Стратегические игры. Доступный учебник по теории игр Диксит Авинаш
Моей матери, Рони Рейли
Дэвид Рейли
Эту книгу хорошо дополняют:
Авинаш Диксит и Барри Нейлбафф
Чарльз Уилан
Стивен Строгац
Грейди Клейн и Алан Дебни
Алекс Беллос
Информация от издательства
Научный редактор Александр Минько
Издано с разрешения W.W.Norton&Company, Inc. и литературного агентства Andrew Nurnberg
На русском языке публикуется впервые
Диксит, Авинаш
Стратегические игры. Доступный учебник по теории игр / Авинаш Диксит, Сьюзан Скит и Дэвид Рейли-младший; пер. с англ. Н. Яцюк; [науч. ред. А. Минько]. — М.: Манн, Иванов и Фербер, 2017.
ISBN 978-5-00100-813-2
Доступный учебник по теории игр, который завоевал заслуженную популярность благодаря наглядным примерам и упражнениям, а также доступному изложению, не требующему от читателей серьезной математической подготовки.
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.
Все права защищены. Никакая часть данной книги не может быть воспроизведена в какой бы то ни было форме без письменного разрешения владельцев авторских прав.
© W. W. Norton & Company, Inc., 2015, 2009, 2004, 1999
© Перевод на русский язык, издание на русском языке, оформление. ООО «Манн, Иванов и Фербер», 2017
Предисловие партнера издания
Перед вами логическое продолжение книги «Теория игр» Авинаша Диксита и Барри Нейлбаффа. В новой книге нас вновь вовлекают в разбор множества ситуаций, на основе которых мы учимся понимать виды различных стратегий и прогнозировать поведение участников игр.
В России теория игр стала уже не просто модной темой, но и обязательным знанием для людей, решающих сложные стратегические задачи. Спрос на литературу по этой теме растет, и вот перед вами одна из немногих достойных книг, в которой авторам удалось доступно раскрыть концепции и методики стратегической игры.
Интересный момент: стратегические игры не ограничиваются одним лишь математическим анализом ситуации. Одно из главных условий игры — наличие игроков, каждый из которых имеет свои желания, задачи и цели. И именно объединение методов психологии и математики дает возможность выстроить наиболее успешную стратегию игры.
Несмотря на то что все люди так или иначе сталкиваются с играми в повседневной жизни, есть те, кому эти знания необходимы в первую очередь. Я говорю о руководителях. Их роль заключается в том, чтобы достигать целей подразделения или организации, учитывая множество вовлеченных в процесс людей. Управление проектом, ведение переговоров, внедрение изменений — каждое из этих направлений бизнеса является стратегической игрой.
Как это выглядит на практике? Не так давно консультанты Samolov Group вели проект по сопровождению переговоров для руководителя крупной строительной компании. Задачей нашего заказчика было приобретение большого участка земли для строительства. Ему было затруднительно вести переговоры с партнером на своих условиях. Вместе с заказчиком мы проанализировали интересы и возможности оппонента. После сбора обнаружилось, что у партнера близится срок погашения большого кредита. Наш клиент предложил новые условия сделки, при которых оппонент имел возможность погасить этот самый кредит. Таким образом, контракт был подписан на ту сумму, на какую рассчитывал наш клиент. Пример иллюстрирует важность анализа игроков, поскольку это позволяет определить наиболее выигрышную стратегию.
Чем выше уровень руководителя, тем важнее для него развивать стратегическое мышление и умение применять методы теории игр на практике. В реальности же российские менеджеры привыкли решать ситуации «здесь и сейчас», не думая о долгосрочных сценариях. Поэтому обучение навыкам планирования, постановки целей, разработки стратегий дается довольно тяжело даже опытным руководителям. Необходимо признаться самому себе в том, что, если не развивать эти компетенции и не уделять должного внимания планированию, будет сложнее добиваться серьезных целей.
В книге «Стратегические игры» методика преподносится через кейсы. Этот формат может быть несколько непривычным для российского читателя. В России обучение предполагает сначала описание методики, а после уже — ее применения. В этой же книге вначале даются кейсы, а уже по ним делается разбор и вывод методики. Возможно, текст книги будет казаться сложным для восприятия, но информация, содержащаяся в нем, имеет большую ценность, поэтому рекомендую заинтересованному читателю выделить время на чтение и получить от этого интеллектуальное удовольствие.
Иван Самолов,
коммерческий директор Samolov Group
Предисловие
Мы написали этот учебник для преподавателей и студентов первого или второго курса колледжа, чтобы помочь последним освоить основы теории игр. Он не требует предварительных знаний в областях, в которых применяется эта наука (таких как экономика, политология, эволюционная биология и т. д.); достаточно школьного уровня математики. Должны сказать, что полученный результат превзошел все наши ожидания. Сегодня немало учебных курсов по этой дисциплине читаются там, где 20 лет назад о них и не слышали, к тому же некоторые из них разработаны под влиянием нашего учебника. А появление на рынке конкурентов и подражателей — еще один убедительный признак успеха.
Тем не менее успех не повод для самоуспокоения. В каждом последующем издании учебника мы продолжали совершенствовать изложенный в нем материал с учетом замечаний и предложений преподавателей и студентов, а также собственного опыта его использования.
Основные нововведения в четвертом издании связаны со смешанными стратегиями. В третьем издании мы рассматривали этот вопрос в двух главах исходя из различий между простыми и сложными темами. Простые темы включали решение и интерпретацию равновесий в смешанных стратегиях в играх 2 2, а главной сложной темой была общая теория смешивания в играх с более чем двумя чистыми стратегиями, когда некоторые из них могут остаться неиспользованными в равновесии. Однако мы обнаружили, что мало кто из преподавателей обращается ко второй из этих глав. Поэтому мы решили свести простые темы и ряд базовых концепций более сложных тем в одну главу, посвященную смешанным стратегиям (глава 7). Некоторые материалы, не попавшие в эту главу, будут доступны читателям, намеревающимся более глубоко изучить темы повышенного уровня сложности, в виде онлайн-приложений[1].
Мы улучшили и упростили материал об информации в играх (глава 8). В частности, дали расширенное описание и больше примеров предварительного обмена ею с тем, чтобы разъяснить взаимосвязь между согласованием интересов и возможностью достоверной коммуникации. Кроме того, мы проанализировали примеры сигнализирования и скрининга в начале, а не в конце главы, как это было в третьем изданием, чтобы убедить студентов в важности этой темы и подготовить почву для более сухой теории, представленной в следующих разделах.
Игры в некоторых областях применения теории игр, о которых рассказывается в следующих главах, были дстаточно просты, и их можно было анализировать без развернутого дерева игры или таблицы выигрышей. Но это ослабляло связь между предыдущими главами, в которых излагались методические принципы теории игр, и примерами практического применения этих принципов. Поэтому теперь мы показываем больше инструментов логического вывода в контексте их практического использования.
Мы расширили и усовершенствовали набор упражнений. Они, как и в третьем издании, в каждой главе разделены на две группы — с решениями и без — и в большинстве случаев представлены параллельно: на каждое упражнение с решением приходится соответствующее упражнение без решения, но с незначительными изменениями, что позволяет студентам дополнительно попрактиковаться. Доступ к решениям упражнений первой группы читатели могут получить на сайте books.wwnorton.com/studyspace/disciplines/economics.aspx?DiscId=6. Решения упражнений второй группы будут предоставляться преподавателям, использующим этот учебник в работе: им необходимо связаться с издателем для получения доступа к сайту для преподавателей. В каждой группе упражнений с решениями и без них есть упражнения двух типов. Одни дают возможность повторить и отработать изучаемые методы, в других мы шаг за шагом проводим студента через процесс создания модели анализа того или иного вопроса или проблемы с позиции теории игр (на наш взгляд, именно эти упражнения имеют самую большую образовательную ценность). Такой опыт, полученный в ходе анализа упражнений с решениями и закрепленный с помощью соответствующих упражнений без решений, способствует развитию навыков стратегического мышления у студентов.
Большая часть других глав тоже обновлена, улучшена, систематизирована и упрощена. Самым существенным изменениям подверглись главы, посвященные таким темам, как дилемма заключенных (глава 10), коллективные действия (глава 11), эволюционные игры (глава 12) и голосование (глава 15). Мы исключили последнюю главу третьего издания («Рынки и конкуренция»), поскольку, как показывают данные, ее почти никто не использовал. В случае необходимости преподаватели могут ее найти в третьем издании учебника.
Мы признательны многочисленным читателям предыдущих изданий за высказанные замечания и предложения. Благодаря им, а также проницательным и конструктивным советам преподавателей, использующих учебник на лекциях, содержание и изложение материала было существенно улучшено. В ходе работы над четвертым изданием мы учли комментарии Кристофера Максвела (Бостонский колледж), Алекса Брауна (Техасский университет A&M), Джонатана Вуна (Питтсбургский университет), Клауса Бекера (Техасский технологический университет), Хуансиня Янга (Университет штата Огайо), Мэтью Рулофса (Университет Западного Вашингтона) и Дебашис Пал (Университет Цинциннати). Спасибо всем вам.
Авинаш Диксит
Сьюзан Скит
Дэвид Рейли-младший
Часть I. Общие принципы
Глава 1. Основные концепции и примеры
* * *
Все вводные учебники начинаются с попытки убедить студентов, что рассматриваемая дисциплина крайне важна в нашем мире и поэтому заслуживает их внимания. Естественные и прикладные науки претендуют на роль основы современных технологий, а значит, и современной жизни; общественные науки исследуют серьезные вопросы управления, такие как демократия и налогообложение; гуманитарные утверждают, что возродят вашу душу после того, как она омертвеет под воздействием естественных, прикладных и общественных наук. Как вписывается в эту картину теория стратегических игр, часто называемая теорией игр, и почему ее следует изучать?
Мы предлагаем практическую мотивацию, которая носит более индивидуальный характер и ближе к вашим личным проблемам, чем большинство других предметов. Вы играете в стратегические игры постоянно: с родителями, братьями и сестрами, друзьями и врагами и даже с преподавателями. По всей вероятности, вы накопили достаточно приличный объем интуитивных знаний и навыков ведения таких игр, и мы надеемся, что вам удастся связать эти знания с изложенным в учебнике материалом. Мы будем опираться на ваш опыт, систематизируем его и разовьем до уровня, на котором вы сможете улучшить свои стратегические навыки и более методично их применять. Возможности для этого у вас будут появляться на протяжении всей жизни: вы продолжите играть в подобные игры с работодателями, подчиненными, супругами, детьми и даже незнакомыми людьми.
Этот предмет имеет существенное значение и в более широком контексте. Такие игры ведутся в бизнесе, политике, дипломатии и войнах — на самом деле в любой ситуации, в которой люди вступают во взаимодействие друг с другом с целью заключить взаимовыгодную сделку или разрешить конфликт. Способность распознавать эти игры углубит ваше понимание окружающего мира и позволит более эффективно участвовать в происходящих в нем событиях. Кроме того, понимание стратегических игр принесет непосредственную пользу при изучении ряда других предметов. На курсах по экономике и бизнесу уже применяются многие элементы теоретико-игрового мышления. Теория игр также используется в политологии, психологии и философии для анализа взаимоотношений между людьми. То же самое можно сказать и о биологии, на которую существенно повлияли концепции эволюционных игр и которая, в свою очередь, привнесла эти идеи в экономику. Психология и философия тоже не обходятся без стратегических игр. Теория игр предоставляет концепции и методы анализа в распоряжение многих, можно сказать, практически всех дисциплин, разве что за исключением изучающих полностью неодушевленные объекты.
1. Что такое стратегическая игра
При слове игра у вас может создаваться впечатление, что речь идет о поверхностном, малозначащем предмете в масштабной картине мира, изучающем такие тривиальные занятия, как азартные игры и спорт, тогда как в мире масса более важных вопросов — война, бизнес, образование, карьера и отношения. На самом деле стратегическая игра не просто игра; все вышеперечисленные вопросы и есть примеры игр, и теория игр помогает нам понять их суть. Тем не менее нет ничего плохого в том, чтобы начать изучение теории игр применительно к азартным играм или видам спорта.
Составляющие большинства игр — удача, мастерство и стратегии в различных пропорциях. Ставить все на подбрасывание монеты — это игра чистого везения, если, конечно, вы не спец в области подтасовок или подбрасывания монет. Забег на сто метров — игра, требующая исключительно физических навыков, хотя в ней тоже может присутствовать некий элемент случайности — например, у бегуна без видимых причин выдался не очень удачный день.
Стратегия — набор навыков иного рода. В контексте спорта это ментальные навыки, необходимые для того, чтобы хорошо играть, а еще умение рассчитать, как лучше всего использовать свои физические способности. Например, в теннисе вы их развиваете, отрабатывая подачи (сначала жесткие и плоские, затем подачи с подкруткой и кик-подачи) и обводящие удары (жесткие, низкие и точные). Стратегические навыки — это понимание того, куда следует отправить подачу (по косой к боковой линии или по центру, в крестовину между полями подачи) и целесообразно ли выполнять обводящий удар (по диагонали или по линии поля). В футболе вы развиваете умение ловить и бросать мяч, блокировать соперника, отбирать у него мяч и т. д. Тренер, зная физические возможности членов своей команды и команды противника, организует игру так, чтобы по максимуму использовать навыки своих игроков и слабые стороны соперника. Именно расчеты тренера определяют стратегию. Физическую игру в футбол ведут сами спортсмены, а стратегическую — тренеры и их помощники в кабинетах и на боковой линии.
Ваша задача в забеге на сто метров — как можно выгоднее применить свои физические навыки. На этой дистанции нет возможности наблюдать за соперниками и реагировать на их действия, а значит, нет места и для стратегии. А вот более длинные забеги уже подразумевают ее наличие: следует ли вам возглавлять забег и задавать темп бега, за какое время до финиша делать попытку вырваться вперед и т. д.
По сути, стратегическое мышление — это способность анализировать взаимодействие с другими людьми, тогда как они, в свою очередь, делают то же самое. Во время марафона ваши соперники могут срывать или поддерживать ваши попытки возглавить забег в зависимости от того, что больше отвечает их интересам. В теннисе противник старается угадать, куда вы направите свою подачу или обводящий удар; в футболе тренер команды противника строит игру так, чтобы она наилучшим образом, по его мнению, противостояла вашей стратегии игры. Безусловно, вы должны учитывать планы соперника, точно так же, как и он учитывает ваши. Теория игр — это анализ или, если хотите, наука о таком интерактивном процессе принятия решений.
Когда вы тщательно все взвешиваете, прежде чем что-либо предпринять, то есть осознаете свои цели или предпочтения, а также любые ограничения или требования к вашим действиям, и обдуманно выбираете свои действия, чтобы добиться максимального успеха исходя из собственных критериев, считается, что вы ведете себя рационально. Теория игр привносит еще один аспект в понятие рационального поведения, а именно: взаимодействие с другими, в равной степени рациональными людьми, принимающими решения. Иными словами, теория игр — это наука о рациональном поведении в интерактивных ситуациях.
Мы не утверждаем, что теория игр научит вас секретам идеальной игры или поможет никогда не проигрывать. Во-первых, ваш соперник может прочитать те же книги; кроме того, вы оба не можете постоянно выигрывать. Еще важнее то, что многие игры содержат немало сложных и тонких нюансов, а большинство реальных ситуаций включают в себя достаточно своеобразных или случайных факторов. Теория игр не может предложить безошибочный рецепт действий; что она действительно делает, так это предоставляет ряд общих принципов анализа стратегических взаимодействий. Вам предстоит дополнить их и некоторые методы вычислений множеством деталей, характерных для вашей ситуации, прежде чем разработать успешную стратегию выхода из нее. Хорошие стратеги используют теорию игр в сочетании со своим опытом; можно сказать, что ведение стратегических игр — в не меньшей степени искусство, чем наука. Мы объясним вам общие концепции науки стратегических игр, а также расскажем о ее ограничениях и о том, когда на первый план выходит искусство стратегических игр.
Хотя вы можете полагать, что уже освоили искусство стратегических игр благодаря своему опыту или интуиции, тем не менее изучение науки стратегических игр покажется вам весьма полезным. Она систематизирует множество общих принципов, действующих в разных контекстах или областях применения. Без этих принципов вам пришлось бы заново анализировать каждую новую ситуацию, требующую стратегического мышления, что было бы особенно сложно в новых областях применения теории игр — например, если вы овладели искусством стратегии в играх со своими родителями, братьями или сестрами, а теперь должны использовать стратегические навыки против бизнес-конкурентов. Общие принципы теории игр дают вам точку отсчета. Отталкиваясь от нее, вы сможете гораздо быстрее и увереннее отыскивать характерные для вашей ситуации признаки или элементы искусства стратегии, а также дополнять ими свои размышления и действия.
2. Примеры и истории о стратегических играх
С учетом целей, поставленных в разделе 1, мы сначала предложим вам ряд простых примеров, многие из которых позаимствованы из ситуаций, с которыми вы наверняка сталкивались в своей жизни. В каждом примере мы указываем важный стратегический принцип. Все эти принципы более детально рассматриваются в следующих главах; кроме того, после каждого примера мы сообщим, где найти более подробную информацию. Однако не торопитесь сразу же переходить к соответствующим главам, сначала просто прочитайте все примеры, чтобы получить предварительное представление обо всех аспектах стратегии и стратегических игр.
Теннис высокого уровня состоит из незабываемых поединков между лучшими игроками: Джон Макинрой против Ивана Лендла, Пит Сампрас против Андре Агасси, Мартина Навратилова против Крис Эверт. Возьмем в качестве примера финальный матч Открытого чемпионата США по теннису между Эверт и Навратиловой[2]. Навратилова у сетки только что ударила по мячу с лета, отправив его в сторону Эверт на заднюю линию. Эверт вот-вот выполнит обводящий удар. Какой удар ей лучше сделать — по линии поля или по диагонали? И следует ли Навратиловой ожидать удара по линии и сделать наклон в соответствующую сторону или удара по диагонали и наклониться в другую сторону?
Здравый смысл говорит в пользу удара по линии. При таком ударе мячу предстоит преодолеть меньшее расстояние до сетки, а значит, у другого игрока останется меньше времени на то, чтобы правильно среагировать. Однако это не означает, что Эверт следует постоянно использовать этот удар. Если бы она поступала именно так, Навратилова ожидала бы этого и подготовилась, поэтому удар не был бы результативным. Для того чтобы повысить шансы на успех в случае обводящего удара по линии поля, Эверт необходимо использовать удар по диагонали достаточно часто, чтобы Навратиловой каждый раз приходилось угадывать его направление.
То же самое происходит и в футболе: когда на третьем дауне остается продвинуть мяч еще на один ярд, бег с мячом на середину поля — это процентная игра (то есть наиболее часто применяемая тактика игры), но время от времени нападающие должны делать в таких ситуациях пас, чтобы держать команду защиты в напряжении.
Таким образом, самый важный общий принцип действий в подобных ситуациях состоит не в том, что Эверт следует делать, а в том, чего ей делать не следует: она не должна выполнять одно и то же действие постоянно или систематически. В противном случае Навратилова будет знать, как реагировать на ее действия, и шансы на успех у Эверт снизятся.
Отсутствие систематичности в действиях означает нечто большее, чем попытки не делать один и тот же удар в подобных ситуациях. Эверт также не должна сугубо механически переключаться между двумя ударами — Навратилова заметит и использует эту закономерность или любую другую систему, поддающуюся обнаружению. Эверт необходимо делать выбор в каждом конкретном случае в произвольном порядке, чтобы помешать такому угадыванию.
Общая идея о смешивании приемов игры хорошо известна даже спортивным комментаторам на телевидении. Но у нее есть и другие аспекты, требующие углубленного анализа. Почему удар вдоль линии поля — процентная игра? Должен ли теннисист вести ее в 80, 90 или 99 процентах случаев? Насколько важен масштаб соревнований — например, следует ли делать пас на третьей попытке во время регулярного сезона, но не делать во время Суперкубка? Как игроки смешивают приемы игры в реальных условиях? Что происходит, когда появляется третья возможность (например, свеча в теннисе)? Мы проанализируем эти вопросы и ответим на них в главе 7.
Фильм The Princess Bride («Принцесса-невеста», 1987) иллюстрирует эту идею на примере «состязания на смекалку» между героем (Уэстли) и злодеем (Виззини). Уэстли должен отравить вино в одном из двух кубков, а Виззини предстоит решить, кто из какого кубка будет пить. Виззини анализирует ряд запутанных доводов в пользу того, почему Уэстли должен отравить вино в определенном кубке. Однако все они внутренне противоречивы, поскольку Уэстли может разгадать логику Виззини и добавить яд в другой кубок. И наоборот, если Уэстли выберет определенный кубок с помощью какой-то конкретной логики или системы, Виззини может предвидеть это и выпить вино из другого кубка, оставив Уэстли кубок с отравленным вином. Стало быть, стратегия Уэстли должна быть случайной и бессистемной.
Эта сцена иллюстрирует еще один момент. В фильме Виззини проигрывает и расплачивается за это жизнью. Как оказалось, Уэстли отравил вино в обоих кубках: на протяжении последних нескольких лет он вырабатывал иммунитет к этому яду. Следовательно, Виззини вел игру в крайне неблагоприятных условиях с точки зрения наличия информации, что и привело к фатальному исходу. Иногда игроки могут преодолеть проблему асимметричности информации; в главе 8 и главе 13 рассматривается вопрос о том, когда и как они могут это сделать.
Вы записались на курс, который оценивается по средней успеваемости. Независимо от того, каких успехов вы добьетесь в абсолютном выражении, всего 40 процентов студентов получат оценки А и всего 40 процентов — оценки B. Следовательно, вы должны упорно трудиться, причем не только в абсолютном выражении, но и относительно того, насколько старательно трудятся ваши товарищи по учебе (на самом деле «враги по учебе» кажется в данном контексте более подходящим выражением)[3]. Это понимают все студенты, поэтому после первой же лекции они собираются на импровизированное совещание и договариваются не проявлять чрезмерного усердия. Спустя несколько недель искушение получить преимущество перед остальными, приложив чуть больше усилий, становится непреодолимым. В конце концов, ваши сокурсники не могут видеть все, что вы делаете, и не имеют реального влияния на вас, а выгода от повышения среднего балла весьма существенна. В итоге вы начинаете чаще заходить в библиотеку и оставаться там подольше.
Проблема в том, что остальные делают то же самое. Следовательно, вы получите такую же оценку, как и в случае, если бы придерживались договоренности. Единственное отличие — все вы потратили на учебу больше времени, чем вам хотелось бы.
Это пример дилеммы заключенных[4]. В ее оригинальной версии двух подозреваемых допрашивают по отдельности и предлагают каждому признать свою вину. Одному из них, скажем, подозреваемому А, говорят следующее: «Если другой подозреваемый (Б) не сознается, то вы можете заключить выгодную сделку и смягчить наказание, признав свою вину. Но если Б сознается, тогда вам тоже лучше это сделать, иначе суд будет особенно суровым по отношению к вам. Так что вам следует сознаться в любом случае». Подозреваемого Б убеждают с помощью аналогичных доводов. Столкнувшись с таким выбором, А и Б сознаются, хотя для обоих было бы лучше, если бы они молчали, поскольку у полиции нет против них никаких веских доказательств.
В случае с оцениванием знаний складывается похожая ситуация. Если другие студенты будут работать меньше, то вы получите гораздо более высокий средний балл благодаря усердной учебе; если же другие будут усердно трудиться, тогда вам лучше делать то же самое, иначе вы получите низкий балл. Вы даже можете подумать, что слово «заключенный» очень уместно для обозначения группы студентов, попавших в ловушку обязательного учебного курса.
У преподавателей и учебных заведений собственная дилемма заключенных. Каждый преподаватель может сделать так, чтобы его курс выглядел привлекательно, оценивая знания студентов менее строго, а каждое учебное заведение может подыскать своим выпускникам более достойную работу или привлечь более перспективных абитуриентов, менее взыскательно оценивая знания студентов по всем курсам. Безусловно, если все так и поступят, ни у кого не будет преимущества перед остальными; единственное, что произойдет, — это стремительное повышение оценок, которое приводит к сжатию их диапазона, а значит, затрудняет возможность разграничивать способности студентов.
Люди часто думают, что в любой игре должны быть победитель и побежденный. Дилемма заключенных — это нечто иное: оба игрока (или все игроки) могут проиграть. Люди играют в такие игры (и проигрывают) каждый день, и проигрыши могут быть самыми разными, от небольших неудобств до потенциальных катастроф. Во время спортивных соревнований зрители поднимаются со своих мест, чтобы лучше все видеть, но когда все стоят, зона обзора, наоборот, сужается. Сверхдержавы накапливают больше оружия, чтобы получить преимущество перед противниками, но когда это делают обе стороны, соотношение сил не меняется, зато это приводит к нерациональному использованию экономических ресурсов, которые можно было бы направить на более достойные цели, чем вооружение, и повышению риска случайного развязывания войны. Учитывая величину возможных потерь всех участников таких игр, важно знать способы налаживания взаимовыгодного сотрудничества. Изучению подобной игры посвящена глава 10.
В противоположность дилемме заключенных — игре, в которой могут проиграть все, — существуют и беспроигрышные игры, когда выигрывают все участники. Один из примеров такой игры — международная торговля: если та или иная страна производит больше продукта, который она может делать лучше всех, то плодами такого международного разделения труда могут воспользоваться все страны. Однако, чтобы реализовать весь потенциал международной торговли, необходимы успешные переговоры относительно разделения этого «пирога». То же касается и многих других переговорных ситуаций. Эта тема подробно рассматривается в главе 17.
Вот история (возможно, вымышленная), которая обычно распространяется по электронной почте старшекурсников; каждый из нас независимо друг от друга тоже получил ее от студентов.
Два друга изучали химию в Университете Дьюка. Оба достаточно хорошо сдали тесты, лабораторные работы и промежуточные экзамены, поэтому рассчитывали получить на итоговом экзамене твердую оценку А. Во время выходных накануне экзамена друзья были так уверены в успехе, что решили пойти на вечеринку в Университете штата Вирджиния. Вечеринка настолько удалась, что они проспали все воскресенье, поскольку вернулись слишком поздно и уже не могли готовиться к итоговому экзамену, который был назначен на утро понедельника. Вместо того чтобы сдавать экзамен без подготовки, друзья подошли к профессору и рассказали душещипательную историю о том, как ездили в Университет штата Вирджиния и планировали вернуться пораньше, но на обратном пути у них спустила шина, а так как запасной не оказалось, им пришлось всю ночь искать помощь. Так нельзя ли им сдать экзамен завтра, потому что сейчас они еле держатся на ногах от усталости? Профессор подумал и согласился.
Ребята занимались весь вечер понедельника и во вторник пришли на экзамен хорошо подготовленными. Профессор усадил их в разных аудиториях и выдал каждому задание. Первый вопрос на первой странице оценивался в 10 баллов и был очень простым. Оба студента написали правильные ответы и с огромным облегчением перевернули страницу. Там был всего один вопрос на 90 баллов: «Так какая шина спустила?»
В этой истории есть два важных стратегических урока для будущих завсегдатаев вечеринок. Первый состоит в признании того факта, что профессор — весьма искусный игрок. Он может заподозрить студентов в обмане и использовать какой-то прием, чтобы вывести их на чистую воду. Учитывая объяснения студентов, поставленный профессором вопрос был самым верным способом узнать правду. Друзьям следовало бы это предвидеть и заранее договориться. Второй — в том, что в игре необходимо просчитывать будущие ходы, а затем анализировать ее в обратном порядке с тем, чтобы определить оптимальное текущее действие, — общий принцип стратегии, на котором мы остановимся более подробно в главе 3 и, что особенно важно, главе 9.
Однако предвидеть все профессорские уловки такого рода можно не всегда, ведь у преподавателей опыт распознавания отговорок студентов гораздо богаче, чем у студентов в их придумывании. Если герои этой истории не подготовились заранее, есть ли у них шанс независимо друг от друга назвать одинаковые вымышленные причины? Если каждый из них выберет шину случайным образом, вероятность того, что их выбор совпадет, составляет всего 25 процентов. (Почему?) Есть ли вариант повысить процент?
Вы можете подумать, что прежде всего в зоне риска находится шина переднего правого колеса, поскольку гвозди или осколки стекла чаще всего лежат ближе к этой стороне дороги, чем к середине, и переднее правое колесо наедет на них первым. Такая логика рассуждений кажется вполне обоснованной, но этого недостаточно, чтобы сделать правильный выбор, поскольку тут важна не логика выбора, а то, чтобы так же мыслил и ваш друг. Следовательно, вам нужно поразмышлять о том, воспользуется ли он той же логикой и посчитает ли ее очевидной. Но и это не конец цепочки рассуждений. Придет ли ваш друг к выводу, что такой выбор очевиден для вас? И так далее. Дело не в очевидности или логичности вашего выбора, а в том, очевидно ли для другого игрока то, что очевидно для вас, что очевидно для него… Иными словами, в данном случае необходима сходимость ожиданий в отношении того, что следует выбрать в подобных обстоятельствах. Ожидаемая стратегия, посредством которой игроки могут успешно координировать свои действия, называется «фокальной точкой».
В структуре таких игр нет общих или присущих им элементов, которые бы обеспечивали сходимость ожиданий. Иногда фокальная точка может быть достигнута по причине случайного стечения обстоятельств при обозначении стратегий или ввиду наличия у игроков некоего общего опыта или знаний. Например, если бы по какой-то причине переднее правое колесо называлось колесом Дьюка, то оба студента Университета Дьюка выбрали бы его без всяких предварительных размышлений. Или если бы переднее левое колесо каждого автомобиля было выкрашено в оранжевый цвет (в целях безопасности, чтобы его хорошо видели водители встречных автомобилей), то его с большей долей вероятности выбрали бы два студента Принстона, поскольку оранжевый — цвет Принстонского университета. Однако без таких подсказок координация действий вообще была бы невозможна.
Мы рассмотрим фокальные точки более подробно в главе 4. Пока же хотелось просто отметить, что, когда мы задаем вопрос о шине в аудиториях, более 50 процентов студентов выбирают шину переднего левого колеса. В большинстве случаев они не могут объяснить почему, но утверждают, что такой выбор кажется им очевидным.