На грани возможного: Наука выживания Эшкрофт Фрэнсис

Helicobacter pylori, бактерия, вызывающая язву желудка

Еще в 1980-х считалось, что язву желудка – отличительную черту ответственного руководителя – вызывает повышенная кислотность, возникающая от постоянного стресса. Однако два австралийских патолога, Робин Уоррен и Барри Маршалл, усомнились в этом. В пробах слизистой желудка больных язвой и гастритом (хроническое желудочное воспаление) они обнаружили некую спиралевидную бактерию. Прежде всего предстояло выяснить, обитает эта бактерия в желудке или привнесена туда извне. Когда была окончательно установлена коренная принадлежность бактерии, наступил следующий этап – подтвердить, что H. pylori не просто безвредная обитательница желудка, а действительно вызывает гастрит и язву. Двое бесстрашных добровольцев (одним из которых стал сам Маршалл) выпили раствор с культурой бактерии. Как и следовало ожидать, у них развился гастрит.

Уоррен и Маршалл своим экспериментом практически в одночасье совершили переворот в медицине. Они доказали, что язва – это результат бактериальной инфекции, а не просто повышенной кислотности. Поселившаяся на стенках желудка H. pylori вызывает воспаление, которое затем приводит к разрушению тканей и изъязвлению. Соответственно подверглась пересмотру и медицинская практика. Стало ясно, что препараты, подавляющие выработку желудочной кислоты, приносят лишь временное облегчение, поскольку никак не затрагивают бактерию. А вот курс антибиотиков позволяет избавиться от Helicobacter pylori навсегда. В этом и состоит разница между лечением и терапией – устранением болезни и снятием симптомов.

Открытие Уоррена и Маршалла имело немалое значение для медицины, поскольку, как выяснилось, около одной трети населения Земли являются хроническими носителями бактерии H. pylori, хотя заболевание развивается далеко не у всех. Отразилось оно и на фармацевтической промышленности. Препарат «Зантак», подавляющий производство желудочной кислоты и озолотивший когда-то компанию Glaxo, до сих пор входит в число самых популярных лекарств мира. Логично предположить, что новые методы лечения язвенной болезни должны были бы сократить рынок препаратов, снижающих кислотность желудка. К счастью для фармацевтических компаний, этого не произошло. В сочетании с такими препаратами антибиотики действуют еще эффективнее (при этом совсем не обязательно покупать дорогие антациды, обычный висмут справляется не хуже).

Несмотря на обитание в кислотной среде желудка, pH которой равен двум, H. pylori вовсе не является ацидофилом. Она предпочитает, скорее, нейтральную среду, и хотя в течение какого-то времени способна переносить кислотность, длительное пребывание в кислоте ее убивает. Выжить в желудке ей помогает поведенческая, а не физиологическая адаптация. Она скрывается в слизистой желудка, оберегающей его стенки от ожогов, а для дополнительной защиты укутывает себя облаком с более высоким pH, выделяя фермент уреазу.

Кислота разрушает ДНК и белок. Как же тогда удается кислотолюбивым археям и бактериям выживать при pH 0,5? Точного ответа на эту загадку пока нет, но, предположительно, они просто не допускают кислоту внутрь, выкачивая ионы водорода сразу, как только они попадают в клетки или превращая кислоту в воду добавлением гидроксильной группы. Однако белки клеточных мембран, откачивающие кислоту, все равно должны как-то выносить pH 0,5, поскольку их внешняя поверхность соприкасается непосредственно с кислой средой. Поэтому загадка остается, только теперь нужно смотреть глубже: почему кислота не растворяет мембранный белок. Этого пока не знает никто, хотя бьются над этим вопросом многие.

Любители щелочи

Вдоль всей Восточно-Африканской рифтовой долины вьется цепочка щелочных озер. Прекрасные, но негостеприимные водоемы насыщены каустической содой. Окружающие вулканические скалы выделяют углекислый натрий, который, утаскивая ионы водорода, образует едкий натр (каустическую соду), превращая источники, питающие озера, в щелочь. Под палящим тропическим солнцем озера интенсивно испаряются, и щелочной раствор делается еще более насыщенным. В некоторых озерах Великой рифтовой долины вода вообще непригодна для питья. В других, из-за перенасыщения содой, по берегу образуется сверкающая белая корка, а воздух ест глаза и жжет горло. Но бывают условия и похуже. Содовые озера (например, в Южной Африке и на Альтиплано) могут пересохнуть полностью, оставляя искрящиеся на солнце белые отложения. В геологических толщах Иордании подземные воды настолько едкие (pH 13), что прожигают дыры в резиновых сапогах. И тем не менее даже в таких агрессивных средах существует жизнь.

В содовых озерах Великой рифтовой долины отлично себя чувствуют многие виды архей, бактерий и водорослей, а также многочисленные популяции солоноводной креветки артемии. На берега озер прилетают миллионы фламинго, питающиеся этими креветками, а также цианобактериями, багрянками и беспозвоночными, обитающими в поверхностном слое воды или в донном иле. Эти красавцы сбиваются плотными стаями по берегам, и у синих озер появляется розовая кайма. Такой нежный цвет придают оперению фламинго каротиноидные пигменты, содержащиеся в багрянках и артемиях. Фламинго принадлежит к числу тех немногих птиц, на которых не действует едкая вода содовых озер, однако без трудностей не обходится и у них.

Обширные содовые залежи кенийского озера Натрон настолько агрессивны, что мало кто из животных решается к ним приблизиться. Поэтому фламинго, не опасаясь хищников, активно гнездятся там во время прохладного сезона, когда на содовых залежах еще остаются широкие, но мелкие щелочные водоемы. Однако эти озера не вечны. С приближением сухого сезона жара усиливается, водоемы высыхают, и щелочь становится более насыщенной. Наступает момент, когда вода окончательно перенасыщается едким натром и он выделяется из раствора, облепляя ноги фламинго и застывая тяжелой коркой, тянущей их вниз. Поэтому птицам необходимо покинуть озера до того, как это произойдет. Стоит замешкаться, и они останутся пленниками озер, обреченными на мучительную смерть от обезвоживания. Со взрослыми птицами такое случается редко, поскольку им легче освободиться и улететь. А вот молодняку и птенцам, еще не отрастившим крепких маховых перьев, приходится переходить высыхающее озеро пешком, и для них промедление смерти подобно.

Щелочь, как и кислота, разъедает мясо и волокна. Если вы случайно прольете на кожу или одежду едкий натр, неприятные последствия не заставят себя ждать. Известь (окись кальция) – это щелочной белый материал, получаемый обжигом известняка и в сочетании с водой дающий чрезвычайно едкую гашеную известь. В Средние века в известковых ямах дубили шкуры, удаляя с них мех или шерсть, а также топили чумные трупы. Такие братские могилы используют и в наше время, когда число жертв землетрясения или другого стихийного бедствия оказывается настолько велико, что возникает угроза распространения инфекции от разлагающихся тел.

Ну а для алкалофилов щелочь – самая подходящая среда, pH выше 9 им только в радость. Тем не менее и здесь не обходится без трудностей, поскольку рибонуклеиновая кислота – молекулярный «связной», доставляющий генетическую информацию из ДНК в ядре к вырабатывающей белок цитоплазме, – при pH 9 уже разрушается. Поэтому алкалофилам приходится препятствовать повышению собственного pH. Для этого они активно поглощают ионы водорода из окружающей среды, чтобы повысить их концентрацию в клетках до более или менее приемлемого уровня (как мы помним, количество ионов водорода и уровень pH обратно пропорциональны).

Пуд соли

Большинство организмов не переносят избыток соли, поэтому задолго до появления холодильников и ледников ее использовали в качестве консерванта для продуктов. Однако существуют на свете и галофилы, которые превосходно чувствуют себя в чрезвычайно соленых водах Мертвого моря и Большого Соленого озера в Юте. Соленые озера образуются там, где воды испаряется больше, чем приносят питающие озеро источники. В жарком климате они могут появляться временно, в течение летних месяцев. Поскольку соленая вода тяжелее пресной, она тяготеет к нижним слоям, поэтому озера обычно более соленые на дне и более пресные на поверхности. Некоторые соленые озера, кроме того, содержат много щелочи, поэтому их обитатели должны выдерживать не только соленую, но и щелочную среду.

Самое соленое море на Земле – Мертвое, с 28 %-ным содержанием соли, что в десять раз превышает концентрацию соли в океане. Больше соли вода просто не способна вместить. Плотность воды в Мертвом море так велика, что можно спокойно сидеть на поверхности и читать газету – как свидетельствуют многочисленные открытки и фотографии. Оно располагается на 400 м ниже уровня моря, в самой глубокой сухопутной впадине Земли, и окружено песками пустынь. Под палящим солнцем вода интенсивно испаряется, поэтому, несмотря на питающие озеро пресноводные источники, соленость остается высокой. Как ни странно, Мертвым этот водоем прозвали зря – жизни в нем предостаточно. В соленой воде обитают большие колонии бактерий, архей и водорослей. Большинство из них относится к облигатным галофилам, которым требуется не менее чем 15 %-ная концентрация соли в воде. Некоторые привлекают внимание интересной раскраской – например, красная галобактерия, которая иногда настолько активно размножается, что морские воды окрашиваются в кроваво-красный цвет.

Природа, если не вмешиваться, сама стремится к равновесию{40}. Смешайте стакан соленой воды со стаканом пресной, и через какое-то время вы получите однородный раствор. Поскольку клеточные мембраны не являются полностью водонепроницаемыми, клетка, погруженная в насыщенный соленый раствор, съежится, отдав воду в попытке уравновесить концентрацию соли внутри и снаружи. В результате клетка окажется обезвоженной. Именно эту трудность приходится преодолевать галофилам. Многие решают ее увеличением солености внутри клеток, чтобы сравнять ее с соленостью окружающей среды. Некоторые, например, Halobacterium salinarium, доводят концентрацию хлорида калия до невероятных пределов – в 200 раз больше, чем в клетках человеческого организма. Другие выбирают иную тактику, производя органические растворимые вещества, способствующие сохранению воды в клетке. Разумеется, при таком подходе проблема не исчезает, а просто меняется – теперь клеточным ферментам нужно как-то справляться с высоким содержанием соли. Как им это удается, пока неизвестно.

Археи и бактерии не единственные обитатели соленых водоемов. Кроме них там выживают и некоторые водоросли. Они окрашивают воду в сияющие оттенки красного, синего и зеленого, а также служат пищей мелким ракообразным – например солоноводной креветке Artemia salina, которая тоже без труда переносит повышенную соленость. Артемия – одно из немногих многоклеточных, обитающих в Большом Соленом озере в штате Юта. В определенное время года ее икра покрывает поверхность воды налетом из крошечных коричневых частиц, раздуваемых ветром. Эти икринки обладают невероятной стойкостью, им не страшны ни засуха, ни соль, они могут достаточно долго пролежать в анабиозе, а после погружения в воду благополучно пробудиться к жизни.

Жизнь в камне

В книгах и преданиях жизнь кипит не только на земле, но и под землей. Гномы добывают драгоценные металлы, в холмах живут эльфы и хоббиты, а пещеры с сокровищами охраняют свирепые драконы. Там же расположены копи Мордора и жилища троллей. В недрах земли многие древние народы селили души умерших – вполне логично, ведь на поверхности для всех места не хватит. Орфей, отправляясь на поиски Эвридики, своей утраченной возлюбленной, должен был спуститься в подземное царство, где правил Аид. Месопотамский бог Нергал вместе со своей свитой из демонов и бесов, которые в конце концов уничтожили друг друга, тоже царствовал под землей.

Долгие годы биологи считали, что подземная жизнь существует только в сказках и мифах, и что глубже нескольких метров от поверхности живые организмы можно уже не искать. Однако эти представления остались в прошлом. Невероятно, но микроорганизмы способны выжить в толще скальных пород на значительной глубине, где нет ни кислорода, ни света, зато имеется ощутимое давление. Обнаружили их в 1920 г. в пробах грунтовых вод, собранных на нефтяном месторождении на глубине сотен метров под землей. Тогда этому не придали значения, посчитав найденные формы жизни привнесенными извне во время бурения скважин, однако сейчас способность микроорганизмов существовать глубоко под землей – признанный научный факт. В 1992 г. компания «Тексако», разведывая месторождения нефти и газа в осадочных породах на глубине 2,8 км под Тейлорсвиллским бассейном в Вирджинии, подарила ученым отличную возможность поискать глубинные формы жизни. Даже при строжайшем соблюдении стерильности во время сбора проб в них все равно обнаруживались бактерии. Более того, в основном это были прежде неизвестные науке виды, не нуждающиеся в кислороде, поскольку энергию они добывали из окружающей древней органики, окисляя ее с помощью магния, железа и серы. Кроме того, они обладают жаростойкостью, поскольку населяемые ими породы нагреваются до температуры выше 60° С. Один из видов, обитающих в таких суровых условиях, получил название Bacillus infernos («адская бактерия»).

В наше время микроорганизмы уже обнаружены и глубоко в земных недрах, и под океанским дном, в осадочных и вулканических породах. Осадочные породы откладывались на поверхности Земли и только потом постепенно погружались вглубь, так что найденные в них микроорганизмы, возможно, ровесники этих пород, запертые в их толще с тех самых пор, как миллионы лет назад началось их образование. Эти породы достаточно пористые, поэтому микроорганизмы живут в них повсюду. Однако плотность их невелика. При культивации в лабораторных условиях обнаруживается менее десяти бактерий на каждый грамм породы{41}. Не сравнить с миллиардом бактерий, обитающих в одном грамме садовой почвы. Вулканические породы – граниты и базальты – образуются при затвердении расплавленной магмы. Поскольку они представляют собой монолит, бактерии селятся в основном в тончайших трещинах, однако в некоторых случаях микробы «роют» собственные ходы, растворяя камень. В вулканических породах микроорганизмы появились, скорее всего, уже после застывания – вместе с водой, тысячелетиями просачивающейся с поверхности.

В лабораторных условиях бактерии, выделенные из проб, взятых в Тейлорсвиллском бассейне, росли крайне медленно. По следам дыхательной деятельности бактерий в населяемых ими горных породах Таллис Онстотт из Принстонского университета вместе с коллегами установил, что средний срок удвоения популяции у этих бактерий тоже невероятно долог (несколько тысяч лет). Видимо, в толще породы все силы микробов направлены исключительно на выживание, а не на размножение. А поскольку скорость эволюционного развития в основном определяется скоростью размножения, эти виды бактерий, возможно, практически не изменились за миллионы лет, в течение которых они были погребены заживо в этой толще. Выдумка Жюля Верна о доисторических животных, сохранившихся глубоко в недрах Земли, оказалась не так уж далека от действительности. Он не угадал лишь с размерами, но сама идея существования живых ископаемых где-то под землей оказалась на удивление провидческой.

Подземную жизнь осложняет, помимо всего прочего, почти полное отсутствие органики. В пробах породы, взятых из базальтовых скал реки Колумбия, органики для поддержания жизни явно недостаточно. Однако при этом породы изобилуют микробами. Судя по всему, бактерии питаются самим камнем. По мере выветривания породы высвобождается водород, с помощью которого бактерия превращает растворенный углекислый газ в биомассу, выделяя в качестве продукта распада метан. Выветривание породы обычно объясняют химическими процессами, в результате которых истощаются верхние ее слои. Однако некоторые ученые предполагают, что микроорганизмы тоже играют в нем немаловажную роль, веками точа поверхность породы, добывая минералы и откладывая химические элементы в земной коре.

Золотые прииски в Южной Африке – самые глубокие рудники на Земле, пробитые на глубине 3,5 км от поверхности, где давление в толще камня равно 400 атмосферам, а температура доходит до 60° С. Однако и здесь обитают археи, как установили Таллис Онстотт и Том Кифт (из Горного института Нью-Мексико), побывав на рудниках в 1997 г. Предельная глубина существования жизни определяется не весом каменной толщи, поскольку экстремальное давление одноклеточные организмы выдерживают относительно безболезненно, а температурой окружающей породы. Чем ближе к центру Земли, тем больше она повышается – примерно на 11° С через каждый километр, поскольку радиоактивный распад в ядре планеты происходит с выделением тепла. Следовательно, глубинные организмы должны быть гипертермофилами. Учитывая что верхний предел пригодной для жизни температуры составляет 120° С, археям остаются ближайшие к поверхности пять километров земной коры.

Пещерные жители

Даже погребенные в скальной породе бактерии меркнут в сравнении с уникальными серными экосистемами, обнаруженными в некоторых пещерах. Пещера Мовиле в Румынии сформировалась более 5,5 млн лет назад, и вход туда был перекрыт обвалами. Отрезанные от внешнего мира организмы через какое-то время поглотили почти весь кислород, поэтому воздух в пустотах над водой там крайне разрежен, однако при этом обогащен метаном, углекислым газом и сероводородом. Органические питательные вещества не могут попасть в пещеру извне. Несмотря на то что через пещеру сочатся к Черному морю вулканические воды с растворенным в них сероводородом, они проистекают из подземного резервуара, сформировавшегося тысячи лет назад (в отличие от остальных грунтовых вод Румынии, в них не наблюдается следов радиоактивности). И тем не менее в пещере процветает экосистема. Ее существование обеспечивают бактерии, тонкой слизистой пленкой покрывающие стены пещеры и образующие пенистый налет на поверхности воды. Бактерии объедают известковые стены пещеры, добывая углерод и получая энергию путем окисления сероводорода. За их счет, в свою очередь, существует невероятно пестрая компания беспозвоночных – прозрачных пауков, тысяченожек, мокриц, пиявок и земляных червей. Мокрицы и слизни питаются бактериальным налетом, а их затем поедают пауки и пиявки.

Попасть в пещеру Мовиле можно только по воде, проплыв по затопленным тоннелям, однако на свете имеются и другие, более доступные, но точно так же существующие за счет серы экосистемы. В Южной Мексике расположена Куэва-де-Вилла-Лус, представляющая собой запутанный лабиринт тоннелей и пещер, пронизывающих известковые скалы. Бурлящие на дне источники, насыщенные растворенным сероводородом и известняком, образуют молочно-белые озера. В воздухе стоит запах тухлых яиц. Конденсируясь на стенах, сероводород образует серную кислоту, которая разъедает камень и грозит ожогами любому, кто по неосторожности дотронется до стены. Однако, несмотря на такую негостеприимность, пещера вполне обжита. Камни покрывает бактериальная слизь и налет, с потолка свисают желеобразные нити, образуя живые дрожащие сталактиты, прозванные «соплями». В мелких молочно-белых озерцах снуют рыбешки, по камням бегают пауки, в воздухе танцует мошкара. Как и в пещере Мовиле, основой экосистемы служат хемосинтезирующие бактерии, разъедающие стены пещеры.

Жизнь без кислорода

Мало кому из многоклеточных удастся выжить без кислорода. Однако среди архей и бактерий достаточно таких, которые не только выживают, но и воспринимают кислород как нечто настолько токсичное, что не выносят даже кратковременное его воздействие и потому обречены на существование в бескислородном пространстве. Таких анаэробных сред немало. Например, в иле, покрывающем океанское и озерное дно, в болотах, в канализационных тоннелях и даже в кишечнике животных. Некоторые из этих организмов добывают энергию из водорода, а в качестве углеводного источника роста используют углекислый газ, выделяя в процессе большое количество метана. Поэтому их называют метаногенами. Среди них много сферических архей, относящихся к семейству Methanococcus. Именно они помогают коровам переваривать траву, поселяясь в качестве симбионтов в желудке и расщепляя целлюлозу. Метан, который они при этом вырабатывают, сильнейшим образом влияет на глобальное потепление, поскольку, как и углекислый газ, способствует усилению парникового эффекта.

Если сейчас атмосфера Земли насыщена кислородом, это не значит, что так было всегда. Изначально его было мало либо не было вообще, поэтому воздух состоял в основном из углекислого газа и азота. Кислород был побочным продуктом фотосинтеза одноклеточных – сине-зеленых, появившихся на Земле около 3 млрд лет назад, когда жизнь на планете уже развивалась вовсю (первые одиночные клетки возникли предположительно около 3,8 млрд лет назад). Эти сине-зеленые с помощью энергии солнечного света перерабатывали воду и углекислый газ в углеводы. В качестве побочного продукта реакции выделялся кислород, создавая привычную нам атмосферу. Благодаря сине-зеленым изменился и химический состав океанов. Вода древних морей была железистой, и кислород, производимый сине-зелеными, изначально уходил на окисление растворенного железа. Оно выделялось из раствора и откладывалось на океанском дне в виде закиси железа. Его возраст – около 2,8 млрд лет, позволяет определить и возраст сине-зеленых. Примерно через полмиллиарда лет запасы железа в морской воде истощились и начало увеличиваться содержание кислорода в атмосфере, достигнув сегодняшнего уровня около 0,8 млрд лет назад. Греет душу, что самое, пожалуй, широкомасштабное загрязнение атмосферы в истории планеты находится на совести одноклеточных организмов.

Кислород был (и остается) токсичным для большинства форм жизни, поэтому многие из них вымирали по мере повышения уровня кислорода в атмосфере. Уцелевшие вырабатывали способы защититься от высокоактивных ионов кислорода. Как ни парадоксально, кислород, без которого не выживет не только человек, но и большинство остальных обитателей планеты, является смертельным ядом. Внутриклеточные органеллы под названием «митохондрии» используют кислород в производстве химической энергии, которая питает наши клетки. Однако иногда кислород прихватывает лишний электрон и становится «свободным радикалом». Высокоактивные свободные радикалы мечутся по клетке, устраивая хаос, поскольку их лишний электрон, нуждаясь в партнере, норовит ухватить его из ближайшей молекулы. Мембраны, белки, жиры, ДНК – он нападает на все без разбора. Начинается цепная реакция, поскольку возмутитель спокойствия, отхватив свой электрон, стабилизируется, но создает при этом следующий свободный радикал. Немало молекул успевает пострадать, пока защитные механизмы клетки не уничтожат «хулиганов». Свободные радикалы – основная причина гибели клеток. Кроме того, окисление – способность кислорода отбирать электроны у других молекул – вызывает ржавчину, горение и прогоркание жиров.

Кислород был открыт Джозефом Пристли (1733–1804) во время изучения газа, выделяющегося при нагревании оксида ртути. Он выяснил, что «свеча в этом газе вспыхивает небывало сильным пламенем». Тогда он проверил его воздействие на мышах, помещенных под стеклянный колпак. Одна мышь, под колпаком с обычным воздухом, задохнулась через 15 минут, а вторая, дышавшая «чистым воздухом», как назвал его Пристли, и через полчаса была еще жива. Своим открытием Пристли поделился с французским химиком Антуаном Лавуазье (1743–1794), который впоследствии и дал газу название «кислород». В европейских языках его название происходит от греческих корней, означающих «порождающий кислоту», поскольку Лавуазье (как выяснилось, ошибочно) полагал, будто этот газ входит в состав всех кислот. К несчастью для науки, Лавуазье не успел узнать о своей ошибке, безвременно погибнув под ножом мадам Гильотины.

Пристли крайне дальновидно оценил большую роль кислорода в жизнеобеспечении. Он утверждал, что кислород можно использовать «для улучшения спертого воздуха в помещении, где скапливается много людей ‹…›, дабы из неприятного и нездорового он моментально стал здоровым и свежим». Кроме того, он пришел к выводу, что кислород «может пойти на пользу легким в особо тяжких случаях, когда простого воздуха недостаточно». В старину ученые часто экспериментировали на себе, и Пристли не был исключением. Обнаружив, что дыхание кислородом не приносит вреда, он высказал предположение, что «чистый воздух может стать модным предметом роскоши». В наши дни на улицах Токио продают баночный кислород – для надышавшихся городским смогом жителей пригородов, которым необходимо срочно взбодриться.

Однако дышать чистым кислородом в больших количествах опасно. В 1950-х гг. недоношенных младенцев откачивали чистым кислородом, в надежде, что это поможет им выжить. К сожалению, высокая концентрация кислорода в кювезе вызывала сокращение капиллярных сосудов в сетчатке глаза. В результате у малышей разрасталась соединительная ткань под хрусталиком, и они слепли. Этого можно избежать, если содержание кислорода будет поддерживаться в пределах 40 %. Чистый кислород и сейчас используется ныряльщиками и астронавтами, однако им необходимо соблюдать меры предосторожности, описанные в главах 2 и 6.

Закаленный характер

Сильный холод, в отличие от жары, многие животные, в том числе и человек, переносят нормально. Адаптационные возможности, позволяющие им это делать, описаны в главе 4. Здесь же мы остановим внимание на экстремофилах – организмах, обитающих практически в морозилке и способных переживать замерзание.

Холод как таковой белку не вредит, он просто замедляет скорость биохимических реакций. Соответственно, многие организмы перестают размножаться или даже расти (в самом строгом понимании слова) уже при температурах на несколько градусов ниже нуля. Метаболическая активность продолжается, хотя и менее интенсивно – в антарктических лишайниках она была отмечена даже при –27° С. При –80° С она, скорее всего, останавливается совсем, и тогда организм впадает в анабиоз. Многие клетки, в том числе и человеческие, можно в течение длительного времени хранить при температуре жидкого азота (–196° С). Нижний предел температуры, которую способны пережить охлажденные и затем отогретые клетки, неизвестен, однако, судя по всему, он лежит еще ниже. Тем не менее подвергать животных и отдельные клетки воздействию минусовых температур следует крайне осторожно, поскольку промерзание, в отличие от безобидного холода, может оказаться опасным.

Холодолюбивые организмы, обитающие в ледяной воде, называются психрофилами. Их находят в океанских глубинах, где температура держится на более или менее постоянной отметке 1–3° С, а также внутри ледяных полярных куполов и под ними. Даже в домашних холодильниках они устраиваются вполне вольготно. Целые колонии психрофилов населяют арктические льды, обитая в тонких прослойках незамерзшей воды в толще льда. Среди них насчитывается множество бактерий, архей, водорослей и диатомей – например, снежная водоросль Chlamydomonas nivalis, окрашивающая снег в нежно-розовый и ярко-зеленый, или бактерия Polaromonas vacuolata, отличающаяся пристрастием к температуре в 4° С и прекращающая размножение, если температура повышается до 12° С. Многоклеточные формы жизни в таких условиях тоже встречаются. Погрузившись на глубину 550 м в подводном аппарате, Чарльз Фишер обнаружил непонятное разноцветное грибовидное образование под два метра в диаметре, растущее со дна. Оно кишело червями примерно в два-три сантиметра длиной. При ближайшем рассмотрении непонятная конструкция оказалась застывшей метаново-ледяной глыбой (метан выделялся из расщелин в океанском дне), которая стала кормушкой для бактерий и архей, питающихся метаном, а те, в свою очередь, послужили пищей червям.

Глубоко под антарктическим куполом находится множество пресных озер, замерзанию которых препятствует геотермальный подогрев. Самое большое из них – озеро Восток, расположенное на глубине четырех километров от поверхности льда. Длина его, предположительно, около 200 км, ширина – 50 км, глубина – 500 м, то есть по площади это озеро сопоставимо с озером Онтарио, но в два раза превышает его по глубине. Ледяной панцирь над Антарктидой начал формироваться около 40 млн лет назад, поэтому любые формы жизни, обитающие в озере Восток, скорее всего, уже несколько миллионов лет отрезаны от мира. А значит, озеро – это своего рода капсула времени, сохранившая уникальные микроорганизмы, которые многое могут поведать об истории нашей планеты. Однако, несмотря на живейший интерес ученых к этим подледным озерам, все упирается в невозможность взять образцы воды, не привнеся в них чуждые формы жизни с поверхности. Именно из этих опасений программа по бурению ледяного купола в 1966 г. была остановлена, когда буру оставалось 150 м до проникновения в озеро Восток. Пути решения этой проблемы ищут до сих пор.

Холод – отличный консервант, поскольку значительно замедляет скорость биохимических реакций. В морозном сухом воздухе Антарктики запасы, оставленные в 1904 г. экспедицией капитана Скотта, остаются свежими и сегодня. Останки мамонтов, обнаруженные в арктических льдах, сохранились в целости, а мясо съедобно и более 30 000 лет спустя после их гибели. Эти замороженные ткани представляют собой ценнейший исторический и биологический материал. Своей сохранностью они обязаны тому, что бактерии, разлагающие мясо и продукты, попросту теряют способность расти при низких температурах из-за отсутствия воды.

Жизнь в морозильной камере

Любой садовод знает, как губителен для растений холод. От весенних заморозков гибнут побитые морозом бутоны и почки, а осенние превращают пышные клумбы в пожухшие коричневые кучи. Большинству животных мороз тоже не по нраву.

Исследовать воздействие мороза на живые организмы начали достаточно давно. Еще в 1663 г. Генри Пауэр обнаружил, что в банке уксуса с «крошечными червями», помещенной в смесь льда и соли, жидкость замерзает, а черви «кристаллизуются». Однако после размораживания «черви снова плясали и носились как ни в чем не бывало». Роберт Бойль, также пораженный чудесами заморозки, пробовал замораживать рыб и лягушек – без особого успеха. Первые эксперименты на насекомых проводил Реомюр, французский ученый, работавший над созданием термометра и поэтому обладавший возможностью выражать свои наблюдения количественно. Он выяснил, что обычные гусеницы переносят морозы до –20° С, тогда как другой вид (неназванный) выдерживал только –11° С. Кроме того, он обнаружил, что их кровь замерзает при разной температуре, и сравнил их с бренди различной крепости, поскольку крепкий алкоголь замерзает хуже, чем слабый. Так впервые возникло предположение, что устойчивость к морозу может определяться физико-химическими особенностями крови насекомого. В наши дни это предположение подтвердилось исследованиями, выявившими наличие в крови естественных антифризов.

Золотой век горных и полярных экспедиций принес множество историй о чудесном спасении из смертельных объятий льда и снега. Одну из самых невероятных поведал в 1886 г. Тернер, рассказывая, как собаки, поедая замороженную черную даллию, вырубленную из ледяных глыб, отрыгивали съеденную рыбу живой некоторое время спустя. В тепле собачьих желудков рыба размораживалась и оживала. Верится в такое, конечно, с трудом, а вот слова другого полярника и мореплавателя, британца Джона Франклина, вряд ли кто-то возьмется оспаривать. Во время путешествия к северным полярным морям он писал о карпе, который, пролежав 36 часов замороженным, после размораживания принялся биться и трепыхаться. И тем не менее, несмотря на свидетельства этих путешественников, для большинства живых клеток заморозка смертельна.

Мороз губителен тем, что в клетках и межклеточном пространстве образуются ледяные кристаллы. Острые, словно бритва, ледяные иглы прокалывают тонкие мембраны, окружающие каждую клетку, и содержимое просачивается наружу. Внутриклеточные мембраны, разделяющие клетки на отделы, тоже разрываются, содержимое органелл перемешивается, приводя к нарушению биохимических реакций. В отличие от льда, состоящего из чистой воды, биорастворы содержат различные соли. Поэтому при формировании кристалла льда во внутриклеточном растворе концентрация соли в оставшейся части этого раствора повышается. Тем самым создается осмотическое давление, вытягивающее воду из клеток, заставляя их съеживаться и еще больше увеличивая содержание соли внутри. Образование льда внутри клетки повышает соленость внутриклеточного раствора напрямую. Из-за обезвоживания, наступающего в результате, разрушаются клеточная мембрана и клеточный белок. Кроме того, при замораживании могут разорваться связи между клетками, а повреждение питающих их капилляров ведет к нехватке кислорода и питательных веществ. Из главы 4 мы уже знаем, какими трагическими последствиями чревато обморожение для человека. Однако некоторые растения и животные переносят мороз совершенно безболезненно.

В борьбе с холодом у морозоустойчивых организмов имеется два основных способа. Одни понижают температуру, при которой начинают формироваться кристаллы льда, синтезируя естественные антифризы, другие же просто промерзают насквозь.

В крови многих насекомых и рыб содержатся естественные вещества, препятствующие замерзанию жидкостей организма при минусовых температурах (происходит так называемое переохлаждение ниже температуры затвердевания). Например, зимняя камбала Pseudopleuronectes americanus при падении температуры до 4° С синтезирует по меньшей мере семь различных белков-антифризов. Большой мучной хрущак Tenebrio molitor, которого рыболовы используют в качестве наживки, обладает еще более мощным антифризом. Белки-антифризы снижают точку замерзания воды, привязываясь к поверхности формирующихся кристаллов льда и препятствуя их росту. На температуру таяния уже сформировавшегося льда они никакого влияния не оказывают. Некоторые насекомые, переохлаждающиеся и до более низких температур, используют в качестве антифризов спирты с более низким молекулярным весом – например, глицерин. Они действуют по тому же принципу, что и этиленгликоль, который в Северной Европе добавляют зимой в автомобильные радиаторы, чтобы уберечь от замерзания охлаждающую воду. В организме галлообразующей бабочки Epiblema scudderiana глицерин составляет примерно пятую часть от всех жидкостей, что позволяет насекомому переохлаждаться даже до –38° С, не промерзая.

Однако переохлаждение тоже опасно. Если температура упадет ниже пределов переохлаждения, ткани промерзнут моментально, и тогда возможен смертельный исход. Мгновенному замерзанию способствуют кристаллы льда, распространяющиеся по покрову, или контакт с льдообразующим агентом, вокруг которого, как вокруг ядра, формируется кристалл льда (так бывает при наличии повреждений на покрове). Некоторые мотыльки и бабочки заворачиваются в шелковый кокон, защищающий их покровы от непосредственного соприкосновения со льдом.

Другие животные придерживаются прямо противоположной стратегии и на зиму промерзают насквозь. Волосатая гусеница Cynaephora groenlandica, обитающая в высоких арктических широтах, проводит большую часть года (около десяти месяцев) в ледяных тисках при температуре –50° С или ниже. Не менее интересно поведение сибирского углозуба Salamandrella keyserligii. Эта амфибия водится за Северным полярным кругом, в условиях вечной мерзлоты, где в теплое время года оттаивают лишь несколько верхних метров почвы. Во время короткого полярного лета взрослые углозубы ведут активный образ жизни и откладывают икру в мелких озерцах и болотцах, разбросанных по тундре. Зимуют они в моховых подушках по берегам, где температура может опускаться до –35° С. Вмерзших в лед углозубов находили на глубине 14 м под землей. Когда же приходит весна и тундра оттаивает, углозубы просто размораживаются, просыпаются и выбегают наружу. Свежевылупившиеся расписные черепахи, подвязочные змеи и многие виды лягушек тоже вмерзают на зиму в лед. Зоологи, исследующие, как им это удается, вынуждены хранить свои образцы в морозилке.

Для того чтобы клетка пережила заморозку, кристаллы льда должны быть как можно меньше, тогда они не повреждают мембрану. Достигается их минимизация с помощью особых белков, которые служат льдообразующими агентами. Эти белки синтезируются в клетках в период осеннего понижения температуры. Льдообразующий агент начинает образование льда, создавая тысячи мельчайших кристалликов в межклеточной жидкости. Со временем мелкие кристаллы срастаются, образуя более крупные, как легко увидеть в домашних условиях на примере мороженого, которое долгое время пролежало в морозилке. Чтобы этого не произошло, в игру вступает другой белок, антифриз, стабилизирующий мелкие и безобидные кристаллики льда, предотвращая их разрастание. Таким образом, промерзание идет медленно и контролируемо, позволяя клетке постепенно приспосабливаться.

Вторая трудность, которую приходится преодолевать животным, промерзающим целиком, – это обезвоживание и съеживание клеток при замерзании межклеточной жидкости. Оно чревато денатурацией клеточной мембраны и повреждением клеточного белка, а замерзание более 65 % жидкости организма ведет к летальному исходу. Изменений в клеточном объеме морозостойкие животные избегают, повышая уровень сахара или аминокислот в клетках. Эти криопротекторы снижают образование льда и потерю клеточной жидкости, а также стабилизируют мембрану, позволяя ей выдерживать большую степень съеживания без повреждений. В число криопротекторов входит и глицерин, и сахар – например, трегалоза (у насекомых) или глюкоза (у лягушек).

Размораживание, как и заморозка, тоже не пускается на самотек. Например, когда оттаивают перезимовавшие во льду лягушки, сперва размораживается сердце, что обеспечивает восстановление самых необходимых жизненных функций и ускоряет процесс размораживания, разгоняя теплую кровь по телу.

Анабиоз

Новейшие технологии позволяют сравнительно легко охлаждать клетки и ткани млекопитающих до весьма низких температур. Термин «криоконсервация» происходит от греческого kryos – ледяной холод. При низкой температуре метаболические процессы в клетках настолько замедляются, что организм впадает в состояние анабиоза, и клетки сохраняются гораздо дольше, чем позволяет их естественная продолжительность жизни. Чем ниже температура, тем медленнее метаболизм, а значит, дольше можно сохранить клетки. Для того чтобы не допустить обезвоживания или формирования кристаллов льда, скорость замерзания и размораживания должна строго контролироваться, и в раствор, в котором хранятся клетки, необходимо добавлять криопротекторы. Обычно используется глицерин, поскольку он препятствует превращению воды в лед даже при температуре жидкого азота.

В жидком азоте при температуре менее –196° С замораживают сперму для искусственного оплодотворения. Изначально технология разрабатывалась для крупного рогатого скота, однако уже в 1953 г. ее успешно применили для замораживания спермы человека. Замороженные образцы спермы сохраняют свои свойства десятилетиями, и человеческая сперма, пролежавшая в заморозке 15 лет, успешно послужила для зачатия. Многие мужчины стараются сохранить свою сперму перед вазэктомией, а также химиотерапией или лучевой терапией, которые убивают сперматозоиды. Другие сдают сперму для бесплодных пар. От прошедших заморозку образцов спермы ежегодно рождаются тысячи младенцев, и оплодотворение такой спермой, по имеющимся данным, чаще приводит к зачатию, чем оплодотворение свежей спермой.

Замораживанием при низкой температуре можно сохранять и эмбрионы. Отработанная сперва на домашних животных, сегодня эта технология входит на обычной основе в процедуру ЭКО (экстракорпорального оплодотворения) у людей. Обычно в процессе операции у женщины забирается несколько яйцеклеток, оплодотворяется in vitro, а затем два или три эмбриона подсаживаются в матку. Неиспользованные эмбрионы замораживаются, на случай если первые не приживутся. Таким образом, женщине не приходится повторно проходить процедуру взятия яйцеклеток, а кроме того (поскольку эта процедура – самая дорогостоящая часть операции), снижается стоимость последующих попыток ЭКО. «Запасные» эмбрионы могут храниться в течение нескольких лет, позволяя паре через какое-то время завести при желании и второго ребенка. Они также могут понадобиться, если женщине придется проходить медицинские процедуры, способные снизить ее фертильность, или даже для других женщин, у которых не вырабатываются собственные яйцеклетки. Первым ребенком, родившимся из замороженного эмбриона, стала Зоуи Лейленд – она появилась на свет 28 марта 1984 г. в австралийском Мельбурне. На сегодняшний день отмечено не одно успешное развитие беременности с эмбрионами, пролежавшими замороженными пять лет.

Поддаются замораживанию и другие клетки человеческого тела. Самые знаменитые – это, конечно, клетки HeLa, выделенные из раковой опухоли пациентки по имени Henrietta Lacks (отсюда и название) и немедленно замороженные в жидком азоте. Сегодня, спустя много лет после смерти пациентки, потомков изначальных клеток можно обнаружить в исследовательских лабораториях по всему миру, где они используются в качестве ценного научного материала.

Если отдельные клетки млекопитающих можно замораживать и размораживать практически без последствий, это не значит, что подобную процедуру выдержит организм целиком. В США уже сейчас существует несколько фирм, занимающихся криоконсервацией. Они замораживают тела (или головы) недавно усопших, в надежде, что когда-нибудь в будущем технологии позволят их правильно разморозить, вылечить, заменить «изношенные» части тела и их жизнь продолжится с чистого листа. Большинство таких компаний располагается в Калифорнии, где законы, касающиеся криоконсервации, наименее жесткие. К сожалению, мечты клиентов пока далеки от осуществления, поскольку ткани человеческого тела после смерти быстро повреждаются, лишившись притока крови.

Однако в каком-то смысле сохранить человека с помощью замораживания все же можно. Сохраняется его уникальный геном, совокупность генов организма. Для этого необходимо всего несколько клеток, которые можно взять, например, из пробы крови (эритроциты принадлежат к безъядерным клеткам, поэтому не содержат ДНК, все же в крови найдется достаточно лейкоцитов, чтобы обеспечить необходимую генетическую информацию). Возможно, когда-нибудь мы научимся восстанавливать человека из единственного лейкоцита – с помощью тех же технологий, благодаря которым удалось клонировать знаменитую Долли. Насколько это будет этически оправдано – другой вопрос. Однако не стоит забывать, что даже при удачном развитии событий клон, полученный из этой единственной клетки, будет вашей копией не больше, чем однояйцевый близнец. Ведь индивидуальность – это не просто набор генов.

Миллионное состояние на микробах

Экстремофилы превращаются в прибыльный бизнес. Основу развития этого рынка составляют ферменты, выделенные из организмов, способных переносить экстремальный холод, жару, соленость, кислотность, давление, тяжелые металлы и многие другие крайности. Представители фирм, занимающихся исследованиями в области биотехнологий, отправляются на край света в поисках новых экстремофилов, которые могут содержать неизвестные доселе гены, а затем мчатся со всех ног патентовать свои открытия. Потенциальная прибыль огромна, поэтому конкуренция в этой области жесткая.

Тысячи молекулярных биологов ежедневно пользуются в своих исследованиях способностями гипертермофилов. Жаростойкие ферменты применяются для того, чтобы в процессе под названием ПЦР (полимеразная цепная реакция) размножить выбранный фрагмент ДНК. Как нетрудно догадаться, этот процесс подразумевает повторяющиеся один за другим реакционные циклы. Сперва ДНК требуется нагреть, чтобы разделить на две составляющие цепочки. Затем ее охлаждают и каждую цепочку реплицируют с помощью фермента. Эти два шага многократно повторяют, обеспечивая рост числа молекул ДНК в геометрической прогрессии. В основе метода ПЦР лежит использование фермента ДНК-полимеразы, который не распадается при высоких температурах (95° С), необходимых для разделения двух цепочек ДНК. К счастью, именно такими свойствами обладают гипертермофильные ферменты, в том числе и Taq-полимераза, применяющаяся в ПЦР. Метод ПЦР имеет и прикладное значение, он широко используется в медицине – например, для определения бактериальных штаммов или генетических обследований. Кроме того, он совершил настоящий переворот в криминалистике: для производства миллиона копий ДНК по технологии ПЦР достаточно всего нескольких молекул, поэтому теперь преступника можно установить по одной-единственной клетке, оставленной на месте преступления.

Taq-полимеразу выделили из археи Thermophilus aquaticus, найденной Томасом Броком в супергорячих гейзерах Йеллоустонского национального парка. Более 20 лет она томилась без дела в лаборатории, пока Кэри Муллис не догадался, что с ее помощью можно проводить амплификацию ДНК. Блестящий ученый, но весьма эксцентричный человек, Муллис настроил против себя многих представителей науки своими резкими заявлениями и нетрадиционной подачей лекционного материала – со слайдами серфингистов или своих подружек в компрометирующих позах. И тем не менее, он стал нобелевским лауреатом – более чем заслуженно, поскольку своей работой он совершил переворот в медицине и биологии, а изобретенная им технология ПЦР стала основным инструментом современной молекулярной биологии. Taq-полимераза была первым ферментом, выделенным из экстремофильного организма, нашедшим промышленное применение. Ее продажи приносят более 80 млн долл. прибыли в год. Борьба за патент между разными компаниями ведется до сих пор.

За ферментами, выделяемыми из алкалофилов, вовсю гоняются производители моющих средств. Ферменты добавляются в стиральные порошки к биологическим средствам, чтобы расщеплять белки, сахар и жиры, приставшие к грязным вещам. Однако стиральные порошки обладают повышенной щелочностью, и большинство ферментов в таких условиях теряют свойства. Ферменты же, добытые из алкалофилов, наоборот, отлично трудятся при высоком водородном показателе (pH). В 1997 г. американская компания Genecor представила порошок с ферментом, полученным из алкалофила, обнаруженного в содовом озере. Согласно рекламе, даже постиранная сотни раз с этим порошком вещь выглядит как новая. Фермент разбивает тончайшую прослойку поверхностного пушка, на котором и собирается грязь, оставляя саму ткань нетронутой. Порошок стал первым случаем широкого промышленного применения веществ, полученных от экстремофилов.

Потенциальных областей применения у экстремофилов уйма. Ацидофилы могут облегчить добычу ценных металлов из низкосортных руд – этот процесс, называющийся микробным выщелачиванием, все чаще применяется при добыче золота, меди и урана. Ферменты, полученные из психрофилов, можно добавлять в мыло и моющие средства для холодной воды, а также использовать в качестве катализаторов для реакций, проходящих в холоде. Бактерии и археи все активнее применяют для биовосстановления, а также для расщепления токсичных веществ, таких как пестициды, нефть и растворители. Промышленное использование экстремофилов пока лишь набирает обороты, однако перспективы у него гигантские.

Внеземная жизнь?

В августе 1996 г. героем международных новостей стал маленький, ничем не примечательный с виду камешек под порядковым номером ALH84001{42}. В отличие от большинства научных статей, которые читает, в лучшем случае, горстка любителей, открытие подробно обсуждалось и в газетах, и по радио, и в телевизионных новостях по всему миру еще до того, как была опубликована статья, посвященная данному феномену. Ажиотаж вполне объясним: ученые НАСА заявляли, что на Марсе обнаружена жизнь.

Шестнадцать миллионов лет назад ударившийся о поверхность Марса метеорит выбил дождь мелких осколков, которые унеслись в открытый космос. Около 11 000 лет назад один из этих фрагментов попал в поле притяжения Земли и обрушился на ледяную пустошь Аллен-Хиллс в Антарктиде. Так что наш ALH84001 – марсианин, один из немногих обнаруженных на сегодняшний день метеоритов подобного рода. Их марсианское происхождение подтверждается и минеральным составом, и составом газовых пузырьков, запертых в толще камня. Они идентичны камням на поверхности Марса и атмосфере планеты, замеры и пробы которых были взяты марсоходом «Викинг» в 1976 г.

В самой сердцевине ALH84001 ученые обнаружили неправильной формы образования, напоминающие наши земные микроископаемые, сформировавшиеся около 4 млрд лет назад. Дополнительные исследования привели ученых к выводу, что взятые по отдельности эти примеры можно толковать по-разному, однако вместе они свидетельствуют о том, что когда-то на Марсе существовала жизнь. Увы, эти выводы оказались, судя по всему, преждевременными. Вдохновившись перспективой обнаружить внеземную жизнь, за ALH84001 принялись несколько международных научно-исследовательских групп, снова и снова препарируя и анализируя космический камень. Через год кропотливой работы ученые единодушно пришли к выводу, что обнаруженные структуры – это просто минеральные отложения, а не окаменелые останки внеземной жизни.

И все же человечество не спешит расставаться с надеждой отыскать соседей по Солнечной системе. Экстремальные условия, в которых благополучно обитают многие археи, сходны с имеющимися на других планетах и их спутниках. Например, холодные сухие каменистые пустоши Антарктиды настолько приближены к условиям жизни на Марсе, что именно там испытывают приборы, предназначенные для экспедиций на Красную планету. Однако и на этих пустошах, в миллиметре от поверхности обнаруживается тонкая прослойка фотосинтезирующих микроорганизмов.

Как ни парадоксально, бактерии способны выжить даже в безвоздушном космическом пространстве. В апреле 1967 г. на Луну опустился зонд «Сервейер-3». Два с половиной года спустя к нему наведались астронавты с «Аполлона-12», чтобы проверить, как зонд переносит суровые условия – интенсивное солнечное излучение, почти безвоздушное пространство и резкие перепады температур. Сняв телекамеру, они отвезли ее на Землю в герметичном контейнере, который затем вскрыли в стерильных условиях карантина. Культивировав образцы, взятые изнутри камеры, микробиологи, к своему изумлению, обнаружили рост микроорганизмов. Однако сенсации не произошло – это оказались не лунные формы жизни, а вполне знакомые земные. Видимо, во время сборки камеры техник чихнул, и в самую сердцевину прибора попали бактерии, которые и оставались запертыми там до тех пор, пока телекамеру не вскрыли в лаборатории. Скептики, разумеется, вправе возразить, что бактерии могли вовсе не путешествовать на Луну и обратно, а появились в камере уже по возвращении на Землю. Однако учитывая соблюдавшуюся самым строгим образом стерильность во время снятия камеры и ее анализа, это маловероятно. Судя по всему, бактерии действительно продержались два с половиной года на поверхности Луны.

Между тем здесь необходимо различать выживание и рост. Без воды жизнь (в нашем ее понимании) может существовать только в состоянии анабиоза. Рост и размножение в этом случае исключаются. Поэтому поиски жизни в Солнечной системе сводятся, по сути, к поискам воды. И надежды отыскать ее не так уже несбыточны. В 1979 г. аппарат «Вояджер», достигнув Юпитера, обнаружил слой льда на одном из его спутников, Европе. Согласно более свежим данным, полученным от космического аппарата «Галилео», на глубине многих миль под этим ледяным панцирем может лежать целый океан воды – подобно большим озерам под ледяным куполом Антарктиды. Сейчас ученые планируют послать еще один аппарат, чтобы проверить эту гипотезу и выяснить, существует ли жизнь на Европе. А вдруг удастся ее обнаружить?

Примечание о единицах измерения

Весь научный мир пользуется общей метрической системой. По крайней мере, должен и обычно старается. Но так было не всегда, поэтому старинные научные работы пестрят самыми разнообразными единицами измерения и измерительными приборами. Даже мне на протяжении жизни приходилось не раз становиться свидетельницей превращения одних единиц в другие или смены названий, когда метрологические комитеты отдавали предпочтение тому или иному ученому. В своей книге я старалась использовать стандартные метрические единицы. Для большинства европейцев, привыкших к метрической системе, в них ничего страшного нет, однако британцы, как обычно, отличаются (несмотря на постепенное введение метрической системы, на нашем районном рынке до сих пор фрукты продают фунтами, а не килограммами). Жителям США и Канады тоже может оказаться непросто освоиться с метрическими единицами. Для них, а также для консервативных британцев, я и пишу следующие две страницы, на которых приведу использованные в книге единицы измерения и объясню, как переводить их в более привычные.

Научные труды, посвященные большим высотам, а также физиологии дыхания, всегда отличались разнообразием единиц давления и высоты. Во избежание путаницы я привожу все высоты в метрах – чтобы перевести их в футы, умножайте на 3,28. Давление обычно выражается либо в фунтах на квадратный дюйм, либо в миллиметрах ртутного столба (известных также как торры), либо (в последнее время) в килопаскалях (кПа). Поскольку в литературе и большинстве трудов по физиологии используются в основном торры, я выбрала их. Молодежи, более привычной к килопаскалям, придется умножать все приведенные цифры на 0,133.

С единицами глубины и давления под водой путаницы еще больше. Я везде приводила глубину в метрах, которые можно перевести в футы умножением на 3,28. В Британии глубину традиционно мерили в фатомах (морских саженях) – это единица, равная размаху обеих рук. Фатом равен шести футам, или 1,83 м. Подводное давление обычно измеряется в единицах атмосферного давления (барах), которые взяла и я. Один бар (одна атмосфера) равен 760 торрам, или 15 фунтам на квадратный дюйм. У водолазов и ныряльщиков давление может выражаться и через глубину, то есть в метрах морской воды (ммв): 10 ммв равно 1 бару. На глубине 30 ммв давление составляет 4 бара, складываясь из давления на поверхности (1 бар) и подводного давления (3 бара).

Для измерения температуры существует три различные шкалы. Две широко известны – это шкала Цельсия и шкала Фаренгейта Я приводила температуру по Цельсию, поскольку именно она используется в медико-биологических науках, а также более привычна европейцам. Ноль градусов по Цельсию – это температура замерзания воды, сто градусов – температура кипения на уровне моря. Соответствующие температуры по Фаренгейту равны 32° F и 212° F. Поэтому, для того чтобы перевести градусы Цельсия в градусы Фаренгейта, необходимо умножить число на 1,8, затем прибавить 32. Для обратной конвертации отнимите от числа температуры 32 и разделите на 1,8. Физики используют шкалу Кельвина, в которой температура отсчитывается от абсолютного нуля (–273° С), минимального предела возможной температуры. Таким образом, температура по Кельвину – это температура по Цельсию плюс 273.

Количество энергии, откладывающейся в тканях организма в результате поглощения радиации («поглощенная доза»), измеряется в греях (1 грей = 1 джоуль на килограмм поглощенной ионизации). Под дозой облучения обычно имеется в виду «эффективная доза» – величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека. Она представляет сумму произведений эквивалентной дозы в органах и тканях на соответствующие взвешивающие коэффициенты. Выражается она в зивертах (Зв). Максимальный допустимый предел облучения для астронавта НАСА составляет 4 Зв (за всю жизнь) для мужчин и 3 Зв для женщин. Однако зиверт – это достаточно крупная единица, поэтому радиационные дозы обычно выражают в миллизивертах (мЗв) или микрозивертах (мкЗв). Один зиверт равен 1000 мЗв, или 1 000 000 мкЗв. Если речь идет о более крупных дозах облучения, как у астронавтов, ее чаще приводят в греях, а не в зивертах.

Литература для дополнительного чтения

Перечисленные ниже книги и статьи делятся на две категории. Первая – это рассказы о пребывании в экстремальных условиях тех, кто испытал их на себе. Это увлекательная приключенческая литература. Вторая категория – это книги, содержащие дополнительные сведения о физиологии человека и других живых существах, об адаптационных способностях, позволяющих выживать в экстремальных условиях (они обычно написаны в доступной для массового читателя форме).

Общие

Attenborough, D. (1998) The Life of Birds BBC Books.

Boorstin, D. (1983) The Discoverers Penguin Books

Case R. M. and J. M. Waterhouse (1994) Human Physiology: Age, Stress and the Environment Oxford University Press

Haldane, J. S. (1922) Respiration Yale University Press

Haldane, J. B. S. (1940) Keeping Cool and Other Essays Chatto& Windus Schmidt-Nielsen, K. (1997) Animal Physiology: Adaptation and Environment (5th edn) Cambridge University Press

Stroud, M. (1998) The Survival of the Fittest Jonathan Cape

1. Жизнь на вершине

Hunt, J. (1954) The Ascent of Everest Hodder&Stoughton

Messner, R. (1979) Everest: Expedition to the Ultimate Kaye&Ward

Venables, S. (1989) Everest. Alone at the Summit Odyssey Books

Venables, S. (1989) Everest Kangshung Face Hodder&Stoughton

Ward M., J. S. Milledge and J. B. West (1995) High Altitude Medicine and Physiology (2nd edn) Chapman&Hall.

West, J. B. (1998) High Life. A History of High Altitude Physiology and Medicine Oxford University Press.

Whymper, E. (1891) Travels amongst the Great Andes of the Equator John Murray.

2. Жизнь под гнетом

Beebe, W. (1934) Half Mile Down Harcourt Brace and Co.

Case, E. M. and Haldane, J. B. S. (1941) 'Human physiology at high pressure I: Effects of nitrogen, carbon dioxide and cold' Journal of Hygiene 41, pp. 225–249

Clark, R. (1968) J. B. S.: The Life and Work of J. B. S. Haldane Oxford University Press.

Hong, S. K. and H. Rahn (1967) 'The Diving Women of Korea and Japan' Scientific American, 216, pp. 34–43

Wells, M. (1998) Civilization and the Limpet Perseus Books

3. Жизнь в пекле

Cabanac, M. (1986) 'Keeping a cool head' NIPS 1, pp. 41–4

Gasmow, R. I. and J. F. Harris (1973) 'The infra-red receptors of snakes' Scientific American, 228, pp. 94–100

Taylor, C. R. (1969) 'The eland and the oryx', Scientific American, 220, pp. 88–95

Walker, A. and P. Shipman (1996) The Wisdom of Bones. Weidenfeld and Nicolson

Wolf, A. (1958) Thirst. Charles C. Thomas

4. Жизнь в холоде

Brett-James, A. (1966) 1812. Macmillan

Bullimore, T. (1997) Saved Little, Brown&Company

Cherry-Garrard, A. (1994) The Worst Journey in the World Picador

Heinrich, B. and H. Esch (1994) 'Thermoregulation in Bees', American Scientist 82, pp. 164–70

Krackauer, J. (1997) Into Thin Air Macmillan

Scott, R. F. (1913) Scott's Last Expedition Smith Elder

Spindler, K. (1994) The Man in the Ice Random House

5. Жизнь в скоростном ряду

Bannister, R. (1954) First Four Minutes Putnam

McArdle, W. D., F. I. Katch and V. L. Katch (1994) Essentials of Exercise Physiology Lee and Febiger

McGowan, C. (1999) Diatoms to Dinosaurs: The Size and Scale of Living Things Penguin Books

6. Последний рубеж

Chaikin A. (1998) A Man on the Moon. Penguin Books

Beatty, J. K. and A. Chaikin (1981) (eds) The New Solar System. Cambridge University Press

Nicogossian, A. E., C. L. Huntoon and S. L. Pool (1994) Space Physiology and Medicine Lee&Febiger

Sharman, H. and C. Priest (1993) Seize the Moment: the Autobiography of Helen Sharman Victor Gollancz

7. Экстремалы из экстремалов

Copley, J. (1999) 'Indestructible' New Scientist, 23 October 1999, pp. 45–8

Gross, M. (1998) Life on the Edge Plenum Press

Madigan, M. T., J. M. Martinko and J. Parker (2000) Biology of Microorganisms (9th edn) Prentice Hall

Pain, S. (1998) 'The Intraterrestrials' New Scientist, 7 March 1998, pp. 28–32

Pappalardo, R. T., J. W. Head and R. Greeley (1999) 'The Hidden Ocean of Europa' Scientific American, 281, pp. 34–43

Storey, K. B. and J. M. Storey (1990) 'Frozen and Alive' Scientific American, 263, pp. 62–67

Список иллюстраций

На вершину Килиманджаро

Вид на Килиманджаро из национального парка Амбосели, Кения (Daryl Balfour/Tony Stone Images)

1. Жизнь на вершине

Гора Эверест (Chris Noble/Tony Stone Images)

Декомпрессионная камера Поля Бера (из Bert, P., La Pression Baromtrique, 1878)

Воздухоплаватели Глейшер и Коксуэлл (из Glaisher J., Flammarion C., de Fontvielle E. and Tissandier G. Travels in the Air, 1871)

Воздухоплаватели Тиссандье, Сивель, Кроче-Спинелли (из Bert, P., La Pression Baromtrique, 1878)

Эдмунд Хиллари и Тенцинг Норгей (Hulton Getty)

Высота и давление воздуха

Блез Паскаль (Hulton Getty)

Легкие

Дыхательная система у птиц

Структура гемоглобина

Эритроциты (Dr. D.W. Gregory/ Wellcome Trust Medical Photographic Library)

Давление воздуха на вершине Эвереста по месяцам

Мейбл Фицджеральд с коллегами на пике Пайка

Зависимость между атмосферным давлением и содержанием углекислого газа (CO2) или кислорода (О2) в легких

Доктор Крис Пиццо берет пробы альвеолярного газа (John B. West)

В омут с головой

Ныряльщик с аквалангом (Stephen Frink/Corbis)

2. Жизнь под гнетом

Александр Македонский в стеклянной бочке – арабский вариант (из Beebe W. Half a Mile Down, 1934)

Океанские глубины в разрезе

Водолазный колокол водяного паука (Andrew Purcell/Bruce Colman Collection)

Крушение корабля Королевского флота «Ройял Джордж» (воспроизводится с разрешения Портсмутского городского музея)

Старинный аппарат для погружения (Национальный морской музей)

Собирательницы «морского ушка», Утамаро, 1789 (воспроизводится с разрешения Британского музея)

Ныряльщицы ама (Fosco Maraini)

Строение уха

Жемчужный наутилус (Ron&Val Taylor/Ardea)

Самка морского слона (Jeff Foott/Bruce Coleman Collection)

Рекордный заплыв морского слона

Дж. Б. С. Холдейн (Hulton Getty)

Батисфера (из Beebe W. Half a Mile Down, 1934)

Поражение костей у подводников

Подводная лодка Корнелиуса Дреббеля (воспроизводится с разрешения Музея подводных лодок ВМФ)

Рабочие чертежи Марка Эдвардса

Подводный аппарат «Алвин» (David Meltzer/National Geographic Image Collection)

С легким паром!

Онсен (Keith Brosky/Tony Stone Images)

3. Жизнь в пекле

Песчаные дюны пустыни (Images Colour Library)

Саламандра (Bob Gibbons/Ardea)

Бедуин из племени туарегов (Sandro Prato/Bruce Coleman Collection)

Шлирен-снимок человеческого тела (Dr. Ray Clark/Science Photo Library)

Пробковые шлемы (George W. Hales/Hulton Getty)

Верблюд дромадер с кислородными датчиками (David O'Neill/Silsoe Research Institute & Imperial College/Department for International Development)

Блюз холодной воды

Плавучие льды Антарктики (Images Colour Library)

4. Жизнь в холоде

Эскимосы (David Hiser/Tony Stone Images)

Файнс и Страуд пересекают Антарктиду (Ранульф Файнс/Королевское географическое общество)

Отложения бурого жира у младенцев

Эци – первобытный охотник (Corbis/Sgyma)

Пловец через Ла-Манш, 1951 год (Charles H. Hewitt/Hulton Getty)

Распухшие пальцы шерпы (Bentley Beetham/Королевское географическое общество)

Обморожение пальцев (из Ward M.P., Milledge J.S. & West J.B., High Altitude Medicine & Physiology, 1995)

Песец (National Geographic/Images Colour Library) Чудесная сеть

Птенцы императорского пингвина (Wolfgang Kaehler/Tony Stone Images)

5. Жизнь в скоростном ряду

Роджер Баннистер финиширует в забеге на одну милю (Hulton Getty)

Структура АТФ

Сокращение мышц

Линфорд Кристи на старте (Neal Simpson/Empics)

Морис Грин (Stu Forster/Allsport)

Хайле Гебреселассие (Mike Powell/Allsport)

Кирен Перкинс, золотой олимпийский медалист в соревнованиях по плаванию (Simon Bruty/Allsport)

Греческая ваза с изображением бегунов (воспроизводится с разрешения музея Ашмола, Оксфорд)

Бегущий гепард (Images Colour Library)

Серия кадров с галопирующей лошадью, сделанная Эдвардом Майбриджем (Hulton Getty)

6. Последний рубеж

Базз Олдрин на Луне (NASA/Science Photo Library)

Юрий Гагарин («Новости»/Science Photo Library)

Прыгун с «тарзанкой» (Images Colour Library)

Перераспределение жидкостей организма в условиях невесомости

Органы равновесия во внутреннем ухе

Нормальная кость в сравнении с пораженной остеопорозом (Dr. D.W. Gregory/Wellcome Trust Medical Photographic Library)

Майкл Фоул на беговой дорожке (NASA)

Северное сияние (National Geographic/Images Colour Library)

Дозы радиации

Уайли Пост, авиатор (Смитсоновский институт/Национальный музей американской истории)

Брюс Маккэндлесс II в открытом космосе (NASA/Science Photo Library)

Восход Земли над Луной (Bill Anders/NASA/TRH Pictures)

7. Экстремалы из экстремалов

Черный курильщик (Dr Ken MacDonald/Science Photo Library)

Древо жизни

Горячие серные источники в Йеллоустоне (Paul Chesley/Tony Stone Images)

Helicobacter pylori (P. Hawtin, University of Southampton/Science Photo Library)

Страницы: «« 123456 »»

Читать бесплатно другие книги:

Что делать, если в один момент ты теряешь все, что тебе так дорого, и в твоей жизни остаётся лишь пу...
Имя Парацельса окутано тысячей тайн и загадок. Человек, на несколько веков опередивший свое время, и...
Жасмин была знакома со всеми соседскими котами и кошками. Раз уж родители не разрешают завести своег...
В книге рассказывается о малоизвестных событиях, связанных со становлением духовной культуры Евразии...
Детектив Алекс Кросс узнает страшную новость: его племянница Каролин жестоко убита, а тело ее изурод...
Об Андрее Загорцеве можно сказать следующее. Во-первых, он – полковник спецназа. Награжден орденом М...