические аналоги мужского гормона тестостерона. Эти препараты помогают набрать мышечную массу и силу, и их принимают для улучшения показателей в силовых дисциплинах, соревнованиях на скорость и мощь, таких как тяжелая атлетика, бег и плавание. Их же используют и бодибилдеры. Поскольку анаболические стероиды наиболее эффективны во время тренировок, за три-четыре недели до соревнований их прием можно прекратить, чтобы организм успел очиститься и спортсмен спокойно прошел допинг-контроль.
Способность анаболических стероидов увеличивать скорость и выносливость бесспорна. Лучшими доказательствами служат сохранившиеся отчеты врачей и тренеров из ГДР, которые много лет проводили в жизнь тщательно спланированную государством для своих лучших спортсменов допинговую кампанию. В результате ГДР лидировала в женском плавании с 1973 по 1989 г., завоевав 11 медалей из 13 на Олимпиадах 1976 и 1980 гг., а также 10 титулов из 15 на Олимпийских играх 1988 г. Мировой рекорд Петры Шнайдер, установленный в комплексном плавании на дистанции 400 м во время московской Олимпиады-80, продержался немыслимых 15 лет. Позже спортсменка рассказала, что без ведома для себя принимала анаболические стероиды, которые, видимо, и помогли ей поставить рекорд{30}.
Олимпийский идеалПиндар. Первая Олимпийская ода[7].
- Лучше всего на свете – вода;
- Но золото, как огонь, пылающий в ночи,
- Затмевает гордыню любых богатств.
- Сердце мое, ты хочешь воспеть наши игры?
- Не ищи в полдневном пустынном эфире
- Звезд светлей, чем блещущее солнце,
- Не ищи состязаний, достойней песни,
- Чем Олимпийский бег.
Первые упомянутые в исторических источниках Олимпийские игры состоялись в 776 г. до н. э., носили исключительно локальный характер и длились всего один день. Начались они утром с жертвоприношения Зевсу и закончились единственным состязанием в беге, в котором победил Кореб из Элиды – первый олимпийский чемпион. К 650 г. до н. э. масштабы Олимпиады приняли иной размах. На состязания съезжались из самых разных мест, включая Италию и Малую Азию. Количество дисциплин тоже возросло – теперь спортсмены состязались в беге на разные дистанции (в том числе и около 5000 м), в боксе, в гонках на колесницах, верховой езде, панкратионе (борьбе «без правил») и пентатлоне (бег, прыжок в длину, метание диска и копья, борьба). Кроме того, проводились крайне изнурительные соревнования, в которых спортсмены должны были пробежать в доспехах (весивших от 20 до 30 кг) дистанцию в 768 м – знак того, что в Греции спорт рассматривался прежде всего как военная подготовка. Кроме лаврового венка, других наград победителю практически не полагалось. Зато, как и современные олимпийские чемпионы, он вез сородичам славу и честь.
Первые Олимпиады часто считают образцом честности и справедливости, однако на самом деле все было не столь радужно. Как и сегодня, в результаты активно вмешивалась коммерция и политика. Да и сами спортсмены не стеснялись жульничать, только прибегали в то время не к допингу, а к взяткам.
К сожалению, прием анаболических стероидов чреват побочными эффектами, среди которых – повышенный риск развития коронарной недостаточности, рака печени, заболеваний почек и расстройств личности. У спортсменов-мужчин может начаться понижение эндогенного уровня тестостерона, продолжающееся даже после отмены приема стероидов. Результат – сморщенные тестикулы и бесплодие. У спортсменок, наоборот, происходит маскулинизация: сбои менструального цикла, рост волос на теле, нарушение нормального процесса роста. Кристиан Кнаке-Зоммер, первую спортсменку, проплывшую 100 м баттерфляем меньше чем за минуту, как и некоторых ее коллег-спортсменок из ГДР, пичкали стероидами тренеры. От самих спортсменок здесь мало что зависело. Как показала Кнаке-Зоммер на суде в Берлине, за отказ от приема «добавок» или «витаминов» можно было в два счета вылететь из команды. Некоторые спортсменки сурово поплатились за эти «витамины» своим здоровьем – настолько сурово, что несколько бывших восточногерманских тренеров по плаванию и врачей были осуждены за умышленное причинение вреда.
ГДР оказалась не единственной. В 1988 г. во время сеульской Олимпиады по результатам допинг-контроля после рекорда в 9,79 сек. на стометровке лишили золотой медали и навсегда выгнали из профессионального спорта легкоатлета Бена Джонсона. Это событие кардинальным образом изменило отношение общества к приему спортсменами допинговых препаратов. До Сеула средства массовой информации в основном старались этого вопроса не касаться, даже когда их ставили в известность напрямую. Однако после положительного допинг-контроля у Джонсона прием препаратов моментально стал сенсацией и с тех пор практически не исчезает из заголовков.
На самом деле Джонсону, возможно, повезло, что его поймали, поскольку повышенные дозы анаболиков могут нарушить работу сердца. Спринтер Флоренс Гриффит-Джойнер, известная под ласковым прозвищем Фло-Джо, скончалась от сердечного приступа в возрасте 38 лет. Она завоевала три золотые олимпийские медали в 1988 г. и установила мировые рекорды на дистанциях в 100 и 200 м (10,49 и 21,34 сек. соответственно), которые до сих пор никто не смог побить. Она была изящной красавицей, носила вызывающе длинные ногти и выделялась на дорожке своей яркой формой. Еще она была мускулистой, разговаривала глубоким контральто и, пусть и бездоказательно, подозревалась в приеме стероидов.
Анаболические стероиды – не единственные препараты, которые принимают спортсмены для улучшения результатов. Кроме них в ход идут гормоны роста, амфетамины, адреналин, эритропоэтин и масса других, менее известных. Гормон роста назначается малорослым детям, чтобы помочь им «выровняться», пока они еще маленькие. Он стимулирует рост мышц и костей и уменьшает жировую прослойку. Для спортсменов он особенно привлекателен тем, что достоверного способа отличить синтетический гормон от натурального, вырабатываемого самим организмом, не существует. А сейчас, когда человеческий гормон роста научились вырабатывать в больших количествах с помощью бактерий и стоимость его резко упала, он стал более доступным. Однако и здесь есть своя опасность. Избыток гормона роста у взрослого вызывает акромегалию – состояние, при котором ступни, кисти рук и лицевые кости разрастаются слишком сильно.
Иногда спортсмены прибегают и к амфетаминам. Почему они так популярны, ясно из их обиходного названия – «стимуляторы». Они вызывают возбуждение, снимают усталость и боль и «встряхивают» в общем и целом, повышая минутный объем сердца, учащая пульс и дыхание, а также повышая уровень сахара в крови. Амфетамины имитируют действие естественного гормона адреналина, готовящего тело к схватке или бегству. Чистый адреналин спортсмены тоже иногда принимают. Однако у амфетаминов имеются побочные эффекты – головокружение, тревожное возбуждение, спутанность сознания, поэтому их не стоит принимать перед участием в тех дисциплинах, где требуется четкость, сосредоточенность и «холодная голова».
Летом 1998 г. разразился скандал на велогонке «Тур де Франс». Начался он с того, что массажиста команды «Фестина» остановили на франко-бельгийской границе и нашли в машине целый арсенал препаратов. После этого пять участников команды признались в приеме допинга. Вопреки возмущенным протестам велогонщиков проверке подверглись участники нескольких других команд, их багаж обыскали на предмет обнаружения допинга – и нашли. В результате из 189 велогонщиков больше 80 были дисквалифицированы за употребление допинга либо выбыли из участия сами. Большинство принимало в качестве допинга человеческий эритропоэтин – гормон, стимулирующий выработку эритроцитов (см. гл. 1). Инъекции эритропоэтина – это всего-навсего усовершенствованная форма более старого приема – переливания крови, которое делалось спортсмену перед соревнованиями, чтобы увеличить количество эритроцитов в крови и повысить ее транспортную способность. Пока не доказано, действительно ли этот метод помогает улучшить результаты, однако многие спортсмены считают, что помогает. К сожалению, есть опасения, что увеличенная вязкость крови может привести к образованию тромбов, грозящих инсультом или сердечным приступом.
А как обстоит дело с привычным нам «бытовым допингом» – кофе и алкоголем, которые большинство потребляют всю жизнь в огромных количествах? Как ни удивительно, кофе и в самом деле повышает работоспособность. Согласно одному исследованию, эквивалент двух с половиной чашек крепкого кофе, принятый за час до нагрузки, значительно повышал выносливость. Те, кто пил обычный кофе, тренировались затем более полутора часов, тогда как тех, кто предпочитал кофе без кофеина, хватало на час с четвертью. И уставали кофеманы тоже меньше. Механизм действия кофеина пока не изучен до конца, однако, судя по всему, кофеин способствует использованию жира в качестве топлива (экономя тем самым ограниченные запасы углеводов в организме) и, кроме того, воздействует непосредственно на мышцы. По требованиям МОК содержание кофеина в моче не должно превышать 12 мкг / мл. Такие показатели возможны, только если спортсмен выпьет за один присест шесть-восемь чашек кофе и пройдет контроль в течение двух последующих часов. Неограниченное потребление кофеина, разумеется, тоже вредно. Оно может вызвать головную боль, мелкую дрожь и экстрасистолию. Кроме того, кофеин действует как мощный диуретик, что чревато серьезными проблемами в долгом забеге – не только из-за желания опорожнить мочевой пузырь, но и из-за того, что увеличенная потеря жидкости может привести к обезвоживанию.
Воздействие алкоголя имеет, скорее, психологический характер – успокаивает нервы и повышает уверенность в себе. Кроме того, он унимает мелкую дрожь, что ценно для спортсменов, которым нужна твердая рука. Однако его прием спортсменам запрещен, и на Олимпиаде 1968 г. за распитие спиртного перед соревнованиями были дисквалифицированы двое стрелков из пистолета. Перебор с алкоголем, как многим известно по собственному опыту, наоборот, сильно ухудшает работоспособность.
Чудеса животного мира
Тренировки помогают улучшить результаты, однако все же есть предел тому, как быстро и как долго человек может бежать или насколько высоко ему удастся подпрыгнуть. Каковы же эти пределы? И как они соотносятся с «рекордами» представителей животного мира? На эти вопросы ответить нелегко, поскольку человеческие рекорды постоянно меняются. Ведущие спортсмены, усовершенствованные программы тренировок, современная обувь, экипировка, правильная дорожка, попутный ветер – все это, без сомнения, помогает. И тем не менее мировые рекорды редко претерпевают кардинальные улучшения, и вряд ли в один прекрасный день какой-нибудь бегун сравняется в скорости с гепардом. Значит, можно с уверенностью утверждать, что текущие мировые рекорды приближаются к пределу человеческих возможностей.
Спринтер-рекордсмен пробегает 200 м со скоростью 22 мили/ч, а его коллега стайер одолевает одну милю со скоростью 15 миль/ч. Это намного быстрее, чем в случае обычного человека, однако в сравнении со скоростями некоторых животных меркнут даже рекордные цифры. Уиппет развивает скорость в 35 миль/ч, американский заяц – 40 миль/ч, лиса – 45 миль/ч, антилопы – 60 миль/ч, а гепард держит рекорд в 70 миль/ч. Даже страус, который, как и человек, бегает на двух ногах, носится с впечатляющей скоростью в 35 миль/ч. По части выносливости животные тоже бьют все рекорды. Например, лошадь может проскакать 35 миль на скорости в 15 миль/ч, верблюды покрывают 115 миль за 12 часов, а убегавшая от своры гончих лиса пробежала за полтора дня 150 миль. Скорость и выносливость нужны как хищникам, так и добыче, однако скоростью в основном могут похвастаться первые, а их жертвы, как правило, отличаются выносливостью и изворотливостью.
На скорость влияет и длина, и частота шага. Знаменитый гипнотизирующий «размашистый» бег жирафа получается благодаря широкому, но плавному, небыстрому шагу. Более мелкие животные могут достичь такой же скорости, укоротив шаг, но быстрее перебирая ногами, – так поступает, например, бородавочник. Схожую картину можно увидеть, сидя в уличном кафе и наблюдая за прохожими: людям с коротким шагом приходится семенить вприпрыжку за своими спутниками с размашистой походкой. Рекордсмены животного мира по бегу движутся большими и быстрыми шагами.
У быстроногих животных конечности по отношению к туловищу длинные, дающие тот самый размашистый шаг. У многих в процессе эволюционного развития менялись кости стопы. Хищники и птицы бегают, по сути, на полупальцах. У копытных дело зашло еще дальше – у них кости стопы для большей прочности сплавлены в одну, которая и образует копыто. У лошади остается один-единственный палец, на котором она и бежит, как на пуантах. Кроме того, конечности у быстроногих животных облегченные – за счет сокращения размеров костей стопы и смещения мышц и как можно большего числа других тканей ближе к корпусу. Длинные стройные ноги – отличительная черта бегуна. Гибкий позвоночник у кошачьих и собачьих тоже помогает увеличить размах. Растягивая спину, гепард добавляет себе несколько дюймов (сантиметров десять) длины. При этом он должен рассчитывать движения так, чтобы спина растягивалась лишь в тот момент, когда задние ноги отталкиваются от земли.
Кроме того, бегун должен быстро перебирать ногами. Лошадь в галопе делает 2,5 шага в секунду, гепард – по меньшей мере 3,5. Однако чем чаще шаг, тем чаще сокращаются ножные мышцы. Таким образом, предел скорости определяется частотой мышечных сокращений. У млекопитающих эта частота примерно одинакова. Однако длинные мышцы сокращаются медленнее, поэтому у крупных животных преимущество в виде длинных конечностей нивелируется более низкой скоростью шага. Именно поэтому жираф, несмотря на длинные ноги, не может соперничать с гепардом. У некоторых животных – лошадей, например, – эта проблема решилась природой за счет относительного укорачивания мышц и удлинения сухожилий.
Многое зависит также от того, где именно мышечные сухожилия прикрепляются к костям конечностей. У быстроногих мышца присоединяется ближе к плечевому суставу, поэтому на движение конечности уходит меньше энергии. По сути, эти животные всю жизнь проводят на «высокой передаче». Ходячие животные (к которым относится и человек) или роющие (типа барсука) работают на «низкой передаче». Их мышцы крепятся гораздо ниже плечевого сустава, что повышает силу, но снижает скорость. Еще один фокус, к которому прибегают быстроногие животные, – использовать разные мышцы для одновременного продвижения вперед разных суставов конечности. Скорость при этом повышается по тому же принципу, по которому увеличивает скорость идущего человека работающий эскалатор. Чем больше суставов действуют одновременно, тем быстрее движется нога. Лошадям прибавляет скорости дополнительный сустав, образованный копытом.
Некоторые животные для более стремительного движения вперед используют упругую отдачу. У лошадей в ноге имеется связка, которая накапливает энергию, когда копыто касается земли, и высвобождает ее, когда копыто отрывается от поверхности. При ударе копыта об землю путовый сустав сгибается, натягивая при этом проходящую вдоль него эластичную связку. При отрыве от земли сустав распрямляется, возвращая связке прежнюю длину, что сопровождается выбросом энергии, придающей ноге дополнительный толчок. Благодаря этой связке исчезает необходимость в тяжелых мышцах и конечность становится легче, что также играет большую роль при наборе скорости. Все это помогает лошади отлично бегать.
Длинные ахилловы сухожилия у кенгуру выполняют ту же функцию, что и эластичная связка у лошади. Они экономят целых 40 % энергии, уходящей на отталкивание задними ногами, и позволяют кенгуру повысить скорость прыганья с 7 до 22 км/ч, не увеличивая при этом потребление кислорода. Другими словами, кенгуру набирает скорость без всяких дополнительных усилий. Происходит это за счет пружинящих вверх-вниз, как у «прыгалки-кузнечика», сухожилий. Как у тугого мяча, основная энергия у кенгуру уходит на первый прыжок, а последующие совершаются за счет упругой отдачи. На высокой скорости энергии накапливается больше, поэтому усилий уходит сравнительно меньше.
Энергосберегающую роль упругой отдачи можно наблюдать на простом примере. Отложите книгу, встаньте и быстро сделайте десять глубоких приседаний. Затем сделайте то же самое, только, перед тем как выпрямлять ноги, каждый раз считайте до 60. Вы почувствуете, насколько труднее дается упражнение. Происходит это потому, что при опускании на корточки мышцы-разгибатели находятся в напряжении, контролируя степень спуска. Если они сразу после этого сократятся, напряжение превратится в упругую отдачу, но если дать им расслабиться, напряжение спадет и пружинистости не возникнет. Благодаря упругой отдаче в мышцах мы достаточно легко скачем на месте. Она же придает пружинистость походке и помогает экономить энергию при беге. Энергия запасается в икроножных мышцах и ахилловом сухожилии, когда ступня касается земли, и высвобождается при толчке, когда мышцы сокращаются. Конструкция беговых кроссовок способствует усилению упругой отдачи.
«Четыре ноги хорошо, две ноги – плохо» – знаменитый лозунг героев сатирического произведения Джорджа Оруэлла «Скотный двор». Все рекорды скорости и выносливости действительно принадлежат четвероногим, однако в самом ли деле четыре ноги лучше двух? К сожалению, однозначного ответа на этот вопрос нет, поскольку скорость определяется не только числом ног. Размер животного, длина конечностей, гибкость спины и походка – все это также играет немаловажную роль.
Размер имеет значение
Размер, как всегда, определяет многое. Чем крупнее животное, тем труднее ему бежать. Происходит это потому, что сила мышц возрастает пропорционально квадрату сечения. Однако масса тела при этом растет пропорционально кубу длины. Увеличьте длину тела животного вдвое, и его вес увеличится в восемь раз, но мышечная сила при этом вырастет всего в четыре раза. Кроме того, при увеличении размеров корпуса труднее становится двигать конечностями, а у самых крупногабаритных тело будет трудно поддерживать даже в покое. Именно этот фактор ограничивает размеры сухопутных животных (морские, в отличие от них, могут вырастать и крупнее – как, например, синий кит, поскольку вода забирает часть веса на себя).
Широко известно, что блохи и кузнечики могут прыгать на высоту, более чем в 50 раз превышающую длину их тела. Для человека это означало бы подпрыгнуть с места на 100 м вверх. Мировой рекорд по прыжкам в высоту гораздо скромнее – всего 2,45 м, а если прыгать с места, то даже ведущий спортсмен возьмет максимум 1,6 м. Как же удается совершать такие немыслимые прыжки кузнечикам и блохам? Дело всего-навсего в размерах – крупное животное физически неспособно подпрыгнуть на такую же высоту относительно размеров своего тела, как мелкое. Ведь согласно физическим законам похожие животные должны достигать в прыжке одной и той же высотной отметки, независимо от размеров тела.
Чтобы понять, почему дело обстоит так, необходимо вспомнить, что мышцы человека и насекомого развивают одинаковую силу на площадь поперечного сечения и что сила мышцы определяется именно этой величиной. Масса (или объем) тела животного возрастает пропорционально кубу длины, тогда как площадь поперечного сечения мышцы растет всего лишь пропорционально квадрату длины. Отсюда следует, что относительно массы тела у более крупного животного сил для прыжка окажется меньше. Крупное животное может слегка повысить свою прыгучесть, увеличив долю массы, которая приходится на прыжковые мышцы. Именно так происходит у сенегальского галаго, относящегося к мелким тропическим приматам. В относительных цифрах его мышечная масса в два раза превышает человеческую. Поэтому галаго может с места подпрыгнуть на 2,2 м – примерно в три раза выше, чем человек (рекорд по прыжкам в высоту с места составляет 1,6 м, но оттуда нужно вычесть еще примерно метр, поскольку именно на такой высоте располагается центр тяжести у человека). Тем не менее очевидно, что мышцы могут занять лишь часть общей массы животного, поэтому описанный выше выход не панацея.
За гранью возможногоБлохи славятся не только высотой, но и скоростью прыжка. Среднее ускорение, которое развивает блоха после отрыва от поверхности, составляет более 1350 м / с, что примерно равно двухсоткратной перегрузке. Мускулы с такой скоростью сокращаться не могут. Как же блохе это удается?
Как выясняется, у блохи имеется встроенная катапульта, которая долго накапливает энергию, затем очень быстро ее высвобождает. В подошве задних ног у блохи содержится эластичное упругое вещество под названием резилин. Когда блоха находится в покое, сокращающиеся мышцы постепенно сжимают резилин, приподнимая ногу в воздух. Блоха «напружинивается» для прыжка. И когда приводится в действие спусковой механизм, резилин моментально распрямляется, нога рывком опускается на поверхность, и блоха «выстреливает», как из катапульты.
Летательные мышцы некоторых насекомых тоже бьют все рекорды. Каждое сокращение мышцы у млекопитающих вызывается единственным нервным импульсом. Однако частота сокращений у летательных мышц насекомых гораздо выше, чем скорость передачи нервных сигналов. Например, мошкара, отравляющая теплые летние сумерки на природе, трепещет крыльями более 1000 раз в секунду, издавая тот самый надрывный писк, который терзает наши уши. Эта частота сокращений в сорок с лишним раз превышает частоту сокращений быстрых человеческих мышц.
Таких немыслимых результатов насекомым помогает до– биться резонанс. Летательные мышцы, как выясняется, чувствительны к натяжению – если мышцу растянуть, она сократится, если отпустить, она расслабится. Торакс насекомого – та часть тела, к которой крепятся крылья, – это жесткий корпус, содержащий два типа летательных мышц. Одни поднимают крылья, вторые – опускают. Как ни удивительно, летательные мышцы не соединяются непосредственно с крыльями, а закреплены на стенках торакса. Движение крыльев, прикрепленных к крышке торакса, производится опосредованно, изменением формы самого корпуса.
Торакс, по сути, представляет собой резонатор, который по очереди тянет то поднимающие, то опускающие мышцы, заставляя сокращаться сперва одни, потом другие. Когда сокращаются поднимающие мышцы, крышка торакса утапливается, фиксируясь в новой позиции и заставляя крылья подняться. Но при этом торакс натягивает опускающие мышцы, вызывая их сокращение и одновременно снимая напряжение с поднимающих мышц, поэтому они расслабляются. Сама крышка торакса при этом резко возвращается в изначальное положение, и крылья опускаются. Тогда, разумеется, снова натягиваются и сокращаются поднимающие мышцы и одновременно расслабляются опускающие. Цикл повторяется заново. То есть крышка торакса движется туда-сюда, опуская и поднимая крылья.
Поскольку для смещения торакса достаточно крошечного сокращения мышцы, происходит это в доли секунды. А учитывая, что летательные мышцы стимулируются натяжением, а не нервными импульсами, они сокращаются быстрее, чем распространяются сигналы по нервам. Именно поэтому насекомым и удается «бить рекорды».
Мелкие животные, кроме всего прочего, обладают иногда непропорционально огромной силой. Жук-навозник катит огромный навозный шар, на фоне которого он сам просто теряется, а муравей-листорез с легкостью тащит лист-парус весом больше его самого. Человеку такая ноша показалась бы неподъемной. Невиданная сила муравья объясняется опять-таки размерами. Мышцы у муравья не мощнее человеческих, но кажутся гораздо более мощными, поскольку сила, которую они развивают относительно массы тела, возрастает по мере уменьшения животного в размерах. Так что относительная сила – это тоже вопрос масштаба.
Проверка на выносливость
Нам постоянно твердят, что регулярные занятия физкультурой приносят огромную пользу, снижая, например, риск развития коронарной недостаточности, диабета, ожирения и остеопороза. Физкультура помогает улучшить внешний вид и самочувствие. Но у этих занятий есть и обратная сторона.
Почти всем, кто занимается спортом регулярно, и многим из тех, кто упражняется время от времени, знакомы различные травмы, вызванные перенапряжением. Куда ни глянь – «расколотая голень», слабость в коленях, потянутые мышцы и усталостные переломы. У воскресных бегунов основная причина травм – «поторопились с нагрузкой». У опытных спортсменов – «перестарались с нагрузкой, дистанцией и частотой». От чрезмерной постоянной нагрузки могут появиться трещины в костях – особенно в стопе и в голени, от чего нередко страдают танцоры и бегуны на длинные дистанции. Мышечное напряжение чревато воспалениями, вызывающими отеки и боль. От повторяющихся движений повреждаются сухожилия, постоянно трущиеся о стенки влагалищ или о прилегающие кости. В этом случае развивается коленный тендинит или ахиллобурсит. При повторяющихся микронадрывах сухожилия в месте его прикрепления оно тоже может воспалиться. Иногда сухожилия рвутся целиком, моментально обездвиживая спортсмена. Особенно болезненны и тяжки разрывы суставных связок – чаще всего от этого вида травм страдают колени. При подобных травмах требуется немедленно обеспечить покой, а затем, после восстановления, нагрузку нужно набирать постепенно и чередовать тренировки, чтобы избежать рецидива. По прошествии времени постоянный износ, вызываемый серьезной долгосрочной нагрузкой, может привести к остеоартрозу – хроническому заболеванию, при котором суставы разрушаются, вызывая боль и обездвиженность. Человеческое тело просто не создано для постоянного движения.
Стресс влияет также на иммунную систему, поэтому профессиональные спортсмены больше подвержены инфекциям, которые могут сказаться на их результатах. У женщин-стайеров и балерин могут прекратиться менструации, и вся польза физических упражнений для опорно-двигательного аппарата сводится на нет падением уровня эстрогена. Именно поэтому у молодых женщин, подверженных большой физической нагрузке, развивается остеопороз, но, как ни парадоксально, занятия обычной физкультурой помогают замедлить разрушение костей у женщин более зрелого возраста (см. гл. 7). У молодых спортсменов, таких как гимнасты, например, тяжелые нагрузки могут затормозить наступление половой зрелости.
Изнурительные тренировки могут привести к потере белка в скелетных мышцах – скорее всего, из-за микротравм непосредственно в мышечных клетках. Это, в принципе, нормально. Однако в некоторых случаях белка теряется так много, что наступает угроза для жизни. Человек чувствует тошноту, мышцы распухают и болят, а моча делается цвета кока-колы из-за миоглобина (пигментированной молекулы, родственной гемоглобину, которая запасает кислород в мышцах на короткий срок). Самое страшное, что при этом нарушается солевой баланс крови. Состояние такое хоть и редко, но все же встречается, особенно у новобранцев, которые в курсе начальной физической подготовки выполняют серии прыжков из положения «упор присев». Отсюда и неофициальное название недуга – «прыжковый синдром».
Многие виды спорта травмоопасны. В контактных дисциплинах не обходится без синяков и переломов: регбистов выдают перебитые носы, ударом хоккейной клюшки можно запросто сломать ногу, мячи для сквоша идеально вписываются в глазницу, а падение с лошади – основной источник травм головы. Пострадать могут даже зрители или прохожие. Как-то летом, проезжая на велосипеде мимо крикетной площадки, я получила мячом в глаз. На следующий день красовалась с черным синяком.
Кровоизлияние в зоне травмы вызывает боль и воспаление, бороться с которыми помогает лед (вызывающий сокращение сосудов), давящая повязка и подвешивание на перевязь – все это помогает уменьшить приток крови к поврежденному участку. Спортсмены-любители, которые вместо этих простейших мер скорой помощи предпочитают дотянуть как есть, а потом лечить травмы хоть и успокаивающим, но расширяющим сосуды стаканчиком чего-нибудь покрепче, пусть не удивляются, когда наутро подвернутая нога распухнет, перестанет сгибаться и будет болеть.
Нередко этот скорбный список травм и опасностей приводят те, кто очень не хочет заниматься спортом в принципе. Однако важно помнить: перегибы, как и в других сферах жизни, чреваты неприятностями, а умеренная физическая нагрузка исключительно полезна. Может быть, титул самого быстрого или самого сильного вы и не завоюете, однако активный образ жизни сможете вести дольше.
6. Последний рубеж
Весь шар земной готов я облететь за полчаса.
Уильям Шекспир. Сон в летнюю ночь[8]
Раннее утро 21 июля 1969 г. навсегда врезалось мне в память. Вместе с миллионами других людей по всему миру я прилипла к маленькому мерцающему черно-белому экрану телевизора, покрытому рябью и «снегом». Слов за шипением и треском было почти не разобрать, однако восторг и напряжение в голосах угадывались безошибочно. Поеживаясь в темной нетопленой комнате, едва разлепив сонные глаза, позабыв о стиснутой в ладонях чашке с какао, я перенеслась за тысячи миль, ошеломленная триумфом науки, технологий и стремления покорять неведомое. Мне было семнадцать, а Нил Армстронг только что первым из всех землян шагнул на поверхность Луны.
Попав в космическое безвоздушное пространство, человек погибнет мгновенной и мучительной смертью. Воздух устремится из легких наружу, растворенные в крови и жидкостях тела газы превратятся в пар, разрушая клетки и закупоривая капилляры пузырьками, кислород перестанет поступать в мозг, воздух, запертый во внутренних органах, расширится, разрывая внутренности и барабанные перепонки, а космический холод превратит тело в ледышку. Потеря сознания наступит в течение 15 секунд.
Человек способен выжить в космосе, только прихватив с собой естественную среду обитания, но даже за стенами орбитальной станции космическое путешествие не обходится без испытаний для организма. Первое – это перегрузки, вызываемые ускорением, необходимым для того, чтобы преодолеть притяжение Земли. Второе – прямая противоположность перегрузкам, невесомость. Она может вызывать морскую болезнь, перераспределение жидкостей в теле, сокращение количества эритроцитов и потерю костной и мышечной массы. Если мы хотим осуществить давнюю мечту человечества побывать за пределами Солнечной системы, нужно искать способ справляться с этими трудностями. В этой главе мы рассмотрим, как космический полет воздействует на организм человека и как бороться с неприятными последствиями этого воздействия.
Краткий экскурс в историю покорения космоса
Космическая эра началась 4 октября 1957 г., когда СССР запустил первый космический спутник. За ним через месяц последовал второй спутник, с собакой по кличке Лайка на борту. 12 апреля 1961 г. космонавт Юрий Гагарин взмыл в небо на корабле «Восток-1», сделал один полный виток вокруг Земли, на высоте 7000 м катапультировался из космического корабля и благополучно приземлился на парашюте. Весь полет длился 1 ч. 48 мин.
Список советских достижений не давал покоя американцам. В отличие от Эйзенхауэра, который пренебрежительно называл спутник «крошечным мячиком, подброшенным в воздух», общественность (и военные) не спешили тешить себя иллюзиями. В самый разгар холодной войны эта наглядная демонстрация превосходства советских технологий стала для них потрясением. К тому же, будто дразня, спутник каждые полтора часа, пролетая над США, выдавал в радиоэфире серию пищащих позывных. Клэр Бут Люс так его и назвала – «дразнилка от русских». Почти сразу же миллионы бюджетных долларов были пущены правительством на развитие технического образования, и уже через девять месяцев Штаты запустили собственную космическую программу. Космическая гонка начала набирать обороты. Однако первый американский астронавт Джон Гленн вышел на околоземную орбиту лишь 20 февраля 1962 г. К этому времени уже второй советский космонавт Герман Титов, следуя по стопам Гагарина, облетел вокруг Земли – но не один раз, а целых семнадцать. Еще через год в космосе появилась первая женщина – Валентина Терешкова.
Американцы не собирались сдаваться и повысили ставки. С подачи президента Джона Кеннеди, заявившего, что «Соединенные Штаты должны приложить все усилия, чтобы до конца десятилетия высадить человека на Луне и благополучно вернуть его на Землю», была принята космическая программа «Аполлон». Поскольку речь прозвучала в эфире в 1961 г., на выполнение задачи отводилось всего девять лет. Необходимые технологии развивались с ошеломляющей скоростью. Под Рождество 1968 г. Фрэнк Борман, Джим Ловелл и Билл Андерс достигли лунной орбиты, а менее чем год спустя (вполне уложившись в намеченные Кеннеди сроки) человек высадился на Луне. Однако не прошло и трех лет (в течение которых состоялось шесть лунных экспедиций), как Луну снова пришлось оставить – не из научных соображений, а из политических. Сегодня кажется невероятным, что человек когда-то шагал по поверхности естественного спутника Земли, и население планеты затаив дыхание следило за этими шагами.
СССР придерживался другой стратегии: вместо того чтобы стремиться к Луне, он строил орбитальную станцию, которую можно было бы использовать как базу для осуществления космических полетов, где космонавты могли бы жить и работать в течение длительного времени. Первая космическая станция – «Салют-1» была запущена в 1971 г. и оставалась на орбите в течение двух с небольшим лет. За первым «Салютом» последовал второй, а затем, 20 февраля 1986 г., – космическая станция «Мир». Рассчитанный на пятилетний срок работы, «Мир» оказался долгожителем, хоть и находился в изношенном состоянии, чреватом постоянными поломками. После распада Советского Союза российские космонавты, начиная с 1994 г., выполнили на станции не одно совместное задание с американцами, однако сейчас «Мир» выведен из эксплуатации и скоро должен сгореть в земной атмосфере[9].
Из-за разницы в космических программах США и СССР все исследования на тему долговременного пребывания в космосе принадлежали до недавнего времени в основном русским, как и рекорд по длительности полета, поставленный космонавтом Валерием Поляковым, который провел на орбитальной станции «Мир» 438 дней – с 8 января 1994 по 22 марта 1995 г. Однако данных о том, что испытывает человек во время краткосрочного пребывания в космосе, и у американцев, и у русских накопилось достаточно.
Желудок в пятки и глаза из орбит
Первая трудность, подстерегающая астронавта, – ускорение на старте, когда космический аппарат разгоняется с нуля до первой космической (орбитальной) скорости{31}. Скорость как таковая никакого влияния на организм человека не оказывает. Даже сейчас, сидя с этой книгой в руках, вы несетесь сквозь космическое пространство со скоростью 108 000 км/ч, вращаясь при этом со скоростью 1670 км/ч{32} вместе с Землей, которая обращается вокруг Солнца и вращается вокруг своей оси. В салоне самолета при отсутствии видимых ориентиров стремительность движения точно так же не ощущается, если самолет летит с постоянной скоростью по прямой. Совсем другое дело, когда самолет резко ныряет или закладывает вираж. Тем самым подтверждается тот факт, что наш организм способен различать смену скорости и направления и быстро приспосабливаться к новому состоянию при отсутствии дальнейших изменений.
Ускорение измеряется в терминах перегрузки, где за единицу (+1g) принимается воздействие земного тяготения на поверхности планеты. Линейным ускорением называется изменение скорости без изменения направления, тогда как радиальное ускорение – это смена направления без смены скорости. Линейное ускорение большинству из нас хорошо знакомо – это та самая сила, которая прижимает вас к спинке сиденья в гоночной машине или в кресле самолета при отрыве от земли. Гораздо более сильные перегрузки испытывает пилот истребителя, катапультируемого с авианосца, космонавт при запуске космического корабля или гонщик при ударе автомобиля о кирпичную стену на полной скорости. Радиальное ускорение возникает у мотоциклистов, гоняющих по отвесной стене, или в самолете, закладывающем крутой вираж. При смене направления пассажирским авиалайнером перегрузка обычно составляет не более 1,3g, однако современные истребители на крутых виражах могут выдавать и под 8g. Обычно самолет выполняет развороты с внутренним скольжением – в этом случае кровь приливает к ногами и «желудок уходит в пятки». Это называется положительной перегрузкой, поскольку вектор ее совпадает с вектором земного притяжения. Иногда самолет может разворачиваться с внешним скольжением – тогда кровь и внутренние органы устремляются к голове. Возникает отрицательная перегрузка, когда «глаза выскакивают из орбит». Перегрузку в -1g вы можете легко испытать и сами, просто встав на голову. Испробовать более высокие перегрузки обычный человек может, пожалуй, только в парке развлечений, где на некоторых достижениях современной индустрии аттракционов перегрузки могут достигать +4g. Именно они прижимают вас к сиденью, когда вагончик переворачивается вверх тормашками в гигантской петле, размазывают по стенке во вращающейся центрифуге (это уже отрицательные перегрузки) и подбрасывают желудок к горлу, когда поезд на американских горках ныряет вниз с вершины.
Вопрос о том, насколько значительные перегрузки способен выдержать человеческий организм, очень интересует ВВС всего мира, поскольку пока мощь и маневренность военных летательных аппаратов ограничена физическими возможностями летчиков. Обычно, чтобы выяснить воздействие увеличенной силы притяжения, человека раскручивают на центрифуге. Принцип действия у нее такой же, как у отжима в стиральной машине, когда центробежная сила отбрасывает мокрые вещи к стенкам крутящегося барабана, выжимая из них воду. В центрифуге человека пристегивают ремнями, чтобы он не улетел, однако на жидкости организма центробежная сила действует по-прежнему и они так же реагируют на перегрузки. Испытуемый садится в подвижную кабину, закрепленную на шарнире, которая при раскручивании отклоняется под углом, и голова испытуемого оказывается обращенной к оси аппарата. При этом возникает положительная перегрузка, от которой кровь приливает к ногам. На таких центрифугах проходят проверку на устойчивость к перегрузкам будущие астронавты и пилоты истребителей.
По мере возрастания величины перегрузки человек все больше теряет работоспособность. При +2g тело наливается тяжестью, обвисают ткани лица, тяжело становится подняться из сидячего положения. При +3g невозможно стоять, затем начинает отключаться цветовое зрение, и перед глазами с двух сторон смыкается серая пелена. При +4,5g зрение выключается совсем, хотя слух и мыслительные способности еще функционируют. При +8g человек уже не может поднять ни руку, ни голову. Примерно при +12g большинство теряет сознание, оседая в кресле мешком, и голова безвольно болтается на плечах. На этом этапе или при замедлении могут возникнуть конвульсии (на жаргоне это называется «изображать бешеного цыпленка»). В настоящее время, чтобы стать пилотом истребителя, новобранец американских ВВС должен выдерживать перегрузки в +7,5g в течение 16 секунд. Однако даже не теряя сознания, пилот при такой перегрузке не сможет выбраться из истребителя самостоятельно, поэтому их кресла оборудованы катапультирующими устройствами.
Наше тело хорошо приспособлено к земному тяготению. Большей частью мы его не замечаем, хотя с возрастом оно неизбежно дает о себе знать обвисанием кожи и развитием варикоза. Но перегрузки – это совсем другое дело. При положительной перегрузке кровь может так сильно устремляться к ногам, что сердце не справляется с перекачкой, кровоснабжение мозга падает и наступает потеря сознания. Дышать тоже становится труднее, поскольку диафрагма опускается, затрудняя выдох. Уменьшается вентиляция нижних сегментов легких. При этом из-за вызванных перегрузкой изменений в кровообращении верхняя часть легких хуже снабжается кровью. Таким образом, перегрузка существенно уменьшает газообмен в верхушках и основаниях легких.
Чтобы справиться с этим, военных летчиков учат упражнениям на дыхание и напряжение мышц. Напрягая мышцы ног, они сдавливают вены и тем самым перенаправляют кровь обратно к сердцу и мозгу. Однако управляя истребителем типа «Торнадо» или F16, выполнять такие упражнения, конечно, затруднительно, поэтому летчики облачаются в специальные антигравитационные штаны. При больших перегрузках они раздуваются, сдавливая ногу и помогая направить кровь к сердцу. Как показали испытания на центрифуге, самые сильные перегрузки выдерживают люди невысокого роста (что логично). Высокорослые в этом смысле находятся в проигрыше – поскольку сердце и мозг расположены дальше друг от друга.
Отрицательные перегрузки человек испытывает реже, однако они так же малоприятны. При них кровь приливает к голове, капилляры набухают и лопаются, создавая так называемую «красную пелену», о которой не понаслышке знают некоторые любители прыгать с «тарзанкой».
Ключ на старт!
Перегрузки, которые испытывает космонавт, меняются на взлете, поскольку управляются ньютоновским законом движения, согласно которому сила равна массе, помноженной на ускорение. Отрыв от земли происходит сравнительно мягко, поскольку тяговое усилие реактивного двигателя лишь немного превышает вес космического корабля. Самые сильные перегрузки возникают, когда корабль выходит на орбиту, поскольку к тому времени он уже значительно теряет в весе (сжигая большую часть топлива), а реактивные двигатели по-прежнему работают на полную мощь.
Первым астронавтам приходилось испытывать очень тяжелые перегрузки. Во время запуска корабля «Френдшип-7» в рамках программы «Меркурий» в 1962 г. Джон Гленн в течение 90 секунд подвергался перегрузкам свыше +6g, а в какой-то момент даже пиковым – в +8g. Гленн лежал на спине, спиной к Земле, и вектор перегрузок был направлен сверху вниз (от груди к спине), во избежание мучительных ощущений, когда перегрузки направлены от головы к ногам. Но даже в таком случае, по свидетельству одного из астронавтов, «такое впечатление, что на грудь уселся слон». Рекорды перегрузок, которые пришлось вынести космонавтам, зафиксированы при запуске космического корабля «Союз» в сентябре 1983 г. Поскольку за 90 секунд до старта под ракетой-носителем произошло возгорание, старт пришлось прервать, и система экстренного катапультирования подбросила капсулу на километр в воздух, подвергнув экипаж 17-кратным перегрузкам. Космонавты вышли из этого испытания целыми и невредимыми, опустившись на парашюте в некотором отдалении от старта. Современным покорителям космоса такие сильные перегрузки не грозят. Экипаж шаттла или «Союза», которые доставляют космонавтов на космические станции, при запуске подвергается перегрузкам, всего в 3,5 раза превышающим притяжение Земли.
Военным летчикам при катапультировании с поврежденного истребителя приходится переносить куда более тяжелые перегрузки (целых +25g) – зато менее длительные. После активации рычага сбрасывается фонарь самолета или раскрывается потолок и взрывается пиропатрон, закрепленный под сиденьем, выстреливая кресло вместе с пристегнутым пилотом в воздух. Разумеется, чем быстрее произойдет выброс, тем лучше, однако при слишком сильном ускорении может пострадать позвоночник. В результате экспериментов и полевых испытаний было установлено, что предельная перегрузка не должна превышать +25g – в противном случае резко возрастает риск спинных травм. Самые последние модели катапультируемых кресел оборудованы реактивными двигателями, которые продолжают гореть еще примерно полсекунды после отстрела кресла, позволяя снизить пиковую перегрузку и риск спинной травмы.
Еще одна существенная проблема, с которой сталкивается космонавт на старте, – это сильная вибрация. Тряска не просто доставляет дискомфорт, но и затрудняет выполнение ручных операций, вызывает тошноту и резонанс внутренних органов с внешними колебаниями. По малоизученным пока причинам она также вызывает гипервентиляцию и иногда обморок.
Человек на резинкеПрыжки с «тарзанкой» (банджи-джампинг) обязаны своим появлением группе бесшабашных студентов Оксфорда, организовавших в Британии Клуб экстремальных видов спорта. Первым «тарзанку» опробовал Бинг Бостон, американский студент, спрыгнувший в апреле 1979 г. на длинной эластичной веревке с Клифтонского подвесного моста. Подчеркивая торжественность момента, он облачился во фрак. Саму идею прыжков на резинке клуб позаимствовал из ритуала инициации островитян Вануату, которые прыгали с 35-метровых шатких деревянных вышек, связывая щиколотки лианой, которая рывком останавливала их падение в нескольких дюймах от земли.
Один из самых, пожалуй, известных прыжков с «тарзанкой» был совершен в фильме «Золотой глаз», где Джеймс Бонд (т. е. каскадер Уэйн Майклз) срывается ласточкой с края дамбы на реке Верзаска и пролетает 183 м (600 футов) менее чем за шесть секунд. Однако титул самого знаменитого прыгуна принадлежит, скорее, новозеландцу А. Хэккету, на счету которого прыжок с Эйфелевой башни в июне 1987 г., 300-метровый «нырок» с вертолета и прыжок с оклендского небоскреба в октябре 1998 г. Новая Зеландия – настоящая Мекка для прыгунов с «тарзанкой», и даже туристы приезжают пощекотать себе нервы, спрыгнув с 80-метровой высоты моста над ущельем реки Рангитикеи.
Из-за гравитации падение прыгуна с «тарзанкой» или парашютиста происходит с ускорением. Максимальное ускорение составляет 9,8 м / с на секунду – именно с таким ускорением мы несемся к земле в свободном падении. Основную сложность для прыгунов с «тарзанкой» представляет не ускорение как таковое, а замедление, возникающее, когда эластичная веревка натягивается до предела. От создающейся при этом достаточно суровой перегрузки кровь бросается в голову, что может привести к кровоизлиянию в сетчатку или даже к ее отслоению. Парашютистам это не грозит, поскольку замедление после раскрытия парашюта происходит не так резко и, самое главное, голова у них при этом находится выше ног.
Жизнеобеспечение
Космический корабль должен защищать экипаж от экстремального воздействия космоса. В семи сотнях километров от поверхности Земли количество молекул газа стремится к нулю, а давление приближается к давлению в абсолютном вакууме. Поэтому космический корабль должен обеспечивать и пригодную для дыхания атмосферу, и защиту от непосильного давления. Кроме того, в этом бескрайнем пространстве царит космический холод – примерно –270° С, однако, попадая под солнечные лучи, предметы раскаляются мгновенно, поэтому корабль должен обладать системой температурного контроля, способной справиться с перепадами жара и холода. Кроме того, нельзя забывать о бомбардировке микрометеороидами и космическим мусором. Даже кусочек краски, отколовшийся от обшивки спутника, на скорости нескольких тысяч миль в час может пробить опасную брешь в корпусе космического корабля. Иллюминаторы шаттла, испещренные вмятинами от космической «шрапнели», приходится менять через каждые несколько рейсов.
В 1998 г. станцию «Мир» задел грузовой корабль, пробив в обшивке крошечную дыру размером меньше почтовой марки. Воздух со свистом устремился в космическое пространство, но, к счастью, пробоина оказалась слишком маленькой и утечка – достаточно медленной, так что экипаж успел загерметизировать поврежденный отсек. Экипажу «Союза-11» повезло меньше. При возвращении на Землю спускаемый аппарат совершил идеальную автоматическую посадку, но весь экипаж, к ужасу спасательной команды, оказался мертвым. Как выяснилось позже, на орбите неожиданно открылся клапан выравнивания давления – почти сразу же после того, как спускаемый аппарат отделился от орбитального модуля. Космонавты, уже снявшие герметичные скафандры, чтобы втиснуться в тесную спускаемую капсулу, погибли от удушья. В настоящее время экипажи космических кораблей надевают скафандры при старте и во время спуска, чтобы защититься от возможного падения давления, однако на орбите они носят обычную одежду, не стесняющую движений.
Экипаж первых американских космических аппаратов дышал чистым кислородом под давлением в одну треть атмосферы. Так можно было загрузить больший объем на тот же вес, чем в случае использования воздуха того же состава, что и на Земле (с 78 %-ным содержанием азота). Несмотря на то что кислород становится токсичным, если дышать им более суток при атмосферном давлении (см. гл. 2), под давлением в одну треть атмосферы он вполне безопасен. В корабли серий «Меркурий» и «Джемини» закачивали на стартовой площадке чистый кислород под давлением в одну атмосферу, а затем, после выхода на околоземную орбиту, давление уменьшали. После страшного пожара во время планового имитируемого запуска «Аполлона-1», в котором погибли Гас Гриссом, Эд Уайт и Роджер Чаффи, эту практику изменили. При атмосферном давлении чистый кислород крайне пожароопасен. В трагедии с «Аполлоном-1», судя по всему, повинна случайная искра, попавшая на легковоспламеняющийся материал в кабине, и наполненный кислородом командный отсек тут же охватила огненная буря. После этой катастрофы запуск стали проводить при обычной земной атмосфере и только на орбите переключались на чистый кислород. В советских же космических кораблях с самого начала создавали давление в одну атмосферу и закачивали сходную по составу с воздухом дыхательную смесь – 78 % азота и 21 % кислорода. Теперь на ту же схему перешли и в НАСА, учитывая вредное воздействие чистого кислорода, которое проявляется, если приходится слишком долго дышать им во время длительного пребывания на орбите.
При дыхании в воздухе повышается содержание углекислого газа, что может привести к головным болям, головокружению и удушью (см. гл. 2). Следовательно, CO2 необходимо удалять. В космическом корабле это происходит за счет химической реакции с гидроксидом лития (который в процессе превращается в карбонат лития). В апреле 1970 г. о канистрах с гидроксидом лития и опасности накопления углекислого газа узнали и заговорили все. Причиной стала авария, случившаяся через два с половиной дня после старта «Аполлона-13». В результате короткого замыкания взорвался один из трех отсеков топливного элемента, питавшего командный модуль. Подача топлива из двух оставшихся отсеков тоже нарушилась в результате взрыва, и космический корабль остался без энергоснабжения. Спасательной шлюпкой для астронавтов стал лунный спускаемый аппарат «Аквариус», на котором оставались резервы кислорода, воды и электроэнергии. К сожалению, запасов гидроксида лития на нем хватало для очистки воздуха от углекислого газа всего на двух человек на два дня, тогда как возвращение на Землю заняло бы более трех дней и экипаж состоял из трех. Выпуски международных новостей не замедлили оповестить общественность о том, чем грозит астронавтам избыток углекислого газа. При этом в командном модуле находился достаточный запас канистр с гидроксидом лития, но для воздухоочистительной установки «Аквариуса» они не подходили из-за разницы в конфигурации. Инженеры с Земли сутки бились над решением проблемы, и наконец разработали способ сконструировать импровизированный очиститель воздуха из «неправильных» канистр и разнокалиберного хлама – картонок, полиэтиленовых пакетов, клейкой ленты и старых носков. Я в детстве, как и многие мои сверстники, очень любила телепередачу Blue Peter, где рассказывалось, как делать разные штуки из йогуртовых стаканчиков и эластичных лент. Воздухоочиститель для «Апполона-13» занял бы первое место среди их шедевров. К счастью, он не подвел.
При дыхании, кроме всего прочего, выделяется водяной пар – это известно любому, кто хоть раз сидел в холодную погоду в машине с закрытыми окнами. Они запотевают изнутри в первую очередь из-за влаги, испаряемой нашими легкими. Содержание водяного пара в воздухе космического аппарата необходимо тщательно контролировать, поскольку переизбыток вызовет конденсацию, а недостаток – сухость роговицы глаз и слизистых оболочек глотки. Для поддержания оптимального баланса воздух в космическом корабле постоянно циркулирует в замкнутом цикле, углекислый газ и частицы пыли удаляются, а влажность и содержание кислорода поддерживаются на нужном уровне.
Внутри космического корабля создается комфортная температура в 18–27° С. Температурный контроль имеет огромное значение, поскольку с одной стороны корабль «поджаривается» на солнце, а с другой – леденеет от космического холода. После того как на станции «Мир» отключалось электропитание, внутри становилось невыносимо холодно, когда Земля заслоняла Солнце, и адски жарко, когда оно показывалось снова. Для поддержания постоянной температуры при путешествии с Земли на Луну и обратно «Аполлоны» медленно вращались вокруг своей оси (это спиральное вращение получило шутливое прозвище «поджарка на гриле»). В шаттле теплоотдача производится через «космические батареи», установленные на внутренней стороне дверей грузовых шлюзов, которые открываются, когда шаттл выходит на орбиту.
Свободное падение
Человек почти целиком воссоздает в космосе привычную среду обитания – за одним существенным исключением. Это гравитация. Создавать искусственное тяготение в космическом аппарате нецелесообразно, с одной стороны, потому что задача космических исследований состоит как раз в обратном – уйти от земного притяжения, и с другой стороны, потому что в коротких полетах микрогравитация не особенно мешает работе. Тем не менее физиологический стресс от невесомости довольно-таки ощутим. Она вызывает моментальное перераспределение жидкостей организма от ног к голове и груди и нарушает контроль над равновесием, провоцируя синдром укачивания – так называемую космическую болезнь. В длительных экспедициях она приводит также к уменьшению числа эритроцитов, вымыванию кальция из костей и мышечной атрофии. В течение примерно шести недель все эти нарушения стабилизируются, кроме потери костной массы, которая продолжается до самого конца полета, и адаптации к ней, даже при смене длиной в год, не происходит.
На самом деле космический корабль, находящийся на орбите, притягивается к Земле почти с такой же силой, что и на земной поверхности. Невесомость же возникает от того, что все предметы в нем находятся в постоянном свободном падении. На Земле мы чувствуем силу тяжести только потому, что поверхность держит нас, не давая притянуться к земному ядру. Если же поверхность исчезнет – при затяжном прыжке с парашютом или коротком прыжке со стены – мы на какое-то время окажемся в невесомости. Вращающийся на орбите космический корабль находится в постоянном падении, но при этом собственная скорость не дает ему упасть, а несет дальше по орбите. Строго говоря, во вращающемся на орбите корабле возникает не невесомость (нулевая сила тяжести), а микрогравитация.
Самые низкие орбиты расположены в 200 км от земной поверхности – на этой высоте необходимо принимать в расчет сопротивление воздуха. На более низких высотах сопротивление замедляет космический корабль настолько сильно, что он может войти в штопор и сгореть в нижних слоях атмосферы. Космическая станция «Мир» вращалась вокруг Земли на высоте около 400 км, но даже там ее постепенно притягивало к поверхности, и каждые несколько недель приходилось возвращать станцию на изначальную орбиту. Верхний предел посещаемых человеком орбит задается необходимостью избегать радиационных поясов, которые окружают планету как раз выше 400 км от поверхности (см. далее).
Невесомость
Невесомость заметно влияет на распределение жидкостей в организме. На Земле сила тяготения заставляет кровь и тканевые жидкости приливать к ногам и нижней части туловища, однако стоит покинуть гравитационное поле Земли, и эти жидкости устремляются вверх, вызывая очевидные и малоприятные перемены. Лицо надувается, вены на шее и на лбу набухают, глаза будто вылезают из орбит, нос закладывает, запахи и вкусы различаются хуже. Общее ощущение примерно такое же, как при сильной простуде. Ноги при этом теряют примерно одну десятую объема – отмечались случаи даже 30 %-ного уменьшения в обхвате голени. Иногда космонавты обматывают верхнюю часть ноги эластичным бинтом, чтобы уменьшить отток жидкостей снизу (кровяное давление в артериях выше, чем в венах, поэтому кровообращение при этом не перекрывается).
Перемещение жидкостей включает естественные датчики давления в голове и в груди, и уже через несколько дней организм приспосабливается к воздействию невесомости, сокращая объем крови и жидкостей повышенным мочеиспусканием и снижением потребности в питье. Астронавты за первые несколько дней на орбите теряют в весе – в основном за счет уходящей воды. Учащение позывов к мочеиспусканию доставляет немало неудобств, особенно если, как в ранних полетах, астронавт одет в скафандр. При этом ни прилив жидкостей организма к голове, ни компенсаторные механизмы, которые вслед за этим включаются, по имеющимся данным, не нарушают кровообращение в условиях космоса. По возвращении на Землю все обстоит иначе, но об этом позже.
Освобождаясь от оков земного тяготения, астронавты слегка вытягиваются в росте, поскольку исчезает давление на межпозвоночные диски. Большинство вырастает всего на один-два сантиметра, однако некоторые вытягиваются гораздо сильнее, как произошло с Джоном Гленном во втором его выходе в космос. В возрасте 77 лет он прибавил целых шесть сантиметров. О подобных переменах обязательно должны помнить инженеры. В исследовательской экспедиции на шаттле, предпринятой с целью изучения воздействия невесомости на нервную систему, конструкторы испытательного кресла, оборудованного датчиками для снятия нервных реакций, забыли оставить припуск «на вырост», и астронавты жаловались, что кресло стало слишком тесным. Легкие, сердце, печень и остальные внутренние органы тоже становятся невесомыми и плавают в полостях тела. Как отозвался один из астронавтов: «Чувствуешь, как кишки всплывают».
При микрогравитации значительно уменьшается выработка эритроцитов. Срок жизни эритроцита недолог – всего 120 дней, поэтому сокращение их воспроизводства приводит к снижению их общего количества в кровеносной системе. Сокращение начинается в течение четырех дней после погружения в невесомость и стабилизируется через 40–60 дней. За время десятидневной экспедиции космической лаборатории (модуля «Спейслэб») количество эритроцитов у участников снизилось примерно на 10 % – при более длительных полетах снижение бывало и больше.
Как мы помним из главы 1, выработка эритроцитов контролируется гормоном эритропоэтином, на секрецию которого влияет уровень кислорода в тканях. Чем выше содержание кислорода, тем меньше высвобождается эритропоэтина и соответственно меньше производится эритроцитов. Поэтому изначально считалось, что выработка эритроцитов сокращается из-за высокого содержания кислорода в первых космических аппаратах. Однако затем гипотезу эту пришлось пересмотреть, поскольку и в более поздних полетах, даже после перехода на дыхательные смеси, близкие к атмосферному составу, количество эритроцитов все равно продолжало падать. Сейчас причиной снижения количества эритроцитов считаются изменения в объеме крови, вызываемые микрогравитацией. Прилив крови к грудной клетке в состоянии невесомости предположительно вызывает обманчивое «ощущение» избытка крови у организма и заставляет его уменьшить производство кровяных телец. При этом падает и уровень эритропоэтина. Однако разительное снижение общей массы эритроцитов объясняется не только сокращением их воспроизводства – помимо этого гибнут красные кровяные тельца, готовящиеся появиться на свет из костного мозга.
Сон
Астронавты часто жалуются на то, что в космосе им трудно спать. Отчасти, конечно, это объясняется необычностью самой обстановки. Во-вторых, в космическом корабле довольно шумно, и коллеги, несущие вахту, не всегда соблюдают тишину. Однако, судя по всему, основная причина бессонницы состоит в нарушении так называемых циркадных ритмов организма (биологических часов). Многие физиологические процессы, в число которых входит и сон, управляются циркадными ритмами, которые, в свою очередь, реагируют на смену дня и ночи. Установлено, что в северных широтах во время полярного лета, когда солнце почти не заходит, люди спят гораздо меньше, чем во время полярной ночи зимой. Поскольку космический корабль делает виток вокруг Земли за 90 минут, солнце всходит и заходит с той же частотой, и смена дня и ночи у астронавта существенно сбивается.
Добавляет проблем и микрогравитация. Чтобы не плавать во сне по кораблю, астронавты упаковываются в прикрепленные к стенам спальные мешки. Для хорошего сна большинству людей необходимо ощущение безопасности, но при микрогравитации давление отсутствует, поэтому человек не чувствует, что лежит на поверхности. Некоторые астронавты, чтобы облегчить засыпание, надевают специальную повязку на лоб, создающую ощущение подушки под головой. Такие же повязки надевают на колени, чтобы можно было их согнуть во сне. Кроме того, астронавтам приходится спать в воздушном потоке, чтобы выдыхаемый углекислый газ не скапливался и не вызвал удушья. На Земле постоянную циркуляцию воздуха создает ветер или конвекционные потоки, но при микрогравитации конвекционного обмена, способного унести выдыхаемый углекислый газ, нет, поскольку теплый воздух никуда не поднимается (в космосе теплый и холодный воздух, как и все остальное, не имеют веса).
Инфекция
В каждом из нас живут миллионы микроорганизмов, сопровождающие нас повсюду, даже в космосе. На коже здорового человека находится более триллиона (1012) бактерий, и еще многие миллионы в кишечнике. Около десяти миллионов мы сбрасываем ежедневно вместе с чешуйками кожи. В космосе поговорка «кашляешь и чихаешь – заразу распространяешь» обретает особую актуальность. Если на Земле воздушно-капельная инфекция быстро оседает вниз и наносит меньше вреда, без гравитации она повисает в пространстве мелкой взвесью, которую вдыхают другие космонавты. Мелкие заболевания были бичом первых экспедиций – больше половины экипажа страдали от кожных, кишечных и дыхательных инфекций, но после того как в первых экспедициях программы «Аполлон» стали проводить предполетный карантин и тщательную дезинфекцию корабля до и во время полета, заболеваемость существенно уменьшилась.
Космическая болезнь
Движения астронавта, впервые попавшего в космос, раскоординированы, он промахивается, даже просто пытаясь ухватиться за нужный предмет или взять что-то в руки. У многих возникает ощущение кувырка или переворачивания вверх тормашками, может начаться головокружение. От космической болезни страдают примерно две трети астронавтов – иногда в довольно острой форме. В числе симптомов – головная боль, тошнота, головокружение, потеря аппетита, апатия, сонливость, раздражительность. Неожиданно может начаться рвота, зачастую даже без позывов – беспорядочными приступами, между которыми человек чувствует себя вполне нормально. Космическая болезнь способна серьезно отравить жизнь астронавту, мешая выполнять работу, а для человека, облаченного в скафандр, может окончиться и летальным исходом. Особенно плохо то, что космическая болезнь накрывает астронавта в первый же час после попадания в условия микрогравитации – на начальном, самом важном, этапе полета. К счастью, через два-три дня космическая болезнь, как правило, проходит.
Обычно космическая болезнь начинается с запрокидывания головы или кивка, хотя иногда ее может вызвать даже оптическая дезориентация. Если вам знакома морская болезнь, то вы, наверное, знаете по себе, что можно облегчить симптомы, сосредоточив взгляд на линии горизонта. Астронавтам сложнее, поскольку все ориентиры сбиты. В космосе нет «верха» и «низа». Мир вокруг них перевернут, а ориентиры постоянно перемещаются, как в знаменитом парадоксе Витгенштейна с зайцем и уткой. Некоторых астронавтов это поначалу сильно выбивает из колеи, другие достаточно быстро привыкают. Вот что рассказывает Джон Гленн: «Перед полетом врачи предупреждали, что у меня может начаться неконтролируемая тошнота или головокружение, когда жидкость во внутреннем ухе начнет свободно бултыхаться в невесомости… Но ничего подобного не было… Невесомость мне очень понравилась». Однако во время своего короткого полета Гленн сидел пристегнутый ремнями к креслу. Современные же астронавты свободно перемещаются по кораблю, и самых невезучих приступ космической болезни может накрыть даже при виде перевернувшегося вверх тормашками товарища, не говоря уже о собственном акробатическом кульбите.
Несмотря на то что причина космической болезни пока не установлена, предположительно ее провоцирует конфликт сигналов о положении тела в пространстве. Пространственная ориентация создается совокупностью сигналов от органов равновесия во внутреннем ухе, от мышечных и суставных рецепторов, «рассказывающих» о положении конечностей, и от визуальных ориентиров. В космосе многие рецепторы перестают получать привычные данные. Визуальные ориентиры сбиваются, поскольку шаттл, например, летает «вверх тормашками» по отношению к Земле, повернувшись к ней хвостовым стабилизатором. В первые несколько дней экипаж обычно пытается сохранять привычную «земную» ориентацию (т. е., по сути, они плавают по кораблю вверх ногами), привыкая к дестабилизирующему воздействию невесомости, но позже, освоившись в новых условиях, располагают тело в пространстве как придется.
Цена успеха
Отсроченные последствия микрогравитации включают потерю костной массы и мышечную атрофию, которые во время длительных полетов могут быть весьма существенными. Во время полета они не особенно ощущаются, однако по возвращении на Землю могут доставить немало неприятностей. На восстановление костной и мышечной массы до предполетного состояния уходит немало времени – почти столько же, сколько на сам полет, – и смогут ли они восстановиться полностью после сверхдлительных экспедиций (на Марс, например), науке пока неизвестно.
Кость – это живая ткань, которая обновляется на протяжении всей человеческой жизни. Чем больше нагрузка, тем толще кость, и наоборот. При уменьшении давления – после выхода из гравитационного поля Земли – кость становится более тонкой и хрупкой. Именно поэтому разрушению в долгосрочных космических полетах подвергаются прежде всего кости, выдерживающие весовую нагрузку. По мере истощения из кости вымывается кальций, что тоже добавляет проблем, поскольку повышение уровня кальция в моче грозит образованием камней в почках. Деминерализация приводит к ломкости костей (остеопорозу) и по возвращении на Землю увеличивает риск переломов. В долгом полете потеря костной массы может быть весьма значительной – около 1 % в месяц. За десять месяцев при микрогравитации минеральная плотность костей уменьшается примерно в таких же объемах, как в возрасте с 30 до 75 лет на Земле.
Жизнь при микрогравитацииБольшинство людей при мысли о невесомости приходят в восторг – ведь это же полная свобода! Можно проплыть под столом, полежать на потолке (хотя сами понятия «пол» и «потолок» теряют смысл), повисеть посреди этого перевернутого пространства или грациозно порхнуть от одной стены к другой. Сальто или вращение может проделать любой, даже не будучи гимнастом или акробатом, а тесная капсула кажется просторной, поскольку теперь доступно и третье измерение.
Однако передвижение в условиях микрогравитации требует особых навыков. Чтобы переместиться вперед, нужно оттолкнуться от стены, как отталкивается от стенки бассейна пловец при развороте, но если не рассчитать силу, можно отлететь слишком стремительно и врезаться в противоположную стену. Астронавты-новички набивают себе немало синяков, прежде чем научаются отталкиваться одними кончиками пальцев.
Освободившись от земного тяготения, брошенные предметы летят по прямой, а не по дуге, как на Земле. Хелен Шарман в своей автобиографии описывала, как сделала свой первый глоток в космосе – не через специальный загубник, а поймав ртом дрожащий водяной пузырь, выпущенный из баллона смеющимся товарищем: «Я сомкнула губы, и во рту у меня разлился фонтан восхитительной освежающей прохлады».
Микрогравитация наглядно демонстрирует разницу между весом и массой. Масса – это сопротивление тела движению, тогда как вес – это воздействие гравитации на массу. В космосе вес исчезает, а масса остается. Именно поэтому и человека, и мышь можно с одинаковым успехом удерживать на кончике мизинца, но если вы захотите толкнуть их к противоположной стене, мышь покажется легче.
Третий закон движения, выведенный сэром Исааком Ньютоном, гласит, что «на каждое действие имеется такое же, но противоположное по направлению противодействие». На Земле это не всегда заметно – поднимая предмет или толкая его от себя, сами мы не двигаемся с места, поскольку упираемся в поверхность массивной планеты, гасящей противоположный импульс. В космосе все не так. Толкая предмет примерно одного размера с собой, астронавт тоже движется – в противоположную сторону. Если он начнет откручивать гайку ключом, гайка не шелохнется, а астронавт станет вращается вокруг. Поэтому ему необходимо упереться ногами в какую-то неподвижную поверхность. Для этого используются специальные стремена, которые необходимы также и для наружных работ, чтобы астронавта не унесло в открытый космос.
Некоторые действия при микрогравитации становятся особенно затруднительными. Например, мытье, поскольку вода по– висает в воздухе дрожащими пузырями, которые будут до бесконечности плавать по салону. Просачиваясь сквозь пальцы, они рассыпаются на мириады еще более мелких пузырьков, и избавиться от них невозможно. Поэтому астронавтам приходится обтираться губкой.
Если с водой играть довольно забавно, то устранение других жидкостей доставляет меньше удовольствия. Одна из самых больших трудностей, которые пришлось преодолевать космическим инженерам, – конструирование туалета для использования в космическом корабле. В самых первых полетах пользовались встроенными в скафандр устройствами для сбора отходов жизнедеятельности, на смену которым затем пришли космические туалеты, которые функционируют почти так же, как и на Земле, с той разницей, что капли мочи сразу засасываются внутрь. Затем они выбрасываются в космос, где моментально замерзают облаком из микроскопических мерцающих кристаллов. Один из астронавтов «Аполлона» на вопрос, что в космосе показалось ему самым красивым, ответил: «Облако мочи на закате».
Твердые отходы тоже собираются с помощью вакуума, а затем хранятся до возвращения на Землю, где и удаляются. При бритье, даже электробритвой, в воздухе разлетаются мелкие волоски, поэтому без крема (не дающего им разлететься) или пылесоса к бритью лучше не приступать. Можно спокойно выпустить фотоаппарат из рук, не боясь, что он разобьется, однако любой незакрепленный предмет норовит улететь даже от легкого прикосновения, поэтому все приходится крепить липучками или резиновыми шнурами.
Уборка в космосе – это сущее наказание, потому что пыль не падает, а повисает в воздухе. Несмотря на то что воздух на космической станции вентилируется и проходит фильтрацию, он все равно заполняется мельчайшими частицами пыли из чешуек кожи, волосков и микроскопических крошек пищи. В день человек теряет около 10 млрд чешуек кожи. На Земле они скапливаются белой пылью на поверхностях ванной комнаты, а в космосе заполняют воздух, которым человек дышит. Поэтому космонавты очень много чихают – до 30 раз в час. Кроме того, загрязненный воздух нередко вызывает раздражение слизистой глаз.
Куда более экзотичной выглядит мелкая черная пыль, похожая на сажу, покрывающая поверхность Луны. Астронавтам «Аполлона» она задала нелегкую задачу, поскольку на подошвах обуви они неизбежно приносили ее в спускаемый модуль. На Луне, где сила тяжести в шесть раз меньше земной, она незаметно ложилась обратно на поверхность, но в космосе проникала всюду и липла к скафандрам, окрашивая их в черный цвет. Пахла она почему-то порохом. При этом проблемы она создавала не только эстетического свойства: она забивалась в молнии скафандров, в выключатели, нарушала работу электронных приборов и проникала в легкие, выстилая их внутреннюю поверхность. Кроме того, в ней могли содержаться микробы, которые не должны были попасть на Землю.
К серьезным последствиям продолжительного пребывания в условиях микрогравитации относится также истощение мышц, выдерживающих весовую нагрузку, – из-за их невостребованности. Они уменьшаются в размерах и теряют силу, становясь более уязвимыми в случае нагрузки. Кроме того, истощаются соединительные ткани, прежде всего в ногах – мышцы рук подвержены истощению меньше, поскольку вся работа в космосе делается почти исключительно руками. Атрофия ножных мышц крайне опасна, поскольку может, помимо всего прочего, затруднить эвакуацию экипажа из корабля без посторонней помощи в случае вынужденного приземления. Нагрузка на сердце в условиях микрогравитации также снижается – из-за уменьшения объемов крови и из-за того, что отпадает необходимость преодолевать земное тяготение при перекачке. Соответственно сокращается объем сердечной мышцы – после долгих полетов сердце заметно уменьшается в размерах.
Для того чтобы избежать значительных потерь мышечной и костной массы, астронавты должны как минимум три-четыре часа в день заниматься спортом. Однако занятия на тренажерах при микрогравитации сопряжены с непривычными сложностями. Например, на беговой дорожке астронавту приходится пристегиваться к тренажеру, чтобы не улететь назад спиной – обычно используется специальная эластичная сбруя. В космосе также успешно применяются вело– и гребные тренажеры уникальных модификаций – например, на гребном тренажере нет сиденья, поскольку не требуется поддерживать вес астронавта. Кроме того, используются изометрические упражнения, обеспечивающие мышцам нагрузку без движения, – например, упражнения с грудным эспандером, применяющимся и на Земле. Упражнения с гантелями и штангой в космосе, разумеется, лишены смысла. Еще космонавты по нескольку часов в день носят «костюм пингвина» – прорезиненный костюм, дающий нагрузку на мышцы и тем самым частично компенсирующий отсутствие гравитации.
К сожалению, упражнениями пока еще не удается поддерживать ту же физическую форму, что и на Земле, и полностью избежать потери костной массы. Тем не менее в любом долгосрочном космическом полете (например, на Марс) астронавтам необходимо выдерживать регулярную программу тренировок, поскольку упражнения отлично помогают избежать атрофии мышц.
Долговременное воздействие космических полетов на организм можно частично имитировать, укладываясь так, чтобы голова находилась ниже уровня тела. Добровольцы, пролежавшие так в течение года, тоже испытали потерю костной и мышечной массы, а также ухудшение работы сердца. Кроме того, кости имеют обыкновение истончаться с возрастом – возможно, потому что мы уже не носимся так, как в молодости, и меньше занимаемся спортом. Сидя за компьютером и печатая эти строки, я меньше стимулирую свои кости, чем играя, например, в теннис (или копая огород).
Космическая радиация
Космическая радиация представляет большую проблему для астронавтов. На Земле атмосфера и магнитное поле создают своеобразный щит, отражающий почти все радиоактивное излучение за исключением видимого света и радиоволн. В космосе же астронавты постоянно подвергаются его пагубному воздействию. Источников космической радиации три: галактические лучи, солнечное излучение и радиационные пояса.
Точки равновесияУчеловека имеется два органа равновесия – по обеим сторонам головы. Они называются вестибулярным аппаратом и находятся во внутреннем ухе. Вестибулярный аппарат состоит из двух отолитовых органов и трех полукружных каналов, и его назначение – передавать информацию о движениях и расположении тела в пространстве.
Отолитовые органы представляют собой заполненные жидкостью мешочки с чувствительными участками на стенках. Эти участки образованы группами клеток, покрытых тончайшими сенсорными волосками – ресничками. Реснички уходят в слой желеобразного вещества, обволакивающего поверхность клетки. В эту желеобразную массу вкраплены крошечные, размером с пылинку, кристаллы карбоната кальция, известные как отолиты («ушные камни», если буквально). Они служат рецепторами гравитации.
Когда мы держим голову прямо, реснички стоят вертикально, поддерживаемые желеобразной массой, покрывающей поверхность клетки. Но стоит наклонить голову, и кристаллы под действием силы притяжения съезжают вбок, задевая и тем самым возбуждая реснички. Отолиты реагируют и на вертикальное воздействие: когда лифт уносит нас вниз, отолиты тянут волоски вверх, вызывая то самое ощущение, будто желудок подкатывает к диафрагме.
В космосе отолиты перестают давить на чувствительные волоски, и сигналы о положении тела в пространстве, поступающие в мозг от отолитового органа и от органов зрения, начинают расходиться. Считается, что именно это расхождение и вызывает космическую болезнь.
Полукружные каналы реагируют на угловое ускорение. Каналов этих три, и они расположены под прямым углом друг к другу по трем осям, что позволяет отслеживать движение в трех взаимно перпендикулярных плоскостях, когда мы киваем головой, склоняем голову набок или мотаем ею из стороны в сторону (в авиационных терминах это называется «тангаж», «крен» и «рыскание»).
Полукружный канал представляет собой заполненную жидкостью полую трубку, на конце которой имеется утолщение (ампула), а в нем – сенсорные клетки. Они покрыты множеством тончайших ресничек, сообщающихся с центром канала. Внутриканальная жидкость, приходя в движение, цепляет реснички, которые возбуждают сенсорные клетки.
Когда мы поворачиваем голову, череп движется, однако жидкость в полукружных каналах по инерции запаздывает. Соответственно, отклоняясь, она цепляет реснички, возбуждая сенсорные клетки и вызывая ощущение движения. Если продолжить поворот, жидкость «догонит» череп и будет двигаться с той же скоростью. Поворот перестанет ощущаться. Это значит, что полукружные каналы отмечают изменения в угловой скорости, но к продолжительному вращению нечувствительны. Поэтому пилот поворачивающего самолета, к примеру, через 15–30 секунд перестает ощущать поворот и должен определять обстановку по приборам и визуальным ориентирам.
Когда тело перестает вращаться, жидкость в полукружных каналах снова запаздывает по инерции, вызывая ощущение, что вы все еще кружитесь. Именно поэтому по выходе из штопора пилоту кажется, что самолет теперь поворачивает в противоположном направлении. Примерно то же самое происходит, если покружиться на месте и резко остановиться.
На Земле, когда мы киваем головой вверх-вниз или наклоняем вбок, возбуждаются и гравитационные рецепторы, и рецепторы углового ускорения. При микрогравитации гравитационные рецепторы отключаются, однако угловое ускорение по-прежнему ощутимо. Сигналы, поступающие в мозг, оказываются половинчатыми, непривычными, что также объясняет, почему космическая болезнь может начаться с кивка головой. Со временем мозг приспосабливается к новым сигналам, и космическая болезнь проходит.
Данные от вестибулярного аппарата скоординированы с движениями глаз, чтобы мир не переворачивался, когда мы наклоняем голову. Когда мы поворачиваем голову вправо, компенсаторный рефлекс с той же скоростью смещает взгляд влево, чтобы картина мира оставалась прежней. Именно поэтому, когда мы кружимся, а потом останавливаемся, все вокруг будто продолжает кружиться – это наш взгляд движется в противоположном направлении.
По рассказам астронавтов, в космическом полете нарушается и эта связь между вестибулярным аппаратом и движениями глаз: при повороте головы кажется, что движется мир вокруг, а не сам человек.
Галактические лучи рождаются за пределами Солнечной системы и обрушиваются на земную атмосферу непрерывным потоком. Они могут возникнуть при вспышке сверхновой или испускаться другими звездами Галактики. Большей частью они состоят из протонов (ядер водорода) и альфа-частиц (ядер гелия) и несут огромный заряд энергии. Достигая верхних слоев земной атмосферы, эти первичные частицы сталкиваются с ядрами атомов газа, рассыпаясь дождем вторичных частиц, включающих протоны, нейтроны, электроны, мю-мезоны, пи-мезоны и нейтрино. Таким образом, первичные космические лучи не проникают сквозь атмосферу, и до поверхности Земли долетает лишь небольшая доля вторичных частиц. Однако в космосе для защиты астронавтов от галактической радиации приходится создавать специальную оболочку.
Солнце испускает непрерывный поток заряженных энергией ионизирующих частиц, состоящий в основном из протонов и электронов и распространяющийся по спирали со скоростью около 450 км / с. В обычном состоянии солнечный ветер на подходе к Земле содержит около пяти частиц на кубический сантиметр. Однако время от времени на поверхности Солнца случаются гигантские вспышки, выбрасывающие в межпланетное пространство огромное количество частиц. Эти вспышки, равные по мощности миллиарду мегатонных термоядерных реакций, сопровождаются выбросом до 10 млрд т частиц в течение нескольких секунд. Во время таких солнечных бурь на Землю обрушивается гораздо более сильный поток радиации. Прогнозировать такие вспышки, как и земную погоду, довольно сложно. Тем не менее известно, что цикл изменений солнечной активности составляет примерно 11 лет.
На Земле мы живем под защитой магнитного поля, препятствующего проникновению космической радиации. Оно задерживает заряженные частицы, собирая их в облако. Огромное количество этих частиц, в основном высокоэнергичных протонов и электронов, сосредоточено в двух различных областях над Землей, известных как внутренний и внешний радиационные пояса, открытые Джеймсом ван Алленом и его студентами в 1958 г. Каждый из поясов представляет собой «бублик» (выражаясь научным языком, тороид), охватывающий Землю и совмещенный по центральной оси с экватором. Внутренний пояс отстоит от поверхности Земли минимум на 300 км, а внешний простирается в космос на 45 000 км, то есть примерно на одну шестую расстояния до Луны.
Чтобы понять, как заряженные частицы улавливаются поясами Ван Аллена, представьте Землю в виде магнитного бруска, оканчивающегося на Северном и Южном полюсах. От одного торца магнита к другому проходят силовые линии. Они невидимы, однако их можно заставить проявиться с помощью железных опилок. Кроме того, их умеют обнаруживать некоторые виды бактерий и животных, обладающих «магнитным чувством». Линии магнитного поля Земли служат барьером для заряженных частиц в космических лучах. Частицы притягиваются к полюсам, вращаясь и кружась. На полюсах некоторые из них все же прорываются в земную атмосферу, однако большинство устремляется вдоль силовой линии в обратный путь. Этот бесконечный круговорот протонов и образует пояса Ван Аллена.
Для астронавтов и спутников радиационные пояса представляют серьезную опасность, грозя облучением до 200 мЗв / ч. Поэтому высота орбитальных полетов не превышает 400 км. На этих низких орбитах радиация в основном невелика – за исключением одного участка над Южной Атлантикой. Шаттл, совершая витки по орбите, проходит над этим участком около шести раз в день, и именно там экипаж собирает основную дозу получаемой в космическом полете радиации. На других девяти орбитах шаттл через Южно-Атлантическую аномалию не проходит, поэтому все внебортовые работы совершаются на этих орбитах.
Хотя в космосе уровень радиации обычно низок, долговременное воздействие может повлиять на генетический материал (ДНК), повышая риск развития рака, а поражение ДНК половых клеток (яйцеклеток или сперматозоидов) грозит бесплодием или рождением у астронавтов детей с генетическими отклонениями. Непосредственную опасность представляет интенсивное облучение от солнечных вспышек, поскольку оно убивает клетки сразу – смерть может наступить через несколько часов в результате поражения центральной нервной системы или через несколько дней из-за гибели лейкоцитов или быстро делящихся клеток, выстилающих стенки кишечника. Попав под облучение от солнечной вспышки, астронавт через несколько часов погибнет от острой лучевой болезни. Более того, поскольку всплеск солнечной активности может продолжаться не один час и даже не один день, кумулятивное воздействие низких доз облучения тоже может оказаться критическим. К счастью, солнечные вспышки случаются достаточно редко.
Обычно для обнаружения космической радиации необходимы специальные приборы, однако в некоторых случаях ее можно увидеть и невооруженным глазом. Базз Олдрин и Нил Армстронг по дороге на Луну и обратно в спускаемом аппарате «Игл» наблюдали необычные белые вспышки, похожие на звезды. Похожие белые сполохи или короткие световые полосы замечали (причем обычно с закрытыми глазами) и другие астронавты в последующих лунных экспедициях по программе «Аполлон». Вспышки возникали с частотой одна-две в минуту. Предположительно, их вызывали галактические лучи, проходящие сквозь стены корабля и достигающие глаз астронавтов. Подтверждением этой гипотезе служат схожие световые вспышки, наблюдаемые добровольцами, подвергающимися воздействию искусственно созданных пучков частиц. О таких же вспышках докладывали и экипажи некоторых шаттлов, особенно при проходе через Южно-Атлантическую аномалию и по самой низкой орбите над полюсами. В их случае, судя по всему, источником вспышек служили радиационные пояса. На какие именно элементы органов зрения воздействует ионизирующая радиация, науке пока неизвестно, однако, по общему мнению, заряженные частицы возбуждают сетчатку.
Галактические лучи и солнечные частицы высокоэнергетичны, поэтому обеспечить надежную защиту от них в космическом корабле нелегко. Чтобы спастись от прямого воздействия солнечной вспышки, требуется алюминиевый кожух плотностью по крайней мере 10–15 г / см2 – при более длительном воздействии, соответственно, более толстый. Учитывая ограничения по весу в космическом полете, применять такой щит постоянно было бы нецелесообразно, поэтому экипаж неизбежно подвергается воздействию космической радиации. У всех астронавтов имеются при себе дозиметры, чтобы отслеживать уровень облучения. До сих пор оно не превышало допустимых границ, хотя в длительном полете астронавт может получить весьма значительную дозу. Например, экипажи «Аполлонов», пробывшие в космосе менее двух недель, получили только по 6 греев, тогда как у экипажа «Скайлаб-4», летавшего 84 дня, доза облучения составила целых 77 греев. У русских космонавтов, отправляемых в космос на еще более долгие сроки, дозы облучения тоже оказались пропорционально более высокими. У некоторых из них впоследствии обнаружили рак, однако доподлинно не известно, космическое ли излучение стало тому причиной. Из-за опасного воздействия космической радиации, возможно, стоит отправляться в долгосрочные космические полеты в более преклонном возрасте, когда естественная смерть может опередить развитие рака. В том числе и поэтому для полета на Марс имеет смысл отбирать астронавтов старшего возраста.
Сверхзвуковые самолеты типа «Конкорда» летают в верхних слоях земной атмосферы, поэтому они тоже не защищены от космического излучения. Средняя доза, достающаяся пассажирам и экипажу, – около десяти микрозивертов (мкЗв) в час. За время перелета из Лондона до Нью-Йорка наберется примерно 35 мкЗв. Максимально допустимая доза для обычного человека составляет 1 миллизиверт (мЗв), или тысяча мкЗв{33}, поэтому, чтобы превысить норму, нужно 14 раз слетать маршрутом Лондон – Нью-Йорк туда-обратно. Другими словами, годовая норма позволяет провести в воздухе 100 часов. Разумеется, и экипаж, и те, кому приходится летать часто, легко могут эту норму превысить. Однако рекомендуемый максимум «рабочей» дозы облучения несколько выше – 20 мЗв в год, то есть свыше пяти рейсов в Нью-Йорк в оба конца за неделю, а это уже мало кто набирает. И действительно, даже у экипажей «Конкордов», налетавших максимальное количество часов, годовая доза облучения составляла не больше 7 мЗв.
Однако случайная солнечная буря могла существенно и стремительно повысить радиационный фон, доведя его до 25 мЗв / ч. На такой случай в «Конкордах» имелась система радиационного предупреждения, улавливающая как нейтроны, так и ионизирующую радиацию (протоны и т. д.), установленная в пассажирском салоне и подсоединенная к монитору в кабине. При превышении уровня радиации в 0,5 мЗв / ч., экипаж должен был опустить самолет ниже, под защиту атмосферных слоев. Однако за все годы эксплуатации «Конкордов» такой надобности не возникло.
На отметке 10 400 м (высота полета большинства пассажирских самолетов) космическое излучение составляет примерно половину от того, что достается «Конкордам» и сверхзвуковым истребителям. Однако суммарное излучение получается примерно таким же, поскольку полет длится дольше. Это значит, что независимо от того, летите вы «Конкордом» или обычным самолетом, доза облучения вам достанется примерно одинаковая. При этом радиационными мониторами обычные самолеты не оборудуются – отчасти в силу традиции, отчасти потому что опасность невысока. Кроме того, в наше время прогнозы солнечных вспышек достаточно точны, и самолеты получат предупреждение задолго до того, как поток достигнет Земли. (Путь от Солнца до Земли занимает у солнечных частиц около двух дней.) Трудность с прогнозами солнечных бурь состоит в другом: их направление непредсказуемо и поток частиц может миновать Землю. Поэтому перед космическими метеорологами встает дилемма: объявлять или не объявлять предупреждение, а если объявлять, то когда.
Астронавты, экипажи самолетов и те, кто часто летает, неизбежно подвергаются облучению в больших дозах, чем обычное население. Насколько это повышает риск развития рака, пока точно не установлено, однако уже известно, что риск этот достаточно мал, чтобы пренебрегать преимуществами авиаперелетов. Кроме того, данную проблему следует рассматривать в соответствующем контексте. Миллионное население Ла-Паса, столицы Боливии, расположенной на высоте 3900 м, ежегодно получает дозу космической радиации, равную 2 мЗв, – примерно столько же достается экипажам межконтинентальных рейсов. Население юго-западной оконечности Британии получает еще более высокие дозы – около 7 мЗв в год – от естественного излучения гранитных скал. Нелишне отметить также, что, в отличие от находящихся в положении стюардесс, которым, чтобы обезопасить будущего ребенка, сокращают норму налета, беременным жительницам Корнуолла никуда от воздействия естественной радиации не деться.
Шаг в пустоту
Первым человеком, которому довелось в одном скафандре выйти в открытый космос, стал советский космонавт Алексей Архипович Леонов. Он провел за бортом космического корабля 12 минут 18 марта 1965 г. Первый выход в космос представителя Соединенных Штатов – Эдварда Уайта II состоялся через несколько месяцев. Сегодня на счету астронавтов многих стран тысячи часов и в открытом космосе, и на Луне. Все они единодушны в том, что выход в космос – это невероятно захватывающее ощущение. Ничто не сравнится с полетом в черной бездне над ярким ободком плавно вращающейся внизу Земли. Словами этот восторг не передать, однако, по мнению Джина Сернана, есть одно стихотворение, написанное задолго до эры космических полетов, которое более или менее точно схватывает суть.
- Я ускользнул из тяжких пут земных
- И в небе танцевал на крыльях смеха,
- Поднялся к солнцу в облаках цветных,
- Парил в сиянье солнечного света.
- Там я мог делать всё, о чем мечтал, –
- Кружил, летал, играл в горелки с ветром.
- ‹…›
- И там всю мощь Вселенной ощутил
- И лика Господа своей рукой касался{34}.
Выходить в космос опасно, поскольку от малейшего прикосновения можно улететь в бескрайние просторы. Поэтому астронавта связывает с кораблем «пуповина», а скафандр оборудован небольшими реактивными двигателями, позволяющими маневрировать в вакууме.
Предшественниками космических скафандров стали высотные пневмокостюмы, которые помогали авиаторам, например, Уайли Посту, устанавливать летные рекорды на больших высотах. На заре авиации кабину самолета не герметизировали, и летчикам, покорявшим высоту, приходилось облачаться в пневмокостюм. Впоследствии военные переработали эти прототипы в полноценные высотные костюмы с полной компенсацией давления для использования в истребителях, летающих выше 12 000 м. Первые астронавты проводили в скафандре весь полет – на случай если вдруг упадет давление внутри капсулы. Сегодняшние астронавты на орбите носят обычную одежду, а на старте и при посадке – высотные костюмы с частичной компенсацией давления, надевая полноценные скафандры только для выхода в открытый космос.
Скафандр – это, по сути, индивидуальный космический корабль в миниатюре, обеспечивающий физическую защиту, давление, атмосферу, терморегуляцию, а также – если предполагается длительное использование – пищу, воду и удаление отходов жизнедеятельности. Кроме того, скафандр должен быть одновременно гибким, прочным и устойчивым к воздействию солнечной радиации и микрометеороидов. А еще, чтобы разработчику мало не показалось, он должен весить как можно меньше, поскольку для вывода корабля на орбиту требуется огромное количество энергии, так что ограничения по весу здесь очень жесткие. В первые скафандры, такие как использовались астронавтами «Джемини», кислород подавался по «пуповине», связывающей их с кораблем. Однако для лунной программы потребовался автономный скафандр с самостоятельной системой жизнеобеспечения. Скафандры, которые сегодня надевают астронавты НАСА для выходов в открытый космос, представляют собой сложные системы под названием скафандры для ВКД (внекорабельной деятельности). Они состоят из 14 слоев, защищающих астронавта от сурового воздействия внешней среды, и оборудованы большим ранцем, где находятся емкости с водой для охлаждения, система кондиционирования воздуха и баллоны с кислородом, рассчитанным на 9–10 часов работы в космосе. На Земле такой скафандр весит целых 113 кг, в космосе он, разумеется, не весит ничего.
Давление в кабине шаттлов и космических станций поддерживается на уровне земного, и экипаж дышит земным воздухом, содержащим 21 % кислорода и 78 % азота. В скафандры для ВКД, однако, закачивается чистый кислород под давлением в одну треть атмосферы. На чистом кислороде (в отличие от кислородно-азотной смеси) астронавт может дольше пробыть снаружи, однако давление приходится уменьшать, чтобы избежать кислородного опьянения (см. гл. 2). Выдыхаемый углекислый газ фильтруется через гидроксид лития, остальные примеси удаляются активированным углем, а вода – влагопоглотителем. Затем по мере необходимости добавляется еще кислород, и дыхательная смесь возвращается в систему циркуляции скафандра.
Поскольку в скафандре для ВКД поддерживается давление в треть атмосферы, астронавт не может просто надеть его и сразу выйти в открытый космос – иначе ему грозит кессонная болезнь. Симптомы ее подробно описаны в главе 2, где шла речь о водолазах. Причиной кессонной болезни служат выделяющиеся в кровь и ткани пузырьки азота, поэтому для предупреждения «корчей» необходимо удалить из организма азот и заменить кислородом, поскольку растворенный кислород усваивается тканями гораздо быстрее, не успевая выделиться в виде пузырьков. Поэтому, прежде чем выйти за борт корабля, астронавты шаттла надевают респираторы и дышат чистым кислородом. Однако надеть скафандр, продолжая дышать исключительно кислородом, довольно затруднительно. Поскольку азот проникает в ткани моментально, нескольких вдохов достаточно, чтобы свести на нет все усилия по насыщению тканей и крови кислородом. В связи с этим астронавту приходится задерживать дыхание, переходя с респиратора на систему жизнеобеспечения скафандра. Это непросто. Поэтому в таких случаях обычно понижают давление в кабине и повышают содержание в ней кислорода, тем самым значительно уменьшая риск пополнения запасов азота в тканях. Кроме того, такой прием позволяет сократить время на «предварительное дыхание» – при 24-часовой декомпрессии кабины перед выходом в открытый космос достаточно получаса дыхания чистым кислородом, тогда как без декомпрессии предварительное дыхание занимает не меньше четырех часов.
Скафандр, как и космический корабль, должен выдерживать экстремальные перепады температур, поскольку на освещенной Солнцем стороне температура может достигать 120° С, а на темной стороне падать ниже –100° С (представьте, что вы сидите перед полыхающим камином в ледяной комнате, и возведите предполагаемые ощущения в квадрат). Кроме того, тепло и пот, выделяемые кожей, оболочка скафандра не пропускает, поэтому внутри он может нагреваться достаточно сильно, особенно когда астронавт активно двигается. Перегрев действительно доставлял немало хлопот выходившим в открытый космос астронавтам «Джемини». Более поздние модификации скафандров оснащались нательным слоем с водяным охлаждением – белье пронизывалось тончайшей сетью трубочек, по которым непрерывно циркулировала вода из баллонов в ранце. Такая же система применяется и в скафандрах для ВКД, которые используются на современных шаттлах.
И наконец, скафандр должен обеспечивать астронавту свободу движений для работы в космосе. Это непростая задача для инженера. С одной стороны, астронавт должен иметь возможность согнуть руку, с другой – скафандр необходимо армировать, чтобы он не лопнул в безвоздушном пространстве{35}, а герметизированный скафандр с наддувом не отличается гибкостью. Поэтому приходится оборудовать скафандр гибкими сочленениями, действующими примерно как наружный скелет у насекомых. Например, нижняя часть скафандра сочленяется на талии, на бедрах, в колене и на лодыжках – как сочленяется в нужных местах жесткий панцирь жука. Но несмотря на это, работать в скафандре все равно достаточно сложно и утомительно, поэтому требуется суровая подготовка. Кроме того, при микрогравитации человек несколько прибавляет в росте, расширяются грудная клетка и голова, а бедра усыхают, поскольку жидкости организма приливают от ног к груди. Об этом ни в коем случае нельзя забывать конструкторам космических скафандров. Некоторым из первых астронавтов пришлось испытать не самые приятные ощущения, когда выяснялось, что скафандр становится тесноват.
Возвращение
Вход в земную атмосферу и посадка – пожалуй, самая опасная часть космического полета. Недаром в своей знаменитой речи президент Кеннеди оговаривал не только высадку человека на Луну, но и его безопасное возвращение на Землю. Возвращающегося астронавта подстерегают как физические, так и физиологические испытания. Самая главная сложность – это невероятный жар, возникающий от трения при входе корабля в земную атмосферу. На той скорости, которую развивает корабль при входе, от атомов воздуха отрываются электроны, обволакивая корпус корабля ионизированной оранжево-красной плазмой. Температура в ней достигает 1650° С, поэтому корабль и экипаж необходимо защитить специальной огнеупорной обшивкой. Дополнительная сложность заключается в том, что верхние слои атмосферы не равномерные, а складчатые, как волны, поэтому при возвращении корабль очень сильно трясет, бросая с гребня на гребень.
Особенно опасен процесс возвращения для астронавта, пробывшего в космосе долгое время, поскольку вход в атмосферу происходит с замедлением, создающим перегрузки. В ранних полетах они были очень высокими – до +6g, астронавтам же нынешних шаттлов достаются перегрузки, лишь в 1,2 раза превышающие земное притяжение. Однако даже они весьма ощутимы. Шаттл на входе в атмосферу располагается так, что вектор перегрузок действует в самом неприятном для астронавта направлении, поскольку сердцу становится труднее перекачивать кровь от ног, а выдерживать их приходится около 20 минут. Особенно сложно это для тех, кто провел в космосе значительное время и чей организм уже перестроился под микрогравитацию. У таких астронавтов резко падает давление, грозя головокружением и потерей сознания в самый ответственный момент, при посадке. Британский астронавт Майкл Фоул, пробывший на станции «Мир» почти пять месяцев, на входе в атмосферу лежал в шаттле пристегнутый ремнями, чтобы вектор перегрузок был направлен от груди к спине. Иногда, для того чтобы обеспечить внешнее давление, способствующее приливу крови к сердцу, астронавты надевают противоперегрузочные штаны, как у пилотов истребителей.
С небес на землю
Немало неприятностей астронавтам, возвращающимся на Землю после долгого пребывания в космосе, доставляет невозможность стоять на ногах, не теряя сознания. Это состояние – оно называется «ортостатическая неустойчивость» – возникает из-за изменений в сердечно-сосудистой системе, вызываемых невесомостью. Освободившись от земного притяжения, жидкости организма устремляются вверх, включая компенсаторные механизмы, сокращающие объем жидкостей и стимулирующие их перераспределение. Эти изменения после прилета обратно на Землю пропадают не сразу. Когда астронавт лежит, они почти не дают о себе знать, однако стоит ему подняться на ноги, подача крови к голове и мозгу уменьшается, и человек теряет сознание. Экипаж «Союза-21», например, с трудом мог стоять, не падая в обморок, в течение нескольких часов после приземления. Ортостатическая неустойчивость появляется даже после коротких пятичасовых полетов. На восстановление устойчивости до предполетного уровня после короткого полета уходит от трех до четырнадцати дней, на восстановление после длительных экспедиций – гораздо больше.
Одна из причин возникновения ортостатической неустойчивости после посадки – то, что объем крови уменьшается, а сосуды в ногах сокращаются хуже, чем прежде, поэтому кровь у астронавта, вновь попавшего в поле земного тяготения, приливает к ногам. Кроме того, нарушается регулировка кровяного давления средствами нервной системы. Людям с низким давлением, как у меня, тоже знакомо мелькание мушек или серая пелена перед глазами и секундное головокружение, если случается резко встать.
Советский Союз первым разработал меры борьбы с изменениями в распределении жидкостей организма. Во время полета космонавты периодически облачаются в вакуумные штаны, которые за счет всасывающего внешнего давления заставляют кровь приливать к ногам, а перед возвращением с орбиты космонавт должен выпить около литра подсоленной воды для увеличения объема жидкостей организма{36}. Те, кто не пренебрегал этими мерами, по возвращении меньше страдали от ортостатической неустойчивости. Исключением стал экипаж «Союза-21», который не смог выполнить положенную программу, поскольку у одного из космонавтов развилась сильная и непроходящая головная боль, и экипажу пришлось срочно возвращаться на Землю, проведя в космосе всего 49 дней. Несколько часов после посадки никто из них не мог стоять, не теряя сознания. Испытания с участием астронавтов шаттла подтвердили благоприятное воздействие физраствора, выпиваемого перед посадкой, поэтому теперь и российские, и американские экипажи перед возвращением выпивают около литра воды (или сока) и съедают восемь таблеток соли. Эти меры хорошо помогают при ортостатической неустойчивости после коротких полетов, но, к сожалению, при длительном пребывании в космосе они бессильны.
Еще одна причина того, почему астронавтам тяжело передвигаться по земле после долговременного пребывания в космосе, – мышечная атрофия. Кроме того, после космоса мышцы более уязвимы. Эксперименты на животных показали, что в повреждении мышц виновата не микрогравитация как таковая, а нагрузка по возвращении на Землю. Обычно мышцы восстанавливаются быстро, и уже через несколько дней человек начинает ходить, а через несколько недель набирается мышечная масса. На восполнение потерь костной массы могут уйти месяцы (сроки восстановления зависят от того, сколько длился космический полет).
Если вы когда-нибудь выходили в море на маленькой лодке, то знаете, что к качке привыкаешь довольно быстро, однако потом даже на берегу земля под ногами будто продолжает качаться. Примерно то же самое ощущает астронавт по возвращении на Землю. Около 10 % астронавтов шаттла накрывает «земная болезнь». Им трудно держать равновесие или стоять прямо с закрытыми глазами, они жалуются на головокружение и тошноту. Кроме того, некоторые обнаруживают, что сразу после прилета при любом наклоне головы кажется, что в движение приходит мир вокруг, а не собственное тело. Это значит, что сигналы от рецепторов в полукружных каналах, реагирующих на линейное ускорение, перепрограммируются в условиях микрогравитации и по возвращении на Землю должны пройти обратный процесс. В первую пару ночей после приземления многие астронавты испытывают неудобство, лежа на спине в постели, – им кажется, что голова расположена градусов на тридцать ниже тела. «Земная болезнь» проходит через несколько часов, иногда несколько дней, однако на восстановление равновесия и координации может уйти неделя или две. Интересно, что лунное притяжение – которое в шесть раз меньше земного – такого воздействия почти не оказывает. Из двенадцати человек, побывавших на Луне, только трое жаловались на схожие симптомы – и то настолько слабо выраженные, что их вполне можно списать на восторженное состояние.
Куда дальше?
Перед отлетом лунного модуля «Фалькон» экспедиции «Аполлон-15» с Луны экипаж оставил на ее поверхности небольшую мемориальную доску с именами 14 астронавтов и космонавтов, отдавших жизнь за то, чтобы когда-нибудь человек побывал на Луне. Вместе с доской они оставили миниатюрную статуэтку, известную теперь под названием «Павший астронавт»{37}. Космос, вне всякого сомнения, самая враждебная для человека среда. Однако ни один из этих четырнадцати не погиб в космосе. Их погубил пожар на стартовой площадке, взрыв ракеты на старте или во время входа в земную атмосферу при возвращении. Судя по всему, как и в авиаперелетах, самыми опасными этапами космических путешествий оказываются взлет и посадка.
«Стоит ли оно того?» – вот неизбежный вопрос, который всегда вызывали пилотируемые космические полеты. Однако задавая этот вопрос, большинство людей имеют в виду вовсе не человеческие жизни. Космическая программа – чрезвычайно дорогое удовольствие. На экспедиции лунной программы «Аполлон» Штатам приходилось выделять 4,5 % годового бюджета. Во времена холодной войны необходимость казалась очевидной, затем, когда политическая составляющая отпала, поддержка программы снизилась, и ее свернули раньше срока. Едва вернувшись на основной корабль после подъема с Луны, астронавты «Аполлона-17» Джин Сернан и Джек Шмидт с ужасом узнали о заявлении президента Никсона, что «в этом столетии человеку, вероятно, уже не доведется больше побывать на Луне».
Эти слова оказались пророческими. Больше человек пока на Луну не возвращался. Мечта, осуществившаяся на глазах у тех, кому сегодня за сорок, снова стала несбыточной. Нынешние космические программы куда скромнее. Поверхность Марса вместо нас исследуют роботы. Это, конечно, правильно, поскольку роботы гораздо дешевле, автономнее и не подвергают опасности человеческую жизнь. Но я, тем не менее, верю, что тот же порыв, который позволил человеку достичь Луны, когда-нибудь приведет его и на Марс. И очень надеюсь, что мне доведется дожить до этого дня.
7. Экстремалы из экстремалов
Микроб так мал, что, по рассказам,
Невидим человечьим глазом.
Хилэр Беллок. Микроб
Независимо от того, когда на самом деле на нашей планете появился человек, другие организмы успели его опередить. Даже в самых негостеприимных областях Земли – на полюсах, в пустынях, на вершинах гор и в глубинах океана – существует жизнь. По-настоящему суровых уголков, непригодных для обитания даже одноклеточных организмов, крайне мало, поэтому даже в той среде, где человек не сумеет выжить незащищенным, другие животные выживают без труда. В этой главе рассматриваются экстремальные условия, в которых возможны хоть какие-то формы жизни.
Животным, как и человеку, для жизни требуются вода, кислород и пища. Бактерии могут обойтись без кислорода, и источники пищи у них будут совсем не похожи на наши, однако вода им все равно необходима. Помимо этого им нужны такие химические элементы, как углерод, азот, сера и фосфор, – в качестве строительного материала для ДНК и белков. И если эти элементы можно обнаружить практически в любом месте на Земле, с жидкой водой дело обстоит несколько сложнее. Например, в пустыне Атакама – самой сухой области нашей планеты – дождя может не быть годами. Лед воду не заменит, поэтому ледяные пустоши полярных шапок и снежные вершины гор в этом отношении не отличаются от пустынь. И хотя некоторые организмы могут существовать без воды достаточно долго, впадая в анабиоз, расти или размножаться они при этом не сумеют. А значит, вода – это основа жизни, самая настоящая aqua vitae, которую с таким усердием пытались отыскать древние алхимики.
Древо жизни
Три основные ветви древа жизни – эукариоты, бактерии и археи. Эукариоты, как и мы с вами, состоят из клеток, имеющих ядро, в котором содержится ДНК. К эукариотам относятся все животные, растения и многие одноклеточные. Бактерии и археи – это одноклеточные организмы, не имеющие ядра, однако друг от друга они отличаются не меньше, чем от эукариотов, поскольку каждый из трех доменов обладает уникальным генным набором. Архей, как ни странно, выделили в отдельную ветвь относительно недавно, в конце 1970-х. Сделал это эволюционист Карл Вёзе. Его теория не сразу нашла поддержку, и Вёзе очень переживал, что на его родине, в США, ее считают бредовой или попросту не принимают во внимание. Его оппоненты видели в археях не более чем разновидность бактерий. Преклонный возраст Вёзе не способствовал популяризации его теории, однако в наше время она наконец обрела признание. Окончательно она подтвердилась в 1998 г., после получения полной последовательности генома одной из архей (метанококка), когда выяснилось, насколько ее гены отличаются от генов бактерий. Таким образом, подтвердилась уникальность архей и было доказано, что они ближе к эукариотам, чем к бактериям. Их название происходит от древнегреческого arkhaios и подчеркивает их древнее происхождение, поскольку считается, что из всех существующих форм жизни они обладают наибольшим сходством с первыми клетками.
Археи и бактерии – чемпионы по выживанию в экстремальной среде. Они отлично себя чувствуют и в кипятке, и в каустической соде, и в концентрированной кислоте, и в крепком соляном растворе, и под сильным давлением, и в каменной толще. Некоторым из них, например Deinococcus radiodurans, нипочем даже высокая радиоактивность{38}. Многие могут жить без кислорода или солнечного света, добывая энергию из серы или водорода или ломая камень. Они перерабатывают почти все – в том числе нефть, пластик, металлы и токсины. Эти микроорганизмы могут принести огромную пользу в очищении окружающей среды, предотвращении ее загрязнения, а также в производстве энергии и множестве других областей. Неудивительно, что они вызывают пристальный интерес не только ученых, но и промышленников.
Некоторые любят погорячее
В отличие от многоклеточных животных и растений, которые не выдерживают температуру выше 50° С, и одноклеточных эукариотов, погибающих при температуре выше 60° С, некоторым бактериям и археям не страшен даже кипяток. Температура обитания термофилов – 50° С, гипертермофилов – выше 80° С. Они часто встречаются в зонах высокой геотермальной активности, таких как гейзеры Исландии или Йеллоустонский национальный парк, а также в жерлах океанских вулканов, так называемых «черных курильщиках». Самые «жаропрочные» из ныне известных бактерий – Pyrolobus fumarii, обитающие при температуре 113° С в стенках «черных курильщиков» и замедляющие рост, когда температура падает до 90° С, поскольку для них это слишком холодно. Никто не знает, где на самом деле верхний предел пригодной для жизни температуры, однако большинство ученых предполагают, что он должен быть равен примерно 120° С.
«Черные курильщики» были открыты в 1977 г. учеными из Вудсхоллского океанографического института близ побережья Эквадора. Скользя над океанским дном на глубоководном аппарате «Алвин» на глубине около 2500 м, они перевалили через хребет – и увидели незабываемое зрелище. Из леса подводных труб клубился черный дым, будто Вулкан с Нептуном выстроили там гигантский заводской комплекс для каких-то темных производственных нужд. И, в отличие от малонаселенных океанских глубин, к которым ученые уже привыкли, этот оазис просто кишел самыми разнообразными формами жизни.
Соваться к «черным курильщикам» довольно опасно. Первый же температурный зонд, запущенный в столб воды, поднимающийся из трубы «курильщика», сгорел за несколько секунд. Разобравшись, в чем дело, ученые стали опасаться за сам батискаф, поскольку на такой глубине плексигласовые окна могли расплавиться и при 90° С. Опасения оказались не напрасными. Из экспедиций к «черным курильщикам» батискафы иногда возвращаются с покореженной и черной от жара внешней оболочкой.
«Черные курильщики» напоминают подводные гейзеры, которые выбрасывают насыщенную минералами горячую воду из вулканических жерл в океанском дне. На срединно-океанических хребтах расплавленная магма бурлит почти у самой поверхности, раздвигая тектонические плиты и образуя в разломах после застывания новые участки дна. Холодная океанская вода проникает вглубь через трещины и нагревается от горячей магмы. По мере просачивания она нагревается все больше, но огромное давление не позволяет ей закипеть{39}. В конце концов разогретая вода устремляется обратно к поверхности, неся с собой растворенные минералы и сульфиды металлов, и извергается из расщелин при температуре около 350° С. При соприкосновении с холодными океанскими водами растворенные минералы и металлы высвобождаются, образуя клубы черного «дыма», поднимающегося на 100–300 м над океанским дном, а затем застывают в виде каменистых труб до 5 м высотой. Одну из самых высоких труб за свои гигантские размеры (6,8 м) ласково прозвали Голиафом.
Вокруг «черного курильщика» во множестве роятся археи, которые отлично чувствуют себя в супергорячей воде и питаются коктейлем из сернистых соединений и минералов – марганца, железа и сульфидов, выбрасываемых из жерла. «Стада» этих хемосинтезирующих организмов, похожие на снег, постоянно клубятся вокруг гейзеров. Археи служат фундаментом уникальной экосистемы. В теплых струях колышутся, будто трава, щупальца селящихся колониями полихет. Некоторые прячутся под тонкими, бледными от недостатка света панцирями с бороздками, другие вырастают до 4 м в длину. Помпейский червь, один из самых жаростойких, обитает в трубках, которые крепятся непосредственно к стенкам «курильщиков». В итоге голова его расположена в слоях с приятной двадцатиградусной температурой, а хвост поджаривается при обжигающих 80° С. У «курильщиков» миллиардами толкутся креветки, балансируя на тонкой грани: подплывешь слишком близко – сваришься заживо, слишком отдалишься – замерзнешь или погибнешь от голода. Дно устилает ковер из актиний, длинноногих крабов и огромных моллюсков (до 30 см длиной). Их раковины покрыты микробными матами. Между трубами «курильщиков» пасутся рыбы. Вот проплывает необычайной красоты оранжевое создание, похожее на пушистый одуванчик, за которым тянутся длинные ленты. На самом деле это никакой не цветок, а животное, похожее на «португальский кораблик» и представляющее собой колонию простейших.
В эту бездну не проникает солнечный свет, поэтому вся жизнь здесь зависит в конечном итоге от хемосинтезирующих способностей архей и бактерий. Они используют сероводородную кислоту в качестве топлива, окисляя ее до водорода и серы. И если одни из подводных обитателей употребляют археи и бактерии в пищу, другие образуют с ними более тесную связь. Среди самых необычных можно назвать полихету Riftia pachyptilia, обладающую мягким трубчатым телом белого цвета толщиной с детскую руку, с алыми жабрами на конце. Пищеварительной и выделительной систем у нее нет, поскольку процесс питания в привычном смысле у нее отсутствует, а энергию она добывает в симбиотической связи с хемосинтезирующей бактерией. Внутренняя полость трубки заполнена трофосомой, или пищевым мешком. Внутри каждой клетки трофосомы обитают тысячи серных бактерий. Кроваво-красные жаберные лепестки полихеты добывают из окружающей воды кислород и сероводородную кислоту. Они соединяются с особой разновидностью гемоглобина в кровеносной системе червя и доставляются к хемосинтезирующим симбионтам, населяющим внутреннюю полость полихеты. С помощью кислорода бактерии разлагают сероводородную кислоту на воду и серу, высвобождая в процессе энергию. Сера остается на месте, накапливаясь в виде твердого желтого осадка на стенках полости в течение всей жизни червя. Энергия же используется для переработки неорганики в питательные вещества – например, аминокислоты и углеводы, которые бактерия-симбионт затем потребляет вместе с хозяином.
Однако первые термофильные микроорганизмы были обнаружены вовсе не в «черных курильщиках», а в супергорячих геотермальных источниках Йеллоустонского заповедника в Вайоминге. Йеллоустон – это невиданного великолепия царство воды и огня. Пейзаж украшают сотни горячих источников и бурлящих ванн, обрамленных розовой и пурпурной желеобразной массой из микроорганизмов. Огромные водяные столбы выстреливают в воздух с такой силой, что содрогается земля. Из щелей, словно разъяренный дракон, со свистом и ревом вырывается пар. Грязевые котлы и гейзеры булькают и ворчат гораздо тише. С разноцветных скал, облепленных колониями бактерий и архей, каскадами обрушивается вода. В воздухе стоит крепкий запах тухлых яиц – это сероводород, дурно пахнущий токсичный газ, от которого саднит в горле и тяжело дышать. Вода в источниках – крутой кипяток, но это не значит, что они необитаемы. Если сунуть туда палку, она вымажется в липкой черной слизи – это и есть теплолюбивые бактерии и археи.
Впервые искать жизнь в этом кипятке додумались Томас Брок и его жена Луиза. Летом 1965 г. они приехали в Йеллоустон поработать во время отпуска, и им удалось изолировать в отводном канале от горячего сернистого источника первые гипертермофильные организмы. Это была Sulpholobus acidocaldarius, предпочитающая температуру от 60 до 95° С. Второй их находкой стала Thermus aquaticus – будущая звезда биотехнологической промышленности. Эти открытия, сделанные Броками, положили начало исследованиям экстремофилов, породили новую породу добытчиков – охотников за микробами, и послужили основой для создания многомиллионной отрасли. А еще подали микробиологам отличный повод ездить в самые отдаленные и неизведанные уголки нашей планеты в поисках доселе неизвестных науке микроорганизмов.
Когда Томас Брок выделил Sulpholobus, наука категорически отрицала, что при температуре выше 50° С может существовать жизнь, – возможно поэтому никто и не пытался искать ее в такой экстремальной среде. Брок же культивировал собранные бактерии при естественной температуре их обитания, потому и преуспел. Менее проницательный ученый, вероятно, не устоял бы перед соблазном понизить температуру из ошибочных соображений, что так бактерии будут расти лучше. И ничего бы не получилось, поскольку Sulpholobus относится к облигатным термофилам. Изоляция первого вида экстремофилов, как и любой прорыв в науке, осуществилась благодаря острой наблюдательности и умению нарушить догму. Ученым не помешает брать пример с Белой Королевы из «Алисы в Зазеркалье», которая «успевала поверить в десяток невозможностей до завтрака».
Многоклеточным животным по жаростойкости, конечно, далеко до термофилов вроде архей и бактерий, однако и среди них есть рекордсмены – например, помпейский червь или серебристый сахарский муравей. Муравей выходит пастись под палящим зноем до 55° С, но ненадолго, потом ему приходится остывать, скрываясь в прохладных подземных ходах.
Жаростойкость позволяет организму занять отдельную экологическую нишу, на которую не будут претендовать другие. Однако она может стать и оружием. Японская медоносная пчела (Apis cerana japonica) использует жар собственного тела для защиты от хищных шершней (Vespa mandarinia japonica), гораздо более чувствительных к высоким температурам. Если шершень пытается напасть на колонию пчел, они набрасываются на обидчика скопом, окружая его со всех сторон. Температура внутри этого жужжащего клубка моментально подскакивает до 48° С – смертельных для шершня, но не опасных для пчел. Незваный гость просто поджаривается заживо.
При температуре выше 50° С погибает большинство клеток, поскольку белок плохо переносит перегрев. Молекулярные вибрации, начинающиеся под воздействием жары, разрывают белок на части, распуская зрелые белковые цепочки и препятствуя правильной укладке новых. Такая денатурация опасна, поскольку белок перестает нормально выполнять свои функции. Структурные белки истощаются, а ферменты не могут катализировать биохимические реакции. О том, чем грозит неправильная укладка формирующегося белка, британское население теперь осведомлено достаточно широко, поскольку губкообразная энцефалопатия крупного рогатого скота (или «коровье бешенство») вызывается как раз специфической формой неверно свернувшегося белка, который провоцирует искажение и остальных, нормальных, белков. По неизученным пока причинам неправильно свернувшийся белок токсичен и вызывает гибель нейронов.
Тепловое повреждение белка практически необратимо. Вареный яичный белок так и останется твердым, белым и резиновым – даже после охлаждения его невозможно вернуть в прежнее текучее состояние. Остывший бифштекс хоть и не так вкусен, как горячий, все равно остается куском прожаренного мяса с уничтоженными высокой температурой мышечными волокнами. Однако после менее серьезных повреждений клетки способны восстанавливаться – с помощью белка теплового шока. Эти молекулярные телохранители наводят порядок, заставляя белок свернуться заново, на этот раз правильно. Необратимо поврежденный белок помечается и разлагается на составляющие его аминокислоты, которые затем снова используются. То есть белок теплового шока – это что-то вроде биохимической пожарной команды.
Белок состоит из линейной цепочки аминокислот, но, подобно нитке бус, упавшей на пол, эта цепочка сворачивается в гораздо более сложные фигуры. Иногда цепочки соединяются попарно или большим количеством, образуя крупные молекулы (например, инсулин состоит из двух субъединиц, гемоглобин – из четырех). Огромное значение имеет пространственная структура белка. Сигнальная молекула должна идеально стыковаться с принимающим рецептором, ферменты должны правильно обволакивать свои субстраты, структурные белки – плотно укладываться в слой. Сворачивание белка зависит от его аминокислотной последовательности, однако внутри клетки процесс сворачивания затрудняет высокая концентрация других белков. Из-за этого молекулярного столпотворения белок может вместо собственной цепочки образовывать случайные связи с соседними белками. Для того чтобы этого не происходило, существуют белки-телохранители – белки-«дуэньи», выполняющие, по сути, ту же роль, что и настоящие дуэньи в викторианскую эпоху. Они помогают другим белкам и при обычной температуре, но когда температура растет, их число тоже значительно увеличивается. Именно поэтому их назвали белками теплового шока – они вырабатываются в основном как реакция на жару. Между тем у нас по-прежнему остается неразрешимая загадка: чем обеспечивается правильное сворачивание самих белков-телохранителей при критической температуре?
Между тем своей жаростойкостью гипертермофилы обязаны не только деятельности белков-телохранителей. Многие другие ферменты и структурные белки – и даже сами механизмы, отвечающие за синтез белка, – демонстрируют необычайную тепловую выносливость. Несмотря на гораздо более высокую жаропрочность, некоторые ферменты в организме гипертермофилов на аминокислотном уровне почти не отличаются от наших. Выходит, разница в несколько аминокислот может оказаться весьма существенной.
Подсевшие на кислоту
Однажды ночью я меняла аккумулятор в машине, ковыряясь под крышкой капота с фонариком в одной руке и гаечным ключом в другой, – и нечаянно уронила ключ. Он упал на клеммы, закоротив аккумулятор, и тот взорвался, обдав меня кислотными брызгами. В лицо и руки как будто впились сотни горячих игл. Кинувшись в панике промывать глаза, я даже не обратила внимание на брызги кислоты, попавшие на джинсы. На следующий день я надела джинсы, и они расползлись практически на ходу.
Как и хлопковые нити в ткани джинсов, органические соединения нашей кожи разрушаются кислотой. С помощью кислотных ванн очищают скелеты, предназначенные для анатомических экспозиций. В триллерах они служат не самым привычным, зато нагоняющим достаточно страху способом избавиться от трупа. И, к сожалению, способ этот встречается не только в книгах. Печально известный серийный убийца Джон Хейг, на счету которого по крайней мере шесть убитых в Британии 1940-х, растворял трупы жертв в серной кислоте. Его выдала мелочь – не растворившаяся вставная челюсть жертвы, сделанная из акриловой пластмассы. Однако кислоты используются и в более гуманных целях. Например, разведенную хлористоводородную кислоту применяют в лечебных и дезинфицирующих целях. Кислота губительна для многих организмов, в том числе и патогенных.
Кислотность или щелочность раствора (его водородный показатель – pH) зависит от содержания в нем ионов водорода. Чем их больше, тем раствор кислотнее, и наоборот. Водородный показатель определяется как отрицательный десятичный логарифм концентрации ионов водорода. Это значит, что у кислотного раствора (с высокой концентрацией ионов водорода) pH будет низким. У щелочного же ионов водорода мало, а pH высокий. Запутаться немудрено, однако в наши дни, благодаря рекламе, pH давно у всех на слуху. Мыло, шампунь – а иногда и напитки – рекламируются как «pH-сбалансированные». Садоводам тоже приходится думать о водородном показателе почвы на своем участке, поскольку любители кислых почв, вроде вереска и азалий, в щелочной известковой почве не приживутся, тогда как гвоздики предпочитают как раз ее и погибают в кислотной. Полезно также помнить, что pH – это логарифмическая функция, и разница в одну единицу pH соответствует десятикратной разнице в содержании ионов водорода. Поэтому уксус (чей pH равен 2) содержит почти в миллиард раз больше ионов водорода, чем нашатырный спирт (pH 11).
Большинство клеток предпочитают pH-нейтральную среду (7,0), где концентрация ионов водорода такая же, как и концентрация гидроксильных ионов (ион водорода и гидроксильная группа образуют молекулу воды). Кроме того, клетки чувствительны даже к незначительным изменениям водородного показателя, поэтому pH крови человека тщательно регулируется средствами организма. Нормальный для крови показатель pH – около 7,4. Повышение до 7,7 или спад до 7,0 несовместимы с жизнью.
Однако многие бактерии и археи, напротив, предпочитают сильно кислую или сильно щелочную среду. Ацидофилам – любителям кислоты – нравится pH менее пяти. Они обитают в горячих геотермальных источниках, где растворенные в воде сернистые газы образуют серную кислоту, или в кислотных водах, сочащихся из отвалов шлака вокруг старых шахт. Другие живут в уксусе и лимонном соке (вот почему эти продукты со временем портятся). К числу самых удивительных представителей этой группы относится Thiobacillus ferrooxidans. Она добывает энергию из углекислого газа, кислорода, серы и закиси железа, производя в процессе серную кислоту и соли железа, которые окрашивают ручьи, вытекающие из заброшенных шахт, в яркий желто-коричневый цвет и сильно окисляют воду (до pH равного двум). Для большинства водных форм жизни и кислота, и растворенные металлы токсичны. Однако T. ferrooxidans обладает еще более поразительной способностью, как подсказывает ее второе название – T. concretivorans (пожирательница бетона). Она питает особую страсть к низкомарочному бетону, богатому серой, особенно если он армирован металлическими прутьями. К ужасу строителей, бактерия вырабатывает столько серной кислоты, что бетон начинает «гнить». В результате рушатся мосты и эстакады, крошатся плиты многоэтажек. Прошло немало времени, прежде чем удалось установить виновницу бетонной гнили, поскольку плотность ее крайне низка – одной бактерии для одноразового деления требуется потребить железа в 50 раз больше собственного веса.
Ацидофилы не просто терпят низкий pH, он им действительно нравится. Например, Sulpholobus лучше всего растет при pH 2. И это очень кстати, поскольку в качестве отходов метаболизма она производит серную кислоту. Есть бактерии, для которых оптимальный pH еще ниже. Текущий рекорд принадлежит микробам вида Pircophilus – лучше всего они чувствуют себя при pH 0,5. При pH выше 3 они перестают расти, а при pH, равном 5, – разлагаются. Кислотную среду неплохо переносят также некоторые грибы и водоросли, способные расти в слабом растворе серной кислоты.
