Тайны чисел: Математическая одиссея Сотой Маркус

Marcus du Sautoy

THE NUMBER MYSTERIES

A Mathematical Odyssey

Through Everyday Life

Copyright © Marcus du Sautoy, 2011

© Галактионов А. В., перевод на русский язык, 2016

© Издание на русском языке, оформление.

ООО «Издательская Группа «Азбука-Аттикус», 2016

КоЛибри®

* * *

Посвящается Шани

Введение

Действительно ли происходит изменение климата? Не разлетится ли внезапно Солнечная система? Безопасно ли передавать номер вашей кредитной карты через интернет? Как я могу обыграть казино?

С того времени, как люди научились общаться между собой, они задают вопросы, пытаясь приспособиться к окружающей действительности и предсказать, что сулит будущее. Самый мощный инструмент, созданный нами для навигации по необузданному и сложному миру, в котором мы живем, – это математика.

От предсказания траектории футбольного мяча до оценки популяции леммингов, от взламывания кодов до выигрышной стратегии в игре «Монополия» – всюду математика предоставляет тайный язык для раскрытия секретов природы. Но у математиков нет всех ответов. Есть много глубоких, фундаментальных вопросов, которые еще не поддаются нашим усилиям.

В каждой главе «Тайн 4исел» вам предлагается совершить путешествие по крупному разделу математики, а в конце главы я рассказываю о еще нераскрытой математической тайне. Вы узнаете о нескольких из величайших нерешенных задач всех времен.

Если вы сумеете справиться с одной из этих головоломок, то снискаете не только математическую славу, но и приобретете астрономическое состояние. Американский предприниматель Лэндон Клэй предложил премию в миллион долларов за решение любой из этих математических тайн. Возможно, вам покажется удивительным, что бизнесмен выделил такие огромные средства на премии за решение математических загадок. Но он понимает, что вся наука, технология, экономика и даже будущее нашей планеты зависят от математики.

Каждая из пяти глав книги даст вам представление об одной из этих задач на миллион долларов.

Глава 1 – «Любопытный случай никогда не заканчивающихся простых чисел» – посвящена самому фундаментальному объекту математики – числу. Вы познакомитесь с простыми числами, не только наиболее важными в математике, но также и самыми загадочными. «Математический миллион» ждет того человека, который раскроет их секреты.

В главе 2 – «Рассказ о неуловимой форме» – мы отправимся в ознакомительное путешествие по самым странным и замечательным формам, созданным природой или руками человека: от игральных костей до пузырей, от чайных пакетиков до снежинок. В конечном счете мы возьмемся за самую сложную из этих проблем – форму нашей Вселенной.

Глава 3 – «Секрет победной серии» – покажет вам, что такие разделы математики, как логика и теория вероятностей, могут дать вам преимущество в различных играх. Ставите ли вы на кон ненастоящие игровые деньги, или же рискуете настоящими, математика часто оказывается секретным оружием для достижения успеха. Но некоторые относительно простые игры до сих пор сбивают с толку даже самые выдающиеся умы.

Криптография является предметом главы 4, «Случай кода, не поддающегося взлому». Математика часто играет ключевую роль для расшифровывания секретных посланий. Но я покажу вам, как можно использовать умную математику для создания новых шифров, которые позволяют вам безопасно общаться через интернет, отправлять послания через пространство и даже читать мысли вашего друга.

Глава 5 повествует о том, чему мы так желаем научиться. Это «Поиск предсказания будущего». Я объясню, каким образом математические уравнения оказываются лучшими гадалками. Они предсказывают затмения, объясняют, почему бумеранги возвращаются назад, и говорят в конечном счете, какое будущее ждет нашу планету. Но мы до сих пор не умеем решать некоторые из этих уравнений. В конце главы обсуждается проблема турбулентности, которая влияет на все – от штрафных ударов Дэвида Бекхэма до движения самолетов, и тем не менее остается одной из величайших тайн математики.

Математика, которая представлена в этой книге, будет и простой и сложной. Нерешенные задачи, которые завершают каждую главу, настолько трудны, что никто не знает, как разобраться с ними. Но я верю в пользу приобщения людей к великим идеям математики. Нас вдохновляет литература, когда мы знакомимся с Шекспиром или Стейнбеком. Музыка моментально оживает во всем своем великолепии, когда мы слышим Моцарта или Майлса Дэвиса. Разумеется, самому трудно исполнять Моцарта, Шекспир также требует напряжения даже у искушенного читателя. Но это вовсе не означает, что мы должны доверить работы этих великих творцов только знатокам. То же относится и к математике. Если что-то в ней кажется сложным, наслаждайтесь тем, что сумели понять, и вспомните то чувство, которое возникло у вас при первом чтении Шекспира.

В школе нас учат, что математика лежит в основе нашей деятельности. В этих пяти главах я хочу вдохнуть в математику жизнь и познакомить вас с некоторыми величайшими математическими достижениями. Я также хочу предоставить вам возможность сравнить себя с самыми изощренными умами за всю историю, когда мы будем знакомиться с несколькими из тех задач, которые остаются нерешенными. Надеюсь, в конце вы поймете, что математика на самом деле составляет сердцевину всего, что мы видим, и всего, что мы делаем.

Примечания к интернет-ресурсам

У этой книги есть собственный веб-сайт: http://www.4thestate.co.uk/2012/08/numbermysteries. На протяжении книги я буду ссылаться на PDF-файлы, которые вы можете загрузить с этого сайта, чтобы сыграть в некоторые игры или создать формы, упомянутые в книге.

В тексте также имеются ссылки на внешние веб-сайты. Вы можете зайти на них обычным образом, напечатав адрес в вашем веб-браузере, либо воспользоваться смартфоном, чтобы сосканировать QR-код, приведенный рядом с каждым веб-адресом. Вам необходим смартфон, умеющий распознавать эти коды, на который необходимо установить QR-ридер. Чтобы сосканировать код, запустите QR-ридер и направьте фотокамеру смартфона на этот код при хорошем освещении.

Помимо этого имеется приложение для iPhone, которое называется «Marcus du Sautoy’s Number Mysteries». Оно включает интерактивные версии ряда игр, упомянутых в книге.

Также приведу некоторые другие сайты, которые вам может быть интересно посетить:

www.conted.ox.ac.uk Если вы хотите углубиться в некоторые из идей или тем этой книги, обратите внимание на пятинедельный курс, разрабатываемый факультетом непрерывного образования Оксфордского университета.

http://rigb.org/education/games/microsites/microsite-number-mysteries Здесь содержатся мои рождественские лекции, прочитанные в 2006 г. в Королевском институте. На этом сайте имеется немало флеш-игр – задача коммивояжера, шифры, которые требуется взломать, и многое другое.

http://people.maths.ox.ac.uk/dusautoy Моя домашняя страница, там вы можете найти избранные материалы из математических журналов и средств массовой информации.

www.simonyi.ox.ac.uk Официальный сайт занимающего должность профессора Симони в Оксфордском университете, учрежденную для популяризации науки. На этом сайте имеется список событий, в которых я собираюсь принять участие.

http://twitter.com/MarcusduSautoy Присоединяйтесь к моему твиттеру.

www.mangahigh.com Разрабатываемая мной онлайновая математическая школа, содержащая бесплатные онлайн-игры и ресурсы для помощи в захватывающем постижении математики.

www.whatevertrevor.com Разрабатываемая мной бесплатная футбольная игра. Используйте свои математические способности, чтобы попытаться предсказать положение команд в итоговой таблице Премьер-лиги в следующем сезоне, и вы можете выиграть денежный приз!

www.claymath.org Веб-сайт математического Института Клэя, где содержится математическое описание задач на миллион долларов.

http://turnbull.mcs.st-and.ac.uk/~history Замечательный ресурс с биографиями математиков, созданный Сент-Эндрюсским университетом.

http://mathworld.wolfram.com Хороший сайт с более формальными определениями и объяснениями математического материала.

http://www.maths.ox.ac.uk/study-here/undergraduate-study/outreach/marcus-marvellous-mathemagicians Могущественные матемаги Маркуса, или сокращенно М3, – команда оксфордских студентов, способствующих распространению математического знания. М3 проводит семинары, организует лекции по математике для самых разнообразных аудиторий.

Издательство не несет ответственности за содержание какого-либо из упомянутых сторонних сайтов.

Глава 1

Любопытный случай никогда не заканчивающихся простых чисел

1, 2, 3, 4, 5… Это кажется так просто: прибавьте 1, и вы получите следующее число. Но, несмотря на эту простоту, без чисел мы оказались бы в полном неведении. Кто победил в противостоянии «Арсенал» – «Манчестер Юнайтед»? Мы не знаем. Выступление каждой команды характеризуется множеством чисел. Где-то в середине этой книги говорится о выигрыше в Британской национальной лотерее. А сама лотерея? Участие в ней было бы безнадежным без чисел. Поразительно, насколько существен язык чисел для нашего взаимодействия с миром.

Даже в животном царстве числа фундаментальны. Стаи животных принимают решение сражаться или обращаться в бегство, исходя из того, превосходят ли они численностью соперничающие стаи. Их инстинкт выживания связан с математическими способностями, но за очевидной простотой списка чисел лежит одна из величайших тайн математики.

2, 3, 5, 7, 11, 13… Это неделимые простые числа, кирпичики, из которых строятся все остальные числа, – кислород и водород в мире математики. Эти главные герои нашего рассказа подобны драгоценным камням, рассеянным в бесконечном пространстве чисел.

Однако, несмотря на свою важность, простые числа представляют одну из самых мучительных головоломок, с которыми мы столкнулись в нашем поиске знания. Нахождение простых чисел представляется совершенной тайной – по-видимому, нет волшебной формулы, которая бы позволила перейти от предыдущего к следующему. Они напоминают спрятанный клад – и ни у кого нет карты сокровищ.

В этой главе мы исследуем то, что знаем об этих особых числах. В ходе нашего путешествия мы выясним, как различные культуры пытались регистрировать и исследовать простые числа, как музыканты обыгрывали их синкопированный ритм. Мы узнаем, почему простые числа использовались в попытках связи с внеземными цивилизациями и как они помогают хранить секреты в интернете. В завершение главы я посвящу вас в математическую загадку, касающуюся простых чисел. Ее решение принесет вам миллион долларов. Но, прежде чем мы займемся одной из величайших головоломок математики, давайте начнем с одной из величайших числовых тайн нашеговремени.

Почему Бекхэм выбрал номер 23?

Переход Дэвида Бекхэма в 2003 г. в мадридский «Реал» сопровождался множеством предположений, почему он решил играть в футболке с номером 23. Многие находили этот выбор странным, ведь до того он играл под номером 7 и за сборную Англии, и за «Манчестер Юнайтед». Беда была в том, что в «Реале» футболку с этим номером носил Рауль, и испанец не собирался отдавать ее гламурному мальчику из Англии. Было выдвинуто множество теорий, чтобы объяснить выбор Бекхэма. Самой популярной из них была теория Майкла Джордана. Мадридский «Реал» хотел прорваться на американский рынок, чтобы продавать копии футболок огромному американскому населению. Но футбол (или «соккер», как они привыкли называть его) не слишком популярен в США. Американцы любят баскетбол или бейсбол, игры, которые могут завершаться со счетом 100: 98 и в которых всегда есть победитель. Они не видят смысла в состязании, которое длится 90 минут, но может закончиться со счетом 0: 0, когда нет ни голов, ни победителей. Согласно упомянутой теории, мадридский «Реал» провел исследование и выяснил, что со всей определенностью самым популярным баскетбольным игроком в мире был Майкл Джордан. Наиболее результативный игрок «Чикаго Буллз» на протяжении всей своей карьеры красовался с номером 23. Все, что требовалось «Реалу», – нанести номер 23 на спину футболки и скрестить пальцы на счастье, надеясь, что сработает волшебная ассоциация с Джорданом, которая поможет им прорваться на американский рынок.

Другие находили подобные домыслы слишком циничными, но сами предлагали более зловещую теорию. Юлий Цезарь был убит 23 ударами кинжала в спину. Был ли выбор Бекхэма для надписи на спине дурным предзнаменованием? Были и те, кто считал, что предпочтение Бекхэма было обусловлено его любовью к «Звездным войнам» (в первом фильме этой саги принцесса Лея была заключенной в блоке АА23). Или же Бекхэм был тайным членом секты дискордианистов? В этом современном культе почитается хаос, и он каббалистически одержим числом 23.

Но, как только я увидел номер Бекхэма, мне в голову пришло более приемлемое математическое обоснование. 23 – простое число. Число называется простым, если оно делится лишь на себя и на 1. Числа 17 и 23 – простые, ведь они не могут быть записаны в виде произведения меньших чисел, в то время как 15 не является простым: 15 = 3  5. Простые числа наиболее важны в математике, потому что все остальные целые числа получаются перемножением простых.

Возьмите, к примеру, число 105. Оно с очевидностью делится на 5, и мы можем записать 105 = 5  21. 5 – простое неделимое число, но 21 таковым не является: оно представимо в виде 3  7. Итак, мы можем записать 105 = 3  5  7. Мы дошли до предела, до простых чисел, из которых строится 105. Я могу поступить так с любым числом, ведь оно либо является простым и неделимым, либо оно не является простым и разбивается в произведение простых чисел.

Все числа строятся из простых. Подобно тому как молекулы состоят из атомов, например водорода, кислорода, натрия или хлора, числа строятся из простых чисел. В мире математики числа 2, 3, 5 аналогичны водороду, гелию и литию. Именно это делает их наиболее важными числами в математике. Но, безусловно, они были важны и для мадридского «Реала».

Рис. 1.01

Когда я начал более пристально изучать футбольную команду «Реал», у меня возникло подозрение, что у них на скамейке запасных был математик. Беглый анализ показал, что во время перехода Бекхэма все Galcticos, ключевые игроки мадридцев, играли в футболках с простыми числами: у Карлоса (фундамента обороны) был номер 3, у Зидана (бывшего душой игры в центре поля) – номер 5, у Рауля и Роналдо (на них строилось нападение «Реала») – номера 7 и 11.

Футбольная игра в простые числа

Скачайте PDF-файл для этой игры с веб-сайта «Тайн 4исел». Каждый из игроков вырезает из бумаги трех футболистов и пишет на их спинах три различных простых числа. Используйте для игры один из Платоновых футбольных мячей из главы 2 (с. 63).

Матч начинается с игрока команды 1. Цель игры состоит в том, чтобы пройти трех футболистов соерника. Соперник выбирает первого игрока, чтобы попытаться остановить футболиста команды 1. Затем подкидывается Платонов футбольный мяч, который служит игральной костью. На ней шесть граней: белые с числами 3, 5 и 7, а также черные с числами 3, 5 и 7. Выпавшее число на кости скажет найти остаток от деления номера вашего игрока и игрока соперника на 3, 5 или 7. Если выпало число с белой грани, то вам необходимо, чтобы ваш остаток был равен остатку соперника либо больше его. Если выпала черная грань, то требуется, чтобы остаток был равен остатку соперника либо меньше его.

Чтобы забить гол, необходимо пройти трех игроков соперника, а затем сыграть против случайного простого числа, выбранного вашим оппонентом. Если на каком-то из этапов вы уступаете сопернику, игра переходит к нему. Другая команда использует игрока, остановившего вашу команду, чтобы попытаться дойти до ваших ворот. Если при ударе по воротам (то есть игры против случайного простого числа) команда 1 промахивается, то в игру вступает любой выбранный игрок команды 2. Матч может играться определенное время либо до 3 забитых голов.

И пожалуй, было неизбежным, что Бекхэм получил простое число, к которому он впоследствии сильно привязался. Когда он перешел в «Лос-Анджелес Гэлакси», то настоял, чтобы у него было его простое число, чтобы оно помогло заинтересовать американскую публику этой прекрасной игрой.

Такие слова математика могут звучать совершенно иррационально, ведь предполагается, что его мышление должно быть логическим и аналитическим. Однако я также играю в футболке с простым числом за мою команду Recreativo Hackney. Так я ощущаю связь с человеком под номером 23. Моя команда, выступающая в Воскресной лиге, не такая большая, как «Реал». И у нас нет номера 23, поэтому я выбрал 17 – довольно хорошее простое число, как мы увидим позже. Но свой первый сезон наша команда отыграла не особенно хорошо. Мы играем в дивизионе 2 лондонской Супервоскресной лиги, и в том сезоне мы обосновались на самом дне. К счастью, это самый низкий дивизион в Лондоне, и наш единственно возможный путь – наверх. Но как улучшить наше положение в лиге? Быть может, «Реал» нашел рецепт и игра в футболках с простыми числами дает некоторое психологическое преимущество. Наверное, у слишком многих из нас были неправильные номера, вроде 8, 10 или 15. Я убедил команду поменять экипировку на следующий сезон, и все мы выходили с простыми числами: 2, 3, 5, 7 и так далее, вплоть до 43. Это преобразило нас. Мы перешли в дивизион 1, где быстро поняли, что простые числа могут помогать на протяжении лишь одного сезона. Мы вылетели обратно в дивизион 2. Сейчас мы находимся в поисках другой математической теории, чтобы улучшить наши шансы.

Должен ли вратарь мадридского «Реала» играть в футболке с номером 1?

Если ключевые игроки мадридского «Реала» щеголяют с простыми числами, какую футболку должен носить их вратарь? Или, если выразиться математически, является ли число 1 простым? Что же, и да и нет. (Это как раз такой тип математического вопроса, который нравится всем – оба ответа будут верны.) Двести лет назад таблицы простых чисел начинались с 1. В конце концов, оно неделимо, ведь единственное целое число, на которое оно делится, – это оно само. Но сегодня мы говорим, что 1 не является простым числом, ведь самое важное в свойствах простых чисел – то, что на их основе строятся другие числа. Если я умножу какое-либо число на простое число, то получу новое число. Хотя 1 не делится без остатка на другие целые числа, если я умножу число на 1, то получу то же самое число, с которого я стартовал. На этом основании мы исключаем 1 из списка простых чисел и начинаем его с 2.

Очевидно, мадридский «Реал» не первым раскрыл могущество простых чисел. Но у какой из культур был приоритет? У древних греков? Китайцев? Египтян? Как оказалось, в открытии простых чисел математиков опередило странное небольшое насекомое.

Почему американскому виду цикады нравится простое число 17?

В лесах Северной Америки живет вид цикады с очень необычным жизненным циклом. На протяжении 17 лет эти цикады прячутся под землей и почти ничем не проявляют себя, разве что присасываются к корням деревьев. Но затем, в мае 17-го года, они появляются на поверхности в огромных количествах и вторгаются в лес: их число на каждом акре (0,4 гектара) доходит до миллиона.

Цикады громко распевают, пытаясь привлечь пару. Все вместе они поднимают такой шум, что местные жители зачастую уезжают во время этого вторжения, повторяющегося раз в 17 лет. Боб Дилан услышал эту какофонию цикад, оккупировавших леса вокруг Принстона, когда получал почетную степень университета в 1970 г. Это вдохновило его на написание песни «День цикад» (Day of the Locusts).

Привлекшие самцов самки после оплодотворения откладывают около 600 яиц на поверхности. По прошествии 6 недель буйства все цикады умирают, и лес снова затихает на 17 лет. Вылупление следующего поколения цикад происходит в середине лета, личинки падают на лесную почву и погружаются в нее, пока не находят подходящий корень для питания. Затем они ждут следующие 17 лет до наступления очередного великого вторжения цикад.

То, что цикады могут отсчитать прошествие 17 лет, – совершенно замечательное достижение биологической инженерии. Случаи, когда какая-либо цикада появляется годом раньше или годом позже, крайне редки. Ежегодный цикл, которого придерживаются большинство животных и растений, обусловлен вариациями температуры и сменой времен года. И по-видимому, ничто в природе не учитывает то обстоятельство, что Земля совершила 17 оборотов вокруг Солнца, чтобы побудить этих цикад к появлению.

Для математика самая любопытная особенность состоит в выборе числа: ведь 17 – простое число. Является ли всего-навсего совпадением то, что цикады проводят под землей простое число лет? По-видимому, нет. Есть вид цикад, который скрывается под землей 13 лет, а также другой вид, с 7-летним циклом. Все это простые числа. Довольно удивительно, что если цикада с 17-летним циклом появляется слишком рано, то сдвиг уже будет не на год, а обычно на 4 года, тем самым происходит переключение на 13-летний цикл. Кажется, в простых числах есть что-то, способствующее всем этим разновидностям цикад. Но что же это?

Хотя ученые и не пришли к окончательным выводам, имеется математическая теория, которая объясняет склонность цикад к простым числам. Сперва несколько фактов. В лесу может быть только один выводок цикад, так что объяснение не касается совместного использования ресурсов несколькими выводками. Почти каждый год где-либо в Соединенных Штатах появляется выводок цикад с циклом, составляющим простое число лет. Но в 2009 и 2010 гг. цикад не было. Напротив, в 2011 г. на юго-востоке США было массивное нашествие цикад с 13-летним циклом. (Кстати, 2011 является простым числом, но все же я не думаю, что цикады настолько умны.)

Лучшая на сегодняшний день теория простых чисел, лежащих в основе цикла цикад, исходит из возможного существования хищника, который также периодически появляется в лесу. Появление хищника приходится на время нашествия цикад, и он пирует, поедая насекомых. Но тут в дело вступает естественный отбор, потому что цикады, которые регулируют свою жизнь, исходя из цикла, составляющего простое число лет, будут значительно реже сталкиваться с хищниками, чем цикады с жизненным циклом, не представляющим простое число.

Предположим, например, что хищники появляются каждые 6 лет. Цикады с 7-летним циклом будут совпадать с хищниками лишь раз в 42 года. В отличие от них цикады с 8-летним циклом будут появляться одновременно с хищниками каждые 24 года; у цикад же с 9-летним циклом совпадение будет еще чаще – каждые 18 лет.

Рис. 1.02. Взаимодействие на протяжении 100 лет между популяциями цикад с 7-летним жизненным циклом и хищников с 6-летним

Рис. 1.03. Взаимодействие на протяжении 100 лет между популяциями цикад с 9-летним жизненным циклом и хищников с 6-летним

В лесах Северной Америки было, по-видимому, настоящее соревнование, чтобы найти наибольшее простое число. Цикады настолько преуспели в этом, что хищники либо вымерли, либо переселились, оставив цикад с их странным жизненным циклом в простое число лет. Но, как мы вскоре увидим, не только цикады научились использовать синкопированный ритм простых чисел.

Цикады против хищников

Скачайте PDF-файл с веб-сайта «Тайн 4исел». Вырежьте хищников и два семейства цикад. Положите хищников на годы, кратные 6. Каждый игрок берет по семейству цикад. Возьмите три обычные игральные кости с шестью гранями. Сумма чисел, выпавших на трех игральных костях, определит, как часто появляется ваше семейство цикад. Так, если у вас выпало 8, поместите цикаду на каждое число, кратное 8. Но, если на данном месте уже есть хищник, вы не можете разместить там цикаду, например, не можете положить цикаду на 24, потому что это число уже занято хищником. Победителем будет игрок с наибольшим числом цикад на поле. Вы можете модифицировать игру, изменив периодичность, с которой появляется хищник, то есть вместо 6 выбрать другое число.

Отчего простые числа 17 и 29 являются ключом к концу времени?

Во время Второй мировой войны французский композитор Оливье Мессиан был заключенным в концентрационном лагере VIII-A. Среди его сотоварищей были кларнетист, виолончелист и скрипач. Он решил сочинить музыку для квартета – сам он собирался играть на фортепиано. Результатом было одно из величайших музыкальных произведений XX в.: Quatour pour la fin du temps – «Квартет на конец времени». Впервые оно было исполнено для заключенных и надзирателей в концлагере VIII-A. Мессиан играл на расшатанном пианино, которое нашлось в лагере. В первой части, названной «Литургия кристалла», Мессиан хотел создать ощущение нескончаемого времени. Для этого замысла ключевыми оказались простые числа 17 и 29. В то время как скрипка и кларнет обменивались музыкальными темами, представляющими пение птиц, виолончель и фортепиано придавали ритмическую структуру. Партия фортепиано представляет собой ритмическую последовательность из 17 нот, повторяющуюся снова и снова, а накладывающаяся на нее струнная партия содержит период из 29 нот. Поэтому, когда 17-нотный ритм начинается во второй раз, струнная последовательность приближается к двум третям. Результатом выбора простых чисел 17 и 29 является то, что совместная мелодия фортепиано и виолончели начинает повторяться в произведении лишь спустя 17  29 нот.

Именно эта постоянно меняющаяся музыка создает ощущение нескончаемости, к которому стремился Мессиан, – и он использует тот же трюк, что и цикады в их противостоянии с хищниками. Представьте, что цикады – это фортепиано, а хищники – виолончель. Различные простые числа 17 и 29 рассинхронизируют эти два инструмента, и произведение заканчивается до того, как музыка начинает повторяться.

Рис. 1.04. «Литургия кристалла» из «Квартета на конец времени» Мессиана. Первая вертикальная линия показывает окончание ритмической последовательности из 17 нот. Вторая линия обозначает конец 29-нотной гармонической последовательности

Мессиан был не единственным композитором, прибегавшим к простым числам в музыке. Использование простого числа было отличительной особенностью Альбана Берга. Как и Дэвид Бекхэм, Берг щеголял числом 23 – можно сказать, был одержим им. Например, в его «Лирической сюите» 23-тактная последовательность определяет структуру произведения в целом. Но также в нем представлен роман, который был у Берга с богатой замужней женщиной. Образ его любовницы создается 10-тактной последовательностью, которая переплетается с характеризующей Берга 23-тактной. Так комбинация математики и музыки воплощает его любовную связь.

Подобно использованию простых чисел Мессианом в «Квартете на конец времени», математика недавно была применена для создания произведения, которое хотя и не является нескончаемым, но повторится лишь спустя тысячу лет. Джем Файнер, один из основателей группы The Pogues, решил создать в лондонском Ист-Энде музыкальную инсталляцию, которая повторится лишь с началом следующего тысячелетия, в 3000 г.

Это произведение называется подобающим образом: Longplayer («Долгоиграющее»).

Сначала Файнер создал музыкальное произведение, в котором звучат тибетские поющие чаши и гонги разного размера. Длительность исходной музыки 2 минуты 20 секунд. Но, используя различные уловки, подобные мессиановским, Файнер растянул ее до 1000 лет. Шесть копий исходного произведения проигрываются одновременно, но с разной скоростью. Помимо этого, каждая из дорожек смещается через 20 секунд на заданный интервал. Величина этой сдвижки разная для разных дорожек. Математика используется именно для того, чтобы рассчитать такую величину смещения, чтобы музыка начала повторяться спустя 1000 лет.

Вы можете послушать Longplayer, если посетите http://longplayer.org.

Не только музыканты одержимы простыми числами: они, по-видимому, задевают струну, которая объединяет многих творцов в различных областях искусства. Писатель Марк Хэддон использовал только простые числа для нумерации глав в своем бестселлере «Загадочное ночное убийство собаки» (The Curious Incident of the Dog in the Night-Time). Рассказчик в этом романе – подросток Кристофер, страдающий синдромом Аспергера. Кристофер любит математический мир, потому что он подвластен разуму и его логика не таит в себе сюрпризов. В противоположность этому мир человеческих отношений настолько полон неопределенностей и алогичных поворотов, что Кристофер не может с ним справиться. Как он объясняет: «Я люблю простые числа… Я думаю, что простые числа напоминают жизнь. Они крайне логичны, но в их правилах невозможно разобраться, даже если вы проведете всю свою жизнь в размышлениях о них».

Простые числа даже поучаствовали в фильмах. В футуристическом триллере «Куб» семь персонажей заперты в лабиринте комнат, который напоминает сложный кубик Рубика. Форма каждой из комнат соответствует кубу, в котором есть шесть дверей, ведущих к последующим комнатам. Фильм начинается с того, что герои просыпаются и понимают, что оказались в лабиринте. У них нет ни малейшего представления, как они там оказались, но им необходимо выбраться наружу. Беда в том, что в некоторых комнатах их ожидают коварные ловушки. Героям необходимо каким-то образом предсказать до того, как они войдут в комнату, безопасна ли она. Иначе им будет уготована та или иная ужасная смерть: они могут быть сожжены заживо, облиты кислотой, разрезаны на крошечные кубики. Герои фильма выясняют это после того, как один из них был убит.

Среди действующих лиц есть знаток математики – Джоан, которая внезапно понимает, что числа у входа в каждую комнату определяют, находится ли за дверью ловушка. По всей видимости, если среди чисел у входа в комнату есть простое, то в ней таится опасность. «Ты – светлая голова», – говорит Джоан предводитель группы, услышав об этой математической дедукции. Однако выясняется, что оказавшимся в лабиринте нужно также опасаться степеней простых чисел, что превосходит возможности сообразительной Джоан. Вместо нее действующим лицам нужно надеяться на другого товарища по несчастью – аутистичного таланта. В конце только он выходит из лабиринта живым.

Как открыли цикады, знание математики является ключом к выживанию в этом мире. Любому учителю математики, столкнувшемуся с проблемами мотивации своих учеников, можно рекомендовать рассказ о кровавых смертях в «Кубе» в качестве действенной пропаганды, чтобы заставить подопечных учить простые числа.

Почему писатели-фантасты любят простые числа?

Когда писатели-фантасты хотят, чтобы инопланетяне вступили в общение с землянами, они сталкиваются с определенными проблемами. Предполагают ли авторы, что инопланетяне настоько умны, что стремительно обучаются местному языку? Или они изобрели искусный автоматический переводчик наподобие Babel Fish?[1] А может, литераторы полагают, что каждый во Вселенной говорит по-английски?

Одно из решений, к которому прибегает ряд авторов, состоит в использовании языка математики – единственного по-настоящему универсального языка. Его первые слова, который должен знать каждый, своего рода строительные кирпичики речи, – простые числа. В романе Карла Сагана «Контакт» Элли Эрроуэй, участвующая в программе ПВЦ (поиск внеземных цивилизаций), обнаруживает сигнал. Она вскоре понимает, что это не фоновый шум, а последовательность импульсов, которые являются двоичным представлением чисел. Когда она переводит их в десятичную систему счисления, то моментально понимает закономерность: 59, 61, 67, 71 – все эти числа простые. Разумеется, в продолжении сигнала также содержатся простые числа, и они доходят до 907. Это не может быть делом случая, заключает она. Кто-то говорит «привет».

Многие математики полагают, что, даже если на другом конце Вселенной имеется другая биология, другая химия или даже другая физика, математика будет одной и той же. Изучающий учебник математики житель планеты, вращающейся вокруг Веги, будет по-прежнему считать числа 59 и 61 простыми. Ведь, как выразился знаменитый кембриджский математик Г. Х. Харди, эти числа являются простыми «не потому, что мы так считаем, и не потому, что наше сознание сформировалось тем или иным образом, а потому, что так устроена математическая действительность».

Знание о простых числах объединяет Вселенную, но все же интересно задаться вопросом, рассказывают ли истории, подобные этой, в других мирах. То, как мы изучали эти числа на протяжении тысячелетий, привело к открытию нами ряда важных истин в отношении простых чисел. На каждом этапе данного пути мы видим отчетливый след той или иной культурной перспективы, замечаем математические лейтмотивы, соответствующие историческому периоду. Может ли статься так, что у других культур во Вселенной имеются другие перспективы, делающие очевидными им теоремы, еще не открытые нами?

Карл Саган не был первым, кто предложил использовать простые числа как средство общения, и не будет последним. Простые числа даже использовались НАСА при попытках установить контакт с внеземными цивилизациями. В 1974 г. с радиотелескопа Аресибо в Пуэрто-Рико было отправлено послание в направлении шарового звездного скопления М13, выбранного по причине огромного числа звезд в нем. Это увеличивает вероятность, что оно будет получено каким-то разумным существом.

Рис. 1.05. Послание, отправленное радиотелескопом Аресибо, в направлении звездного скопления М13

Послание состояло из последовательности 0 и 1, кодирующих черные и белые пиксели рисунка. На реконструированном изображении показано двоичное представление чисел от 1 до 10, схема строения ДНК, описание нашей Солнечной системы и эскиз самого радиотелескопа Аресибо. Принимая во внимание, что во всем послании лишь 1679 пикселей, изображение не слишком-то детально. Но выбор числа 1679 был намеренным, потому что в нем содержится ключ к расположению пикселей. 1679 = 23  73, поэтому существует лишь два способа расположения пикселей в виде прямоугольника. Если их разместить в 23 ряда и 73 колонки, то получится хаотичный рисунок, но расположите их другим способом – в 73 ряда и 23 колонки, и получится правильный результат. Звездное скопление М13 находится от нас на расстоянии 25 000 световых лет, поэтому ответ придет не раньше чем через 50 000 лет!

Хотя простые числа универсальны, способ их записи сильно менялся на протяжении истории математики. Он культурно зависим, что сейчас и проиллюстрирует наше стремительное путешествие по планете.

Какое это простое число?

Рис. 1.06

Некоторые из первых математических вычислений в нашей истории были сделаны в Древнем Египте. Вот так египтяне записывали число 200 201. Уже около 6000 г. до н. э. люди начали отказываться от кочевой жизни и селиться в долине Нила. С развитием египетского общества у него возникла потребность в числах, чтобы вести учет налогов, измерять земельные участки и строить пирамиды. Как и для своего языка, египтяне использовали иероглифы для записи чисел. У них уже была развита числовая система, основанная на степенях 10, как и в той десятичной системе, которая используется нами. (Этот выбор основан не на каком-то особом математическом значении данного числа, а на том анатомическом факте, что у нас десять пальцев.) Но им еще нужно было изобрести позиционную систему, то есть такой способ записи чисел, когда положение каждой цифры соответствует той степени 10, которую она считает. Например, цифры 2 в числе 222 соответствуют различным величинам в зависимости от их места. Вместо этого египтяне предпочли создать новые символы для каждой степени 10:

Рис. 1.07. Древнеегипетские символы для степеней 10. 10 –это стилизованная пяточная кость, 100 –кольцо веревки, 1000 изображает лотос

200 201 может быть довольно кратко записано таким способом. Но лишь попытайтесь записать простое число 9 999 991 с помощью иероглифов: вам понадобится 55 символов. Хотя египтяне не осознавали важность простых чисел, у них была разработана довольно сложная математика, включающая – что неудивительно – формулу для объема пирамиды и понятие дробей. Но их числовая система была не очень-то изощренной – в отличие от системы, используемой их соседями, вавилонянами.

Рис. 1.08

Так древние вавилоняне записывали число 71. Вавилонская империя, подобно Египетской, была сосредоточена вблизи главной реки – Евфрата. С 1800 г. до н. э. вавилоняне контролировали значительную часть современных Ирака, Ирана и Сирии. Для расширения своей империи и управления ею им пришлось мастерски овладеть обращением с числами. Их записи велись на глиняных табличках, и писцы использовали деревянные палочки, или стилосы, чтобы делать отметки на сырой глине, которая потом высушивалась. Кончик стилоса имел форму клина, и вавилонское письмо теперь известно как клинопись.

Около 2000 г. до н. э. вавилоняне одними из первых пришли к идее использования позиционной системы счисления. Однако они использовали не основание 10, как египтяне, а 60. У них были различные символы для обозначения чисел от 1 до 59, а когда они доходили до 60, то начинали слева новый разряд «шестидесятков», подобно тому как мы ставим слева цифру 1 в разряде десятков, когда число становится больше 9. Итак, простое число, показанное выше, состоит из одного «шестидесятка» и символа, обозначающего 11, что вместе дает 71. У чисел от 1 до 9 имеется скрытая связь с десятичной системой, потому что они представляются горизонтальными линиями, но затем 10 представляется своим символом (рис. 1.09):

Рис. 1.09

Выбор основания 60 для системы счисления значительно более обоснован математически, чем 10. Ведь у числа 60 много делителей, что делает его удобным для проведения вычислений. Например, если у меня 60 бобов, я могу разделить их множеством способов:

60 = 30  2 = 20  3 = 15  4 = 12  5 = 10  6.

Рис. 1.10. Различные способы поделить 60 бобов

Как считать до 60 на пальцах

И сегодня у нас остаются следы вавилонской шестидесятеричной системы счисления. В минуте 60 секунд, а в часе 60 минут. В круге 360 = 6  60 градусов. Имеются свидетельства, что вавилоняне использовали пальцы для счета до 60, причем довольно изощренным способом.

Если исключить большой палец, то на каждом из четырех оставшихся пальцев руки по три фаланги. Поэтому большим пальцем вы можете указать на одну из 12 фаланг. Левая рука используется для счета до 12. Затем 4 пальца правой руки используются для обозначения количества дюжин. В общей сложности вы можете так досчитать до пяти дюжин (4 дюжины а правой руке плюс одна дюжина на левой), то есть до 60.

Например, чтобы обозначить простое число 29, вам требуется показать две дюжины на правой руке и на фалангу, обозначающую 5, на левой.

Рис. 1.11

Вавилоняне близко подошли к открытию очень важного числа в математике – ноля. Ведь у вас появится проблема, если вы захотите записать клинописью простое число 3607. Оно представляется как 60 «шестидесятков» (3600 или 60 в квадрате) плюс 7. Его можно было бы перепутать с другим простым числом 67, не будь специального символа для обозначения пустого разряда. Этот символ находится посередине рис. 1.12, на котором записано число 3607.

Рис. 1.12

Но вавилоняне не считали ноль отдельным числом. Для них это был лишь символ в позиционной системе, использующийся для обозначения того, что отсутствуют определенные степени 60. Математике пришлось ждать еще 2700 лет, пока в VII в. индийцы не ввели ноль как число и не исследовали его свойства. Вавилоняне не только придумали изощренный способ записи чисел, но и первыми научились решать квадратные уравнения, чему теперь учат всех детей в школе. У них также появились намеки на теорему Пифагора о прямоугольных треугольниках. Однако нет никаких свидетельств того, что вавилоняне ценили красоту простых чисел.

Какое это простое число?

Рис. 1.13

Центральноамериканская цивилизация майя находилась в своем расцвете с 200 по 900 г. Ее территория простиралась от Южной Мексики через Гватемалу до Сальвадора. У них была изощренная числовая система, разработанная для проведения сложных астрономических вычислений. Вот так они записали бы число 17. В отличие от египтян и вавилонян, основанием числовой системы у майя было 20. Они использовали точку для обозначения единицы, две точки – для двух, три точки – для трех. Подобно тюремному заключенному, отмечающему мелом дни на стене, они проводили черту через четыре точки, когда доходили до 5. Итак, черта соответствует пяти.

Эта система соответствует тому принципу, что наш мозг может быстро распознавать небольшие количества – мы легко различаем один, два, три или четыре предмета, – но далее положение становится все сложнее и сложнее. После того как майя доходили до 19 – трех черт, над которыми было четыре точки, – они начинали новую колонку, подсчитывавшую количество двадцаток. Следующая колонка должна была бы учитывать количество групп по 400 (20  20), но в причудливой системе майя она учитывала количество групп по 360 (20  18). Этот странный выбор связан с циклами в календаре майя. Один цикл состоит из 18 месяцев, в каждом из которых по 20 дней. (Таким образом, получается 360 дней. Чтобы получить 365 дней в году, они добавляли дополнительный месяц, в котором было 5 «плохих дней», считавшихся крайне несчастливыми.)

Интересно, что, как и у вавилонян, у майя был специальный символ для обозначения отсутствия определенных степеней 20. Каждый разряд в их числовой системе был связан с тем или иным богом, и оттого считалось непочтительным, что богу ничего не дано. Поэтому «ничто» обозначалось изображением ракушки. Создание этого символа было в равной мере обусловлено математическими и религиозными соображениями. Но, как и вавилоняне, майя не считали ноль самостоятельным числом.

Майя была нужна числовая система, способная считать очень большие числа, потому что их астрономические вычисления охватывали огромные временные циклы. Один цикл времени, измеряемый так называемым «длинным счетом», начался 11 августа 3114 г. до н. э., в нем пять разрядов, и он длится 20  20  20  18  20 дней. Это составляет 7890 лет. Значимой датой в календаре майя будет считаться 21 декабря 2012 г., которое соответствует 13.0.0.0.0. Подобно тому как дети на задних сиденьях машины ждут, когда одометр совершит полный круг, жители Гватемалы полны предвкушения наступающего события. Однако некоторые пророки конца света утверждают, что он придется на этот день.

Рис. 1.14

Хотя это скорее буквы, чем числа, именно так записывается число 13 на иврите. В еврейской традиции гематрии буквам алфавита даны числовые значения. Так, гимел – третья буква алфавита, а йод – десятая. Поэтому эта комбинация букв представляет число 13. В таблице 1.01 приведены числовые значения всех букв.

Люди, сведущие в каббале, любят игры с числовыми значениями различных слов и их интерпретациями. Например, числовое значение моего имени

такое же, как и у «славного человека», либо, альтернативно, у «ослов». Одно из объяснений того, что 666 считается числом зверя, состоит в том, что таково числовое значение имени Нерон, который был одним из самых жестоких римских императоров.

Таблица 1.01

Хотя простым числам не придавалось особого значения в еврейской культуре, таким значением обладали родственные им числа. Возьмите какое-либо число и найдите все числа (за исключением самого числа), на которые оно делится без остатка. В случае, когда сумма всех найденных делителей равна самому числу, оно называется совершенным. Первое совершенное число – это 6. Помимо самого числа 6 его делителями являются 1, 2 и 3. Сложите их вместе, и вы снова получите 6. Следующее совершенное число – это 28. Сумма его делителей 1, 2, 4, 7 и 14 опять-таки равна 28. Согласно иудаизму, мир был создан за 6 дней, а в лунном месяце еврейского календаря было 28 дней. Это привело к сложившемуся в еврейской культуре убеждению, что у совершенных чисел должно быть особое значение.

Вы можете найти число, отвечающее вашему имени, сложив значения, приведенные в таблице 1.01. Чтобы найти другие слова, отвечающие тому же числовому значению, что и ваше имя, посетите http://bit.ly/Heidrick.

Математические и религиозные свойства совершенных чисел также отмечались христианскими комментаторами. Святой Августин (354–430) написал в своем знаменитом труде «О граде Божьем»: «Шесть – совершенное число само по себе, а не потому, что Бог сотворил все сущее за шесть дней; скорее наоборот. Бог сотворил все сущее за шесть дней, потому что это число совершенно».

Весьма интригует то, что за совершенными числами скрываются простые. Каждое совершенное число соответствует простому числу специального вида, так называемому числу Мерсенна (подробнее о них далее в этой главе). К настоящему времени нам известны лишь 47 совершенных чисел. В самом большом из них 25 956 377 цифр. Четные совершенные числа всегда имеют вид 2N – 1(2N – 1). Всякий раз, когда 2N – 1(2N – 1) совершенно, 2N – 1 является простым числом и наоборот. Мы до сих пор не знаем, существуют ли нечетные совершенные числа.

Какое это простое число?

Рис. 1.15

Вы могли бы подумать, что это 5, ведь рисунок определенно походит на 2 + 3. Тем не менее это вовсе не знак плюс, а китайский символ 10. Рисунок соответствует записи двух десятков и трех единиц, то есть 23.

В традиционном китайском письме не использовалась позиционная система, а был свой иероглиф для различных степеней 10. Но имелась и альтернативная система со счетными палочками. Эта система эволюционировала из счетной доски, в которой использовались бамбуковые палочки, и была позиционной. Каждый раз при достижении десяти начиналась новая колонка. Вот так записываются числа от 1 до 9 на счетных палочках:

Рис. 1.16

Во избежание путаницы через разряд (а именно для десятков, тысяч, сотен тысяч…) числа поворачивались, и палочки укладывались вертикально:

Рис. 1.17

В Древнем Китае даже было понятие отрицательного числа, оно представлялось счетными палочками другого цвета. Полагают, что использование черных и красных чернил в европейском ухгалтерском учете восходит к китайской практике использования черных и красных палочек. Любопытно, впрочем, что китайцы пользовались черными палочками для обозначения отрицательных чисел.

По-видимому, впервые простые числа получили свою важную роль именно в китайской культуре. В ней полагалось, что у каждого числа был свой род – у четных чисел женский, а у нечетных мужской. У некоторых нечетных чисел были замечены особенности. Например, если у вас 15 камней, то их можно выложить в аккуратный прямоугольник 3 на 5. Но 17 камней нельзя представить прямоугольником, а лишь выложить в прямую линию. Поэтому для китайцев простые числа были настоящими мачо. А у нечетных чисел, которые не были простыми, был ощутимый налет женственности.

Точка зрения древних китайцев была обусловлена тем важным свойством простых чисел, что кучку из простого числа камней нельзя разложить в аккуратный прямоугольник.

Ранее мы видели, что египтяне рисовали жаб для представления чисел, майя использовали точки и черточки, вавилоняне занимались клинописью, китайцы располагали палочки, а в еврейской культуре числа находились в соответствии с буквами алфавита. Хотя особую роль простых чисел поняли китайцы, первые шаги по раскрытию тайн этих загадочных чисел были сделаны в другой культуре – в древнегреческой.

Как древние греки использовали решето для приготовления простых чисел?

Древние греки открыли следующую систематическую процедуру, весьма эффективную для нахождения небольших простых чисел. Задача состоит в том, чтобы найти действенный метод по отбрасыванию всех чисел, не являющихся простыми. Запишем числа от 1 до 100. Начнем с вычеркивания числа 1. (Как я упоминал, хотя греки считали 1 простым числом, современная математика так не поступает.) Перейдем к следующему числу, к 2. Это первое простое число. Затем зачеркнем каждое второе число после 2. Это, по существу, устраняет все числа, кратные 2, то есть все четные числа за исключением 2. Математики любят шутить, что 2 – странное простое число, потому что лишь оно четное… Но, возможно, юмор – не самая сильная сторона математиков.

Рис. 1.18. Зачеркните каждое второе число после 2

Теперь перейдем к минимальному незачеркнутому числу, в нашем случае к 3, и систематически отбросим все остальные числа, кратные 3:

Рис. 1.19. Теперь зачеркните каждое третье число после 3

Поскольку 4 уже было отброшено, далее мы переходим к 5 и зачеркиваем каждое пятое число после 5. Мы повторяем далее эту процедуру и переходим к минимальному числу n, которое еще не было устранено, и вычеркиваем все числа, расположенные через n после него:

Рис. 1.20. Наконец у вас останутся все простые числа из интервала от 1 до 100

Эта процедура прекрасна тем, что она совершенно механическая и не требует размышлений. К примеру, простое ли число 91? Если вы используете данный метод, то не нужно думать. 91 будет зачеркнуто, когда вы отбрасываете числа, кратные 7, ведь 91 = 7  13. На числе 91 зачастую происходит ошибка, потому что мы не стремимся учить таблицу умножения 7 до 13.

Эта систематическая процедура служит хорошим примером алгоритма, метода решения задачи путем выполнения заданного набора инструкций – так, по существу, устроена компьютерная программа. Именно этот алгоритм был открыт две тысячи лет назад в одном из центров математической мысли своего времени – в Александрии, которая располагается на территории современного Египта. Тогда Александрия была форпостом великой Греческой империи и славилась одной из лучших библиотек мира. В III в. до н. э. библиотекарь Эратосфен и придумал эту раннюю компьютерную программу для нахождения простых чисел.

Она называется решетом Эратосфена, потому что всякий раз, когда вы просеиваете группу составных чисел, вы как бы используете решето, у которого расстояние между прутьями равно достигнутому вами простому числу. Сначала расстояние между прутьями равно 2, затем 3, потом 5 и т. д. Единственный недостаток этого метода: он быстро становится неэффективным, если вы ищете все большие и большие простые числа.

Эратосфен не только отсеивал простые числа и приглядывал за сотнями тысяч папирусных и пергаментных свитков в библиотеке, но и вычислил радиус Земли, а также расстояние от Земли до Солнца и Луны. По его расчету, Солнце находилось в 804 000 000 стадиев от Земли – хотя непонятно, каким именно стадием он пользовался, что делает трудной оценку точности его вычислений. Какой стадион подразумевали бы мы: «Уэмбли» или что-то поменьше, вроде «Лофтус Роуд»?

Кроме расчетов Солнечной системы, Эратосфен нанес Нил на карту и дал первое правильное объяснение его разливов: они были обусловлены сильными дождями в его удаленных верховьях в Эфиопии. Он даже создавал поэтические произведения. Но, несмотря на всю его активность, друзья дали ему прозвище Бета, потому что он ни в чем не преуспел по-настоящему. Говорили, что он уморил себя голодом после того, как ослеп в старческом возрасте.

Вы можете использовать какую-либо настольную игру с числовыми полями для приведения решета Эратосфена в действие. Возьмите спагетти и кладите их кусочки на исключаемые поля. Оставшиеся числа и будут простыми.

Много ли понадобится времени, чтобы написать список всех простых чисел?

Любому, кто захочет написать список всех простых чисел, придется писать его вечно, потому что их количество бесконечно. Почему же мы уверены, что никогда не дойдем до последнего простого числа, что за ним в списке будет следующее? Одно из величайших достижений человеческого разума состоит как раз в том, что с помощью небольшой последовательности логических шагов мы можем осознать бесконечность.

Первым, кто доказал нескончаемость простых чисел, был греческий математик Евклид, живший в Александрии. Он был учеником Платона, и время его деятельности также пришлось на III в. до н. э., хотя, по-видимому, он был на 50 лет старше библиотекаря Эратосфена.

Для того чтобы доказать бесконечность количества простых чисел, Евклид задался вопросом: может ли, напротив, множество простых чисел быть конечным? Конечный список простых чисел означал бы, что любое другое число может быть получено перемножением элементов этого конечного списка. Предположим, к примеру, что список простых чисел включает лишь три числа: 2, 3 и 5. Может ли любое число быть получено путем перемножения различных комбинаций 2, 3 и 5? Евклид придумал способ построения числа, которое не может быть получено таким путем. Он начал с перемножения списка простых чисел, что приводит к 30. Затем – и в этом была гениальная догадка – он добавил 1 к этому числу и получил 31. Ни одно из списка простых чисел, ни 2, ни 3, ни 5, не является его делителем. Всегда получается остаток 1.

Евклид знал, что все числа могут быть построены перемножением простых чисел – так что же можно сказать о 31? Так как оно не делится на 2, 3 или 5, должны быть другие простые числа, вне имеющегося списка, которые участвуют в построении 31. В действительности число 31 само является простым, так что Евклид создал «новое» простое число. Вы скажете, что в имеющийся список простых чисел нужно лишь добавить это «новое» число. Но, сколь бы ни был велик список, Евклид мог бы снова повторить свой прием – перемножить числа из списка и добавить 1. Каждый раз он получал бы число, которое при делении на любое число из списка давало бы остаток 1, значит, это новое число должно делиться на простые числа вне имеющегося списка. Таким образом Евклид доказал, что любой конечный список не может включать все простые числа. Следовательно, количество простых чисел должно быть бесконечным.

Хотя Евклид сумел показать, что простые числа никогда не заканчиваются, его доказательство не говорило, как найти простые числа. Можно было бы подумать, что, действуя в соответствии с указанной процедурой, мы будем генерировать новые простые числа. Ведь мы перемножили 2, 3 и 5, добавили 1 и получили новое простое число 31. Одако такая процедура срабатывает не всегда. Например, возьмите следующий список простых чисел: 2, 3, 5, 7, 11 и 13. Перемножив их, мы получим 30 030, а добавив 1, придем к 30 031. Простые числа с 2 до 13 не являются делителями последнего числа, всякий раз при делении получается остаток 1. Тем не менее 30 031 не является простым числом, у него есть простые делители 59 и 509, которые не включены в наш список. В действительности математики до сих пор не знают, будет ли повторение процедуры перемножения конечного количества простых чисел и добавления 1 давать бесконечно много новых простых чисел.

Имеется видео, на котором моя футбольная команда в своей экипировке с простыми номерами объясняет, почему имеется бесконечно много простых чисел. Посетите http://bit.ly/Primenumbersfootball.

Почему вторые имена моих дочерей 41 и 43?

Если мы не можем занести простые числа в одну большую таблицу, то нельзя ли попытаться найти некую закономерность, которая помогла бы нам генерировать простые числа? Существует ли хитроумный способ, который позволит, глядя на имеющиеся простые числа, предсказать, где нужно искать следующее?

Вот те простые числа из интервала от 1 до 100, которые мы получили, используя решето Эратосфена:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

Проблема простых чисел состоит в том, что бывает по-настоящему сложно понять, где окажется следующее из них; по-видимому, не существует каких-либо закономерностей в их последовательности, способных помочь нам в их поиске. На поверку они скорее напоминают набор номеров лотерейных билетов, а не строительные кирпичики математики. Это чем-то напоминает ожидание автобуса: крайне долго нет ни одного, но вдруг они идут один за другим с короткими интервалами. Такое поведение весьма характерно для случайных процессов, как мы увидим в главе 3.

За исключением 2 и 3, ближайшее расстояние между двумя простыми числами может быть равно 2, как между 17 и 19, либо 41 и 43, потому что число между каждой парой будет четным, следовательно, не простым. Такие пары крайне близких простых чисел называются простыми числами-близнецами. Из-за моей одержимости простыми числами мои дочери-двойняшки чуть не были названы 41 и 43. В конце концов, если Крис Мартин и Гвинет Пэлтроу назвали своего ребенка Яблоком, а Фрэнк Заппа своих дочерей – Лунный Модуль и Дива-кексик, то почему у меня не могут быть близняшки 41 и 43? Но жена не разделяла мой энтузиазм, поэтому эти числа стали «тайными» вторыми именами наших дочерей.

Хотя простые числа встречаются все реже и реже, когда вы углубляетесь во вселенную чисел, удивительно, насколько часто попадаются простые числа-близнецы. Например, после простого числа 1129 на протяжении 21 последующего числа нет ни одного простого, а затем неожиданно появляется пара 1151 и 1153. Когда вы проходите 102 701, вам необходимо преодолеть 59 составных чисел, а затем внезапно возникают простые числа-близнецы 102 761 и 102 763. В наибольших простых числах-близнецах, известных к началу 2009 г., 58 711 цифр. Если учесть, что число атомов в наблюдаемой Вселенной имеет 80 цифр, такие числа оказываются до нелепости большими.

Однако будут ли и затем встречаться близнецы? Благодаря доказательству Евклида мы знаем, что и дальше найдем бесконечно много простых чисел, но как насчет их пар? Пока еще никто не смог придумать хитроумное доказательство, подобное Евклидову, что простых чисел-близнецов бесконечно много.

Одно время казалось, что близнецы могут сыграть ключевую роль в раскрытии тайны простых чисел. В книге «Человек, который принял жену за шляпу» Оливер Сакс описывает случай из реальной жизни, когда два аутистичных близнеца, обладавших феноменальными способностями, использовали простые числа как тайный язык. Обыкновенно братья сидели в клинике Сакса и обменивались между собой большими числами. Сначала Сакса озадачил их диалог, но как-то вечером он сумел понять его секрет. Выучив одно простое число, он решил проверить свою догадку. На следующий день он решил присоединиться к близнецам, которые обменивались шестизначными числами. Сакс, воспользовавшись паузой, произнес семизначное число, что застало близнецов врасплох. Некоторое время они сидели в раздумьях, так как число выходило за пределы их привычного диапазона, но потом одновременно улыбнулись, как будто узнали старого друга.

За время, проведенное у Сакса, близнецы сумели достичь девятизначных простых чисел. Конечно, никто не нашел бы удивительным, обменивайся они нечетными числами или даже квадратами чисел. Поразительно было, что они использовали простые числа, которые настолько случайно распределены. Объяснение тому, что это у них получалось, возможно, крылось в другой способности братьев. Они часто появлялись на телевидении и впечатляли аудиторию своим умением определить, что, скажем, 23 октября 1901 г. было средой. Решение задачи о том, каким был день недели с названной датой, осуществляется с помощью модульной (модулярной) арифметики. Наверное, близнецы поняли, что модульная арифметика также играет ключевую роль в определении того, является ли число простым.

Возьмите какое-либо число, скажем, 17 и вычислите 217. Если остаток от деления полученного числа на 17 равен 2, то у вас будет хорошее свидетельство в пользу того, что число 17 является простым. Этот тест на простоту числа зачастую неверно приписывают китайцам. На самом деле французский математик XVII в. Пьер де Ферма доказал, что если остаток не равен 2, то число 17 наверняка не является простым. В более общем случае если вы хотите проверить, что число p не является простым, то вычислите 2p и разделите результат на p. Если остаток не равен 2, то число p не может быть простым. Некоторые люди допускали, что близнецы, обладая способностью определять дни недели, опирающейся на схожую технику нахождения остатков при делении на 7, вполне могли прибегать к данному тесту при нахождении простых чисел.

Сначала математики думали, что если у 2p остаток от деления на p равен 2, то число p должно быть простым. Но, как оказалось, этот тест не гарантирует простоты. Так, 341 = 34  11 не является простым, но тем не менее остаток 2341 от деления на 341 равен 2. Данный пример был открыт лишь в 1819 г., и, возможно, братья-близнецы знали, что требуется более изощренный тест, который исключил бы 341. Ферма выяснил, что в тесте можно не ограничиваться степенями 2. Он доказал, что если число p – простое, то для любого числа n, меньшего p, остаток от деления np на p равен n. Значит, если вы найдете какое-либо число n, для которого тест проваливается, то необходимо отбросить p как самозванца, не являющегося простым.

Например, остаток от деления 3341 на 341 равен не 3, а 168. Конечно, близнецы никак не могли прогонять тест, используя все числа, меньшие их кандидата на роль простого, – потребовалось бы слишком много времени. Однако, как оценил великий венгерский кудесник простых чисел Пал Эрдёш (хотя он не мог доказать это строго), шанс того, что число, меньшее 10150, пройдет тест Ферма один раз и не окажется простым, настолько низок, как 1 из 1043. Вероятно, для близнецов один прогон теста был достаточен, чтобы заявить о нахождении простого числа.

Игра в классики с простыми числами

В этой игре для двух участников знание простых чисел-близнецов может дать вам преимущество.

Запишите числа от 1 до 100 либо загрузите поле для игры в классики с веб-сайта «Тайн 4исел». Первый игрок берет фишку и кладет ее на простое число, отстоящее от квадрата 1 не более чем на 5 шагов. Затем фишку берет второй игрок, он должен положить ее на большее простое число, отстоящее от предыдущего положени фишки не более чем на 5 шагов. Далее снова делает ход первый игрок, ему необходимо переместить фишку на еще большее простое число, которое удалено не более чем на 5 шагов. Проигравшим считается тот участник, который не может сделать ход по правилам. Правила таковы: 1) фишку нельзя передвигать более чем на 5 шагов; 2) ее нужно класть на простое число; 3) нельзя ходить назад либо оставаться на месте.

Рис. 1.21. Пример игры в классики с простыми числами с максимальным перемещением в 5 шагов

На рис. 1.21 показан типичный сценарий. Игрок 1 проиграл, потому что игрок 2 положил фишку на 23, а среди пяти следующих за 23 числами нет простых. Мог ли игрок 1 сделать более удачный начальный ход? Если вы приглядитесь внимательнее, то поймете, что после того, как пройдено 5, выбора уже не остается. Кто бы ни положил фишку на 5, должен в итоге оказаться победителем, так как впоследствии он сможет переместить фишку с 19 до 23, оставив оппонента без хода. Так что начальный ход имеет решающее значение.

Но что будет, если мы немного изменим правила игры? Скажем, фишку разрешается передвигать максимум на семь шагов вперед. Игроки теперь смогут пройти дальше. В частности, они смогут пройти дальше 23, потому что 29 находится в шести шагах, то есть в пределах досягаемости. Будет ли теперь иметь значение начальный ход? И когда игра остановится? Если вы сыграете в нее, то обнаружите, что у вас теперь появится больший выбор, в особенности когда на пути появляются простые числа-близнецы.

На первый взгляд при столь большом количестве вариантов ваш первый ход не имеет значения. Но снова присмотритесь получше. Вы проигрываете, когда фишка соперника оказывается на 89, потому что следующее за ним простое число 97 находится в восьми шагах. Если вы проследите путь назад, то поймете, что ключевым оказывается число 67. Ведь вслед за ним нужно положить фишку либо на 71, либо на 73. Один из этих двух ходов оказывается выигрышным, а другой проигрышным, после выбора ходы будут предопределены. Если заставить соперника положить фишку на 67, то игра может быть выиграна, число 89 не так важно. Но как добиться этого?

Если вы продолжите возвращение назад по ходу игры, то поймете, что ключевым является решение после простого числа 37. От него вы можете перейти на одно из двух простых чисел-близнецов моих дочерей, 41 и 43. Тот, кто сделает ход на 43, может гарантированно выиграть игру. Итак, теперь все сводится к тому, что в игре побеждает участник, который заставит оппонента положить фишку на 37. Продолжение движения назад по ходу игры позволяет понять, что действительно существует начальный ход, позволяющий добиться выигрыша. Положите фишку на 5, и если вы будете принимать правильные решения, то гарантированно сумеете победить. Вы завершите игру, положив фишку на 89, а соперник не сможет сделать ход.

А если мы будем увеличивать максимально допустимый прыжок все больше и больше, будет ли игра всегда завершаться? Что будет, например, если мы позволим каждому игроку перемещаться максимум на 99 шагов? Можем ли мы быть уверены, что игра не затянется навечно, потому что на расстоянии до 99 шагов от простого числа может найтись следующее простое число? В конце концов, как мы знаем, существует бесконечно много простых чисел, так что вдруг удастся перепрыгивать от одного простого числа к следующему.

Но в действительности можно доказать, что игра завершится всегда. Каким бы вы ни сделали максимальный прыжок, всегда существует больший по длине интервал чисел, внутри которого нет ни одного простого. Давайте посмотрим, как найти 99 последовательных чисел, ни одно из которых не является простым. Возьмите число 100  99  98  97  …  3  2  1. Такое число записывается как 100! и называется факториалом 100. Мы воспользуемся следующим важным фактом: любое число от 1 до 100 является делителем 100!.

Теперь рассмотрим последовательные числа:

100! + 2, 100! + 3, 100! + 4, …, 100! + 98, 100! + 99, 100! + 100.

100! + 2 – составное число, потому что делится на 2. Аналогично делителем 100! + 3 будет 3 (100! делится на 3, если мы добавим к этому число 3, то результат будет по-прежнему делиться на 3). Действительно, все числа этой последовательности составные. Возьмите, к примеру, 100! + 53. Оно не является простым, потому что 100! делится на 53, а если мы прибавим 53, то результат будет по-прежнему делиться на 53. Мы нашли 99 последовательных чисел, ни одно из которых не является простым. Причина, по которой мы начали со 100! + 2, а не со 100! + 1, состоит в том, что наш простой метод позволяет лишь заключить, что 100! + 1 делится на 1, что не позволяет сказать, простое ли это число (в действительности оно не является таковым).

Итак, мы установили, что если максимальный прыжок равен 99, то наша игра в классики должна когда-нибудь закончиться. Но число 100! до нелепости большое. На самом деле игра в классики закончится задолго до него. Первое простое число, за которым следует 99 составных подряд, это 396 733.

Данная игра несомненно помогает понять, насколько случайным образом рассеяны простые числа во вселенной всех чисел. Но, даже если мы не в состоянии найти хитроумный способ, позволяющий перейти от одного простого числа к следующему, может быть, мы сумеем написать разумные формулы, которые выдают простые числа?

На следующем веб-сайте содержится информация о том, как завершится игра в классики при все большем и большем допустимом прыжке: http://bit.ly/Primehopscotch.

Можно ли использовать подсолнухи и кроликов в поиске простых чисел?

Сосчитайте количество лепестков подсолнуха. Часто такой подсчет дает 89, простое число. Количество одиннадцати поколений пар кроликов также 89. Может быть, кролики и цветы нашли секретную формулу для нахождения простых чисел? Не совсем. Им нравится 89 не оттого, что оно простое, а потому, что оно принадлежит к другим любимым числам природы – числам Фибоначчи. Итальянский математик Леонардо Пизанский, известный под прозвищем Фибоначчи, открыл эту важную последовательность чисел в 1202 г., когда пытался понять, как размножаются кролики (скорее не в математическом, а в биологическом аспекте).

Фибоначчи начал с того, что представил пару новорожденных кроликов – самца и самку. Будем считать этот месяц первым. Ко второму месяцу эти кролики достигают зрелости, они спариваются и рождают в третьем месяце новую пару. (Ради простоты в этом мысленном эксперименте предполагается, что каждый помет состоит из самца и самки.) В четвертом месяце первая взрослая пара производит на свет еще одну пару новорожденных кроликов, их первые дети достигли зрелости, так что теперь есть две пары взрослых кроликов и одна пара новорожденных. В пятом месяце каждая из пар взрослых кроликов производит потомство, а новорожденные кролики из четвертого месяца достигают зрелости. Итак, в пятом месяце у нас три пары взрослых кроликов и две пары новорожденных, что дает в общей сложности пять пар кроликов. Количество пар кроликов по месяцам дается следующей последовательностью:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

Рис. 1.22. Числа Фибоначчи оказываются ключом к определению роста численности кроликов

Учет размножающихся кроликов был настоящей головной болью, пока Фибоначчи не обнаружил простой способ определять эти числа. Чтобы записать следующий член в этой последовательности, вам просто нужно сложить два предыдущих числа. Большее из этих двух чисел – количество пар кроликов в предшествующем месяце, все они доживают до следующего месяца. Меньшее из этих двух чисел – количество пар взрослых кроликов, каждая из которых дополнительно производит на свет пару новорожденных кроликов. Так что количество пар кроликов в следующем месяце равно сумме в два предыдущих.

Некоторым читателям данная последовательность может быть знакома по роману Дэна Брауна «Код да Винчи». На ее основе бы построен первый код, который герою пришлось взломать на пути к Святому Граалю.

Эти числа нравятся не только кроликам и Дэну Брауну. Количество лепестков у цветка часто оказывается числом Фибоначчи. У триллиума их три, у анютиных глазок пять, у некоторых видов дельфиниума восемь, у бархатцев 13, у цикория 21, у пиретрума 34, а у подсолнуха часто бывает 55 или даже 89 лепестков. У цветков некоторых растений количество лепестков оказывается удвоенным числом Фибоначчи. Это те растения, например некоторые лилии, у которых цветок состоит из двух копий. И если количество лепестков вашего цветка не соответствует числу Фибоначчи, значит, какой-то лепесток опал… Так математика умеет обходить исключения. (Я не хочу, чтобы меня завалили письмами разгневанные садоводы, поэтому соглашусь, что есть некоторое количество исключений, которые нельзя назвать вянущими цветами. Например, у седмичника часто оказывается семь лепестков. Ботаника не столь совершенна, как математика.)

Как и в цветках, вы можете найти числа Фибоначчи в чешуйках сосновых шишек и плодов ананаса. Разрежьте банан поперек, и вы увидите три сектора. Сделайте то же посередине яблока, и вы обнаружите пятиконечную звезду. А поступив так с хурмой, вы увидите восьмиконечную звезду. Везде, где происходит рост, – в поколениях ли кроликов, в строении подсолнухов или фруктов – всюду возникают числа Фибоначчи.

Страницы: 1234567 »»

Читать бесплатно другие книги:

Вы только что узнали, что вашего ребенка надо оперировать, и не находите себе места?Не отчаивайтесь,...
«Боже, храни мое дитя» – новый роман нобелевского лауреата, одной из самых известных американских пи...
Это история о любви и коварстве, о невинной доброте и изощрённом зле, о силе и слабости. История дев...
Что произойдёт с людьми, если воздух вдруг станет чёрным? Что делать, если нужно выбирать между спас...
Она осталась одна, без надежды на безоблачное будущее, а впереди – только мучительная смерть. Лишенн...
Где-то в Вирджинии находят мёртвую женщину, убитую причудливым образом. Пока взявшее на себя расслед...