Умный ген. Какая еда нужна нашей ДНК Шэнахан Кэтрин
Эти мутации, похоже, непосредственно влияют на определенные черты характера. Джонатан Себат, ведущий автор статьи 2012 года, предполагает, что «горячие точки» сконструированы таким образом, что «их мутации изменяют черты человеческого характера», включая или выключая развитие определенных моделей поведения. Например, когда определенный ген в «горячей точке» седьмой хромосомы дублируется, у детей развивается аутизм, задержка в развитии, характеризующаяся почти полным отсутствием интереса к социальному общению. При делеции той же хромосомы у детей развивается синдром Уильямса, задержка в развитии, характеризующаяся неумеренной общительностью: дети говорят очень много и практически с кем угодно. Явление, при котором определенные черты характера усиливаются или ослабевают из-за вариаций в экспрессии генов, недавно признали следствием архитектуры ДНК и назвали «активной адаптивной эволюцией»44.
У нас есть и другие доказательства того, что новые мутации, связанные с аутизмом, управляются определенной логикой: теперь мы знаем, что «горячие точки» могут активироваться эпигенетическими факторами, в частности, одним из видов эпигенетического маркирования – метилированием45. В отсутствие достаточного количества витаминов группы В некоторые участки гена теряют метилированные метки и открывают тем самым участки ДНК для воздействия факторов, вызывающих новые мутации. Иными словами, отсутствие определенных компонентов в рационе родителей вызывает реакцию генома, которая, возможно, поможет детям справиться с новыми условиями питания. Это, конечно, не всегда работает, но цель, похоже, именно такая.
Можно практически представить, что это – попытка изменить черты характера таким образом, чтобы создать творческий ум нового типа, который поможет нам адаптироваться по-новому.
Свидетельства в пользу того, что в ДНК содержится язык
Мы пока еще не представляем себе, как именно природе удается следить, какие программные коды работают лучше всего и для чего, или как вещества из окружающей среды – минералы, витамины, токсины и т. д. – влияют на новую эпигенетическую стратегию, но некоторые интригующие исследования поддерживают предположение, что ДНК действительно умеет «вести дневник».
В 1994 году математики обнаружили, что «мусорная ДНК» содержит паттерны, похожие на естественный язык, потому что она, помимо всего прочего, подчиняется закону Ципфа (иерархическое распределение слов, присутствующее во всех языках)46,47,48,49. Некоторые генетики не согласны с этим утверждением, но другие считают, что этот дополнительный уровень сложности может со временем помочь раскрыть многие тайны ДНК. Впрочем, все согласны, что в «мусорной ДНК» очень много места для хранения информации. «Мусорная ДНК» – это достаточно большое хранилище информации, чтобы служить своеобразным химическим программным обеспечением, предназначенным, чтобы (лучшего слова тут не подобрать) узнавать что-то об условиях питания, а затем размножаться уже с обновлениями информации. Некоторые молекулярные биологи считают, что эта способность вызывать просчитанную реакцию на изменения окружающей среды говорит о том, что язык, закодированный в «мусорной ДНК», «важен для… эволюционного процесса», и подразумевает существование «независимого механизма постепенной регуляции экспрессии генов». Выходит, что в эволюции, вполне возможно, участвуют и другие механизмы, кроме общепринятых – отбора и случайных мутаций. Отрасль эволюционных исследований, изучающая, как все три эти механизма управляют эволюцией, называется адаптивной эволюцией.
Один из примеров логики, управляющей поведением ДНК, можно увидеть, наблюдая за эффектами от недостатка витамина А. В конце 1930-х годов профессор Фред Хэйл, работавший на Техасской сельскохозяйственной экспериментальной станции, сумел перед оплодотворением обеспечить такой дефицит витамина А в организме свиноматок, что у них рождались поросята без глазных яблок50. Когда этим же свиноматкам давали витамин А, в следующих пометах рождались поросята с нормальными глазными яблоками, что говорит о том, что рост глаз отключался не из-за перманентной мутации, а из-за временной эпигенетической модификации. Витамин А вырабатывается из ретиноидов, которые получаются из растений, которые, в свою очередь, зависят от солнечного света. Так что ДНК реагировала на отсутствие витамина А как на отсутствие света или на темную среду, в которой глаза просто бесполезны, и отключала гены, отвечающие за рост глаз. У безглазых поросят были веки, как и у слепых пещерных саламандр. Возможно, саламандры и другие слепые пещерные обитатели тоже пережили похожую эпигенетическую модификацию генов, контролирующих рост глаз, из-за низкого уровня витамина А в пещерах, где нет ни света, ни растений.
Если взять все имеющиеся эпигенетические свидетельства, то получится, что ДНК – это намного более динамичный и умный механизм адаптации, чем кажется. По сути, ДНК умеет собирать информацию – с помощью «языка» пищи, которую принимает организм – об изменениях условий окружающей среды, и запускает изменения, основанные на этой информации, а также документирует собранные данные и реакцию для следующих поколений. «Мусорная ДНК» полна генетических сокровищ. Возможно, она работает как постоянно увеличивающаяся библиотека, в которой работает проницательный «библиотекарь», постоянно перечитывающий уже написанные труды об успешных и провальных стратегиях генетической адаптации. Из этого должно следовать, что более сложные организмы с большими клетками, в чьих геномах записана более сложная эволюционная история, должны нести в себе больше обширных библиотек, наполненных «мусорной ДНК». Так оно и есть51