Ритм Вселенной. Как из хаоса возникает порядок Строгац Стивен

Посвящается Арту Уинфри, наставнику, источнику вдохновения и другу

Предисловие

В сердце Вселенной ощущается постоянное, неуклонное биение: звучание синхронизированных циклических процессов. Это биение буквально пропитывает природу на всех уровнях, начиная с атомного ядра и заканчивая космосом. Каждый вечер вдоль приливных рек Малайзии тысячи светлячков собираются в мангровых лесах и мерцают в унисон, причем в их среде нет какого-либо лидера или внешнего источника, который задавал бы ритм этого мерцания. Триллионы электронов маршируют в ногу в сверхпроводнике, обеспечивая совершенно беспрепятственное прохождение тока по нему: сопротивление сверхпроводника оказывается равным нулю. В Солнечной системе гравитационный синхронизм может приводить к выбрасыванию огромных валунов из пояса астероидов в направлении Земли: считается, что катастрофическое столкновение одного такого метеорита с Землей погубило динозавров. Даже человеческое тело представляет собой симфонию, поддерживаемую скоординированным срабатыванием тысяч клеток, задающих ритм сокращений сердца человека. В каждом случае эти «подвиги» синхронизма происходят спонтанно, как если бы сама природа проявляла сверхъестественное, необъяснимое стремление к порядку.

С давних пор это явление представляет для ученых неразрешимую загадку: существование спонтанного порядка во Вселенной ставит их в тупик. На первый взгляд, законы термодинамики диктуют обратное: подчиняясь им, природа должна была бы неуклонно деградировать в сторону все большего беспорядка, все большей энтропии. Однако мы наблюдаем вокруг себя множество величественных структур – галактики, клетки, экосистемы, людей, – которым удается каким-то образом собирать самих себя. Эта загадка не дает покоя научному сообществу и в наши дни.

Лишь в очень немногих ситуациях у нас есть понимание того, каким образом порядок возникает сам по себе. Первой из таких ситуаций был особый вид порядка в физическом пространстве, связанный с идеально повторяющимися структурами. Это тот вид порядка, который возникает, когда температура воды опускается ниже точки замерзания и триллионы молекул воды спонтанно образуют жесткий симметричный кристалл льда. Однако объяснение порядка во времени оказалось более проблематичным. Даже простейший вариант, когда одни и те же события наступают одновременно, оказался трудноуловимым. Это тот порядок, который мы называем синхронизмом.

Поначалу может показаться, что здесь, вообще говоря, нечего объяснять. Вы можете договориться со своим приятелем встретиться в ресторане, и если оба вы достаточно пунктуальны, то ваше появление в ресторане будет синхронизированным. Столь же тривиальный вид синхронизма запускается реакцией на какой-либо общий стимул. Стая голубей, напуганных громким звуком из выхлопной трубы автомобиля, поднимется в воздух практически одновременно, причем в течение какого-то времени они могут даже синхронно взмахивать своими крыльями, однако это происходит лишь потому, что все они одинаково реагируют на один и тот же звук. Невозможно ведь подозревать, что голуби каким-то образом договорились между собой о ритме взмахов крыльями; к тому же синхронность их действий пропадает уже спустя несколько секунд после взлета. Другие виды кратковременного синхронизма могут возникать по чистой случайности. Воскресным утром колокола двух разных церквей могут случайно зазвонить в одно и то же время, и этот синхронизм будет поддерживаться в течение какого-то (непродолжительного) времени, после чего они начнут звонить вразнобой. Еще одна возможная ситуация: сидя в своем автомобиле на перекрестке в ожидании разрешающего сигнала светофора, вы можете заметить, что указатель поворота автомобиля, стоящего впереди вас, мигает практически синхронно с указателем поворота вашего автомобиля – и так может продолжаться в течение нескольких секунд. Такой синхронизм является чистой случайностью и его обсуждение не представляет для нас никакого интереса.

Несомненный интерес представляет для нас синхронизм, сохраняющийся длительное время. Когда два события наступают одновременно и этот синхронизм поддерживается в течение долгого времени, то говорить о случайном характере такого синхронизма уже не приходится. Более того, в силу каких-то причин такой непрекращающийся синхронизм доставляет нам, людям, удовольствие. Нам нравится танцевать вместе, петь хором, играть в оркестре. В своей наиболее утонченной форме постоянный синхронизм может представлять собой поистине захватывающее зрелище, как, например, солдаты, марширующие на воинском параде, или выступления команд на соревнованиях по синхронному плаванию. Ощущение высокого исполнительского мастерства усиливается, когда зрители не знают, каких очередных чудес синхронизма им стоит ожидать в следующий момент времени. Мы интерпретируем постоянный синхронизм как признак кропотливого труда, высокого мастерства, точного планирования и хореографического искусства.

Но когда синхронизм наблюдается между неодушевленными объектами, наподобие электронов или биологических клеток, это кажется почти невероятным. Удивительно наблюдать совместные действия живых существ – тысяч светлячков, стрекочущих в унисон летней ночью, или косяков рыб, совершающих одинаковые элегантные волнообразные движения, – но еще более удивительно видеть скопления неодушевленных объектов, которые сами по себе совершают синхроные действия. Эти явления столь необъяснимы, что кто-то даже отказывается верить в их существование, приписывая их иллюзиям, случайным совпадениям или ошибкам восприятия. Другие же попросту впадают в мистицизм, пытаясь объяснить синхронизм действием сверхъестественных сил космоса.

Буквально до последнего времени изучением синхронизма занимались энтузиасты-одиночки – биологи, физики, математики, астрономы, инженеры и социологи, – каждый из которых замыкался в своей узкой области знаний, действуя по независимым друг от друга (на первый взгляд) направлениям исследования. Мало-помалу на основе фрагментарных представлений, выработанных в этих и других узких дисциплинах, начала формироваться наука о синхронизме. Эта новая наука сосредоточивается на изучении так называемых «связанных осцилляторов». Группы светлячков, планет или клеток-задатчиков ритма представляют собой совокупности осцилляторов – объектов, автоматически совершающих циклические действия, то есть действия, повторяющиеся снова и снова через более или менее регулярные интервалы времени. Светлячки мигают, планеты движутся по определенным орбитам, клетки-задатчики ритма (ритмоводители сердца) срабатывают одновременно. Говорят, что два или большее число осцилляторов связаны между собой, если некий физический или химический процесс позволяет им влиять друг на друга. Светлячки взаимодействуют между собой с помощью света. Планеты влияют друг на друга посредством силы гравитации. Клетки сердца передают туда и обратно электрические импульсы. Как следует из этих примеров, природа использует каждый доступный ей канал, чтобы предоставить возможность своим осцилляторам взаимодействовать друг с другом. Результатом такого взаимодействия зачастую оказывается синхронизм, при котором все осцилляторы начинают действовать одинаково.

Тем из нас, кто работает в этой зарождающейся области науки, задают примерно одни и те же вопросы. Как именно связанные осцилляторы синхронизируют свои действия – и при каких условиях? Когда такой синхронизм оказывается невозможным, а когда он оказывается неизбежным? Какие другие способы организации могут возникнуть, когда синхронизм пропадает? И какими могут быть практические применения знаний, которые накапливаются в этой области науки?

Эти вопросы волнуют меня на протяжении последних двадцати лет – сначала как выпускника Гарвардского университета, затем как профессора прикладной математики в Массачусетском технологическом институте и Корнельском университете, где я по сей день занимаюсь преподавательской и исследовательской деятельностью в области теории сложности и хаоса. Однако интерес к изучению циклических процессов возник у меня еще раньше, когда в бытность мою студентом-первокурсником меня посетило озарение. Для одного из первых научных экспериментов м-р Ди Курцио вручил каждому из нас по секундомеру и маленькому игрушечному маятнику, который представлял собой хитроумное устройство с выдвижным («телескопическим») стержнем, длину которого можно было пошагово регулировать; это устройство напоминало старые модели подзорных труб, которые вы наверняка видели в фильмах про пиратов. Наша задача заключалась в изменении периода колебаний маятника – времени, которое требуется для совершения одного полного колебания маятника, – и вычислении зависимости периода колебаний маятника от длины стержня, на котором он крепится. Иными словами, нам предстояло выяснить, как поведет себя маятник при удлинении стержня: станет колебаться быстрее, медленнее или период его колебаний останется прежним. Чтобы ответить на этот вопрос, мы «настроили» наши маятники на минимальную длину, измерили период его колебаний и отобразили результат на листе бумаги, разлинованном в клетку. Затем мы несколько раз повторили эксперимент, каждый раз увеличивая длину стержня на одно деление. Когда я отобразил на листе бумаги четвертую или пятую точку своего будущего графика, я заметил, что он похож на параболическую кривую. Оказалось, что колебания маятника подчиняются параболическому закону. (Что представляет собой парабола, мне было известно из курса алгебры.) Сделав это открытие, я испытал смешанные чувства удивления и страха. На меня снизошло озарение: я узнал о существовании тайного и восхитительного мира, который можно было исследовать лишь математическими методами. Я влюбился в этот мир буквально с первого взгляда; со временем мое восхищение этим миром лишь окрепло.

С тех пор прошло тридцать лет, но я по-прежнему очарован математической природой окружающего нас мира и особенно циклическими процессами, происходящими в нем (например, периодическими колебаниями маятника). Однако меня занимает изучение не столько какого-либо отдельно взятого колебательного процесса, сколько большой совокупности колебательных процессов, происходящих одновременно, то есть изучение упоминавшихся выше связанных осцилляторов. Со временем мне удалось разработать достаточно простые модели, которые, тем не менее, можно использовать для описания очень сложных совокупностей объектов. Разработанные мною идеализированные системы уравнений с достаточной степенью точности моделируют групповое поведение светлячков или сверхпроводников. Я пытаюсь использовать вычислительные методы и компьютеры, чтобы понять, как из хаоса рождается порядок. Эти загадки особенно интересны для меня тем, что являются, образно говоря, передним краем математики. Два связанных осциллятора не представляют собой проблемы: их поведение было изучено еще в начале 1950-х годов. Но когда речь идет о сотнях и тысячах связанных осцилляторов, наука по-прежнему бессильна. Нелинейная динамика систем со столь большим количеством переменных все еще недосягаема для нас. Даже наличие суперкомпьютеров не помогает нам описать коллективное поведение гигантских систем осцилляторов.

И все же благодаря объединенным усилиям математиков и физиков всего мира за последнее десятилетие нам удалось описать один специальный случай связанных осцилляторов, что открыло путь к более глубокому пониманию феномена синхронизма. Если предположить, что все осцилляторы в данной группе почти идентичны и что они в одинаковой степени связаны между собой, то их динамика поддается математической трактовке. В частях I и II этой книги я рассказываю о том, как моим коллегам и мне удалось решить этот класс теоретических проблем и что означает их решение для синхронизма в реальном мире: в части I – для осцилляторов живой природы (биологические клетки, животные и люди), а затем, в части II, – для осцилляторов неживой природы (маятники, планеты, лазеры и электроны). В части III рассказывается о передних рубежах синхронизма, когда мы отказываемся от использования упрощающих предположений, выдвинутых нами ранее. Эта сфера остается в значительной мере неисследованной и включает ситуации, где место осцилляторов занимают хаотические системы или где они связаны менее симметричными способами со своими соседями в трехмерном пространстве или в сложных сетях, охватывающих огромные территории.

Настоящая книга представляет собой попытку синтезировать значительный объем знаний по этому предмету, которые были накоплены учеными, работавшими в разных дисциплинах, на разных континентах и даже в разных столетиях. Наука, которая пыталась изучить явление синхронизма, основывается на работах ряда выдающихся умов XX столетия, многие из которых известны едва ли не каждому из нас, тогда как другие должны быть известны каждому. В их числе такие величайшие физики, как Альберт Эйнштейн, Ричард Фейнман, Брайан Джозефсон и Ёсики Курамото; математики Норберт Винер и Пал Эрдёш; специалист в области социальной психологии Стенли Мильграм; химик Борис Белоусов; теоретик хаоса Эдвард Лоренц; а также биологи Чарльз Чейслер и Артур Уинфри.

Мое имя тоже связано с исследованиями, которые внесли определенный вклад в это новое научное направление. Разумеется, я не питаю никаких иллюзий относительно своего места в истории, но хочу лишь рассказать читателям о том, что представляет собой работа в научной сфере: долгое блуждание впотьмах, непростой путь к научному открытию, изобилующий ошибками и разочарованиями, радость открытия, превращение студента в начинающего научного работника, а затем и в наставника молодых ученых. Пытаясь донести до самого широкого круга читателей мысль о необычайной важности математики в современной науке, я старался избегать в своей книге математических формул и полагался исключительно на метафоры и образы из повседневной жизни, иллюстрирующие ключевые идеи математики.

Надеюсь, читатели разделят мое восхищение необычайным многообразием синхронизма в окружающем нас мире и способностью математики объяснить его. Синхронизм – не только загадочное, но и восхитительное явление. Загадочное – потому что синхронизм, на первый взгляд, не считается с законами физики (хотя в действительности он базируется на этих законах – зачастую весьма оригинальными способами). С другой стороны, синхронизм приводит меня в восхищение, поскольку он порождает что-то наподобие космического балета – представления, которое разыгрывается на самых разнообразных сценах, начиная с человеческого тела и заканчивая Вселенной в целом. В то же время невозможно переоценить важность синхронизма. Наше базовое понимание синхронизма уже породило такие технологические чудеса, как глобальная система позиционирования, лазер и самые чувствительные в мире детекторы, используемые в медицине без хирургического вмешательства для определения точного местонахождения поврежденных тканей в мозге человека, страдающего эпилепсией; в технике – для поиска мельчайших трещин в крыльях самолета; в геологии – для поиска месторождений нефти, скрывающихся глубоко под землей. Выясняя, что происходит в случае, когда синхронизм нарушается, математики помогают кардиологам найти причину фибрилляции, смертельно опасной аритмии, которая ежегодно уносит жизни сотни тысяч людей – внезапно и без предупреждения, даже тех, кто ранее не жаловался на проблемы с сердцем. И это лишь один пример возможностей, которыми мы сейчас располагаем благодаря нашему растущему, но все еще находящемуся в зачаточном состоянии пониманию синхронизма.

Я глубоко благодарен судьбе за возможность на протяжении всей моей карьеры работать со многими блестящими и творческими умами. Исследования, о которых рассказывается в этой книге, выполнялись в тесном сотрудничестве с моими консультантами Артом Уинфри, Ричардом Кронауером, Чаком Чейслером и Нэнси Копелл; моими научными сотрудниками Ренни Миролло, Полом Мэтьюзом, Куртом Визенфельдом, Джими Свифтом, Кевином Куомо, Элом Оппенгеймом и Тимом Форрестом; а также моими бывшими студентами Синьей Ватанабе и Дунканом Уоттсом. Благодарю вас за то, что были мне надежными спутниками во время нашего нелегкого путешествия в дебри синхронизма.

Другие ученые помогли улучшить эту книгу. Джек Кауен поделился со мной приятными воспоминаниями о совместной работе с Норбертом Винером в Массачусетском технологическом институте в конце 1950-х годов и познакомил меня с малоизвестной, но глубоко человечной историей, связанной с открытием двойного спектра. Лу Пекора подробно рассказал мне о том, как вместе с Томом Кэрролом он пришел к открытию синхронизированного хаоса. Джим Торп с присущими ему мудростью и мягким юмором ответил на мои вопросы относительно силовой сетки. Седрик Лангборт любезно перевел для меня письма Гюйгенса о взаимовлиянии часов. Джо Бернс, Эрик Герцог, Крис Лобб, Чарли Маркус, Радж Рой и Джо Такахаси предложили чрезвычайно ценные комментарии к ранним наброскам текста этой книги. Марджи Нельсон с присущим ей сочетанием научного суждения и художественного таланта подготовила иллюстрации. Хочу выразить особую признательность Арту Уинфри за его глубокие и остроумные идеи по поводу синхронизма, а главное – за его поистине героические усилия по прочтению этого манускрипта от корки до корки, несмотря на крайне сложные обстоятельства, которые сопутствовали этому чтению.

Выражаю благодарность Линди Уильямс, Стивену Тайену, Герберту Хьюи, Тому Гиловху и всем остальным моим друзьям, которые заботливо оберегали автора этой книги от невзгод и проблем, навалившихся на него на ранних стадиях подготовки книги к публикации; Карин Дашифф Гилович, которая помогала мне обрести собственный голос; а также Алана Алда – моего незаменимого партнера по сеансам мозгового штурма, который научил меня, как нужно подходить к творческому процессу. (Правда, мне не удалось воспользоваться его советом относительно того, как написать первый черновой вариант книги за один присест. Может быть, это удастся мне в следующий раз…)

Мои коллеги в Корнельском университете, в частности Ричард Рэнд и заведующий моего отдела Тим Хили, обеспечивали мне моральную поддержку в течение всего изнурительного процесса написания этой книги и были очень внимательны ко мне, когда видели, что мои мысли витают где-то далеко-далеко. Благодарю вас, коллеги, за понимание.

Мои литературные агенты Катинка Мэтсон и Джон Брокман чутко и с огромным энтузиазмом реагировали на каждое мое обращение. Джон предложил мне общее направление этой книги, как только услышал от меня ее описание. Катинка заботливо наставляла меня относительно всех аспектов процесса написания книги, начиная с составления плана и заканчивая публикацией.

Писателю трудно даже мечтать о лучшем издательском коллективе, чем коллектив издательства Hyperion Books. В частности, сотрудница редакции Кайра Гепфорд была неизменно любезна, оптимистично настроена и эффективна. Художественный редактор Фил Роуз придумал запоминающуюся и красивую обложку, которая, на мой взгляд, уловила самую суть синхронизма. Выражаю огромную благодарность своему редактору, Уиллу Швальбе, чей острый глаз, хороший вкус и ощущение структуры улучшили мою книгу во многих отношениях. Его неослабевающий энтузиазм по отношению к данному проекту побуждал меня к энергичным действиям в те моменты, когда это было особенно необходимо.

Хочу также поблагодарить членов своей семьи за их любовь и моральную поддержку, особенно это относится к моему отцу, который всегда был на моей стороне, подбадривал, улыбался и старался вселить в меня оптимизм. Невероятная самоотверженность моей тещи, Ширли Шиффман, дала мне возможность подолгу засиживаться за своей книгой, не чувствуя угрызений совести за то, что не уделяю достаточного внимания моим маленьким дочерям. Благодарю вас, мои крошки: Ли – за то, что, научившись ходить, вернула меня к действительности, и Джоанну – за то, что родилась в самый подходящий момент – не слишком рано и не слишком поздно. Моя жена, Кэрол, проявляла свою любовь всеми доступными ей способами, выслушивая меня, читая мои рукописи, уговаривая и прощая меня, подсказывая, как нужно писать, в каких случаях следует развить мысль, а в каких – сократить текст. Ее душевная щедрость предоставила мне возможность полностью погрузиться в процесс написания книги.

Наконец, мне хотелось бы поблагодарить граждан Соединенных Штатов за их доверие и дальновидность. Поддерживая американские исследовательские учреждения посредством таких организаций, как Национальный научный фонд, налоги, выплачиваемые гражданами Соединенных Штатов, обеспечивают ученым самое ценное из того, что они могли бы желать, – возможность следовать за своим воображением туда, куда оно только может завести их. Надеюсь, вы получаете такое же удовольствие от наших открытий, какое получаем мы сами.

Часть I. Жизнь в синхронизме

Глава 1. Светлячки и неизбежность синхронизма

«Примерно двадцать лет тому назад я увидел – или мне показалось, что увидел – синхронное, или одновременное, мерцание светлячков. Я не мог поверить своим глазам, поскольку возможность такого явления среди насекомых, несомненно, противоречит любым законам природы»[1].

Эти слова Филип Лорен опубликовал в журнале Science в далеком 1917 году, когда он присоединился к дискуссии об этом необъяснимом явлении. На протяжении трехсот лет западные путешественники, побывавшие в Юго-Восточной Азии, рассказывали легенды о колоссальных скоплениях на берегах рек светлячков (протяженность этих скоплений достигала нескольких миль), мерцающих в унисон[2]. Эти истории о синхронно мерцающих светлячках, зачастую изложенные в весьма романтическом стиле, характерном для авторов книг о путешествиях в дальние страны, вызывали скепсис у очень многих читателей. Возможно ли, чтобы тысячи светлячков координировали свое мерцание со столь высокой точностью и на столь обширном пространстве? Тогда Филип Лорен был уверен, что ему удалось разрешить эту загадку: причиной этого очевидного явления, по его мнению, были непроизвольные движения век наблюдателя, то есть их внезапное закрывание и открывание, а насекомые не имели к этому никакого отношения.

В период между 1915 и 1935 гг. журнал Science опубликовал еще 20 статей[3], посвященных этой загадочной форме массового синхронизма. Кто-то из ученых трактовал это явление как случайное, мимолетное совпадение. Другие объясняли это необычными атмосферными условиями: сочетанием очень высокой влажности, абсолютного безветрия или темноты. Кто-то полагал, что тут не обошлось без некоего «дирижера»[4] – светлячка, который руководит действиями всех остальных своих собратьев. Как написал в 1918 г. Джордж Хадсон, «если необходимо, чтобы группа людей выполняла определенные действия, подчиняясь заданному ритму, то у этой группы людей не только должен быть лидер, но они должны быть обучены выполнять указания этого лидера… Можно ли поверить в то, что этим насекомым присуще более совершенное чувство ритма, чем наше собственное?» Натуралист Хью Смит, который жил в Таиланде с 1923 по 1934 гг. и многократно наблюдал это явление, с раздражением отмечал, что «некоторые из опубликованных объяснений производят большее впечатление, чем само описываемое явление»[5]. Однако и он признал, что не в состоянии предложить какую-либо более убедительную версию.

В течение нескольких десятилетий никто не мог сформулировать достаточно правдоподобную теорию, которая проливала бы свет на это загадочное явление. Лишь в 1961 г. Джой Адамсон в продолжении своей повести Born Free («Рожденная свободной») удивлялась тому же явлению, которое она наблюдала на африканском континенте[6] (кстати, ее описание синхронного мерцания светлячков на африканском континенте является первым).

…полоса света шириною около десяти футов, образованная тысячами тысяч светлячков, зеленое фосфоресцирующее свечение которых создает восхитительный по красоте покров на высокой, по пояс, траве… Флуоресцирующая полоса, созданная этими крошечными организмами, раз за разом вспыхивает и погасает с поразительной по своей точности синхронностью. Остается лишь удивляться, какими средствами коммуникации должны обладать эти крошечные существа, чтобы они могли координировать свое мерцание так, словно ими управляет некое механическое устройство.

К концу 1960-х годов из отдельных фрагментов этого пазла начала вырисовываться некая картина. Одна из подсказок была столь очевидной, что почти никто не обратил на нее внимания. Синхронные светлячки мерцали не только в унисон – они мерцали в определенном ритме, в постоянном темпе. Даже когда они были изолированы друг от друга, они продолжали мерцать синхронно. Из этого следует, что каждое насекомое должно располагать своим собственным средством определения хода времени, своего рода внутренним часовым механизмом. Этот гипотетический осциллятор до сих пор не определен анатомически, но почти наверняка он должен представлять собою некий кластер нейронов, находящийся где-то в крошечном мозге насекомого. Во многом подобный естественному задатчику ритма в сердце человека, этот осциллятор действует на определенной частоте, вырабатывая электрические сигналы ритма, которые поступают на светоэлемент светлячка[7] и приводят к его периодическому срабатыванию («включению»).

Вторая подсказка содержится в работе биолога Джона Бака, который сделал больше, чем кто-либо другой, чтобы обеспечить научную достоверность исследований, пытающихся объяснить синхронизм действий светлячков. В середине 1960-х годов Джон Бак вместе со своей женой Элизабет впервые отправился в Таиланд в надежде увидеть собственными глазами это загадочное явление. В ходе неформального, но весьма полезного эксперимента супруги выловили на берегах рек в окрестностях Бангкока множество светлячков и выпустили их в своем гостиничном номере, предварительно затемнив его[8]. Насекомые повели себя весьма нервно, но затем постепенно распространились по стенам и потолку, находясь друг от друга на расстоянии не менее 10 сантиметров. Поначалу они мерцали вразнобой. Вскоре супруги Бак, в молчаливом удивлении наблюдавшие за светлячками, заметили, что сперва пары, а затем и тройки светлячков начали мерцать в унисон. Группы синхронно мерцающих светлячков становились все больше и больше.

Из этих наблюдений следовало, что светлячки должны как-то «настраивать» свои ритмы в ответ на мерцания других светлячков. Чтобы непосредственно протестировать эту гипотезу, Бак и его коллеги провели впоследствии лабораторные исследования[9], в ходе которых они создавали для светлячка мерцание искусственным светом (имитируя таким образом свечение другого светлячка) и наблюдали за его реакцией. Они обнаружили, что отдельно взятый светлячок корректирует моменты своих последующих мерцаний вполне определенным, предсказуемым образом и что величина и направление такой коррекции зависит от того, в какой момент цикла было воспринято внешнее воздействие. У некоторых видов светлячков внешнее воздействие всегда смещало ритм подопытного светлячка несколько вперед, словно переводя стрелки его внутренних часов вперед, тогда как у других видов светлячков внешнее воздействие смещало ритм подопытного светлячка либо несколько вперед, либо несколько назад в зависимости от того, насколько подопытный светлячок был близок к тому, чтобы мигнуть (одно дело, если светлячок был буквально на грани очередного мигания, и другое – если он был лишь на полпути к очередному миганию).

Взятые вместе, эти две подсказки предполагали, что ритм мерцания регулируется внутренним, перенастраиваемым осциллятором[10]. А это непосредственно указывало на возможное существование некого механизма синхронизации: каждый из членов сообщества мерцающих светлячков непрерывно посылает и принимает сигналы, смещая ритмы других светлячков и смещая собственный ритм в результате воздействия с их стороны. Из всей совокупности таких взаимовлияний каким-то образом спонтанно возникает синхронизм.

Таким образом, мы приходим к объяснению, которое казалось немыслимым лишь несколько десятков лет тому назад: светлячки организуют сами себя. Им не нужен дирижер, и погода не имеет значения для них. Синхронизм возникает за счет взаимообмена сигналами – точно так же, как участники оркестра могут добиться идеальной синхронности своих действий без помощи дирижера. Правда, в случае светлячков исследователей ставит в тупик то обстоятельство, что для обеспечения синхронизма этим насекомым не требуется интеллект. Они располагают всеми необходимыми для этого ингредиентами: у каждого светлячка имеется осциллятор, что-то наподобие маленького метронома, моменты выработки сигналов которым корректируются автоматически в ответ на мерцания других светлячков. Вот, собственно, и все.

За одним исключением: отнюдь не очевидно, что этот сценарий работоспособен. Может ли идеальный синхронизм возникнуть из какофонии многих тысяч лишенных разума метрономов? В 1989 г. я вместе со своим коллегой Ренни Миролло доказали правильность такого ответа. Описанный сценарий не только работоспособен – он обязательно будет работоспособен при определенных условиях.

По причинам, которые нам непонятны до сих пор, тенденция к синхронизму является одной из самых распространенных движущих сил во Вселенной[11], охватывая практически все уровни, начиная с атомов и заканчивая животными, начиная с людей и заканчивая планетами. Женщины, которые дружат между собой, или сотрудницы, проводящие много времени вместе, нередко обнаруживают, что их менструальные циклы постепенно сближаются и начинаются примерно в один и тот же день. Сперматозоиды, двигающиеся бок о бок на своем пути к яйцеклетке[12], машут своими «хвостиками» в унисон, демонстрируя что-то похожее на простейшие элементы синхронного плавания. Иногда синхронизм принимает разрушительный характер: эпилепсия вызывается патологическим синхронным разрядом миллионов клеток мозга, что приводит к ритмичным конвульсиям, вызывающим хватательные движения. Синхронизм может возникать даже в неживой природе. Поразительная когерентность лазерного луча обеспечивается синхронной пульсацией триллионов атомов, которые испускают фотоны одной и той же фазы и частоты. На протяжении многих тысячелетий Луна под воздействием Земли постепенно замедляла вращение вокруг собственной оси. Хотя Луна вращается вокруг собственной оси, она всегда обращена к Земле одной и той же стороной (ее темную сторону мы не видим никогда), так как обращение Луны вокруг Земли и вращение Луны вокруг собственной оси синхронизировано: фактически Луна, облетая Землю каждые двадцать семь с половиной дней, совершает также одно полное вращение вокруг собственной оси против часовой стрелки.

На первый взгляд, эти явления могут показаться не связанными между собой. В конце концов, силы, которые синхронизируют клетки головного мозга никак не связаны с силами, которые обеспечивают синхронизм атомов лазера. Однако при более близком рассмотрении можно обнаружить связь, которая охватывает собою детали любого конкретного механизма. Этой связью является математика. Все приведенные выше примеры представляют собой вариации одной и той же математической темы: самоорганизации, спонтанного возникновения порядка из хаоса. Изучая простые модели поведения светлячков и других самоорганизующихся систем, ученые начинают раскрывать тайны этой восхитительной разновидности порядка во Вселенной.

Исследовавшийся мною и Ренни вопрос о самоорганизации был поначалу сформулирован Чарли Пескином, специалистом по прикладной математике, сотрудником Института Куранта (Courant Institute) при Нью-Йоркском университете. Человек с тихим и спокойным голосом, с аккуратно подстриженной бородкой и с неизменно приветливой улыбкой, Чарли Пескин является одним из самых выдающихся математиков с уклоном в биологию. Разгадывая тайны физиологии (например, как молекулы, ткани и органы человеческого тела справляются со своими сложными функциями), он предпочитает пользоваться компьютерами и математикой. Какие бы проблемы он ни пытался решать – как сетчатке человеческого глаза удается обнаружить даже самый слабый свет или как молекулярные «двигатели» вырабатывают силу в мышцах, – его «фирменным знаком» является разносторонность научных интересов. Создается впечатление, что он хочет попробовать себя во всех областях знания и исследовать все тайны природы. Если необходимого ему математического аппарата еще не существует, он обязательно должен изобрести такой аппарат. Если для решения рассматриваемой им проблемы требуется суперкомпьютер, Пескин разработает для него соответствующую программу. Если существующие процедуры работают слишком медленно, он придумает более быстрые процедуры.

Даже его математический стиль отличается высокой гибкостью и прагматизмом. Его самая известная работа связана с разработкой трехмерной модели тока крови в камерах сердца, качающего кровь. Эта модель отличается реалистичностью анатомии, сердечных клапанов и строения волокон. Для решения столь сложной задачи он использовал грубую мощь суперкомпьютерного моделирования в сочетании с изысканностью абсолютно оригинальной вычислительной схемы. Что же касается решения других проблем, Пескин обычно придерживается известной максимы Эйнштейна, согласно которой все нужно делать по возможности проще – но не проще необходимого. В таких случаях Пескин отдавал предпочтение минималистскому подходу, пренебрегая всеми биологическими подробностями, за исключением лишь самого важного. Именно в таком минималистском духе Пескин предложил схематическую модель того, как клетки, задающие ритм работы сердца, могли бы синхронизировать сами себя[13].

Натуральный задатчик ритма работы сердца представляет собой подлинное чудо эволюции – возможно, самый впечатляющий осциллятор из когда-либо созданных природой. Кластер, состоящий из примерно 10 тысяч клеток и называемый синусно-предсердным узлом, вырабатывает электрические импульсы, которые задают ритм работы сердца в целом. Синусно-предсердный узел должен действовать чрезвычайно надежно, минута за минутой, обеспечивая примерно три миллиарда сокращений сердца за все время жизни человека. В отличие от большинства клеток сердца, клетки-ритмоводители вырабатывают электрические импульсы автоматически; если их изолировать в чашке Петри, то напряжение генерируемых ими импульсов ритмично повышается и снижается.

Все это вызывает законный вопрос: зачем нужно так много этих клеток, если даже одной клетки вполне достаточно для того, чтобы справиться с данной работой? Возможно, это объясняется тем, что наличие единственного задатчика ритма не позволяет получить достаточно надежную структуру: лидер может начать неправильно функционировать или даже прекратить существование. Вместо ненадежной структуры с единственным лидером природа выработала более надежную, «демократичную» систему, в которой тысячи клеток коллективно задают нужный ритм. Разумеется, такая демократия порождает собственные проблемы: клетки должны каким-то образом координировать свои действия; если же они будут посылать конфликтующие между собой сигналы, сердце выйдет из строя. Пескина интересовал следующий вопрос: как всем этим клеткам удается – в отсутствие лидера или каких-либо команд со стороны – действовать столь синхронно?

Обратите внимание, как похож этот вопрос на поставленный выше вопрос о светлячках. В том и другом случае речь идет о больших популяциях ритмичных объектов, вырабатывающих внезапные импульсы, которые задают ритмы для других членов группы, убыстряя или замедляя их в соответствии с определенными правилами. В обоих случаях синхронизм представляется неизбежным. Задача заключается в том, чтобы объяснить, почему это должно быть именно так, а не иначе.

В 1975 г. Пескин изучил этот вопрос в рамках некой упрощенной модели. Каждая из клеток-ритмоводителей рассматривается как электрическая цепь, генерирующая импульсы (осциллятор) и эквивалентная конденсатору, подключенному параллельно резистору. (Конденсатор – это прибор, способный накапливать и хранить электрический заряд; в данном случае он играет роль, подобную той, которую играет мембрана клетки; резистор обеспечивает путь для вытекания электрического тока из клетки, аналогично так называемым каналам утечки в мембране.) Постоянный входной ток заставляет конденсатор заряжаться, что приводит к росту напряжения на нем. Когда напряжение на конденсаторе повышается, величина тока, стекающего через резистор, растет, в результате чего скорость повышения замедляется. Когда напряжение достигает некого порога, конденсатор разряжается и напряжение на нем мгновенно падает до нуля; такая модель имитирует запуск клетки-ритмоводителя и ее последующее возвращение к исходному состоянию. Затем напряжение снова начинает повышаться, и описанный выше цикл повторяется. Рассматриваемый как функция времени, такой цикл напряжения состоит из двух частей: плавный подъем вдоль кривой заряда (график в виде половины дуги, поднимающейся, но с постепенным замедлением роста), за которым следует практически вертикальное падение с возвратом к исходному состоянию.

Затем Пескин представил такой задатчик ритма сердца в виде огромной совокупности этих математических осцилляторов. Для простоты он предположил, что все осцилляторы идентичны (и, таким образом, характеризуются одной и той же кривой заряда), что каждый осциллятор связан в одинаковой степени со всеми остальными осцилляторами и что осцилляторы влияют друг на друга только в состоянии запуска. В частности, когда какой-либо осциллятор запускается, он мгновенно повышает напряжения всех остальных осцилляторов на некую фиксированную величину. Если напряжение какой-либо клетки превышает пороговое значение, она сразу же запускается.

Сложность и запутанность этой проблемы обусловлена тем, что в любой данный момент времени разные осцилляторы, как правило, пребывают на разных стадиях рассматриваемого нами цикла: некоторые из них находятся буквально на грани запуска, другие уже успели далеко продвинуться по кривой заряда, тогда как третьи могут приближаться к исходному состоянию. Как только ведущий осциллятор достигнет порогового значения, он запускается и проталкивает каждый из остальных осцилляторов в разные позиции вдоль кривой заряда. Результаты такого запуска имеют разноплановый характер: осцилляторы, которые были близки к пороговому значению, проталкиваются ближе к запускающемуся осциллятору, но те, которые приближаются к исходному состоянию, выбиваются из фазы. Иными словами, отдельно взятый запуск оказывает синхронизирующее воздействие на некоторые осцилляторы и рассинхронизирующее воздействие на другие осцилляторы. Долгосрочные последствия всех этих перестроек невозможно уяснить, опираясь лишь на здравый смысл.

Чтобы получить более наглядную картину происходящего, представьте отдельно взятую клетку в виде бачка унитаза, наполняющегося водой. Когда вода поступает в бачок, ее уровень постепенно повышается, подобно напряжению в клетке. Допустим, что когда вода в бачке достигнет определенного уровня, произойдет автоматический слив воды из бачка. Быстрый слив воды вернет ее уровень к исходному (условно нулевому), после чего бачок начнет снова наполняться; возникнет своего рода спонтанный осциллятор. (Чтобы довершить аналогию, нам также нужно предположить, что бачок слегка протекает. Вода вытекает через небольшую дырочку у дна бачка. Вода просачивается быстрее, когда уровень воды в бачке выше, из чего следует, что бачок наполняется все медленнее по мере повышения уровня воды в нем. Наличие этой утечки не имеет особого значения для самой осцилляции – это устройство будет циклически наполняться и опустошаться даже в отсутствие утечки, – но оно оказывается критически необходимым для синхронизации многих таких осцилляторов.) Наконец, представьте целое полчище из 10 тысяч таких осциллирующих туалетных бачков, соединенных между собой системой труб по принципу «каждый с каждым» таким образом, что когда происходит слив какого-либо из них, это приводит к одинаковому подъему уровня воды во всех остальных бачках. Если эта дополнительная вода поднимает уровень воды в каких-либо из этих бачков выше его порогового значения, то вода сливается и из этих бачков.

В связи с этим возникает следующий вопрос: как поведет себя такое хитросплетение бачков? Будут ли эти бачки наполняться и сливаться хаотически, когда каждому из них заблагорассудится? Распадется ли их сообщество на отдельные группировки, конкурирующие между собой? Может быть, они будут наполняться и сливаться по очереди, друг за другом?

Пескин предположил, что такая система всегда будет входить в синхронизм: какой бы ни была начальная ситуация в такой системе, в конечном счете все осцилляторы будут запускаться в унисон. Кроме того, он предположил, что синхронизм наступит, даже если эти осцилляторы будут не вполне идентичны. Но когда Пескин попытался доказать свои предположения, он столкнулся с определенными техническими препятствиями. В частности, отсутствовали надежные математические процедуры, которые позволяли бы описывать большие системы осцилляторов, обменивающихся между собой внезапными, дискретными импульсами. Поэтому он отказался от своего первоначального замысла и сосредоточился на простейшем возможном случае: двух идентичных осцилляторах. Однако даже в этом случае математические проблемы казались чересчур сложными. Пескин попытался еще больше упростить задачу, допустив возможность лишь бесконечно малых толчков и бесконечно малых утечек через резистор. После таких упрощений задача поддавалась решению: для этого специального случая Пескин доказал неизбежность синхронизма.

Доказательство, предложенное им, базируется на идее, сформулированной французским математиком Анри Пуанкаре, основателем теории хаоса. Концепция Пуанкаре представляет собой математический эквивалент стробофотографии. Возьмем два идентичных осциллятора, A и B, и представим в графическом виде их работу, делая фотоснимок каждый раз, когда запускается осциллятор A. Как будет выглядеть соответствующая последовательность фотоснимков? Осциллятор A лишь запустился, поэтому он выглядит так, как будто все время находится в исходном положении (нулевом напряжении). Напряжение осциллятора B, напротив, меняется от одного снимка к следующему. Решая уравнения, описывающие такую модель, Пескин нашел исчерпывающую, но весьма «навороченную» формулу, описывающую изменения напряжения осциллятора B в промежутках между фотоснимками. Эта формула показала, что в случае, когда это напряжение оказывается меньше определенного критического значения, оно будет неуклонно снижаться, пока не достигнет нуля, тогда как в случае, когда это напряжение оказывается больше критического значения, оно будет неуклонно повышаться, пока не достигнет порогового значения. В любом случае осциллятор B в конечном счете синхронизируется с A. Есть лишь одно исключение: если напряжение осциллятора B в точности равно критическому значению напряжения, его невозможно изменить ни в сторону увеличения, ни в сторону уменьшения, поэтому оно остается в равновесном критическом значении. Осцилляторы A и B запускаются повторно, однако этот запуск происходит несинфазно, а с разницей во времени, составляющей половину цикла. Но это равновесие оказывается неустойчивым: малейший толчок смещает систему в направлении синхронизма.

Несмотря на успешный анализ такого двухосцилляторного случая, выполненный Пескином, случай произвольного количества осцилляторов ждал соответствующего доказательства целых 15 лет. На протяжении этих 15 лет о результатах, полученных Пескином, почти никто не вспоминал. Сведения об этих результатах были похоронены в какой-то заумной монографии, которая, по сути, представляла собой фотокопию конспекта его лекций и которую можно было получить из его отдела лишь по специальному запросу.

Однажды, в 1989 г., я листал книгу под названием The Geometry of Biological Time («Геометрия биологического времени»), написанную биологом-теоретиком Артом Уинфри, одним из героев моей нынешней книги[14]. В то время я был научным сотрудником с ученой степенью, специализировавшимся на прикладной математике в Гарвардском университете, и пытался подобрать какую-либо интересную тему для своих дальнейших исследований. Хотя я размышлял над книгой Уинфри предыдущие восемь лет, она продолжала казаться мне неисчерпаемым источником идей и вдохновения. Она представляла собой не просто изложение результатов последних исследований по биологическим осцилляторам, а своего рода карту для охотников за удачей, руководство к будущим научным открытиям. Почти на каждой странице Уинфри указывал путь к интересным нерешенным проблемам и высказывал собственные соображения относительно того, какие из них в наибольшей степени созрели для того, чтобы за их решение можно было приняться прямо сейчас.

В этой книге я натолкнулся на вариант, которого не замечал прежде: в разделе, посвященном осцилляторам, взаимодействующим посредством ритмических импульсов, Уинфри упоминал о модели, описывающей поведение клеток-ритмоводителей сердца, предложенной Пескином в его монографии. Хотя Пескину удалось проанализировать лишь случай двух идентичных осцилляторов, писал Уинфри, «задача со многими осцилляторами еще ожидает своего решения».

Это разожгло мое любопытство. Что же представляет собой эта фундаментальная загадка, которая все еще ожидает своего решения? Я никогда прежде не слышал о работах Пескина, но указанная им проблема произвела на меня сильное впечатление. Никто даже еще не пытался придумать математический аппарат, который описывал бы большую популяцию из «импульсно-связанных» осцилляторов, взаимодействие в которой осуществляется посредством кратковременных пульсирующих сигналов. Это было ощутимым пробелом в литературе по математической биологии – и к тому же весьма подозрительным пробелом, если принять во внимание широкую распространенность в природе именно такого способа взаимодействия между биологическими осцилляторами. Светлячки мерцают. Сверчки стрекочут. Нейроны посылают электрические сигналы. Все они используют внезапные импульсы для общения друг с другом. Тем не менее, теоретики уклонялись от изучения такой импульсной связи по причине отсутствия подходящего математического аппарата. Импульсы вызывают постоянные скачки переменных, однако у математики возникают большие проблемы при описании таких скачков – математика предпочитает иметь дело с процессами, которые изменяются плавно. Однако Пескину удалось каким-то образом проанализировать два осциллятора, которые периодически воздействуют друг на друга кратковременными импульсами. Каким образом это удалось ему? И что помешало ему перейти от системы с двумя идентичными осцилляторами к системам со многими осцилляторами?

В нашей библиотеке не оказалось экземпляра монографии Пескина, однако Пескин любезно согласился переслать мне соответствующие страницы из этой монографии. Его анализ показался мне весьма элегантным и понятным. Но я быстро понял, почему он ограничился системой лишь с двумя идентичными осцилляторами: несмотря на всю элегантность выполненного им анализа, его формулы оказались чересчур громоздкими. С тремя осцилляторами дело обстояло еще хуже, а система из произвольного количества (n) осцилляторов представлялась вообще неподъемной. Я не понимал, как можно распространить его модель на большое количество осцилляторов и обойти возникающие осложнения.

Чтобы получить более полное представление об этой проблеме, я попытался решить ее на компьютере двумя разными способами. Первый подход заключался в постепенном наращивании сложности системы: я пробовал, подражая стратегии Пескина, найти решение для системы с тремя осцилляторами, используя малые толчки и утечки и перекладывая на компьютер решение всех алгебраических вопросов. Формулы оказались просто устрашающими – некоторые из них простирались на несколько страниц, – но с помощью компьютера мне удалось сократить их до вполне приемлемого вида. Полученные мною результаты показали, что предположение Пескина является, по-видимому, правильным для системы с тремя осцилляторами. Однако эти результаты также говорили о необходимости найти какой-то другой способ решения данной проблемы. С ростом количества осцилляторов используемый мною математический аппарат оказывался неприемлемым.

Второй подход заключался в компьютерном моделировании. Попытаемся на данном этапе обойтись без формул и предоставим возможность компьютеру продвигать систему во времени шаг за шагом вперед, а затем посмотрим, что из этого получится. Компьютерное моделирование ни в коей мере не заменяет собою математический аппарат – оно никогда не позволит получить доказательство, – но если гипотеза Пескина ложна, то такой подход сэкономит массу времени, убедив меня в необходимости поиска других путей решения проблемы. Такой подход чрезвычайно ценен в математике. Когда вы пытаетесь доказать что-либо, желательно быть уверенным в том, что вы не пытаетесь доказать нечто изначально ложное. Такая уверенность придаст вам силы, которые понадобятся вам для поиска строгого доказательства.

Разработать компьютерную программу для моего случая оказалось сравнительно простым делом. Когда запускается один осциллятор, он подталкивает все остальные осцилляторы на определенную, фиксированную величину. Если какие-либо из «продвинутых» таким образом осцилляторов преодолеют определенный порог, предоставляем им возможность также запуститься – и соответствующим образом обновляем другие осцилляторы. В противном случае используем в промежутках между запусками формулы Пескина для подталкивания соответствующих осцилляторов в направлении их порогов.

Я испытал этот механизм на популяции из 100 идентичных осцилляторов. Изначально был создан случайный разброс их напряжений между базовым (нулевым) уровнем и порогом. Я отобразил этот разброс на диаграмме в виде совокупности точек, взбирающихся в направлении порога по общей для них кривой заряда, которая представляет собой зависимость напряжения от времени. Даже с помощью средств компьютерной графики мне не удалось выявить какой-либо определенной картины в их коллективном движении – полная путаница.

В данном случае проблемой оказался слишком большой объем информации. И здесь я оценил по достоинству еще одно преимущество метода стробов, предложенного Пескином: этот метод не только позволяет упростить анализ, но и представляет собой наилучший способ визуализации поведения системы. Все осцилляторы остаются невидимыми за исключением именно тех моментов, когда запускается какой-то конкретный осциллятор. В такие моменты свет воображаемого строба подсвечивает остальные осцилляторы, показывая их мгновенные напряжения. Затем вся эта система вновь погружается в темноту до наступления следующего момента, когда запускается определенный осциллятор. Модель Пескина обладает тем свойством, что осцилляторы запускаются по очереди – никто и никогда не нарушает эту очередь; таким образом, 99 других осцилляторов запускаются в темноте, до того как произойдет вспышка следующего строба.

Отображаемые на компьютере, эти вычисления мелькали так быстро, что изображение на экране буквально мельтешило: 99 осцилляторов быстро взбирались вдоль кривой заряда, изменяя свои позиции с каждой очередной вспышкой строба. Теперь полученная картина не вызывала сомнений. Точки собирались в группы, образуя маленькие пакеты синхронизма, которые объединялись в более крупные пакеты, подобно каплям дождя, которые собираются в ручейки, стекающие по оконному стеклу.

Это казалось просто сверхъестественным – система синхронизировала сама себя. Бросая вызов Филипу Лорену и всем прочим скептикам, которые утверждали, что синхронизация светлячков невозможна в принципе и что такое явление «противоречило бы всем законам природы», компьютер демонстрировал, что большая совокупность маленьких осцилляторов, не обладающих разумом, способна достигать синхронизма автоматически. Наблюдая за этим явлением, я испытывал чувство, близкое к мистическому ужасу. Наблюдатель поневоле испытывал ощущение, что осцилляторы словно договариваются между собой о совместных действиях, сознательно стремясь к порядку, хотя ни о чем подобном, разумеется, не могло быть и речи. Каждый из них лишь автоматически реагировал на импульсы, посылаемые другими осцилляторами, не преследуя при этом никакой конкретной цели.

Чтобы убедиться в том, что картина, увиденная мною с первой попытки, не была чистой случайностью, я повторял моделирование десятки раз, каждый раз при других произвольно выбранных начальных условиях и для других количеств осцилляторов – и каждый раз я наблюдал тенденцию к синхронизации. Похоже, Пескин пришел к правильному выводу. Теперь моя задача заключалась в том, чтобы получить строгое математическое доказательство. Только «железное» математическое доказательство продемонстрировало бы – причем так, как не мог бы сделать ни один компьютер в мире – неизбежность синхронизма, а еще лучше, если бы такое доказательство показало, почему именно наступление синхронизма неизбежно. Я обратился за помощью к своему другу Ренни Миролло, специалисту по математике, работающему в Бостонском колледже.

К тому времени я был знаком с Ренни Миролло уже около десяти лет. Будучи студентами-выпускниками Гарвардского университета, мы вместе отдыхали по выходным дням, вместе обедали по будням, уделяя в своих беседах примерно равное количество времени математике и женщинам. Но в те дни нам не приходилось работать вместе. По своему образованию Ренни Миролло был «чистым» математиком, тогда как я специализировался в прикладной математике. По этой причине мы понимали друг друга – но не всегда и не во всем.

Для своей докторской диссертации Ренни выбрал очень абстрактную тему. Интуиция подсказывала ему правильность некой теоремы – проблема заключалась лишь в том, чтобы найти доказательство этой теоремы. Ренни потратил три года на поиск доказательства и в конце концов понял, что доказать ее невозможно: он нашел контрпример, опровергающий эту теорему. Таким образом, три года жизни были потрачены зря. Однако этот отрицательный результат не поверг Ренни в отчаяние – он решил переключиться на какое-нибудь новое направление математики, решить какую-либо из ключевых проблем этого направления и написать диссертацию. На все это Ренни решил отвести себе один год.

Моя совместная работа с Ренни началась примерно в 1987 г. В этой совместной работе мы как бы дополняли друг друга. Обычно я предлагал ему какую-либо задачу, разъяснял ее научный контекст, выполнял компьютерное моделирование и предлагал интуитивные аргументы. Ренни придумывал стратегии, позволяющие прояснить проблему, а затем находил способы доказательства соответствующей теоремы.

Когда я рассказал Ренни о своих компьютерных экспериментах с моделью Пескина, поначалу он проявил, скажем так, спокойный интерес к этой проблеме. Однако после того как он разобрался в ней глубже, его начало разбирать нетерпение: в то время он напоминал мне боксера, готовящегося выйти на ринг. Он предоставил мне совсем немного времени, чтобы подытожить выполненную мною работу, но уже вскоре начал настаивать на том, что будет использовать свой собственный подход к решению этой проблемы.

Ренни безжалостно упростил мою модель. Его не заботили подробности, предусмотренные в исходной модели цепи, которую предложил Пескин – со всеми ее конденсаторами, резисторами и напряжениями. Единственной важной чертой этой модели, по мнению Ренни, является то, что каждый осциллятор следует кривой напряжения с замедлением роста в верхней ее части – по мере приближения к пороговому значению. Таким образом, он с самого начала заложил именно такую геометрию. Он отказался от схемы электрической цепи, которую предложил Пескин, заменив ее некой абстрактной переменной, изменяющейся по тому же закону, что и напряжение осциллятора: периодический подъем до порогового значения, запуск, сброс. Затем его воображение нарисовало совокупность из n таких переменных, идентичных друг другу и взаимодействующих между собой по описанному выше принципу: когда один осциллятор запускается, он «подтягивает» все остальные осцилляторы на некую фиксированную величину или до порогового значения (если оно будет достигнуто раньше).

Эта усеченная модель не только оказалась значительно проще первоначальной (что сильно упрощало математические выкладки), но и допускала более широкую область применения. Вместо чисто электрической интерпретации в терминах напряжения мы могли теперь рассматривать такую переменную как меру готовности любого из осцилляторов к запуску, будь то клетка сердца или сверчок, нейрон или светлячок.

Нам удалось доказать, что такая обобщенная система почти всегда становится синхронизированной – при любом количестве осцилляторов и при любых начальных условиях[15]. Ключевым ингредиентом в доказательстве является понятие «абсорбции» – обозначение идеи о том, что если один осциллятор проталкивает другой осциллятор за пороговое значение, они остаются синхронизированными навсегда, как если бы один осциллятор поглотил другой. Такие поглощения были заметны в моих компьютерных экспериментах, когда у наблюдателя складывалось впечатление, будто осцилляторы сливаются вместе, подобно каплям дождя, стекающим по оконному стеклу. Кроме того, такие слияния необратимы: как только два осциллятора запускаются вместе, они никогда не рассинхронизируются сами по себе, поскольку их динамика идентична; к тому же они одинаково связаны со всеми остальными осцилляторами, поэтому даже когда они испытывают толчок, их синхронизм не нарушается: ведь они испытывают одинаковый толчок. Следовательно, абсорбции действуют подобно храповому механизму, всегда приближая систему к синхронизму.

Основой доказательства является аргумент, демонстрирующий, что последовательность поглощений объединяет осцилляторы в группы, размеры которых все время увеличиваются – до тех пор, пока все они не образуют одну гигантскую совокупность. Если вы не математик, вас, наверное, интересует, как можно доказать все это. Существует бесконечно большое число способов запуска такой системы; как же в таком случае можно охватить одним доказательством все эти бесчисленные варианты? И где гарантия, что в конечном счете произойдет количество поглощений, достаточное для того, чтобы привести такую систему к полному синхронизму?

Ниже излагаются наши рассуждения по этому поводу. Не волнуйтесь, если какие-то детали этих рассуждений покажутся вам непонятными. Моя задача в данном случае заключается лишь в том, чтобы дать вам самое общее представление о том, как выстраиваются такие доказательства. Трудно рассчитывать на что-либо большее, если ваши познания в области математики ограничиваются курсом геометрии, который вы проходили в старших классах школы и который зачастую преподается в механистическом и авторитарном стиле. На самом деле конструирование математического доказательства – весьма творческий процесс, полный нечетких идей и образов, особенно на ранних стадиях этого процесса. Строгие формулировки появляются позже. (Если это не особенно интересует вас, можете пропустить следующие несколько страниц.)

Первым шагом является каталогизация всех возможных начальных конфигураций. Вернемся, например, к случаю двух осцилляторов. По причине использования Пескином уловки со стробами нам вовсе необязательно наблюдать за осцилляторами все время. Достаточно сосредоточиться на одном моменте в каждом цикле. В качестве такого момента мы выбрали момент непосредственно после запуска осциллятора A и его возвращения к исходному состоянию. Тогда на осцилляторе B может быть любое «напряжение» между исходным состоянием и порогом. Представляя напряжение на осцилляторе B в виде точки на числовой оси, исходное состояние на которой отображается нулем, а порог – единицей, мы видим, что существует линейный сегмент разных возможностей. Этот одномерный сегмент охватывает все возможные начальные условия для данной системы (поскольку нам известно, что осциллятор A находится в 0 [только что запустился и сбросился в исходное состояние], единственной переменной является B, который должен пребывать где-то вдоль линейного сегмента между 0 и 1).

Три осциллятора создают большее пространство возможностей. В этом случае нам нужно знать два числа: учитывая, что A только что запустился и находится в 0, нам все еще нужно указать напряжения осцилляторов B и C в этот момент. Как выглядит геометрия, соответствующая какой-то паре чисел? Мы можем представлять их как две координаты некой точки в двумерном пространстве.

Изобразим плоскость x, y, которая наверняка знакома вам из курса математики в старших классах. В данном случае ось x (как обычно, это горизонтальная ось) представляет напряжение осциллятора B в момент, когда запускается A. Вертикальная ось y представляет напряжение осциллятора C в тот же момент. Пара напряжений отображается на этой плоскости одной точкой.

Когда мы предоставляем возможность B и C изменяться независимо, принимая любые напряжения в промежутке между 0 и 1 (охватывая все возможные варианты), соответствующая точка, изображающая пару напряжений, движется внутри некой области, представляющей собой квадрат.

Таким образом, в случае трех осцилляторов мы получаем квадрат возможных начальных условий: одна ось для осциллятора B и одна для осциллятора C. Обратите внимание, что для A нам не нужна ось, поскольку этот осциллятор всегда стартует с нуля (в соответствии с тем, как мы решили стробировать эту систему).

Картина постепенно проясняется. По мере добавления осцилляторов нам необходимо добавлять все больше измерений, чтобы можно было учитывать все возможности. Для четырех осцилляторов требуется трехмерный куб начальных условий; для пяти осцилляторов требуется четырехмерный гиберкуб, а в общем случае для n осцилляторов требуется (n–1) – мерный гиберкуб. Людям, далеким от математики, это может показаться чересчур сложным (все это действительно сложно представить себе). Но с точки зрения формального математического подхода, вообще говоря, все равно, какому числу в каждом конкретном случае соответствует n: увеличение n не предполагает возникновения каких-либо новых сложностей. Поэтому, для большей определенности, в дальнейшем я продолжу рассматривать случай с тремя осцилляторами, который заключает в себе все основные идеи.

Очередной шаг заключается в преобразовании рассматриваемой нами динамики – эволюции такой системы во времени – в графическое представление, которое мы стремимся получить. Мы хотим убедиться в том, что в такой системе действительно будет достигнут синхронизм при неких начальных состояниях осцилляторов B и C.

Представим, что произойдет, если мы позволим такой системе начать работать. Напряжение на всех осцилляторах поднимется до порогового значения, они запустятся, а затем вернутся в исходное (нулевое) состояние; они также будут реагировать на «толчки» со стороны других осцилляторов. Чтобы устранить избыточную информацию, опять воспользуемся методом стробов: предоставим системе возможность работать в темноте до очередного момента, когда осциллятор A запустится и вернется в исходное состояние, а B и C отреагируют на это. Затем включим строб и сделаем очередной фотоснимок, зафиксировав новые позиции B и C.

Геометрический результат заключается в том, что старая точка в нашем квадрате оказалась на новом месте (обновленные напряжения B и C). Иными словами, динамическая эволюция нашей системы эквивалентна преобразованию, в результате которого любая данная точка в нашем квадрате оказывается в другом месте этого квадрата в соответствии с неким сложным правилом, которое определяется формой кривой заряда и величиной толчков.

Этот процесс можно повторить; при этом новую точку можно интерпретировать как начальную, которая изменяет свою позицию в соответствии с упомянутым преобразованием, снова и снова перепрыгивая с одного места в нашем квадрате на другое место. Если такая система должна в конечном счете прийти к синхронизму, то упомянутая нами точка должна постепенно продвигаться в сторону нижнего левого угла квадрата, то есть к точке с напряжениями (0,0); это означает, что все осцилляторы достигнут исходного положения одновременно. (Почему именно нижний левый угол? Потому что именно в этой точке находится осциллятор A. Согласно определению строба, осциллятор A уже запустился и сбросился, поэтому напряжение на нем равно нулю. В синхронизированном состоянии напряжение на обоих других осцилляторах также равно нулю.)

В принципе, у каждой начальной точки есть некое конечное положение, которое можно вычислить. Если в конечном счете все осцилляторы запускались синхронно, то такую начальную точку мы называли «хорошей». В противном случае мы называли ее «плохой». Нам с Ренни не удалось найти способ, который позволял бы нам точно сказать, какие точки являются «хорошими», а какие – «плохими», однако нам удалось доказать, что почти все точки являются хорошими. Плохие точки действительно существуют, но они встречаются настолько редко и настолько сильно разбросаны, что если собрать их все вместе, то занимаемая ими площадь стремится к нулю. Иными словами, если выбрать какую-либо точку произвольным образом, то у вас чрезвычайно мало шансов выбрать плохую точку.

Это может показаться абсурдным: если плохие точки существуют, то вы можете полагать, что с вашим-то везением вы наверняка выберете плохую. Спешу вас успокоить: не выберете. Это практически то же самое, как если бы вы бросали дротик в мишень для игры в «дартс» в надежде, что он попадет точно в разделительную линию между двумя соседними концентрическими областями. Это чрезвычайно маловероятно. А теперь представьте, что толщина этой разделительной линии стремится к нулю (а именно это требуется, если ее площадь должна равняться нулю). Теперь, надеюсь, вы понимаете, почему у вас практически нет шансов попасть дротиком в эту линию.

Идея о теоретическом существовании «плохих» точек принадлежала Ренни, хотя мы, разумеется, были заинтересованы в «хороших» точках. Стратегия Ренни напоминала концепцию отрицательного пространства, к которой прибегают художники: чтобы лучше уяснить интересующий вас объект, постарайтесь уяснить пространство, окружающее этот объект. В частности, Ренни придумал, как доказать, что «плохие» точки занимают нулевую площадь.

Чтобы составить некоторое представление о его доказательстве, сосредоточимся на наихудших из «плохих» точек, которые я буду называть «ужасными». Эти точки – самые непокорные в своем стремлении воспрепятствовать достижению синхронизма: они вообще не поддаются поглощениям. Когда система начинает свою работу с какой-либо ужасной точки, никакая из пар осцилляторов (и тем более не вся популяция осцилляторов) не сможет синхронизироваться.

Чтобы понять, почему ужасные точки не могут занимать площадь больше нулевой, вообразите все эти точки в виде некой совокупности и проанализируйте, что произойдет, когда мы применим наше преобразование ко всем точкам в такой совокупности. Каждая ужасная точка перескочит в какое-то другое место, но после такого преобразования она все равно останется ужасной. Это звучит почти как тавтология: если какая-либо точка никогда не приводит к поглощению, то после одной итерации нашего преобразования она все равно никогда не приведет к поглощению. Следовательно, новая точка также является ужасной. Поскольку первоначальная совокупность включала все ужасные точки (по определению), эта новая точка должна была бы где-то здесь появиться, чтобы она могла исполнить роль начальной.

Наш вывод заключается в том, что преобразованная совокупность находится полностью внутри первоначальной совокупности. Могу предложить более наглядную аналогию: это похоже на хорошо известные вам фотографии «до» и «после», используемые в рекламе всевозможных диет для похудения. Преобразованная совокупность – похудевшая «после» – фотография – полностью содержится внутри толстой «до» – фотографии (как в рекламе диет для похудения).

До сих пор в нашем доказательстве не использовалась какая-либо информация о форме кривой заряда или величине «толчков». Когда мы в конечном счете учтем эти детали, мы придем к выводу, который, на первый взгляд, может показаться парадоксальным, хотя на самом деле он является решающим доводом в нашем доказательстве. Нам с Ренни удалось доказать, что преобразование из «до» в «после» действует подобно функции увеличения масштаба в фотокопировальном аппарате. Любая совокупность точек, которую вы подаете на вход нашего преобразования, на его выходе оказывается увеличенной в том смысле, что ее суммарная площадь оказывается умноженной на коэффициент, больший 1. Неважно, какую именно совокупность вы выберете (как неважно и то, какое изображение вы поместите в фотокопировальный аппарат): увеличится площадь всех совокупностей. В частности, увеличится площадь совокупности ужасных точек. Но погодите, это означает, что совокупность ужасных точек становится толще, а не тоньше. Но это, похоже, противоречит тому, о чем мы говорили выше. Если быть более точным, проблема в том, что преобразованная версия совокупности ужасных точек должна находиться внутри исходной совокупности при том, что ее площадь также должна увеличиться, что кажется невозможным. Единственным условием, при котором эти два вывода могут быть совместимы, является нулевая площадь исходной совокупности (фотография «до» должна представлять собой изображение тонкого прута). В таком случае никакого противоречия нет: при умножении на число, большее 1, площадь исходной совокупности останется нулевой, поэтому преобразованная совокупность может поместиться внутри исходной совокупности. Но это именно то, что мы хотели продемонстрировать: ужасные точки занимают нулевую площадь. Именно поэтому вам никогда не удастся выбрать их, если вы будете выбирать начальное условие случайным образом. Не сможете вы выбрать и какие-либо другие «плохие» точки. Именно поэтому наступление синхронизма в такой модели является неизбежным.

Та же аргументация относится к любому другому количеству осцилляторов – с той небольшой поправкой, что в случае четырех или большего количества осцилляторов площадь нужно заменить на объем или гиперобъем. В любом случае вероятность начать процесс с плохой точки всегда остается равной нулю. Следовательно, Пескин был прав: в его модели идентичных импульсно-связанных осцилляторов каждый из осцилляторов в конечном счете запускается в унисон с остальными.

Конструируя это доказательство, мы пришли к выводу, что предположение Пескина об утечках было очень важным: в противном случае преобразование из «до» в «после» не расширяет площадь и все доказательство разваливается. Более того, оно должно развалиться, поскольку наша теорема без такого предположения недействительна. Если кривая заряда загибалась вверх, а не вниз – если напряжение растет все быстрее по мере приближения к пороговому значению, – то наше моделирование показывало, что рассматриваемая популяция осцилляторов вовсе не обязательно синхронизируется. Осцилляторы могут зациклиться в случайной картине хаотических запусков.

Этот тонкий момент зачастую ставил в тупик других математиков, когда я читал свои первые лекции по нашей работе: прежде чем я успевал дать развернутое пояснение этого момента, какой-нибудь критикан (а среди слушателей обязательно находился хотя бы один такой) прерывал меня и упрекал в тривиальности нашей теоремы: дескать, осцилляторы, конечно же, синхронизируются, поскольку все они идентичны и одинаково связаны друг с другом – а на какой же еще результат я рассчитывал? Но такое возражение слишком обманчиво: оно игнорирует слабое влияние кривой заряда. Синхронизм возникает с неизбежностью лишь в случае, когда эта кривая изгибается в «правильном» направлении. С биологической точки зрения, форма кривой заряда определяет, в какой момент толчки оказываются более сильными: в начале цикла (вблизи исходного состояния) или в конце цикла (вблизи порогового значения). Когда кривая заряда наклонена вниз, как в модели Пескина, данный толчок напряжения трансформируется в больший сдвиг фазы для осцилляторов, близких к пороговому значению, что в свою очередь гарантирует, что система будет синхронизирована, хотя понять, почему именно она будет синхронизирована, не так-то просто.

Сконструированное нами доказательство выводов, сделанных Пескином, оказалось первым строгим результатом, относящимся к популяции осцилляторов, обменивающихся внезапными импульсами. Что же касается реальных светлячков или клеток-ритмоводителей сердца, такая модель является очевидным упрощением. Она предполагает, что запуск одного осциллятора всегда подталкивает другие осцилляторы в направлении порога, продвигая таким образом их фазы вперед; реальные биологические осцилляторы могут, вообще говоря, сдвигать фазу как вперед (опережение), так и назад (запаздывание). Кроме того, тайские светлячки, которые являются самыми большими мастерами в части синхронизации – вид, известный как Pteroptyx malaccae, – используют совершенно другую стратегию[16]: они непрерывно корректируют частоту своих «внутренних часов», а не их фазу, в ответ на сторонние вспышки. По сути, они заставляют свои «внутренние часы» тикать быстрее или медленнее, вместо того чтобы переводить свою минутную стрелку немного вперед или назад. К тому же, предполагая, что все осцилляторы идентичны, наша модель не принимает во внимание генетическое разнообразие, присущее любой реальной популяции. И наконец, наше допущение, что все осцилляторы оказывают одинаковое воздействие друг на друга, является очень грубым описанием клеток сердца, которые влияют главным образом на своих ближайших соседей. Учитывая все эти ограничения нашего анализа, мы оказались не готовы к реакции, которую он должен был вызвать с неизбежностью.

В течение нескольких следующих лет было опубликовано более 100 статей, посвященных импульсно-связанным осцилляторам. Авторами этих статей были ученые, представлявшие множество дисциплин, начиная с нейробиологии и заканчивая геофизикой. Что касается нейробиологии, то теоретиков, изучающих модели нейронных сетей, категорически не устраивал преобладающий подход, согласно которому нейроны весьма грубо описывались средними скоростями их запуска (количеством скачков напряжения в секунду), а не фактическим распределением самих этих скачков во времени[17]. Предложенная нами новая модель импульсно-связанных осцилляторов идеально отвечала потребностям ученых-нейробиологов и духу времени в целом.

По случайному стечению обстоятельств или, может быть, в силу каких-то других причин в начале 1990-х годов ученые в других областях также размышляли над поведением систем такого рода. Например, влиятельный биофизик Джон Хопфилд, работающий в Калифорнийском технологическом институте, обнаружил связь между землетрясениями и импульсно-связанными нейронами[18]. В упрощенной модели землетрясения пласты земной коры постоянно воздействуют друг на друга, создавая напряжение, которое нарастает до тех пор, пока не будет достигнут некий порог. Затем эти пласты внезапно начинают скользить относительно друг друга; высвобождающаяся при этом энергия приводит к взрыву. Весь этот процесс напоминает постепенное повышение и внезапный скачок напряжения нейрона. В описанной выше модели землетрясения соскальзывания одного пласта может оказаться достаточно, чтобы запустить соскальзывание других пластов (точно так же, как запуск нейрона может вызвать цепную реакцию других разрядов в мозге). Эти каскады множащихся событий могут приводить к землетрясениям (или эпилептическим хватательным движениям у человека). В зависимости от того, какой именно оказывается конфигурация других элементов системы, результатом может быть либо едва различимый гул, либо сильное землетрясение.

Такая же математическая структура возникала в моделях других взаимодействующих систем, начиная с лесных пожаров и заканчивая массовыми вымираниями живых организмов. В каждом таком случае какой-то отдельно взятый элемент подвергается нарастающему давлению, продвигается в направлении некого порога, а затем внезапно высвобождает накопившееся напряжение и распространяет его на другие элементы, что способно вызвать эффект домино. Модели с таким характером широко обсуждались в начале 1990-х годов. Статистика каскадов – в основном небольших, но в нескольких случаях катастрофических – изучалась теоретически физиком Пером Баком и его сотрудниками в связи с тем, что они называли самоорганизующейся критичностью[19].

Открытие, сделанное Хопфилдом, заключается в том, что самоораганизующася критичность может быть тесно связана с синхронизацией в импульсно-связанных системах осцилляторов. Интригующая возможность связи между этими двумя областями породила десятки статей, в которых исследовались возможные варианты связи[20]. Этот эпизод служит примером того, как математики могут выявлять скрытую связь явлений, которые на первый взгляд кажутся не связанными между собой.

Наша работа привлекла также внимание средств массовой информации – в основном из-за ее связи со светлячками, которые вызывали у большинства людей детские воспоминания о летних вечерах, когда они ловили этих мерцающих насекомых в стеклянные банки[21]. В результате этого повышенного внимания со стороны прессы в 1992 г. я получил восторженное письмо от женщины по имени Линн Фост, проживающей в Ноксвилле, Теннеси. В характерной для нее вежливой и непосредственной манере она была готова разрушить давний миф о синхронно мерцающих светлячках. Вот о чем она поведала мне в своем письме.

Я уверена, вам известно об этом. Поэтому хочу лишь напомнить о том, что в национальном парке «Грейт-Смоки Маунтин» вблизи г. Элкмонт, Теннеси, у мерцающих насекомых наблюдается что-то наподобие группового синхронизма. Сеансы мерцания у них происходят с середины июня и начинаются каждые сутки примерно в 10 часов вечера. После 6 секунд полной темноты тысячи насекомых в течение трех секунд с идеальным синхронизмом совершают шесть быстрых вспышек, после чего все они «потухают» еще на 6 секунд.

В Элкмонте у нас есть маленький домик (к сожалению, по распоряжению руководства национального парка, он должен быть снесен в декабре 1992 г.) и, насколько нам известно, этот конкретный вид группового синхронного мерцания наблюдается лишь на этой небольшой территории. Между тем это поистине завораживающее зрелище.

Описанные мною насекомые существенно отличаются от наших обычных светлячков, которые после наступления темноты просто загораются и потухают в произвольные моменты времени.

Далее Линн Фост рассказала в своем письме, что по другую сторону речушки, на берегу которой стоит их домик, светлячки, расположившиеся выше по склону холма, начинают свою последовательность свечений чуть раньше тех, которые расположились ниже, поэтому у наблюдателя возникает впечатление огоньков, сбегающих волной вниз по склону холма, «что-то наподобие водопада светлячков».

Она отправила письмо руководству национального парка в Элкмонте с просьбой не проводить реконструкцию парка и не разрушать естественную среду обитания насекомых по крайней мере до тех пор, пока ученые не изучат их поведение. Ведь это явление можно наблюдать лишь в строго определенном месте этого национального парка. Кстати, уникальность этого места натолкнула Линн Фост на мысль о том, что проживающие там люди, наверное, делают что-то такое, что способствует столь необычному мерцанию светлячков. Она предположила, что причиной может быть периодическое подстригание травяных газонов местными жителями. На протяжении 50 лет жители Элкмонта подстригают свои газоны примерно каждые две недели. Это позволяло личинкам светлячков благополучно перезимовать, зарывшись в заросли короткой травы на болотистой почве. Весной эти личинки превращались в светлячков, которые размножались летом. Следовательно, по мнению Линн Фост, если Элкмонт покинут все его нынешние жители, регулярно подстригающие свои газоны, светлячки могут быть утрачены для науки раз и навсегда. В поддержку своей гипотезы, касающейся стрижки травяных газонов, Линн Фост указывала, что самые высокие концентрации светлячков отмечались

непосредственно возле домиков местных жителей и охватывали участки, на которых регулярно подстригалась трава… Ни одной из личинок не удалось обнаружить на участке, где раньше стоял дом «дядюшки Лема Оуенбая», то есть там, где уже давно не подстригают траву. На протяжении 15 лет, за которые на месте лужайки, примыкавшей к дому Мейны Маккинн, успел вырасти лес, она отмечала существенное уменьшение «своей» популяции светлячков.

Линн также удручала перспектива расставания со своим жильем и привычным окружением. К тому времени семейство Фостов наслаждалось фантастическим мерцанием светлячков уже на протяжении 40 лет. Каждый июнь три поколения Фостов укутывались в пледы и молча сидели на неосвещенном крыльце своего домика в ожидании начала очередного представления.

То, что было так знакомо семейству Фостов, было новостью для науки[22]. Эти любительские наблюдения могли стать первым хорошо задокументированным случаем синхронного мерцания светлячков в Западном Гэмпшире. На протяжении многих десятилетий после дискуссии, разгоревшейся в начале XX века в журнале Science, было принято считать, что такое явление не встречается на американском континенте – только в Азии и Африке. Я познакомил Линн с Джонатаном Коуплендом, исследователем светлячков, работающим в Южном университете Джорджии. Коупленд вместе со своим коллегой Энди Моисеффом из Коннектикутского университета подтвердил, что светлячки, обитающие у домика Фостов, мерцают синхронно, причем величина рассинхронизации между светлячками не превышает трех сотых долей секунды.

Несмотря на то что в 1992 г. Элкмонт был в конечном счете поглощен национальным парком «Грейт-Смоки Маунтин», светлячкам удалось пережить эту трансформацию, и их «Световое шоу» продолжилось, став хорошей приманкой для туристов. Что касается Линн Фост, то ее по-прежнему увлекает повсеместность синхронизма в природе и она по-прежнему совершает свои открытия. Вот, например, о чем она написала мне в 1999 г.: «Еще одно явление простого синхронизма мне довелось наблюдать этой весной, когда четыре индюка (не диких, а домашних) во время весеннего брачного периода собираются в круг и начинают синхронно кулдыкать, после того как их вожак (во всяком случае, мне показалось, что он является их вожаком) издает первый звук».

Далеко не все из нас способны оценить по достоинству чудеса синхронизма в мире животных[23]. Например, 18 мая 1993 г. в таблоиде National Enquirer была опубликована статья, озаглавленная «Правительство швыряет на ветер деньги налогоплательщиков, выделяя средства на изучение светлячков, обитающих на острове Борнео. Не самая блестящая идея!». Автор статьи издевательски высказывался по поводу предоставления Национальным научным фондом одного из грантов и сообщал, что член Палаты представителей Том Петри (член Республиканской партии от штата Висконсин) «не считает, что это исследование окажется таким уж полезным, и хочет “зарубить” его. “Тратить деньги налогоплательщиков на изучение светлячков кажется мне не самой лучшей идеей”».

Нет ничего удивительного в том, что Том Петри – как и большинство людей, далеких от науки – не понимает важность этой проблемы. Между тем важность изучения светлячков трудно переоценить. Например, до 1994 г. самопроизвольные пульсации трафика между устройствами, которые называются маршрутизаторами, доставляли немало проблем специалистам, работающим с интернетом[24]. Лишь в 1994 г. стало понятно, что маршрутизаторы ведут себя подобно светлячкам, периодически обмениваясь сообщениями, которые непреднамеренно синхронизировали их. Как только причина была выявлена, стало ясно, как избавиться от этих «заторов» в компьютерной сети. Инженеры разработали децентрализованную архитектуру, обеспечивающую более эффективное тактирование компьютерных цепей: для достижения синхронизма с невысокими затратами и высокой надежностью они взяли на вооружение стратегию светлячков. (Эти скромные насекомые даже помогают спасти людям жизнь. По иронии судьбы, на той же неделе, когда в National Enquirer были опубликованы «разоблачения» Тома Петри, в статье, опубликованной журналом Time, сообщалось о том, что врачам удалось использовать светоизлучающий фермент светлячков – люциферазу – для ускорения испытаний лекарств от особо стойких разновидностей туберкулеза[25].)

Групповое поведение светлячков не только служит источником вдохновения для инженеров, но имеет более широкое научное значение. Это один из немногих поддающихся трактовке примеров сложной самоорганизующейся системы, в которой одновременно происходят миллионы взаимодействий, когда каждый элемент системы изменяет состояния всех остальных ее элементов. Практически все основные нерешенные проблемы в современной науке имеют такой запутанный характер. Рассмотрим, к примеру, каскад биохимических реакций в отдельно взятой клетке и нарушение их хода, когда эта клетка оказывается раковой; взлеты и падения фондового рынка; формирование сознания в результате взаимодействия триллионов нейронов в мозге; зарождение жизни из сложнейшей сети химических реакций, протекавших в первичном бульоне. Все эти примеры включают огромные количества «действующих лиц», соединенных между собой в сложные сети. В каждом таком случае самопроизвольно возникают изумительные картины. Богатство окружающего нас мира во многом объясняется чудесами самоорганизации.

К сожалению, наш разум не в состоянии уяснить столь сложные системы. Мы привыкли мыслить о системах с точки зрения централизованного управления, четких цепочек команд, простой причинно-следственной логики. Но когда нам приходится иметь дело с системами, содержащими огромные количества взаимосвязанных элементов, когда каждый элемент в конечном счете влияет на все остальные части системы, наши стандартные способы мышления оказываются бессильны. Простые картины и словесные формулировки слишком близоруки. Именно это создает проблемы в экономике, когда мы пытаемся предугадать последствия какого-нибудь очередного урезания налогов или изменения процентных ставок, или в экологии, когда применение какого-нибудь нового пестицида приводит вовсе не к тем результатам, на которые мы рассчитывали (например в продукты питания попадают вредные вещества).

Загадка синхронного мерцания светлячков стоит в одном ряду со множеством концептуальных проблем, подобных ей, хотя, разумеется, найти ее решение гораздо легче, чем найти решение проблем экономики или экологии. Мы имеем достаточно полное представление о природе индивидуальных организмов (светлячков), их поведении (ритмичное мерцание) и их взаимодействии («перезапуск» в ответ на свечение), в отличие от наших весьма приблизительных представлений об экологических системах или глобальном рынке, которые характеризуются множеством разнообразных компаний и видов живых организмов и неизвестными нам режимами взаимодействия элементов этих сложных систем. Достичь понимания таких систем отнюдь не просто. В действительности все, о чем было сказано выше, является лишь незначительной частью того, что нам удалось понять к настоящему времени. Однако приведенной выше информации вполне достаточно для того, чтобы читатели уяснили, как математика помогает нам раскрывать тайны спонтанно возникающего порядка, и получили наглядный пример того, что может (и чего не может) сделать для нас математика на этой примитивной, самой начальной стадии исследования.

Несмотря на то что в живом мире синхронизм встречается повсеместно, его функция не всегда очевидна. Почему, например, светлячки мерцают в унисон? Биологи предлагают по меньшей мере 10 правдоподобных объяснений этого явления[26]. Старейшая из них называется «гипотезой маяка». Уже давно известно, что лишь самцы светлячков синхронизируют свои мерцания; таким образом, согласно данной точке зрения, это «световое представление» адресовано самкам – что-то наподобие коллективного приглашения в компанию. Синхронно мерцая, самцы усиливают этот приглашающий сигнал, охватывая им значительную площадь джунглей и привлекая самок, которые в противном случае могли бы не заметить свечения. Именно поэтому такой синхронизм характерен для местностей, покрытых густой растительностью (подобно джунглям Таиланда и Малайзии или лесу позади домика Линн Фост), но редко наблюдается на открытых лугах восточной части Соединенных Штатов, где светлячки могут без проблем назначать свидания друг другу.

Второе возможное преимущество синхронизма заключается в том, что вам может просто повезти: самка, которая положила глаз на светлячка, похожего на вас, может легко спутать вашего конкурента с вами и явиться на свидание не с ним, а с вами. Именно поэтому синхронизм может быть необходим и для того, чтобы запутать хищников: в толпе всегда можно затеряться. Самое последнее по времени своего появления объяснение заключается в том, что синхронизм является отражением конкуренции, а не сотрудничества: каждый из светлячков пытается сверкнуть первым (поскольку самки, по-видимому, предпочитают именно первого), но если этой стратегии придерживается каждый из светлячков, то синхронизм наступает автоматически[27].

У многих других живых существ взаимный синхронизм также каким-то образом связан с функцией продолжения рода. Периодические цикады[28] пытаются перехитрить своих врагов, прячась под землей на долгие семнадцать лет, после чего миллионы этих насекомых одновременно появляются на свет, проводят брачный период длиною в один месяц и прекращают свое существование[29]. Группы самцов манящего краба (род Uca, семейство Ocypodidae), у каждого из которых имеется единственная, невероятно большая клешня, находят наилучшее применение своим природным талантам: они заигрывают с самкой, окружив ее и размахивая в унисон своими гигантскими клешнями[30]. (Весь этот ритуал выглядит так, словно множество маленьких дирижеров дирижируют единственным музыкантом.)

Что же касается людей, то синхронизацией занимаются именно женщины. Большинству женщин знакомо явление менструального синхронизма, суть которого заключается в том, что у сестер, женщин, проживающих в одной комнате, близких подруг или сотрудников, проводящих много времени вместе, менструальные циклы начинаются примерно в одно и то же время. Такой менструальный синхронизм, долгое время бывший скорее объектом для шуток, чем серьезного изучения, впервые был научно задокументирован Мартой Макклинток, в то время студенткой, обучавшейся в женском колледже Wellesley (штат Массачусетс) по специальности «Психология»[31]. Она провела исследование, объектом которого были 135 ее товарищей по учебе, попросив их на протяжении всего учебного года фиксировать даты начала своих менструальных циклов. В октябре менструальные циклы близких подруг и девушек, проживавших в одной комнате студенческого общежития, различались в среднем на 8,5 дня, но уже к марту среднее расхождение сократилось до 5 дней – статистически значимое сокращение. В контрольной группе, составленной из произвольно подобранных пар девушек, не удалось выявить каких-либо изменений.

Высказывались разные соображения относительно механизма синхронизации в этом случае, однако наиболее правдоподобная версия заключается в том, что это каким-то образом связано с феромонами, то есть неустановленными химическими веществами без запаха, которые каким-то путем передают сигнал синхронизации[32]. Первым подтверждением этой догадки стал эксперимент, о котором сообщил в 1980 г. биолог Майкл Рассел. Его коллега, Женевьева Свиц, обнаружила этот эффект в своей собственной жизни: проживая в течение всего лета в одной комнате с одной из своих подруг, она обратила внимание, что их менструальные циклы сблизились. После того как они расстались, их менструальные циклы рассинхронизировались. Из этого можно было заключить, что Женевьева – мощный синхронизатор. Рассел попытался выяснить, что же такого особенного в Женевьеве, что обеспечивает ей столь уникальное свойство. В ходе эксперимента она клала себе под мышки небольшие хлопчатобумажные прокладки, каждый день сдавая на анализ Расселу пот, накопившийся в этих прокладках. Рассел смешивал эти пробы пота с небольшим количеством спирта и делал мазок этой «эссенцией Женевьевы» на верхней губе женщин, согласившихся выполнять роль «подопытных» в этом эксперименте. Эти опыты проводились трижды в неделю на протяжении четырех месяцев.

Результаты эксперимента оказались впечатляющими. По истечении четырех месяцев менструальные циклы женщин, участвовавших в эксперименте, в среднем начинались с разницей 3,4 дня по сравнению с началом менструального цикла у Женевьевы, между тем как в начале эксперимента эта разница составляла в среднем 9,3 дня. С другой стороны, начало менструальных циклов женщин в контрольной группе (на верхние губы которых наносился лишь спиртовой раствор) существенно не изменилось. Совершенно очевидно, что какое-то вещество в потовых выделениях Женевьевы передавало информацию о фазе ее менструального цикла таким образом, что это увлекало за собой менструальные циклы других женщин, которые улавливали запах этого вещества.

Последующие исследования принесли не столь впечатляющие результаты. В некоторых из них были обнаружены статистические свидетельства синхронизма, в других – нет. Скептики восприняли эти противоречивые данные как свидетельство слабости или случайной природы данного явления. Недавняя работа Макклинток (в настоящее время она занимается исследованиями по биологии в Чикагском университете) свидетельствует об обратном – о том, что синхронизм менструальных циклов – это лишь наиболее заметное следствие более масштабного явления: химической связи/взаимодействия между женщинами[33]. В ходе эксперимента, проведенного в 1998 г., Макклинток вместе со своей коллегой Кэтлин Стем выяснила: если брать мазки из подмышек женщин в разные моменты их менструальных циклов и наносить эти мазки на верхние губы других женщин, то донорские секреции систематическим образом сдвигают фазу менструального цикла у реципиента. Мазки, взятые у женщин в начале их менструального цикла, в фолликулярной фазе до овуляции, обычно сокращали менструальные циклы женщин, которые получали эти мазки. Иными словами, овуляция у реципиентов происходила на несколько дней раньше, чем обычно. Напротив, мазки, взятые у женщин во время овуляции, продлевали менструальные циклы реципиентов. А секреции, собранные на лютеиновой фазе (фаза желтого тела яичника), в дни перед менструацией, не вызывали никаких изменений.

Наш вывод сводится к тому, что женщины в какой-либо сплоченной группе всегда оказывают воздействие на менструальные циклы друг друга, бессознательно участвуя в молчаливом общении феромонами. Одним из возможных последствий такого общения является синхронизм менструальных циклов. Но если принять во внимание, что такие феромональные сигналы могут либо сближать циклы, либо разводить их во времени в зависимости от того, в какой день месяца были сгенерированы эти сигналы, нет ничего удивительного в том, что в данном случае синхронизм не является неизбежным – должен также быть возможен асинхронизм или даже антисинхронизм (при котором менструальные циклы наступают в противофазе друг другу), что и наблюдается на практике.

Функция этого «химического диалога» остается для ученых загадкой. Возможно, что женщины подсознательно стремятся к тому, чтобы овуляция и зачатие происходили у них синхронно с подругами (чтобы получить возможность совместно выхаживать, родить и вскармливать детей) и в противофазе со своими недругами (чтобы избежать конкуренции с ними за ограниченные ресурсы). Сколь бы притянутыми за уши ни казались такие соображения, именно такой сценарий реализуется у других млекопитающих. Самки крыс в синхронизированной группе производят более многочисленное и здоровое потомство, чем то, которое приносит отдельно взятая самка крысы. Репродуктивный синхронизм обеспечивает преимущества всем, если другие самки в группе склонны к сотрудничеству.

С математической точки зрения данные, полученные Макклинток, подтверждают то, о чем вы, вероятно, уже догадываетесь: женщины, если их рассматривать как связанные осцилляторы, синхронизируют друг друга значительно слабее, чем светлячки. Биохимические взаимодействия между ними не всегда приводят их к синхронизму, в отличие от светлячков в Юго-Восточной Азии, которые синхронизируют свои мерцания ночь напролет, 365 дней в году. Неизбежный синхронизм этих светлячков (и клеток-ритмоводителей сердца) напрочь лишен гибкости, и именно по этой причине редко встречается в других биологических системах. Подобно женщинам, большинство осцилляторов достигают синхронизма в одних обстоятельствах и не достигают в других.

Таким образом, модель, рассмотренная нами ранее в этой главе, начинает выглядеть как чересчур упрощенная. Несмотря на то, что она помогла нам понять, почему синхронизм может оказаться неизбежным при определенных условиях, она зашла слишком далеко: она не учитывает всего остального. Уточненная теория связанных осцилляторов должна уметь предсказывать, будет ли синхронизироваться какая-то определенная группа осцилляторов; она должна также указывать нам, какие факторы являются решающими в этом отношении.

Эта теория должна также учитывать весь спектр способов взаимодействия между осцилляторами. Вспомните, что светлячки «подталкивают» друг друга внезапными импульсами – световыми ударами, – но затем игнорируют друг друга в оставшееся время своего цикла, тогда как женщины все время взаимодействуют с осцилляторами друг друга. В природе часто встречаются оба типа связи, но существующая модель учитывает лишь импульсы. Более совершенная модель должна распространяться и на непрерывное взаимодействие.

Кроме того, до сих пор мы предполагали, что все осцилляторы в данной популяции строго идентичны. Однако реальные осцилляторы не могут быть строго идентичны, а это означает, что фактическая длительность цикла у всех них тоже неодинакова. Точно так же, как длительность менструального цикла у одной женщины может составлять 25 дней, а у другой – 35 дней, все другие виды биологических осцилляторов характеризуются неким статистическим распределением длительностей цикла. Даже электронным и механическим осцилляторам, которые должны характеризоваться строго определенной длительностью цикла (номинальное значение которой является одним из важнейших параметров таких осцилляторов), присущ некоторый разброс, что объясняется незначительными погрешностями производства или колебаниями свойств материалов, использовавшихся для их изготовления.

К сожалению, эти нюансы порождают колоссальные математические трудности. Одно дело – желать более реалистичной модели, и другое – создать такую модель, поддающуюся интерпретации. Мы не сможем углубить свои познания, если используемая нами модель окажется такой же сложной, как и явление, которое описывает эта модель. Именно поэтому математическое моделирование является не только наукой, но и искусством: элегантная модель представляет собой идеальный компромисс между простотой и достоверностью. Сегодня мы располагаем прекрасной моделью синхронизма, в которой достигнут именно такой компромисс. Ее создание является результатом коллективного труда, который растянулся на три десятилетия и потребовал усилий трех первопроходцев, первый из которых был одним из самых прозорливых и оригинальных мыслителей XX столетия.

Глава 2. Мозговые волны и условия синхронизма

Норберт Винер никогда не был знаменитостью в полном смысле этого слова. Но когда в 1950-е годы была опубликована его книга «Кибернетика», она вызвала большие волнения среди читающей публики. Обозреватель газеты New York Times назвал эту книгу «основополагающей и сопоставимой по своей важности с трудами Галилея, Мальтуса, Руссо или Милля». Винер предложил единый подход к осмыслению проблем связи и управления, будь то системы нервных клеток или общества, животные или машины, компьютеры или люди[34]. В большей степени это было похоже на мечту, чем на законченную теорию, а выводы, сделанные Винером, были несколько скоропалительными и преждевременными. Сегодня никто не сказал бы, что его специальностью является кибернетика, однако первая половина слова «кибернетика» продолжает свою жизнь в качестве модного префикса в таких, например, словах, как «киберпространство» и «киберпанк».

Однако в научном мире имя Норберта Винера никогда не будет забыто по причинам как серьезным, так и не очень серьезным[35]. Что касается серьезных причин, то имя Норберта Винера увековечено в математической терминологии: винеровский процесс, теорема Пэли-Винера, метод Винера-Хопфа и т. д. Бывший вундеркинд, который в восемнадцать лет защитил диссертацию в Гарвардском университете, Норберт Винер совершил революцию в теории случайных процессов. Выполненный им анализ броуновского движения, хаотических перемещений молекул в растворе, оказался значительным шагом вперед по сравнению с интуитивным подходом Альберта Эйнштейна к решению той же проблемы, а предложенные им методы заложили фундамент для последующих работ Ричарда Фейнмана по квантовой электродинамике, а также для работ в области финансов, выполненных будущими лауреатами Нобелевской премии Фишером Блэком и Майроном Скоулзом.

Что же касается менее серьезной стороны, то математики любят пересказывать друг другу разные истории о Винере. Невысокого роста, похожий на колобка, всегда в очках с толстыми линзами и с неизменной сигарой в зубах, Винер обожал разъезжать по коридорам Массачусетского технологического института на своем уницикле – одноколесном велосипеде. Даже в профессии, обладатели которой не могут похвастаться своей любовью к спорту или здравому смыслу, Винер выделялся из общей массы. Когда ему не удалось нормально принять ни одной из многочисленных подач от своего партнера по теннисной партии, Винер предложил тому поменяться ракетками. Винер славился своей рассеянностью. Когда он вместе со своей семьей переезжал из Кембриджа в Ньютон (их новое место жительства), его жена выписала на листке бумаги их новый адрес и подробнейшим образом описала, как туда добраться из его офиса (она была уверена, что Норберт забудет об их переезде). Так и случилось. Винер использовал этот листок бумаги в качестве черновика для каких-то вычислений, выбросил его в корзину для мусора и по окончании работы вернулся в свой старый дом. Прибыв туда, он понял, что уже не проживает там, остановил на улице маленькую девочку и спросил, не знает ли она, куда переехало семейство Винеров. Она сказала: «Конечно, дедушка, знаю. Пойдем со мной».

Винер является одной из центральных фигур в науке о синхронизме. Частично это объясняется тем, что именно он сформулировал вопрос, который не отваживался поставить никто из ученых до него. До Винера математики довольствовались изучением систем лишь с двумя связанными осцилляторами. Винер взялся за изучение систем, включающих в себя миллионы осцилляторов. Еще более важным является, наверное, то обстоятельство, что Винер первым указал на повсеместность синхронизма во Вселенной. Стрекочущие сверчки, квакающие лягушки, мерцающие светлячки, интервалы в поясе астероидов, генераторы в энергосистеме – во всех этих системах Винер обнаружил синхронизм. Поверхностные различия не ввели его в заблуждение. Его интересовали глобальные принципы. Он полагал, что выявил один из таких принципов, когда размышлял над происхождением мозговых волн у человека.

В конце 1950-х годов никто не понимал, зачем мозг вообще излучает волны. Но несколькими десятилетиями ранее физиологи обнаружили, что если к разным точкам кожи на черепе человека подсоединить электроды, на электродах появляется очень небольшое напряжение, причем это напряжение изменяется во времени. После того как инженерам удалось разработать весьма чувствительные электронные усилители, появилась возможность автоматически представить эти микроскопические флуктуации напряжения, или «мозговые волны», в графическом виде на бумажной ленте. Устройство, использующееся для регистрации мозговых волн, называется электроэнцефалографом. (Такая же технология используется в тестах на детекторе лжи и для контроля работы сердца и должна быть знакома каждому, кто смотрел по телевизору репортажи из больниц.)

Специалисты по измерению мозговых волн (то есть по расшифровке электроэнцефалограмм) умеют распознавать в этих записях мозговой деятельности характерные картины. Одна картина, так называемый альфа-ритм, наблюдается у людей, которые бодрствуют, но пребывают в расслабленном состоянии, а их глаза закрыты[36]. Субъективно это ощущается как приятное состояние «отключения» от внешнего мира. На электроэнцефалограмме это выглядит как ярко выраженная осцилляция с частотой примерно 10 циклов в секунду.

Винер хотел изучить альфа-ритм гораздо подробнее, поскольку у него были кое-какие соображения по поводу того, какой может быть функция альфа-ритма. Винер полагал, что альфа-ритм является отражением работы некого задающего (или тактового) генератора, встроенного в мозг человека. Компьютеру необходим тактовый генератор, чтобы синхронизировать сигналы, которыми обмениваются между собой тысячи компонентов машины. Винер предположил, что мозг мог бы поступать аналогично и координировать миллиарды нейронов, заставляя их действовать в ритме, задаваемом неким «барабанщиком». Очевидно, отдельно взятые нейроны не могли выполнять такую функцию, поскольку были известны как слишком неточные осцилляторы, неспособные исполнять роль надежного тактового генератора. Винер выдвинул гипотезу, что мозг весьма изобретательно формирует точный тактовый генератор на основе огромного количества неточных тактовых генераторов. Он предположил, что в каком-то месте мозга могут быть сосредоточены миллионы специализированных осцилляторов, которые, возможно, являются отдельными нейронами или небольшими кластерами нейронов, причем все они разряжаются с частотой примерно 10 раз в секунду. Подобно любой другой биологической популяции, эти осцилляторы, несомненно, не идентичны: некоторые из них изначально действуют быстрее других, срабатывая 12 раз в секунду, тогда как другие, напротив, действуют медленнее, срабатывая лишь 8 раз в секунду; при этом большинство осцилляторов работают на частоте, близкой к средней, то есть к 10 циклам в секунду. Предоставленная сама себе, эта разнородная совокупность нейронных осцилляторов выдает импульсы с разными частотами, создавая электрическую какофонию, подобную звучанию оркестра во время настройки инструментов перед началом представления. Чтобы работать вместе как единый и слаженный часовой механизм, эти гипотетические осцилляторы должны координировать свои действия, чувствовать электрические ритмы друг друга и реагировать на них соответствующим образом.

Идея Винера заключалась в том, что эти осцилляторы должны самопроизвольно синхронизироваться, подстраивая частоты друг друга. Если какой-то осциллятор работает слишком быстро, остальные осцилляторы в соответствующей группе должны замедлить его; если же какой-то осциллятор работает слишком медленно, остальные осцилляторы должны ускорить его работу.

Чтобы проверить, работает ли в действительности этот механизм «подтягивания» частот, Винер предложил отыскать характерные «отпечатки», которые он должен оставлять на альфа-ритме. В этом случае нам на помощь может прийти аналогия с политикой. Естественные частоты осцилляторов можно представлять себе как спектр политических взглядов в гипотетическом обществе. Крайне левые радикалы соответствуют крошечной совокупности осцилляторов, которые предпочитают работать на частоте, скажем, 8 циклов в секунду. Продвигаясь постепенно по нашему спектру вправо, мы встретим более многочисленную субпопуляцию либералов, работающих на частоте 9 циклов в секунду, доминирующее ядро центристов, работающих на частоте 10 циклов в секунду, затем натолкнемся на менее многочисленную группу консерваторов, работающих на частоте 11 циклов в секунду, и наконец – лишь небольшую горстку крайне правых радикалов, работающих на частоте 12 циклов в секунду. Положим для простоты, что диаграмма количества людей в каждой из перечисленных категорий представляет собой хорошо знакомую нам колоколообразную кривую, в которой доминирует мощный центр, и симметрично сходящую на нет по мере продвижения в правую или левую сторону от центра.

Имейте в виду, что такая картина отражает лишь тенденции, внутренне присущие системе политических взглядов. Это политические взгляды, которых придерживались бы люди (или частоты, на которых работали бы осцилляторы), если бы они были полностью изолированы от влияния других.

А теперь предоставим возможность отдельным индивидуумам влиять друг на друга; допустим также (хотя политики лишь в редких случаях действуют подобным образом), что эти осцилляторы могут изменять свои частоты. В результате уговоров со стороны других осцилляторов медленный осциллятор можно убедить работать быстрее, а быстрый осциллятор можно убедить работать медленнее. Затем, если измерить весь этот спектр, окажется, что он уже не похож на колоколообразную кривую. Винер предположил, что он выглядел бы примерно так:

Чтобы уяснить специфическую форму этого графика, вспомним, что большинство осцилляторов поначалу работало вблизи середины колоколообразной кривой. Воздействуя на частоты друг друга, многие из них сместились в абсолютный центр, образовав мощный мейнстримный консенсус (высокий и узкий пик). Их совместное влияние на остальную популяцию оказалось достаточно сильным для того, чтобы оттащить ряд «умеренных» от левого и правого крыльев (еще больше увеличив высоту пика и понизив кривую на собственых позициях «умеренных», что привело к появлению «провисаний» по обе стороны от пика). Тем не менее достигнутый консенсус не был настолько убедительным, чтобы вытеснить большинство упрямых экстремистов на краях спектра (изображенных в виде плечей на обоих концах спектра).

Винер прогнозировал, что альфа-ритм продемонстрирует точно такой же специфический пик и двойное «проседание» в своем спектре частот. В таком случае это могло бы стать убедительным свидетельством идеи Винера о том, что причиной альфа-ритма является синхронизация между осцилляторами с разными естественными частотами. Чтобы удостовериться в своей правоте, Винеру нужно было придумать способ, с помощью которого он мог бы измерить такой спектр с небывалой точностью. В данном случае Винер намеревался использовать экспериментальный метод, который несколькими годами ранее изобрел его сотрудник Уолтер Розенблит, инженер по электротехнике из Массачусетского технологического института. Розенблит придумал способ, с помощью которого мозговые волны можно регистрировать на магнитной ленте, а не на бумаге; это означало, что полученные таким образом данные можно обработать электронным способом, выполнив первый в мире количественный анализ спектра мозговых волн. Все предшествующие работы носили качественный характер: они основывались на распознавании образов, субъективных суждениях специалистов, умеющих выявлять определенные картины, анализируя электроэнцефалограммы. Пользуясь методом, предложенным Розенблитом, соответствующие вычисления можно было автоматизировать, а процесс анализа сделать вполне объективным.

О полученных таким образом результатах Винер объявил в своей монографии, написанной в 1958 г., хотя его презентация носила подозрительно отрывочный, эскизный характер. Вместо того чтобы опубликовать фактические данные (как полагалось сделать согласно критериям, принятым в научном мире – если ученый собирался обнародовать данные, подтверждающие выдвинутую им гипотезу), он сделал приблизительный набросок измеренного спектра[37] – что-то наподобие графика, представленного выше на моем рисунке. Такие результаты показались слишком банальными и чересчур уж «правильными», чтобы быть похожими на правду. Складывалось впечатление, будто Винер что-то скрывает.

Однако его статья вовсе не заслуживала недоверия. Он утверждал, что «подтягивание» частот является универсальным механизмом самоорганизации, касающимся не только осцилляторов в мозге, но буквально всего в природе – как в живой, так и в неживой. Он настойчиво призывал биологов проводить эксперименты на лягушках, сверчках и даже на светлячках Юго-Восточной Азии задолго до появления в научной литературе статей об их синхронном мерцании. В 1961 г. он писал: «Не отваживаясь высказываться по поводу возможного исхода экспериментов, которые еще не проводились, я все же полагаю, что это направление исследований является весьма многообещающим и не слишком сложным»[38].

Его следующей задачей была разработка подробной теории «подтягивания» частот.

К сожалению, когда он попытался подкрепить свои догадки строгими математическими доказательствами, он столкнулся с непреодолимыми трудностями. Он представил ряд грубых рассчетов, но они выглядели весьма неуклюже и вели в никуда. Винер умер в 1964 г., так и не решив одну из важнейших для себя задач. Годом позже одному из студентов удастся найти правильный подход к ее решению.

В то время Арт Уинфри был старшим научным сотрудником в Корнельском университете и занимался технической физикой. Он давно мечтал стать биологом, однако вместо того чтобы идти к своей цели проторенным путем, он решил основательно пополнить багаж своих знаний по математике и физике, надеясь освоить новый для себя инструментарий. Электроника и компьютеры, квантовая механика и дифференциальные уравнения – этими инструментами биологи в то время, как правило, не пользовались.

Когда Уинфри размышлял над проблемой группового синхронизма, он думал о самих осцилляторах, а не просто об их частотах[39]. В этом отношении его концептуализация данной проблемы была гораздо более подробно разработанной, чем у Винера. Он не просто характеризовал каждый осциллятор частотой, на которой тот работает (его местоположением на политическом спектре, если вернуться к нашей предыдущей аналогии), а изображал его работу шаг за шагом, на протяжении всего цикла, что является, в конце концов, самым существенным для каждоно осциллятора. Это сразу же привело к сложностям, которые заставили бы опустить руки любого другого – только не Уинфри[40]. Преимущество молодости в том и состоит, что в эту пору жизни для вас нет почти ничего невозможного.

Свою модель он совершенно сознательно сделал приблизительной. Он намеревался сделать ее достаточно общей, чтобы ее можно было применить к любой популяции биологических осцилляторов. Единственым способом охватить одной моделью типичные характеристики стрекочущих сверчков, мерцающих светлячков, пульсирующих нейронов, задающих ритм, и тому подобных объектов было не обращать внимания на все их биохимические различия, а вместо этого сосредоточиться исключительно на двух вещах, типичных для всех биологических осцилляторов: их способности отправлять и принимать сигналы.

Запутанность этой проблемы обусловлена тем, что оба указанных свойства изменяются в течение цикла осциллятора: влияние и чувствительность являются функциями фазы. Например, цикл светлячка состоит из внезапной вспышки, затем следует интервал темноты (пока светлячок перезаряжает орган, который обеспечивает свечение), затем следует очередная вспышка и т. д. Эксперименты показали, что светлячки на приемном конце замечают вспышку другого светлячка, но игнорируют темноту. Поэтому в математическом описании, предложенном Уинфри, «функция влияния» должна изменяться в промежутке между двумя уровнями: высоким во время вспышки и близким к нулю во время темноты. Аналогично «функция чувствительности» показывает, как осциллятор реагирует на принимаемые им сигналы. Увидев вспышку в течение одной части своего цикла, светлячок может ускорить работу своего внутреннего таймера. Увидев точно такую же вспышку в течение какой-либо другой части цикла, светлячок может замедлить работу своего внутреннего таймера или вообще не влиять на его работу. Чтобы полностью охарактиризовать любой осциллятор в своей модели, Уинфри было достаточно использовать эти две функции. Выбрав эти две функции, можно было определить поведение осциллятора и как отправителя, и как получателя сигналов.

Чтобы сделать эти идеи как можно более конкретными, представим осциллятор в виде бегуна трусцой, бегущего по круговой дорожке стадиона. Разные места на этой дорожке представляют разные фазы цикла биологической активности осциллятора. Если дорожка представляет, например, менструальный цикл, то одна из ее точек соответствовала бы овуляции. Другая, соответствующая примерно половине длины дорожки, соответствовала бы менструации, а места между этими двумя точками соответствовали бы промежуточным гормональным событиям. После совершения одного круга бегун снова вернулся бы в точку овуляции. Или, если такая дорожка должна представлять ритм мерцания светлячка, разные ее места означали бы свечение как таковое, сопровождаемое разными стадиями биохимического восстановления, в ходе которого орган, отвечающий за свечение этого насекомого, перезаряжается и готовится к своему очередному свечению.

Если следовать подобной логике, то два связанных осциллятора будут похожи на двух бегунов, которые во время бега постоянно обмениваются между собой командами. Что именно они кричат друг другу и насколько громко они произносят эти слова, определяется их текущими местоположениями на дорожке: эта информация заключена в функции влияния, предложенной Уинфри. Если, например, величина функции влияния одного бегуна в данный момент мала и положительна, он кричит другому бегуну: «Беги, пожалуйста, немного быстрее». С другой стороны, высокое отрицательное значение функции влияния означает: «Ты бежишь слишком быстро. Помедленнее, пожалуйста!» А нулевое значение функции влияния вообще ничего не означает для партнера. С течением времени оба бегуна продолжают свой бег по дорожке, поэтому выкрикиваемые ими команды продолжают меняться от момента к моменту.

Такая картина носит слишком общий характер. Она может учитывать импульсные взаимодействия, используемые светлячками, сверчками и нейронами (аналогично внезапному крику, за которым следует молчание в течение остальной части цикла), или постоянное подталкивание и подтягивание феромонов, обнаруженное Макклинток и Стерном для менструального цикла (постоянно меняющаяся последовательность требований ускориться или замедлиться).

Между тем оба бегуна и прислушиваются к командам своего партнера, и выкрикивают их. Как именно они реагируют на поступающее сообщение, определяется другой функцией Уинфри – функцией чувствительности, которая также бывает разной в разных местах дорожки. Когда чувствительность оказывается высокой и положительной, бегун демонстрирует покладистость и выполняет любые инструкции, которые поступают ему в данный момент. Если же чувствительность равна нулю, он не обращает внимания на эти инструкции. А если чувствительность отрицательна, бегун поступает вопреки принимаемым им инструкциям: он ускоряется, когда от него требуют замедлиться, и наоборот. В данном случае модель также носит слишком общий характер, как и модель Пескина, которую мы обсуждали в предыдущей главе (она предполагала, что осцилляторы всегда продвигаются вперед, когда их подталкивает импульс). В модели Уинфри фазу осциллятора можно либо продвинуть вперед, либо задержать в зависимости от того, на каком этапе своего цикла этот осциллятор принял импульс. Эксперименты показали, что именно так ведут себя реальные биологические осцилляторы.

Для большей простоты Уинфри предположил, что все осцилляторы в данной популяции имеют одинаковые функции влияния и чувствительности. Но он допустил возможность разнообразия так же, как сделал до него Винер: он предположил, что естественные частоты осцилляторов распределены по всей популяции в соответствии с колоколообразной кривой. Если продолжить нашу аналогию с бегунами на дорожке стадиона, то такую популяцию осцилляторов следовало бы представить в виде клуба любителей бега трусцой, тысячи членов которого вышли одновременно на беговую дорожку. Большинство этих бегунов бегут с некой средней скоростью, но в клубе есть несколько очень быстрых ребят, которые еще в школьные годы блистали на беговой дорожке, и некоторое число «тюфяков», которые после многих лет, в течение которых они вели малоподвижный образ жизни, пытаются восстановить свою былую форму. Другими словами, мы имеем дело с неким распределением естественных способностей членов клуба бегунов точно так же, как мы имеем дело с неким распределением естественных частот осцилляторов в данной биологической популяции.

Будто перечисленных выше сложностей оказалось недостаточно, нам необходимо определить еще один, последний аспект этой модели: связи между осцилляторами. Уинфри пришлось сделать предположение относительно того, кто кому кричит и кто кого слушает. Здесь наблюдается довольно широкий разброс – все зависит от того, какой биологический пример мы имеем в виду. Возьмем, к примеру, циркадные (околосуточные) ритмы. В этом случае Уинфри предположил возможность существования «стыковочных» клеток, рассредоточенных по всему телу; каждая из таких клеток в ходе суточного цикла выделяет в кровоток определенные химические вещества. Каждая клетка организма омывается смесью выделений всех остальных клеток; по сути, каждая клетка взаимодействует со всеми другими клетками. С другой стороны, сверчки уделяют наибольшее внимание сигналам, поступающим от их непосредственных соседей. А в случае осциллирующих нейронов в мозге такой клубок взаимосвязей оказался невероятно сложным.

Признав, что решить проблему связи между осцилляторами было бы невероятно трудно, Уинфри попытался уклониться от вопросов связи и решить простейший вариант этой задачи[41]. Что произойдет, размышлял он, если каждый осциллятор подвергается одинаковому воздействию со стороны всех остальных осцилляторов? Это было похоже на то, как если бы каждый бегун одинаково реагировал на крики всех остальных бегунов, а не только на крики тех, кто бежит рядом с ним. Или, если воспользоваться более реалистичной аналогией, представьте, что вы сидите в переполненном зрительном зале по завершении восхитительного концерта. Если зрители начнут аплодировать в унисон, вас увлечет оглушительный ритм хлопков всего зала, а не пары, сидящей рядом с вами.

Уинфри составил уравнения для своей системы осцилляторов, описывающие, как быстро каждый из этих осцилляторов будет проходить свой цикл. В любом случае скорость осциллятора определяется тремя факторами: предпочтительным для него темпом, который пропорционален его естественной частоте; его текущей чувствительностью к любым внешним воздействиям (которая зависит от того, в какой точке своего цикла он находится в данный момент); и совокупным влиянием, оказываемым всеми остальными осцилляторами (которое зависит от того, в какой точке своего цикла находятся все эти осцилляторы). Это поистине колоссальный объем «математической бухгалтерии», но, в принципе, поведение такой системы в целом на протяжении всего времени определяется текущими местоположениями всех осцилляторов. Иными словами, полное знание текущего момента позволяет полностью предсказать будущее – по крайней мере в принципе.

Соответствующее вычисление осуществляется методически. Зная текущие местоположения всех осцилляторов, мы можем с помощью уравнений Уинфри вычислить их мгновенные скорости. Эти скорости говорят нам о том, как далеко каждый из осцилляторов продвинется на следующем этапе. (Мы исходим из того, что этап представляет собой очень короткий интервал времени и что в течение этого времени все осцилляторы продвигаются неуклонно. В этом случае расстояние, преодолеваемое каждым осциллятором за время цикла, равняется его скорости, умноженной на время цикла.) Таким образом, все осцилляторы могут теперь продвинуться к своим новым фазам, а указанное вычисление повторяется снова и снова, каждый раз продвигаясь вперед на один этап. Если итерации этого процесса выполнять достаточно долго, то, по крайней мере концептуально, мы увидим, какая судьба ожидает эту совокупность осцилляторов.

То, что я только что описал, называется системой дифференциальных уравнений. С такими уравнениями нам приходится иметь дело каждый раз, когда правила для скоростей зависят от текущих положений. Задачи, подобные этой, изучаются еще со времен Исаака Ньютона (поначалу в связи с движением планет в Солнечной системе). В этом случае каждая планета притягивает все другие планеты, изменяя их местоположения, что, в свою очередь, изменяет гравитационные силы, действующие между ними, и т. д. – зеркальное отражение, во многом похожее на осцилляторы Уинфри с их постоянно изменяющимися фазами, а также с их силами воздействия и чувствительностью. Ньютон изобрел дифференциальное исчисление именно для решения сложных проблем, подобных рассматриваемой нами. Являясь автором одного из величайших достижений западной науки, он решил так называемую «задачу о двух телах» и доказал, что орбита Земли вокруг Солнца является эллиптической, как было предсказано Кеплером до него. Интересно, однако, что «задача о трех телах» оказалась совершенно неподъемной. На протяжении двух столетий лучшие математики и физики мира пытались найти формулы, описывающие движение трех притягивающих друг друга планет, но лишь в конце XIX века французский математик Анри Пуанкаре доказал тщетность таких попыток: таких формул нет и быть не может.

С тех пор мы осознали, что большинство систем дифференциальных уравнений не имеет решения в том же самом смысле: невозможно найти формулу, которая позволяла бы получить ответ. Однако существует одно замечательное исключение: для линейных дифференциальных уравнений есть решение. Технический смысл слова линейные на данном этапе не должен интересовать нас; гораздо важнее для нас то обстоятельство, что линейные уравнения модульны по своей природе. То есть большую и запутанную линейную задачу всегда можно разделить на меньшие и более обозримые части. Каждую такую часть можно решить по отдельности, а полученные таким образом «маленькие ответы» можно воссоединить для решения более крупной задачи. Поэтому утверждение о том, что в линейной задаче целое равняется в точности сумме его частей, вообще говоря, верно.

Проблема, однако, в том, что линейным системам присуще лишь весьма примитивное поведение. Распространение инфекционных заболеваний, сильная когерентность лазерного луча, взбаламученное движение турбулентной жидкости – все эти явления описываются нелинейными уравнениями[42]. Когда целое отличается от суммы его составных частей (когда имеет место сотрудничество или конкуренция), уравнения, описывающие соответствующие явления, должны быть нелинейны.

Таким образом, вряд ли приходится удивляться тому, что когда Уинфри взглянул на свои дифференциальные уравнения для биологических осцилляторов, он увидел, что они нелинейны. Все линейные методы, о которых ему рассказывали на лекциях по физике и прикладным дисциплинам, в данном случае были неприменимы: он никогда не сможет найти формулы для решения этой задачи. Что же касается нелинейных методов, то те немногие, которые имелись в его распоряжении, были пригодны лишь для очень небольших систем, таких как отдельно взятый осциллятор или два связанных осциллятора. Для задачи, решение которой он пытался найти (динамика популяции, насчитывающей тысячи нелинейных осцилляторов, взаимодействующих между собой), нужно было придумать особый подход.

Чтобы имитировать работу своей модели, Уинфри использовал компьютер. То есть вместо использования чисто математического аппарата ему предстояло провести что-то наподобие эксперимента. Компьютер должен был отслеживать поведение осцилляторов по мере прохождения ими цикла за циклом с их переменными скоростями. Машине было все равно, о каких объектах – линейных или нелинейных – идет речь. От нее лишь требовалось постепенно, шаг за шагом, продвигаться вперед, обеспечивая достаточно надежную аппроксимацию истинного поведения модели, предложенной Уинфри. Уинфри надеялся, что полученные результаты подскажут ему, как должны вести себя осцилляторы. По крайней мере он мог бы увидеть, что должно происходить, даже если ему было не вполне понятно, почему это происходит именно так, а не иначе.

Вообще говоря, легко понять один ограниченный случай. Если осцилляторы полностью игнорируют друг друга, они распределяются по всей круговой дорожке, поскольку каждый из них «бежит» с предпочтительной для себя скоростью, а остальные осцилляторы не влияют на него. Более быстрые осцилляторы перегоняют более медленные осцилляторы и со временем обгоняют их на целый круг. На достаточно продолжительном отрезке времени осцилляторы будут распределены по всей дорожке. Говорят, что такая система некогерентна. Это похоже на то, как аплодируют зрители на концертах в Америке. Каждый из американских зрителей аплодирует сам по себе, не обращая внимания на соседей, – в том ритме, который подходит именно для него. В совокупности это похоже на устойчивый аритмичный шум.

Эксперименты с имитацией, проводившиеся Уинфри, зачастую приносили результаты, напоминающие именно этот вид некогерентности, даже когда осцилляторам предоставлялась возможность влиять друг на друга. При разных сочетаниях функций чувствительности и влияния популяция активно противодействовала синхронизации. Даже если все осцилляторы начинали работу строго синфазно, они нарушали согласованность своих действий и дезорганизовывались. Эта популяция настаивала на анархии.

Но в случае других пар функций чувствительности и влияния Уинфри обнаружил, что эта популяция самопроизвольно синхронизируется. Какими бы ни были начальные фазы осцилляторов, некоторые из них всегда слипались в прочный ком и бежали круг за кругом дружной компанией. В этом случае популяция вела себя подобно восточноевропейской зрительской аудитории, которая совершает синхронные хлопки без каких-либо видимых подсказок.

В подобных случаях синхронизация наступала в результате «сотрудничества» осцилляторов. Как только несколько осцилляторов входили в синхронизм (возможно, по чистой случайности), их совместные, когерентные «выкрики» начинали выделяться на фоне остального шума и оказывать более сильное влияние на все остальные осцилляторы. Это ядро начинало вербовать в свои ряды другие осцилляторы, в результате чего оно разрасталось и усиливало свой сигнал. Результирующий процесс положительной обратной связи приводил к самопроизвольному, все более ускоряющемуся процессу синхронизации, в ходе которого многие осцилляторы стремились присоединиться к формирующемуся консенсусу. Тем не менее некоторые осцилляторы оставались несинхронизированными, поскольку их естественные частоты слишком выбивались из общего ряда, чтобы их можно было вовлечь в процесс установления синхронизма. В конечном счете популяция разделялась на синхронизированную совокупность и дезорганизованную группу осцилляторов-экстремистов.

Когда в такой системе происходила самосинхронизация, Уинфри обнаруживал, что ни один из осцилляторов нельзя было обозначить как абсолютно необходимый. Иными словами, среди них не было «самого большого начальника». Любой осциллятор можно было убрать из такой системы, и это не повлияло бы на конечный результат. Кроме того, совокупность синхронно работающих осцилляторов вовсе не обязательно работала со скоростью самого быстрого из них. В зависимости от выбора функций воздействия и чувствительности эта совокупность могла действовать в ритме, ближайшем к средней скорости членов этой совокупности, или могла действовать быстрее или медленнее, чем любой из ее членов. Все это выглядело весьма парадоксально. Групповая синхронизация не носила иерархического характера, но она не всегда носила и чисто демократический характер.

Самое важное открытие Уинфри стало результатом странного и по-настоящему оригинального мысленного эксперимента. Вместо того чтобы рассматривать отдельно взятую популяцию осцилляторов, характеризующуюся одной колоколообразной кривой естественных частот, он рассмотрел целое семейство таких популяций, каждая из которых является более однородной, чем предыдущая. Если вернуться к нашей аналогии с бегунами, представьте себе множество разных клубов любителей бега трусцой.

Первый из них чрезвычайно разнороден по своему составу: члены этого клуба весьма отличаются друг от друга по уровню своей физической подготовки. Уинфри пришел к выводу, что такой клуб никогда не достигнет синхронизма. Его члены не смогут бежать в общем для всех темпе, даже если их функции влияния и чувствительности предрасполагают бегунов к такому синхронизму. В конечном счете их способность громко кричать и хорошо слышать крики других не принесет нужного результата: разнородность этой группы возьмет верх над их взаимным желанием бежать в общем для всех темпе и разбросает их по всей длине беговой дорожки, как если бы они не обращали внимания друг на друга и каждый из них бежал в предпочтительном для себя темпе.

Теперь рассмотрим несколько более однородный клуб бегунов. Его члены характеризуются одинаковыми функциями влияния и чувствительности, но их физические способности укладываются в более узкую и высокую колоколообразную кривую (это означает, что большее количество бегунов обладают средними физическими способностями, тогда как количества «слабаков» и хороших бегунов оказываются относительно небольшими). На первый взгляд может показаться, что у такого клуба больше шансов на достижение синхронизма – по крайней мере частичного, – но Уинфри обнаружил обратный эффект. Рассматривая все более однородные популяции осцилляторов, синхронизм не удавалось выявить до достижения некой критической точки: порога разнородности. Затем, внезапно, некоторые из осцилляторов самопроизвольно синхронизировали свои частоты и начинали действовать слаженно. После того как Уинфри обеспечил еще более узкое распределение, к синхронизированной группе подключалось все большее и большее число осцилляторов.

Создавая это описание, Уинфри обнаружил неожиданную связь между биологией и физикой. Он понял, что взаимная синхронизация аналогична фазовому переходу – например, когда вода, замерзая, превращается в лед. Задумайтесь над тем, насколько удивительно явление замерзания воды. Когда температура лишь на один градус превышает точку замерзания воды, молекулы воды движутся свободно, соударяясь друг с другом и разлетаясь в стороны. При такой температуре вода представляет собой жидкость. Но давайте охладим ее чуть ниже точки замерзания. Внезапно, словно по мановению волшебной палочки, рождается новая форма материи. Триллионы молекул самопроизвольно формируют некую структуру, создавая жесткую пространственную решетку – твердый кристалл, который мы называем льдом. Аналогично, переход к синхронизму наступает резко (не постепенно), когда ширина колоколообразной кривой распределения частот оказывается меньше некоторого критического значения. Если провести аналогию с температурой, то ширина кривой распределения частот подобна температуре, а осцилляторы похожи на молекулы воды. Основное различие заключается в том, что когда осцилляторы «замораживаются» в синхронизм, они «работают» во времени, а не в пространстве. Выявление этого концептуального переключателя было творческой составляющей аналогии, использованной Уинфри.

Сделав это открытие, Уинфри выявил связь между двумя огромными корпусами знания, которые в прошлом лишь в редких случаях обращали внимание друг на друга. Одним из них является нелинейная динамика – наука о сложных путях, по которым происходит эволюция систем во времени; другим является статистическая механика – отрасль физики, которая изучает коллективное поведение гигантских систем атомов, молекул или других простых элементов. Тот и другой корпусы знания обладали достоинствами, которые компенсировали слабости другого. Нелинейная динамика хорошо подходила для малых систем с небольшим количеством переменных, но не могла справиться с большими совокупностями частиц, которые не составляли никакой проблемы для статистической механики. С другой стороны, статистическая механика хорошо подходила для анализа систем, пришедших в состояние равновесия, но не могла справиться со скачками колебательных процессов и всего остального, что изменяется во времени.

Уинфри удалось проложить путь к некой гибридной теории, которая обещала стать гораздо более мощной, чем нелинейная динамика и статистическая механика по отдельности. Это обещало стать важным шагом в развитии науки, который в конечном счете помог бы разрешить загадки спонтанного формирования порядка во времени и в пространстве. А на более практическом уровне это означало, что аналитические методы статистической физики могли теперь дать ответ на вопрос о том, как клеткам мозга, светлячкам и прочим объектам живой материи удается синхронизировать друг друга.

Спустя несколько лет о работе Уинфри стало известно молодому японскому физику по имени Йосики Курамото. Его также увлекал феномен самоорганизации во времени, и он хотел найти способ проникнуть в математическую суть этого феномена. В 1975 г. он сосредоточился на изучении более простой и абстрактной версии модели Уинфри и в конечном счете ему удалось показать, как можно решить эту задачу.

Это было поистине выдающееся достижение. Речь шла о системе бесконечно большого числа дифференциальных уравнений, причем все эти дифференциальные уравнения были нелинейными и связаны друг с другом. Такие вещи практически не поддаются решению. Немногие исключения из этого правила подобны бриллиантам. Такое сравнение представляется вполне оправданным ввиду математической красоты этих исключений, а также благодаря свету, который они проливают на внутренние аспекты нелинейности. В данном случае анализ, выполненный Курамото, выявил сущность групповой синхронизации.

На первый взгляд не так-то просто понять, что же такого особенного в структуре модели, предложенной Курамото. Как и в работе Винера, модель Курамото описывает огромную популяцию осцилляторов, характеризующуюся колоколообразной кривой распределения естественных частот; как и в модели Уинфри, каждый осциллятор одинаково взаимодействует со всеми остальными осцилляторами[43]. Важнейшая инновация, предложенная Курамото, заключается в замене функций влияния и чувствительности на особый вид взаимодействия – очень симметричное правило, которое воплощает и уточняет концепцию подтягивания частот, предложенную Уинфри.

Природу этого взаимодействия легче всего понять для популяции, состоящей лишь из двух осцилляторов. Вообразите их как друзей, бегущих вместе по дорожке стадиона. Поскольку эти осцилляторы – друзья, они хотят разговаривать во время бега, поэтому каждый из них несколько корректирует предпочтительную для себя скорость бега. Правило Курамото заключается в том, что быстрый бегун несколько замедляется, а медленный бегун ускоряет свой бег в такой же степени. (Если быть более точным, величина этой коррекции является функцией синуса угла между ними, умноженного на число, называемое силой связи; это число определяет максимально возможную коррекцию.) Это корректирующее действие ведет к синхронизации осцилляторов. Однако, если разность их естественных скоростей оказывается слишком большой по сравнению с силой связи, они не смогут компенсировать разницу в своих физических способностях. Более быстрый бегун постепенно оторвется от своего более медленного товарища; в этом случае им обоим следовало бы подумать о выборе более подходящего для себя партнера по бегу трусцой. Математическая привлекательность этого правила заключается в его симметричности. В отличие от первоначальных формул Уинфри, в этом случае на беговой дорожке нет каких-либо особых мест (когда разные места соответствуют разным характерным событиям в биологическом цикле активности). Для Курамото все места неразличимы между собой. Нет никаких вех. По сути, бегуны не могут узнать, в каком именно месте они находятся, поэтому они бегут молча – никто ничего не выкрикивает, никто ни к кому не прислушивается, – но при этом они внимательно присматриваются друг к другу. Во время бега они вносят соответствующие коррективы в свою скорость, используя формулу, которая зависит лишь от расстояния между ними, а не от места на дорожке, в котором они оказались.

А теперь представьте себе гораздо большую совокупность осцилляторов и, как и ранее, представьте ее в виде клуба бегунов, члены которого весьма различаются между собой по степени физической подготовки. Правило взаимодействия заключается в том, что каждый бегун смотрит на всех остальных бегунов, подсчитывает предположительную коррекцию своей скорости относительно каждого из остальных бегунов и усредняет вычисленные таким образом величины, чтобы получить фактическую величину коррекции. Допустим, например, что в какой-то момент эти бегуны образовали достаточно плотную группу. Правило Курамото говорит лидеру забега о том, что он должен замедлить свой бег относительно предпочтительной для себя скорости, что представляется вполне благоразумным, поскольку в данный момент он опережает всех остальных бегунов. Бегуну, находящемуся в середине этой группы, поступают противоречивые сообщения: некоторые из них рекомендуют ему ускорить свой бег, тогда как согласно другим ему следовало бы замедлиться. Бегун, замыкающий эту группу, получает от своих товарищей призывы ускорить бег.

Все эти корректировки происходят раз за разом, осциллятор за осциллятором. Чтобы сделать задачу такой самокоррекции более интересной, предположим, что участники этого забега договорились начать его с произвольных мест на дорожке. Иными словами, поначалу все бегуны распределены по всей длине дорожки совершенно случайным образом.

Даже если группа сформируется, вовсе не обязательно, что самые сильные бегуны окажутся в ее главе, то есть возможна любая расстановка бегунов в группе. В течение всего времени группа будет продолжать переформировываться и, по мере того как бегуны будут занимать в ней места согласно своим физическим возможностям, будут меняться лидеры группы.

Совсем не очевидно, во что все это выльется на достаточно продолжительном отрезке времени. Самые сильные бегуны могут значительно оторваться вперед от основной группы, тогда как самые слабые бегуны будут плестись далеко в хвосте. Более того, может даже не сформироваться основная группа как таковая. Разброс скоростей бегунов может оказаться столь значительным, что бегуны распределятся по всей длине дорожки. В таком случае все они будут принимать от своих партнеров по забегу столь противоречивые сообщения («беги быстрее», «беги медленнее»), что корректировки скорости вообще прекратятся и каждый будет бежать с наиболее предпочтительной для себя скоростью.

Анализируя столь запутанную ситуацию, Курамото посчитал целесообразным количественно охарактеризовать степень синхронизации с помощью одного числа, которое он назвал параметром порядка.

Интуитивно, когда участники забега бегут плечом к плечу, это представляет собой более тесную форму синхронизма, чем в случае, когда они находятся на значительном удалении друг от друга, и поэтому заслуживают более высокого «балла за синхронизм», то есть должны характеризоваться более высоким значением параметра порядка. Числовое значение параметра порядка всегда находится в диапазоне от 0 до 1 и вычисляется с помощью математической формулы, которая зависит от относительного положения каждого из бегунов. В одном крайнем случае, когда все бегуны пребывают в идеальном синхронизме, то есть бегут «в унисон», параметр порядка равняется 1. В другом крайнем случае, когда все бегуны распределены случайным образом по всей длине беговой дорожки, параметр порядка равняется 0.

В отличие от Уинфри, Курамото не использовал компьютер, чтобы получить примерную оценку того, как такая система будет вести себя. Он полагался исключительно на свою интуицию. Это делает его догадку относительно конечного исхода еще более провидческой: Курамото предположил, что на достаточно продолжительном отрезке времени такая популяция всегда перейдет в как можно более устойчивое для себя состояние. Участники забега будут продолжать бежать, но их относительные позиции в группе не будут изменяться, поэтому параметр порядка будет оставаться неизменным. Более того, сама по себе группа выйдет на некую компромиссную скорость, определяемую членами этой группы. Курамото предположил, что эта скорость также должна оставаться постоянной.

В своем смелом математическом порыве Курамото стремился отыскать лишь такие решения своих уравнений, которые отвечали его интуитивной догадке. Если у какого-либо решения не было постоянного параметра порядка и постоянной скорости группы, такое решение не интересовало Курамото. Он знал, что ищет, а на все остальное он просто не обращал внимания. Это был весьма смелый способ рассуждений, поскольку, если бы истина находилась не там, куда двигался Курамото, руководствуясь своей интуицией, он никогда не отыскал бы эту истину. Другая опасность заключалась в том, что решений, которые интересовали Курамото, могло бы не существовать вообще. Тем не менее он предположил, что такие решения существуют, и поставил перед собой цель найти их. Чтобы обеспечить себе максимальный простор для маневра, Курамото не указал заранее, какими именно должны быть значения параметра порядка и скорости группы – они просто должны быть постоянными. Определить их значения было одной из составляющих задачи, которую ему предстояло решить.

Он пришел к выводу, что такая система может удовлетворять его требованиям двумя разными способами. Параметр порядка мог равняться нулю всегда; это означало, что соответствующая популяция абсолютно и навсегда дезорганизована. Никакая группа в ней никогда не сформируется. Вы будете просто видеть бегунов, движущихся с самыми разными скоростями, причем эти бегуны будут рассредоточены по всей длине беговой дорожки. Такая система будет полностью рассинхронизирована. Как ни странно, это «некогерентное состояние» представляет собой исход, возможность которого нельзя исключить никогда, сколь бы разными или одинаковыми по уровню своей физической подготовки ни были участники забега. Даже если уровень физической подготовки всех участников забега одинаков, некогерентность может сохраняться все время, если она установилась изначально. Интуиция подсказывает, что участники забега не ставят перед собой цели бежать общей группой и с одинаковой скоростью, поэтому «по умолчанию» каждый из них бежит с наиболее комфортной для себя скоростью, а популяция в целом остается такой же дезорганизованной, как и прежде. Другой возможностью является «частично синхронизированное» состояние, которое характеризуется наличием трех групп: синхронизированная группа бегунов, имеющих некий средний уровень физической готовности; более медленная, рассинхронизированная стайка «слабаков»; и более быстрая, также рассинхронизированная стайка сильных бегунов. В отличие от случая некогерентности, такое состояние возможно не всегда. Курамото пришел к выводу, что существование такого состояния возможно лишь до определенного порога разнородности. Если колоколообразная кривая оказывается шире, чем этот порог (а это означает, что состав клуба бегунов чересчур разнороден), такое частично синхронизированное состояние пропадает. Из этого можно сделать вывод, что в популяции светлячков или клеток мозга осцилляторы должны быть достаточно однородны; в противном случае синхронизация вообще невозможна.

Одним махом Курамото «реабилитировал» и Винера, и Уинфри. Частично синхронизированное состояние является именно тем, что имел в виду Винер, когда он моделировал альфа-ритм мозговых волн. Узкий пик в центре спектра Винера соответствует синхронизированной группе, а «хвосты» по обе стороны от пика соответствуют рассинхронизированным осцилляторам, слишком медленным или слишком быстрым, чтобы можно было обеспечить их синхронизм с основной группой. Фазовый переход, обнаруженный Уинфри, был, по сути, то же самое, что и порог, обнаруженный Курамото. Как поняли они оба, синхронизированная группа не может образоваться, если соответствующая популяция не окажется в достаточной степени однородной. Этот важный момент Винер упустил из виду.

Курамото не только заметил этот фазовый переход, но и смог вывести точную формулу для него. Кроме того, он смог точно вычислить степень упорядоченности группы как функцию ширины колоколообразной кривой. Его формулы показали, что крошечное синхронизированное ядро зарождается при достижении порога; при этом параметр порядка едва превышает 0. По мере снижения разнородности (когда осцилляторы становятся все более похожи друг на друга) к синхронизированной группе подключается все большее число членов популяции, а параметр порядка повышается. Наконец, при достижении нулевой ширины колоколообразной кривой (все осцилляторы идентичны) формула Курамото прогнозирует состояние идеального порядка, то есть состояние полного синхронизма.

Вскоре после того как в 1986 г. мне было присвоено звание доктора философии, я начал стажироваться у Нэнси Копелл, математика из Бостонского университета[44]. В то время Нэнси Копелл была лишь в начале своей научной карьеры. Симпатичная и веселая женщина, тонкий мыслитель и прирожденный лектор, она уже в те годы получила признание как один из лучших в мире биологов-математиков. (В частности, они вместе со своим сотрудником Бардом Эрментраутом заявили о себе во весь голос, применив новые математические методы к изучению нервной системы.) Мы несколько раз встречались с ней на научных конференциях, и она показалась мне идеальным наставником для очередного этапа в моей научной карьере, когда моя цель заключалась в углублении своей подготовки в области математики. Когда я сказал ей, что хотел бы работать над какой-либо проблемой, касающейся популяций осцилляторов, Нэнси предложила мне ознакомиться с моделью Курамото.

Результаты, полученные Курамото, привели меня в восторг. Во время учебы в магистратуре нам говорили, что большие нелинейные системы – настоящие монстры, практически не поддающиеся решению. Однако Курамото удалось найти решение для одной из таких систем – и это решение было просто блестящим. Более того, это решение показалось мне не таким уж трудным для понимания. Знакомясь с ходом рассуждений Курамото, я чувствовал себя так, словно именно я сам прихожу к таким выводам. Нэнси лишь улыбалась, слушая, с каким энтузиазмом я рассказываю о своих впечатлениях от знакомства с моделью Курамото. Затем она, как бы невзначай, указала на слабые места в рассуждениях Курамото, на все его логические нестыковки. Одним словом, здесь было к чему приложить руку молодому и многообещающему математику – такому, например, как я. Моя задача заключалась в том, чтобы поместить интуитивные догадки Курамото на более солидный математический фундамент. В течение всего следующего года я работал вместе с Нэнси, пытаясь доказать теорему, которая, по нашему общему мнению, должна быть верна. Хотя мне так и не удалось решить эту задачу, модель, предложенная Курамото, все больше увлекала меня.

Даже по окончании стажировки у Нэнси Копелл я продолжал размышлять над этой моделью на протяжении нескольких последующих лет. Аспект, который интересовал меня больше всего, касался возникновения порядка из хаоса случайности. Каким образом системе, состоящей из миллионов частиц, удается спонтанно организовать себя? В этом вопросе заключалось нечто мистическое. В нем звучали даже религиозные нотки, напоминающие мне библейскую историю рождения земной тверди из чего-то совершенно бесформенного и аморфного или, как называли это состояние древние греки, из хаоса.

Возможно, мы никогда не поймем причины возникновения порядка в реальной Вселенной, но в воображаемой вселенной модели Курамото эта задача упрощается до такой степени, что мы можем найти для нее математическое решение. Здесь возникает вопрос генезиса: каким образом некогерентность порождает синхронизм? Однажды мне пришло в голову, что существует достаточно простой способ сформулировать этот вопрос в виде упражнения на решение дифференциальных уравнений: нужно лишь рассматривать некогерентность как состояние равновесия, а затем вычислить его устойчивость.

Чтобы прояснить математический смысл таких знакомых большинству из нас понятий, как равновесие и устойчивость, рассмотрим ряд примеров из окружающего нас мира. Допустим, мы поставили стакан с водой на кухонный стол. Секунду-другую вода будет «устаканиваться», а затем придет в состояние покоя. Теперь поверхность воды в стакане выглядит плоской и горизонтальной. Это и есть состояние равновесия – в том смысле, что в таком состоянии вода может пребывать сколь угодно долго. Такое равновесие можно также назвать устойчивым состоянием, поскольку, если немного встряхнуть стакан, а затем оставить его в покое, то поверхность воды в нем быстро вернется к исходному состоянию. Таким образом, равновесие означает, что ничего не меняется; устойчивость означает, что слабые возмущения быстро сходят на нет. Теперь рассмоторим другой пример. Возьмите карандаш и заточите его, затем поставьте этот карандаш вертикально на заточенный кончик грифеля и попытайтесь тщательно сбалансировать его. Отпустите карандаш. Если вам удалось идеально сбалансировать его, он продолжит стоять вертикально; таким образом, по определению, это состояние также является состоянием равновесия. Но совершенно очевидно, что такое состояние не является устойчивым: даже легчайшее дуновение ветерка опрокинет карандаш, после чего он уже не вернется самостоятельно в вертикальное положение.

Для модели Курамото некогерентность является состоянием равновесия: если осцилляторы каждой частоты распределены равномерно по окружности, то они навсегда останутся распределенными равномерно. Несмотря на то что осцилляторы бегут по окружности, их равномерное распределение остается неизменным. Нерешенная проблема заключалась в том, остается ли это состояние равновесия устойчивым, подобно воде в стакане, или неустойчивым, подобно карандашу, балансирующему на кончике своего грифеля. Если оно неустойчиво, это означало бы, что синхронизм мог бы возникнуть самопроизвольно и что бегуны со временем соберутся в группу.

Этот вопрос не давал покоя ученым в течение 15 лет. Сам Курамото публично признавался в этом. В своей книге он написал, что не знал, как подступиться к решению этой проблемы. Этот вопрос ставил ученых в тупик, поскольку существовало бесконечно большое множество способов некогерентной организации осцилляторов. Именно в этом заключалось главное препятствие. Некогерентность не была каким-то одним состоянием; это было семейство из бесконечно большого числа состояний.

На протяжении многих лет мне не удавалось добиться хоть какого-то успеха в решении проблемы устойчивости. Однажды поздно вечером, в момент, когда я уже был готов погрузиться в сон, у меня в голове мелькнула неожиданная идея: а что, если осцилляторы похожи не на бегунов, а на молекулы в жидкости! Точно так же как вода состоит из триллионов дискретных молекул, эта воображаемая «осцилляторная жидкость» должна состоять из триллионов дискретных точек, бегущих по окружности[45].

Вообще говоря, родившийся в моей голове образ должен был выглядеть еще более сложно и необычно. Мне нужно было вообразить множество разных жидкостей, по одной для каждой частоты, представленной в соответствующем распределении частот. Точнее говоря, бесконечно большое число разных частот, подобно сочетанию цветов в радуге. Поэтому я нарисовал в своем воображении радугу цветных жидкостей, причем все они «завихряются» вокруг одной и той же окружности, никогда не смешиваясь между собой, поскольку осцилляторы никогда не меняют свою естественную частоту. Преимущество этой психоделической картины заключается в том, что некогерентность становится единственным состоянием. Таким образом, я имею дело уже не с бесконечно большим семейством, а лишь с одним состоянием однородной плотности, причем каждая цветная жидкость равномерно распределена по всей окружности.

Я буквально выскочил из постели, схватил карандаш и бумагу. В голове засыпающего человека чаще всего возникают всевозможные фантастические картины, но идея, родившаяся в моей голове, казалась мне очень близкой к тому, что имеет место в реальности. Первым делом мне нужно было адаптировать законы механики жидкостей к моей воображаемой «осцилляторной жидкости». Затем я составил уравнения для создания стандартного теста на устойчивость: вывести систему из равновесия, решить уравнения для соответствующих возмущений (эти уравнения имеют решение, поскольку они линейны, даже если исходная система не является линейной) и проверить, нарастают ли эти возмущения или, наоборот, сходят на нет.

Составленные мною уравнения показали, что ответ зависит от того, насколько подобны между собой осцилляторы. Я нашел, что в случае, если они идентичны или почти идентичны, возмущения нарастают по экспоненциальному закону по мере того, как осцилляторы сближаются между собой по фазе, образуя зачаточную форму синхронизма. Затем родилась формула, описывающая скорость экспоненциального роста (аналогичная процентной ставке, определяющей скорость приращения суммы на вашем банковском счете). Никто до меня такой формулы не смог предложить. Это был точный прогноз, правильный или неправильный – другое дело. Наутро мне предстояло проверить свои догадки на компьютере.

Страницы: 12345 »»

Читать бесплатно другие книги:

Бывает, что исправлять ошибки богов приходится людям. Мир Туры ждут темные времена, но пока каждый з...
Каждому человеку всю жизнь приходится так или иначе торговать собой. Книга рассказывает вам, как нуж...
Закончилась Курская битва. Группа капитана Шульги благополучно вернулась к своим. После награждения ...
В какой-то момент своей жизни я решила, что у меня не осталось шанса на счастье. Пока не влюбилась в...
Самые веселые и жизнерадостные люди на свете – это не юмористы, не студенты, не одесситы. Это русски...
Что-то кончается. Надвигается Tedd Deireadh, Час Конца… Это чувствуется в воздухе и в воде, в шелест...