Ритм Вселенной. Как из хаоса возникает порядок Строгац Стивен
Несмотря на то что описанная выше форма хаоса многим читателям покажется кошмарной, его голос звучит на удивление успокаивающе. Если его воспроизвести с помощью громкоговорителя, то окажется, что хаос звучит подобно так называемому белому шуму, подобно мягкой статике, которая помогает уснуть людям, страдающим бессонницей. Осенью 1988 г., когда у физика Лу Пекора родилась мечта[193] об использовании хаоса для каких-либо практических целей, он уловил в звуках, издаваемых хаосом, – в звуках, которые воспринимались всеми остальными исследователями лишь как примитивное, бессмысленное шипение, – надежду на осуществление своей мечты.
По жизни Лу Пекора – беззаботный и веселый человек со скромными манерами. В середине 1980-х годов он работал в научно-исследовательской лаборатории ВМС США, что в Вашингтоне, занимаясь изучением аннигиляции позитронов в твердых телах, спиновых волн в магнитах и некоторых других проблем физики твердого тела. Подумывая о том, чтобы сменить направление своих исследований, и будучи заинтригован ажиотажем вокруг теории хаоса (в то время это было самой животрепещущей темой в физике), он пытался найти оправдание переключения своих научных интересов на столь эзотерический предмет. Он знал, что его начальство отнесется к такому поступку более благосклонно, если он сможет указать какие-либо практические применения хаоса (например, в военной или какой-либо другой области). Столь прагматический подход к теории хаоса (который задним числом представляется вполне естественным) оказался полной неожиданностью для тех, кто занимался исследованием хаоса. До того времени этим занимались чистые теоретики, которых интересовала природа хаоса как таковая и которым не было никакого дела до того, найдутся ли какие-либо практические применения разрабатываемой ими теории.
Когда Пекора спросил у себя, можно ли поставить хаос на службу человеку, первое, о чем он вспомнил, была техника связи. Он подумал, нельзя ли упрятать в хаос секретные сообщения, осложнив таким образом противнику задачу передачи и расшифровки этих сообщений. Тот, кто пытается перехватить секретное сообщение, может даже не подозревать о том, что сообщение передано, или может испытывать немалые проблемы с выделением сообщения из шума. Пекора понимал, что сначала нужно уяснить, как синхронизировать хаотический передатчик с приемником, прежде чем можно было надеяться, что такая система шифрования сработает. Все формы беспроводной связи основаны на синхронизации. Например, в случае радио процесс настройки на определенную радиостанцию сводится к синхронизации приемника с частотой передачи соответствующего радиосигнала. После того как синхронизация будет достигнута, из принимаемого радиосигнала нужно выделить звук (для этого используется процесс так называемой демодуляции, то есть отделения звука от несущей частоты радиосигнала). В данном случае проблема заключалась в том, чтобы обобщить эту идею на хаос, когда в роли носителя выступает не периодическая, а хаотическая волна.
Пекора и Том Кэррол (в то время научный сотрудник с ученой степенью) не были специалистами в области связи. Впрочем, в теории хаоса они тоже были новичками, поэтому долго не могли решить, с чего им начать. В конце концов они решили, что получить какое-то представление об изучаемой ими проблеме лучше всего с помощью компьютерного моделирования. По крайней мере, в случае неудачи им не придется сожалеть о времени, затраченном на изготовление устройств, которые в конечном счете окажутся неработоспособными. Они немало повозились с компьютером, моделируя работу разных пар хаотических систем, связывая их между собой разными способами в надежде, что хаотические флуктуации этих систем каким-либо образом будут синхронизированы. Однако все их попытки не приводили к положительному результату. Эффект бабочки оказался слишком сильным. В течение какого-то непродолжительного времени моделируемая пара «передатчик-приемник» работала синхронно, после чего система неизменно рассинхронизировалась.
Немало разочаровавшись таким результатом, Пекора отправился в Хьюстон, на ежегодную конференцию по теории хаоса под названием Dynamics Days. Он сидел в зале, слушая лекции корифеев теории хаоса и безуспешно пытась сосредоточиться: его постоянно отвлекали мысли о нерешенной проблеме синхронизации. К концу конференции у него так и не появилось каких-либо конкретных идей относительно решения этой проблемы. Пекора улетел домой, едва успев на последний в тот день рейс. Он вернулся к себе домой уже после полуночи, чувствуя смертельную усталость и опустошенность. Жена и дети уже спали. Вскоре после того как он задремал, его разбудил плач семимесячной дочери Анны, которая, по-видимому, проголодалась. Жена сказала, что сама покормит дочь, но Пекора сказал, что будет лучше, если этим займется он.
Сидя в ночной тишине возле кроватки своей дочери и укачивая маленькую Анну у себя на руках, Пекора чувствовал, как постепенно уходит напряжение, накопившееся в нем за последнее время. Куда-то исчезли мысли, не дававшие ему покоя. Когда он вернулся к себе в постель, в его голове внезапно созрело решение. «Хаосом нужно управлять с помощью хаоса: я должен управлять приемником с помощью сигнала, который поступает с точно такой же системы». Хотя он тревожился, что за время сна может забыть эту интересную идею, он слишком устал, чтобы еще раз подняться с постели и зафиксировать ее на бумаге.
Проснувшись на следующее утро, Пекора вспомнил идею, которая пришла ему в голову ночью. Ему не терпелось проверить ее на практике. Он хотел проверить ее на уравнениях Лоренца, но еще не освоил как следует решение дифференциальных уравнений на компьютере, поэтому решил взять за основу какую-либо хаотическую систему, которую было бы легче запрограммировать. Пекора начал свой эксперимент со случая, когда передатчик и приемник пребывают в разных состояниях, и попросил компьютер предсказать их поведение по истечении продолжительного времени. Когда компьютер начал выдавать результаты моделирования, стало очевидно, что данные указывают на апериодичность, вполне естественную для хаоса, но – и это было удивительно! – значения сближались между собой. Это означало, что передатчик и приемник синхронизировались! Управляя приемником с помощью хаотического сигнала, передаваемого с его дубликата, вы можете заставить эту пару работать синхронно.
С технической точки зрения схему Пекора[194] можно описать следующим образом. Берем два экземпляра одной и той же хаотической системы. Один из этих экземпляров рассматриваем как задатчик; применительно к системам связи он будет выполнять функции передатчика. Другой экземпляр принимает сигналы от задатчика, но не отправляет никаких сигналов. Связь имеет одностороний характер. (Подходящей аналогией может служить военный командный центр, отправляющий зашифрованные приказы военнослужащим в поле или на корабле.) Чтобы синхронизировать эти две системы, отправляем в приемник постоянно меняющееся численное значение одной из переменных задатчика и используем его для замены соответствующей переменной приемника – и так в каждый очередной момент времени. Пекора обнаружил, что при определенных условиях все другие переменные приемника – те, которые не были заменены – автоматически входят в синхронизм со своими аналогами в задатчике. В результате будут совпадать все переменные. Две системы окажутся полностью синхронизированны.
Это описание, пусть и правильное с математической точки зрения, не передает удивительный феномен синхронизированного хаоса. Чтобы оценить всю необычность этого явления, представьте переменные хаотической системы в виде современных танцоров. По аналогии с уравнениями Лоренца, назовем их x, y и z. Каждый вечер они выступают на сцене, устраивая между собой своеобразную «отработку» сигналов, поступающих от партнеров: каждый танцор отвечает даже на едва заметные сигналы двух других танцоров. Несмотря на то что их повороты и жесты кажутся тщательно отрепетированными, это вовсе не так. С другой стороны, они вовсе не импровизируют – по крайней мере не импровизируют в обычном смысле этого слова. В том, как они танцуют, нет ничего случайного, никакого намека на импровизацию. В зависимости от того, в каком именно месте сцены в данный момент находятся два других танцора, третий реагирует в соответствии с определенными правилами. Хитрость заключается в изощренности самих правил. Они гарантируют, что результирующее выступление всегда будет элегантным и никогда – монотонным; оно всегда наполнено пассажами, которые напоминают друг друга, но никогда не повторяют друг друга. Каждую минуту в танце появляется что-то новое (такова уж природа апериодичности), каждый вечер выступление танцоров не похоже на их предыдущее выступление (сказывается эффект бабочки); тем не менее, по своей сущности, выступление всегда остается одним и тем же, поскольку оно всегда следует одному и тому же странному аттрактору.
До сих пор мы рассматривали метафору для одной системы Лоренца, играющей роль приемника в схеме связи, предложенной Пекорой. Теперь допустим, что время остановилось на мгновение. Приостановилось действие законов Вселенной. В этот ужасный момент x бесследно исчезает. На его месте появляется новая переменная; назовем ее x. Эта новая переменная похожа на x, но она запрограммирована таким образом, чтобы не обращать внимания на локальные y и z. Поведение x определяется дистанционно ее взаимодействием с y и z, переменными в передатчике, находящемся где-то далеко, в другой системе Лоренца, причем все они являются частью некого невидимого задатчика.
Все это очень похоже на классический фильм ужасов «Вторжение похитителей тел» (Invasion of the Body Snatchen). С точки зрения принимающей системы, эта новая переменная x должна казаться необъяснимой. «Мы пытаемся танцевать с x, но он почему-то перестал реагировать на все наши сигналы», – думают y и z. «Никогда раньше мне не приходилось видеть подобного поведения x», – говорит один из них. «Эй, x, – шепчет другой, – это действительно ты?» Но на лице x сохраняется непроницаемое выражение. Точно так же, как в упомянутом мною фильме, x является порождением стручка, то есть стручком, принявшим вид x. Он уже не танцует вместе с y и z – теперь его партнерами являются y и z, невидимые призрачные двойники y и z, удаленные переменные в параллельном мире задатчика. В этой удаленной системе поведение x представляется совершенно нормальным. Но в результате телепортации на приемник x выглядит на удивление неотзывчивым. Это объясняется тем, что x приемника был похищен, подменен этим странным x, возникшим словно ниоткуда. Будучи весьма чувствительными созданиями, y и z вносят соответствующие поправки в свой танец. Вскоре нормальное взаимодействие всей троицы x, y и z восстанавливается: они выделывают свои «па» совершенно непринужденно, плавно перемещаясь по пространству состояний на аттракторе Лоренца и создавая перед нашим взором картину неповторимой «хаотической грации».
Однако самым зловещим и сверхъестественным в этой картине оказывается то, что сами y и z к этому времени уже превратились в порождения стручков. Сами о том не подозревая, они сейчас идеально синхронно танцуют со своими собственными призрачными двойниками y и z, переменными, с которыми они еще никогда не встречались. Каким-то образом, исключительно благодаря влиянию телепортированного x, была также передана информация об удаленных y и z, причем этой информации оказалось достаточно, чтобы синхронизировать приемник с задатчиком. Теперь оказались «рекрутированными» все три переменные x, y и z. Невидимый задатчик, в полном соответствии со своим названием, «задает тон».
Компьютерное моделирование, выполненное Пекорой, показало, что его схема оказалась работоспособной применительно к уравнениям в компьютере. Теперь вопрос заключался в том, окажется ли его схема работоспособной в лабораторных условиях, то есть в условиях, когда никакие две системы не могут быть совершенно идентичны друг другу и не могут быть полностью ограждены от сторонних возмущений. Пекора рассмотрел вопрос о том, какие хаотические системы оказались бы наиболее управляемыми с экспериментальной точки зрения. Выбор сразу же пал на электронные цепи по причине их высокого быстродействия, дешевизны и удобства выполнения измерений, что позволяло получить значительный объем данных за короткое время. Кэррол согласился с этими доводами и принялся за работу, пытаясь воплотить уравнения Лоренца в электронных устройствах. Почти сразу же он зашел в тупик. Реализация этих уравнений предполагала выполнение операций умножения переменных x, y и z. Для выполнения этих операций электронным способом требовались микрочипы множителей, но Кэррол пришел к выводу, что готовые компоненты, имевшиеся в его распоряжении, не могли обеспечить требуемую точность вычислений. Более серьезная проблема заключалась в том, что в ходе функционирования системы значения переменных в уравнениях Лоренца изменялись в 100 тысяч раз. Столь широкий динамический диапазон превышал возможности типичных устройств питания электронных устройств. Таким образом, Пекора и Кэррол были вынуждены отказаться от идеи создания электронной цепи Лоренца.
Пытаясь найти более подходящую альтернативу, Пекора и Кэррол обратились за помощью к Роберту Ньюкомбу, электроинженеру из Мэрилендского университета, который к тому времени уже разработал свой собственный вариант хаотических цепей. Ньюкомб дал полную волю своему творческому воображению. Он не видел категорической необходимости в том, чтобы разрабатывать цепи, которые моделировали бы лоренцовы водяные колеса, или лазеры, или какую-либо другую физическую систему – его просто интересовал хаос как таковой, и он хотел исследовать хаос электронным способом. Кэррол воспользовался одним из рецептов Ньюкомба и подтвердил, что полученная таким образом электронная цепь генерировала хаотические флуктуации напряжения и тока. Отображаемые на экране осциллографа, эти переменные вырисовывали странный аттрактор – не точно такой же, как крылья бабочки Лоренца, но похожий на него. Скорость работы этой цепи составляла тысячи циклов в секунду; она создавала быстрый и прекрасный хаос.
Теперь можно было приступить к тестированию схемы синхронизации. Кэррол изготовил второй экземпляр своей цепи и подсоединил его к первому экземпляру согласно правилам Пекоры. В соответствии с теорией эти две цепи должны были осциллировать нерегулярно, хаотически, но в идеальном синхронизме между собой. Чтобы протестировать их синхронизм, Кэррол настроил осциллограф на отображение графика зависимости напряжения на приемнике y от его аналога на передатике – y. В случае равенства этих двух переменных они должны попадать на диагональ, проходящую под углом 45 градусов (поскольку, если значения y отображаются по горизонтали, а значения y – по вертикали, то горизонтальное смещение y должно равняться вертикальному смещению y в случае, если их значения всегда равны между собой). А поскольку значения y и y все время меняются, от момента к моменту, они должны бегать вдоль диагонали туда и обратно, никогда не отклоняясь от нее.
Кэррол нажал на кнопку, чтобы запустить свою систему. Понадобилось всего две миллисекунды, чтобы оба напряжения оказались на диагонали, после чего они оставались на ней до завершения эксперимента. «У меня становятся дыбом волосы на голове, когда я думаю об этом, – рассказывал мне Пекора. – Вряд ли я еще когда-нибудь в своей жизни переживу подобный момент. Это все равно как присутствовать при рождении своего ребенка».
Декабрь 1991 г. Последний день занятий в МТИ. Только что я закончил чтение последней лекции своего курса по теории хаоса. Все слушатели, за исключением одного аспиранта, покинули аудиторию. Сияя от гордости, он протянул мне лист бумаги, испещренный формулами и теоремами, каждая из которых была обведена аккуратной прямоугольной рамкой. При подготовке к предстоящему выпускному экзамену он умудрился представить весь курс по теории хаоса на единственном листе бумаги. Оценив его каллиграфический почерк, я понял, что имею дело с неординарной личностью. Так оно и было на самом деле: Кевин Куомо оказался одним из лучших аспирантов курса.
Куомо в это время только писал диссертацию. Ее темой было исследование синхронизированного хаоса в электрических цепях и возможность их использования в системах связи. В то время я имел некоторое представление о статье Кэррола и Пекоры, опубликованной в 1990 г., но еще не успел ознакомиться с ней основательно. Куомо хотел поделиться со мной всем, что он думает по поводу этой статьи, и буквально взахлеб рассказывал мне о ней, но затем переключился на собственную работу и предложил мне ознакомиться с цепью, которую он сам сконструировал. Это было первое в мире электронное воплощение уравнений Лоренца. Он также просил меня проверить выполненное им математическое доказательство – демонстрацию новой схемы синхронизации, удовлетворяющей уравнениям Лоренца вне зависимости от способа запуска приемника и передатчика. Куомо на мгновение остановился, а затем продолжил: Пекора и Кэррол не предложили никакого подобного доказательства, и это обстоятельство беспокоит его. Логика предложенного им доказательства не была слишком сложной – лишь стандартное применение функций Ляпунова, подобное тому, которое встречалось у нас на занятиях. Эта простота настораживала его: может быть, он в чем-то ошибается, что-то упустил из виду?
Оказалось, что Куомо ни в чем не ошибся. Предложенное им доказательство было безупречным, а разработанная им цепь действительно моделировала уравнения Лоренца (впоследствии Пекора честно признался в том, что до сих пор не представляет, как Куомо удалось додуматься до такого решения). Однако сейчас Куомо знаменит вовсе не этим. Впоследствии ему и его консультанту Элу Оппенгейму удалось упервые в мире продемонстрировать практическую возможность хаотического шифрования информации: синхронизированный хаос действительно можно использовать для повышения безопасности информации, передаваемой по каналам связи.
Их метод основан на маскировании, то есть применяется та же стратегия, которая используется (безуспешно и незабываемо) скрытной парочкой из фильма Френсиса Форд Копполы «Разговор» (The Conversation). Чувствуя, что за ними ведется слежка, мужчина и женщина бродят по многолюдной городской площади и разговаривают друг с другом шепотом, надеясь, что громкие звуки, издаваемые уличными музыкантами, помешают окружающим подслушать их разговор. В версии Куомо и Оппенгейма фоновый шум создается шипением электрического хаоса, генерируемого переменной x в цепи Лоренца. Прежде чем какое-либо сообщение будет отправлено на приемник, на него налагается x, чтобы замаскировать это сообщение. Для большей надежности x должен быть намного громче самого сообщения (точно так же, как уличная музыка должна быть намного громче разговора шепотом) во всем его диапазоне частот. Разумеется, если приемник не может отделить сообщение от маски, такая система оказывается неработоспособной. Для решения этой проблемы применяется синхронизация. Схема Куомо гарантирует, что приемник, когда на него поступает гибридный сигнал (сообщение плюс маска), синхронизируется с маской, а не с сообщением. В результате приемник регенерирует чистую версию маски. Извлекая ее из гибридного сигнала путем вычитания, мы получаем интересующее нас сообщение. Этот метод обеспечивает безопасность передаваемой информации, поскольку тому, кто попытается перехватить сообщение, будет весьма проблематично выполнить такую же декомпозицию: он не будет знать, что именно нужно вычесть, какая часть комбинированного сигнала является маской, а какая часть – сообщением.
Через год после того как Куомо прослушал мой курс, он вернулся, чтобы «вживую» продемонстрировать свою схему шифрования нынешним студентам. Сначала он показал нам схему своего передатчика – небольшую печатную плату с напаянными на нее резисторами, конденсаторами, операционными усилителями и микросхемами аналогового умножителя. Напряжения x, y и z в трех разных точках этой схемы были пропорциональны одноименным переменным Лоренца. Когда на экране осциллографа отобразился график зависимости x от y, мы увидели хорошо знакомые нам очертания крыльев бабочки странного аттрактора. Затем, подключив к передатчику громкоговоритель, Куомо предоставил нам возможность услышать звуки хаоса. Он потрескивал, подобно разрядам статического электричества, – вполне привычный для нас фон, который мы слышим во время радиопередачи. Затем Куомо взял еще одну печатную плату – приемник, являющийся двойником передатчика, и соединил их между собой с помощью зажима типа «крокодил» в месте, специально предназначенном для этой цели. Еще раз воспользовавшись осциллографом, он продемонстрировал нам, что обе схемы, передатчик и приемник, теперь работают синхронно, о чем свидетельствовала упоминавшаяся выше диагональ, пересекающая экран осциллографа под углом 45 градусов.
Куомо произвел в аудитории настоящий фурор, когда использовал эти схемы, чтобы замаскировать сообщение, в качестве которого он выбрал необычайно популярную в то время песню «Эмоции» в исполнении Мэрайи Кэри. (Один из присутствовавших в аудитории, которому, очевидно, не очень-то нравилась эта песня, поинтересовался: «Это полезный сигнал или шум?») После воспроизведения первоначальной версии песни Куомо проиграл замаскированную версию. Слушая это шипение, было совершенно невозможно догадаться, какая песня скрывается за ним. Однако когда замаскированное сообщение было передано на приемник, сигнал на выходе оказался практически идеально синхронизирован с исходным хаосом, а после мгновенного электронного вычитания мы снова услышали пение Мэрайи Кэри. Звучание было далеким от идеального, но вполне разборчивым.
Когда статья Куомо и Оппенгейма[195] была опубликована в 1993 г., объявленные в ней результаты ничуть не удивили Лу Пекору. К тому времени он вместе с Томом Кэрролом уже три года действовал примерно в том же направлении, но у них не было возможности опубликовать свои результаты.
Еще осенью 1989 г., после того как их хаотические цепи были успешно синхронизированы, Пекора и Кэррол приступили к решению проблемы хаотического шифрования. Обладая чрезвычайно ограниченными познаниями в области теории связи и кодирования, они выбрали весьма неуклюжий метод, предполагавший отправку двух сигналов. Один сигнал использовался для установления синхронизма между приемником и передатчиком. Второй сигнал представлял собой гибрид: маску с сообщением, добавленным к ней при очень низком уровне мощности. По сути, это та же стратегия, которую через пару летпредложили Куомо и Оппенгейм, хотя и менее элегантная в том смысле, что метод Куомо использует лишь один сигнал (x плюс сообщение), выполняющий двойную работу: он не только устанавливает синхронизм, но и переносит сообщение. Но в целом идея одна и та же.
Группа «Звездные войны» (Space Warfare) в научно-исследовательской лаборатории ВМС США заинтересовалась работой Пекоры и Кэррола, поскольку она открывала возможность использования новых способов кодирования и шифрования спутниковой связи. Они финансировали работу Кэррола в предыдущем году и теперь хотели присмотреться повнимательнее к тому, чем занимаются эти два физика. Руководитель группы предложил Пекоре помалкивать о своей работе до тех пор, пока люди из «Звездных войн» не оценят ее эффективность: они намеревались привлечь к оценке этой работы стороннего эксперта. Пекоре были даны четкие инструкции относительно того, как вести себя. Ему и Кэрролу не разрешалось задавать эксперту какие-либо вопросы: ни в какой организации он работает, ни даже выяснять его фамилию. «Как же нам обращаться к нему?» – спросил Пекора. «Зовите его Билл», – посоветовал руководитель группы. Между собой Пекора и Кэррол звали его д-р Х.
Д-р Х оказался молодым человеком, серьезным и весьма компетентным специалистом в своей области. Он таскал за собой компьютер, напичканный программами моделирования аналоговых цепей. Похоже, он не очень-то разбирался в теории хаоса, но был хорошо знаком с теорией связи. Ему удалось довольно быстро выполнить компьютерное моделирование цепей, предложенных Пекорой и Кэрролом. Впоследствии их проинформировали о том, что д-р Х пришел к выводу, что их цепи функционируют в полном соответствии с описанием, хотя он и сомневался в том, можно ли привести эти цепи к цифровому виду, обеспечивающему достаточную степень их защищенности.
Вскоре к оцениванию схем Пекоры и Кэррола подключились другие члены группы «Звездные войны». Пекора по наивности поспорил с одним из них на бутылку пива, что сможет упрятать в хаос синусоидальный сигнал, и предложил своему визави извлечь этот сигнал. Тот запустил систему в работу на минуту, измерил кривые напряжения, затем выполнил вычисление, называемое быстрым преобразованием Фурье, чтобы измерить силу каждой из составляющих частот, переданных в ходе этого быстротечного эксперимента. Синусоидальная кривая предстала на экране в виде выступа на спектре. Пекора понял, что с теорией шифрования ему следует ознакомиться более основательно.
Члены группы «Звездные войны» пришли к выводу, что эта новая схема представляет определенный интерес, однако это вовсе не то, на что могли бы рассчитывать ВМС. В конце концов Пекоре и Кэрролу разрешили опубликовать полученные ими результаты, но поскольку они хотели оформить патент на изобретение, их юрист посоветовал еще немного помолчать о выполненной ими работе. Таким образом, они приняли решение повременить с публикацией.
Кроме того, группа «Звездные войны» свела Пекору и Кэррола с одним из сотрудников Агентства национальной безопасности (АНБ), сверхсекретной государственной организации, занимающейся, в частности, вопросами кодирования и декодирования информации. Пекора посетил штаб-квартиру АНБ и ознакомил с полученными им результатами группу шифровальщиков, которые внимательно выслушали его доклад, но не ответили ни на один из его вопросов. «Мне казалось, что я общаюсь с черной дырой, – рассказывал впоследствии Пекора. – Информация входит в эту дыру, но ничего не выходит из нее». После визита в АНБ Пекора понял, что забыл сообщить им кое-что еще. Одним словом, ему понадобилось еще раз связаться с сотрудником, который организовал ему посещение штаб-квартиры АНБ. Поскольку Пекора потерял номер телефона этого сотрудника АНБ, он заглянул в телефонный справочник и, к немалому своему удивлению, обнаружил там номер этой сверхсекретной организации. Он набрал этот номер и вышел таким образом на сотрудника справочной службы АНБ. Их общение напоминает один из скетчей известной комик-группы «Монти Пайтон»:
– Могу я узнать номер телефона полковника Y?
– Я не могу подтвердить или опровергнуть, что человек, которого вы называете полковником Y, работает здесь.
– Хорошо, а вы не против, если я сообщу вам номер своего телефона, а вы попросите полковника Y перезвонить мне?
– Я не могу подтвердить или опровергнуть, что он работает здесь.
– Это справочная служба АНБ, не так ли?
– Да. Какую информацию вы хотели бы получить?
Проделанная ранее работа над синхронизированным хаосом вселила немалый оптимизм относительно перспектив хаотического шифрования, особенно в физиков, имеющих лишь весьма приблизительное представление о криптографии. В начале 1990-х годов в физических журналах можно было встретить немало статей, заголовки которых будили в читателях надежду на скорое наступление эры «безопасной» связи. Впрочем, специалистам было виднее, как в действительности обстоит дело. С самого начала Эл Оппенгейм предостерегал Куомо и меня от чрезмерной эйфории по поводу достигнутых результатов. «Этот метод ни в коем случае нельзя назвать безопасным, – предупреждал нас Оппенгейм. – Безопасный – значит такой, который невозможно взломать. Нам не известно наверняка, безопасен ли этот метод. Возможно, он обеспечивает какой-то – достаточно невысокий – уровень безопасности, но это, пожалуй, и все, на что он способен. Схемы маскирования взломать не так уж сложно».
Для тех, кто пользуется мобильными телефонами, даже минимальный уровень безопасности является большим благом[196]. Такой уровень безопасности оказался бы вполне достаточным для принцессы Дианы, когда журналисты перехватили разговор с ее любовником Джеймсом Гилби, впоследствии опубликованный под названием Squidgy («Мягкий»). В 1989 г. журналисты перехватили еще более интимный телефонный разговор принца Чарльза с Камиллой Паркер Боулз. Когда Ньют Гингрич обсуждал вместе со своими юристами выдвинутое против него обвинение в нарушении этических норм, их переговоры по мобильной связи были перехвачены и записаны сторонниками Демократической партии с помощью полицейского сканера. Устройства шифрования разговоров по мобильной связи существуют и в наши дни, однако их стоимость составляет несколько сотен долларов. Хаотическое маскирование могло бы оказаться более дешевой альтернативой для борьбы с потенциальными любителями перехватывать информацию, передаваемую по мобильной связи.
Что же касается применения в военной и финансовой сферах, то для этого требуется гораздо более безопасное шифрование. На данный момент методы шифрования, основанные на теории хаоса, оказались обескураживающе слабыми. Кевин Шорт[197], математик из университета штата Нью-Гэмпшир, продемонстрировал, насколько легко взломать практически любой хаотический код из тех, которые предложены на сегодняшний день. Когда он размаскировал лоренцов хаос Куомо и Оппенгейма, полученные им результаты инициировали своего рода «гонку вооружений» между специалистами, занимавшимися проблемами нелинейности, которые пытались разработать еще более сложные системы шифрования информации. Однако в конечном счете победа осталась за взломщиками кодов.
Одной из самых многообещающих разработок стал проект 1998 г. Его авторами были Грегори Ванвиггерен и Раджаршри Рой, физики из Технологического института штата Джорджия. Они провели первую экспериментальную демонстрацию хаотической связи[198], реализованной с помощью лазеров и волоконно-оптической линии связи, вместо обычных электронных генераторов сигналов и проводных линий связи. В оптической системе связи Ванвиггерена и Роя хаотические волны света служили носителями скрытых в них сообщений, передавая информацию от одного лазера к другому со скоростью 150 миллионов бит в секунду, то есть в тысячи раз быстрее, чем передают информацию обычные электронные устройства. При этом не существует каких-либо препятствий, по крайней мере на теоретическом уровне, для достижения еще больших скоростей.
Еще одно преимущество передачи информации с помощью хаотических лазеров заключается в том, что генерируемый ими хаос оказывается гораздо более сложным, что существенно усложняет взлом кодов. Степень сложности определяется числом, которое получило название «размерности странного аттрактора»[199] и представляет собой естественное обобщение обычной концепции размерности пространства. Однако в отличие от прямой линии (одномерный случай) или плоскости (двумерный случай), размерность странного аттрактора обычно представляет собой дробное число. Например, лоренцов аттрактор состоит из бесконечно большого числа двумерных (плоских) листов, из чего следует, что он обладает бесконечно большой поверхностью, но не имеет объема. Как бы загадочно это ни звучало, он представляет собой нечто большее, чем поверхность, но вместе с тем нечто меньшее, чем объемное тело, а его размерность, соответственно, больше 2, но меньше 3. Для волоконно-оптических систем передачи информации Ванвиггерена и Роя, построенных на основе лазеров, легированных эрбием, размерность странного аттрактора неизвестна, но почти наверняка она представляет собой дробное число и, что еще важнее, она огромна. Вполне вероятно, что она является числом, не меньшим 50, то есть соответствует чрезвычайно сложной форме хаоса. Остается лишь убедиться в том, что эта новая форма кодирования окажется более безопасной, чем ее предшественники.
Если же оставить в стороне шифрование, то наиболее важное значение синхронизированного хаоса для нас может заключаться в том, как он углубил наше понимание синхронизма как такового. Теперь синхронизм уже не будет ассоциироваться у нас лишь с ритмичностью, цикличностью и повторяемостью. Синхронизированный хаос поставил нас лицом к лицу с совершенно новым видом порядка во Вселенной или, по крайней мере, с порядком, который не встречался нам ранее: некой формой преходящего артистизма, который, как нам когда-то казалось, присущ лишь человеку. Это свидетельствует о том, что синхронизм представляет собой еще более распространенное и еще более утонченное явление, чем нам когда-то казалось.
Глава 8. Синхронизм в трех измерениях
Моя первая встреча с синхронизмом произошла совершенно случайно, в один из ничем не примечательных дней 1981 г. в Кембридже, Англия. В то время я, окончив колледж в США и получая стипендию Маршалла (Marshall Scholarship), углублял свои познания в математике, чувствуя себя совершенно потерянным в непривычной обстановке. Английские девушки не понимали моих шуток, брюссельская капуста была бесцветной и безвкусной, вечно моросящий дождик наводил на меня беспросветную тоску, а туалетная бумага казалась вощеной. Даже моя курсовая работа была какой-то тусклой: нам предлагались на выбор старомодные темы по классической физике (например, динамика вращающихся волчков). Это был сложный, но отнюдь не вдохновляющий материал.
В надежде пробудить в душе свое прежнее увлечение наукой, я наведался в книжный магазин, что напротив университета, чтобы подыскать что-нибудь подходящее для себя по биологической математике. (На последнем курсе колледжа я написал дипломную работу по геометрии ДНК, и опыт, полученный мною при подготовке этой дипломной работы, – выполнение оригинальных исследований под руководством биохимика с мировым именем, использование кое-какого математического аппарата, который я осваивал и применял к одной нерешенной проблеме, касающейся структуры хромосом, – произвел на меня столь глубокое впечатление, что у меня появилась мечта стать биологом с математическим уклоном.) Просматривая книги на полках магазина, я обратил внимание на книгу с интригующим названием «Геометрия биологического времени» (The Geometry of Biological Time)[200]. Какое совпадение! Подзаголовок моей дипломной работы в колледже звучал так: «Эссе по геометрической биологии». Я считал, что именно мне принадлежит авторство этого необычного словосочетания: «геометрическая биология». Однако было похоже на то, что пальма первенства в изобретении этого словосочетания по праву принадлежит автору заинтересовавшей меня книги, некому Артуру Уинфри, сотруднику биологического факультета университета Пардью.
Краткая аннотация к книге выглядела многообещающе: «Начиная с деления клеток и заканчивая сердцебиением, ритмы, подобные тиканью часового механизма, пронизывают деятельность любого живого организма. Механизм жизненных циклов имеет, в конечном счете, биохимический характер, однако многие из принципов, которые играют ведущую роль в их координировании, являются, по сути, математическими». Я внимательно ознакомился с оглавлением книги и сразу же пришел к выводу, что это работа необычного ученого. Нет, не просто необычного. Артур Уинфри был из тех ученых, для кого никакие правила не являются священными и неприкосновенными. Главное, мне понравился живой и непринужденный стиль автора. В главе, посвященной математике менструального цикла, он использовал данные, полученные от своей собственной матери[201]. Другие главы отличались не меньшей живостью изложения (например, мне в глаза бросилась фраза «Именно на этой неделе Никсон решил вторгнуться в Камбоджу»[202]). Многочисленные шутки автора заставили меня усомниться в научной ценности его книги: не прикалывается ли этот Артур Т. Уинфри, не водит ли он за нос своих читателей? Одним словом, я вернул книгу на полку и ушел из магазина.
Через несколько дней я почувствовал, что меня тянет в книжный магазин, где я обнаружил книгу Артура Уинфри. Книга покоилась на той же полке, где я обнаружил ее. Я решил полистать ее. Чтобы получить какое-то представление о научных заслугах ее автора, я изучил библиографию: 36 статей за период с 1967 по 1979 гг., опубликованных в столь авторитетных научных журналах, как Science, Nature и Scientific American. Это должно было показаться вполне убедительным, но я снова вернул книгу на полку, однако через несколько дней опять вернулся в этот же магазин. Меня разбирало любопытство – и господь Бог позаботился о том, чтобы никто из покупателей не приобрел этот единственный экземпляр. В конце концов я капитулировал и купил эту книгу.
Ежедневное чтение этой книги стало для меня подлинным наслаждением. Картина, изложенная Уинфри, была по-настоящему великолепна и чрезвычайно оригинальна. Глава за главой он выстраивал математическую конструкцию, которая демонстрировала принципиальную схожесть работы разнообразных биологических осцилляторов. Уинфри применял свои идеи к сердечным ритмам, мозговым волнам, менструальным циклам, циркадным ритмам, циклу деления клеток и даже к волнам в желудке. Однако его идеи не ограничивались лишь этим. Идеи Уинфри позволяли делать прогнозы – и эти прогнозы подтвердились в ходе соответствующих экспериментов. Некоторые из них касались вопросов жизни и смерти.
Впервые в жизни у меня начали четко вырисовываться контуры моей дальнейшей научной карьеры. В порыве волнения я написал Уинфри письмо, в котором просил посоветовать мне, куда поступить в аспирантуру для продолжения работы в области математической биологии. (В то время мне ничего не было известно о программах последипломного обучения в области математической биологии. Тогда это было новое научное направление, так сказать «передний край науки».) Недели через две я просматривал почту, и мой пульс резко участился, когда я обнаружил письмо, на котором значился обратный адрес университета Пардью. Внутри конверта содержался ответ от самого Уинфри, написанный красными чернилами на обычном разлинованном листке из школьной тетради. Начиналось письмо следующими скупыми фразами:
Стивен Строгац:
Хорошо, конечно же, Вам следует приехать ко мне.
Следующие две страницы представляли собой щедрую россыпь полезных советов. Завершалось письмо такими словами:
Будем поддерживать связь. Вы показались мне интересным человеком.
Арт Уинфри
Моя мечта начинала сбываться! Уинфри уже успел стать для меня настоящим героем. Но он работал на биологическом факультете, а получение научной степени в области биологии не входило в мои планы – моим призванием была математика. А как насчет того, чтобы поработать с Уинфри летом? Я робко поинтересовался мнением Уинфри насчет этой возможности. Через две недели пришел ответ:
12-10-81
5 минут после получения Вашего письма от 12-1-81
Дорогой Стивен –
На этой неделе на меня свалилась куча денег, так что мой ответ будет положительным. На летние месяцы я могу обеспечивать Вам желованье в размере […]. В моей лаборатории есть много свободного места и 2 компьютера Apple, не говоря уж о всевозможных прибамбасах. […] Я буду работать над топологическими загадками, касающимися трехмерных скрученных + заузленных волн в «супе Жаботинского», + приложения (по совместительству) к сердечной мышце (ознакомиться с этой темой вы можете весной, прочитав мою статью в Scientific American, посвященную смерти от внезапного сердечного приступа). Буду весьма рад, если мы вместе с Вами поработаем над этими проблемами.
Я не буду рекомендовать […], или […], или кому-либо еще предлагать Вам работу до тех пор, пока Вы не отклоните это мое предложение. Надеюсь, что не отклоните.
Импульсивно,
Арт Уинфри
Программа исследований Уинфри, изложенная в этом письме в столь характерном для Уинфри стиле, касалась того, о чем другие исследователи в то время даже не помышляли. Разумеется, он совершенно не вписывался в мейнстрим «нормальной» науки с ее тенденцией к узкой специализации и акцентом на редукционизм, то есть сведение явлений высшего порядка к явлениям низшего порядка; другими словами, Уинфри не думал лишь о генах, или кварках, или нейронных каналах. Более того, он не зацикливался даже на революции, порожденной теорией хаоса, которая, по мнению всех его аспирантов, была на тот момент передовым краем науки, хотя на самом деле эта отрасль науки к тому времени уже достигла своей зрелости и была готова уступить пальму первенства очередной великой тенденции: изучению нелинейных систем, состоящих из огромного множества элементов. Это движение, впоследствии получившее название «теории сложности», следовало представлять себе как естественное ответвление теории хаоса, в каком-то смысле ее оборотную сторону. Вместо того чтобы сосредоточиться на странном и «сумасбродном» поведении малых систем, специалисты по теории сложности были увлечены организованным поведением больших систем. Одна из самых ранних работ Уинфри по самопроизвольной синхронизации биологических осцилляторов уже касалась этой темы. К описываемому мною времени она уже достигла стадии зрелости, причем ее созревание происходило разными путями.
Например, в своем письме он упоминал о том, что собирается работать над «трехмерными скрученными + заузленными волнами». Ключевое слово здесь – трехмерные. Никто прежде не занимался изучением поведения самоподдерживающихся осцилляторов, взаимодействующих в трехмерном пространстве. Как было показано выше, когда теоретики впервые приступили к анализу динамики популяций осцилляторов, они полностью игнорировали пространство, полностью сосредоточившись лишь на времени, на синхронности ритмов, безотносительно взаимного расположения этих осцилляторов. Открытия, которые совершили Винер, Курамото, Пескин и даже сам Уинфри, ограничивались простейшим из возможных случаев, соединением по принципу «каждый с каждым», когда каждый осциллятор оказывает совершенно одинаковое влияние на все остальные осцилляторы. Такая глобальная связь всегда рассматривалась лишь как целесообразный первый шаг – она была кратчайшим путем сквозь джунгли многоосцилляторной динамики. Не было никакой нужды задумываться о пространственной структуре, поскольку каждый осциллятор является соседом всех остальных осцилляторов. После рассмотрения этого простейшего случая можно было ступить на следующую ступеньку теоретической лестницы и рассмотреть осцилляторы, упорядоченные в виде одномерной цепи или кольца. Можно было ожидать, что в этом случае произойдет что-то новое, что-то помимо чистого синхронизма: волны действия могли устойчиво распространяться от одного осциллятора к следующему. Вообще говоря, в осцилляторных моделях с локальными связями более типичным явлением оказывались волны, а не синхронизм. Интуиция, основанная на опыте футбольного болельщика, подсказывает мне следующую аналогию: «запустить волну» и поддерживать ее движение на огромном стадионе бывает гораздо легче, чем заставить всех присутствующих на стадионе одновременно вставать и садиться. Когда кое-кто из математиков попытался подняться по теоретической лестнице еще выше, к двумерным листам осцилляторов, у них попросту закружилась голова: анализ таких систем осложнился до предела. Поэтому когда Уинфри решил продолжить восхождение по этой лестнице и выйти на уровень трехмерных систем, желающих составить ему компанию не нашлось.
Подобные вопросы возникают, конечно же, потому что большинство реальных осцилляторов соединены между собой локально, а не глобально. Кишечник представляет собой длинную трубку осциллирующих нервных и мышечных клеток, разделенную на ритмично сокращающиеся кольца, однако порядок этих сокращений таков, что волны пищеварения движутся в нужном направлении, от желудка к анусу[203]. Каждое кольцо осцилляторной ткани соединено электрически с его ближайшими соседями по обе стороны, превращая кишечник, по сути, в одномерную цепочку осцилляторов. Желудок несколько напоминает двумерную сумку нейро-мышечных осцилляторов в том смысле, что его клетки ритмично перемешивают содержимое желудка и взаимодействуют главным образом со своими соседями на поверхности стенок желудка[204]. А сердце представляет собой толстую, трехмерную совокупность задающих осцилляторных клеток (ритмоводителей в синусно-предсердном узле и их подчиненных) и «возбудимых» клеток, которые подчиняются командам задающих осцилляторных клеток[205]; в случае их запуска с помощью достаточно сильного электрического воздействия они однократно «срабатывают» и возвращаются в состояние покоя, ожидая следующего импульса для запуска. Когда сердце функционирует нормально, такой задатчик ритма генерирует волну электрического возбуждения, которая распространяется вдоль специализированных проводящих волокон к насосным камерам (желудочкам сердца), заставляя их сжиматься и качать кровь к остальным частям тела.
Однако в патологических случаях возбудимые клетки могут взбунтоваться и создать свою собственную волну, вращающийся электрический торнадо, который парирует сигналы, поступающие от задатчика ритма. Кардиологам уже давно известно о том, что такие «вращающиеся потенциалы действия», или «круговые волны возбуждения»[206], могут приводить к тахикардии (повышенная частота сердцебиения), а затем вырождаться в летальную аритмию, называемую вентрикулярной фибрилляцией, когда сердечная мышца беспомощно корчится, дергается и дрожит, отказываясь качать кровь[207]. Ежегодно сотни тысяч здоровых на первый взгляд людей – людей, которые никогда прежде не жаловались на проблемы с сердцем – внезапно умирают[208], когда их сердце переходит в этот разрушительный режим функционирования. Когда Уинфри упомянул в своем письме о «приложениях (по совместительству) к сердечной мышце», он имел в виду именно эти странные электрические торнадо. Он хотел выяснить причины их начала, картину их поведения и возможные способы их предотвращения. Он надеялся, что после того как удастся выяснить причины возникновения этих электрических торнадо и картину их поведения, появится возможность сконструировать дефибрилляторы, действующие на сердце более мягко, чем нынешние грубые устройства, которые сжигают сердце для того, чтобы спасти его.
В 1981 г. нелинейная динамика не достигла того уровня, на котором она могла бы предсказывать поведение таких вращающихся волн в трех измерениях. Не было никакой надежды на то, чтобы просчитать их эволюцию во времени, их удары, их вихревые картины электрической турбулентности. Даже если бы соответствующие вычисления были возможны (например, с помощью какого-нибудь суперкомпьютера), любая такая попытка оказалась бы преждевременной, поскольку никто не знал бы, как интерпретировать полученные результаты. Вообще говоря, никто даже не знал, как могла бы выглядеть фотография одного из этих призрачных злодеев. (Во всяком случае, никому из кардиологов не удавалось наблюдать их воочию.) Поэтому Уинфри считал, что первым делом нужно научиться распознавать их, предсказывать, хотя бы умозрительно, их особенности; в дальнейшем можно будет заняться разгадкой их «модус операнди» (или, образно выражаясь, способа совершения преступления).
Для изучения форм в трех измерениях требовался более примитивный математический аппарат, учитывающий лишь пространство, но не принимающий во внимание время. Упомянув в своем письме о «топологических загадках», Уинфри имел в виду отрасль математики, называемую топологией и занимающуюся изучением непрерывной формы, своего рода обобщенную геометрию, в которой жесткость заменена эластичностью, как если бы все было изготовлено из резины. Формы могут непрерывно деформироваться, сгибаться или скручиваться – но ни в коем случае не разрезаться. Квадрат топологически эквивалентен окружности, поскольку вы можете скруглить его углы. С другой стороны, окружность отличается от формы цифры «8», поскольку вы не можете избавиться от точки пересечения, не прибегнув к помощи ножниц. В этом смысле топология идеально подходит для сортировки форм на обширные классы, основываясь исключительно на их топологических свойствах. План Уинфри заключался в использовании топологии для классификации видов волн, которые могут встретиться в трехмерных полях возбудимых клеток. Зная все возможные варианты, он понимал бы, что именно нужно искать в последующих экспериментах; таким образом, у него появилась бы надежда распознать то, что в противном случае казалось бы просто причудливыми непонятными структурами.
Когда в один из душных июньских дней 1982 г. я прибыл в лабораторию Уинфри, я застал его погрузившимся в ворох бумаг; он сидел на скамье, его рубашка была широко распахнута (очевидно, таким способом он пытался спастись от удушающей жары). Я был несколько смущен столь «неформальным» видом этого великого ученого – я добирался из Коннектикута в Индиану на автомобиле вместе со своим отцом, который никогда ранее не видел моего нового кумира, – но Уинфри обезоружил нас своим искренним дружелюбием. Вскоре отец уехал, и мы с Уинфри остались наедине в лаборатории, которая была уставлена разнокалиберными мензурками, бунзеновскими горелками и прочими приспособлениями, назначение которых я пока не понимал. (Между прочим, на столах я заметил множество лезвий для безопасной бритвы. Как оказалось впоследствии, эти лезвия были любимым инструментом Уинфри, когда ему нужно было что-нибудь разрезать или отрезать. Он с довольным видом вскрикивал «Вжжжик!» каждый раз, когда использовал одно из таких лезвий, чтобы отрезать кусок провода или микропористой фильтровальной бумаги.)
В лаборатории было тихо. Я не заметил там ни одного аспиранта или младшего научного сотрудника. Впрочем, я был готов к этому: в одном из первых писем ко мне, после того как я спросил у Уинфри, кто еще будет работать с нами, он ответил: «Сейчас я мог бы сочинить историю о других аспирантах + сотрудниках. Но, по правде говоря, у меня нет ни тех, ни других. Возможно, дело в том, что я плохо схожусь с людьми, возможно, от меня неприятно пахнет, не знаю… но плотность населения в моей лаборатории = 1. Вы станете единичным событием в жизни моей лаборатории. Не подрывает ли этот факт Ваше доверие ко мне?»
На совместную работу нам было отведено лишь три месяца. Поэтому мне нужно было как можно быстрее входить в курс дела. Уинфри полагал, что мне следует «немного замарать руки», то есть на какое-то время отставить в сторону математику и компьютеры. Моим первым проектом был эксперимент с материалом, кототорый сам Уинфри называл «супом Жаботинского»[209]: химическая реакция, которая поддерживает волны возбуждения, чрезвычайно похожие на электрические волны, которые запускают сердцебиение. Однако в этом эксперименте все должно было оказаться значительно проще, чем с реальным сердцебиением, во всяком случае я не собирался экспериментировать с настоящим сердцем, с его мышцами и сокращениями. Речь шла о неком идеализированном объекте для исследования распространения волн возбуждения в его самой «чистой» форме. В этом смысле эксперименты с пресловутым супом Жаботинского играют такую же роль в исследовании волн сердца, какую играют мушки-дрозофилы в генетике: удобный для изучения упрощенный вариант, в котором заключена сущность более сложных явлений.
Обычно самым занимательным результатом, которого можно ожидать при выполнении какого-либо химического эксперимента, является возникновение облачка дыма или отвратительного запаха. В отличие от этих, вообще говоря, тривиальных случаев, эксперимент с супом Жаботинского позволяет исследователю удовлетворять свое интеллектуальное любопытство в течение очень долгого времени. Если этот суп приготовить в соответствии с оригинальным рецептом, то он ведет себя подобно самопроизвольному осциллятору и является химическим аналогом клеток задатчика сердечного ритма. Он ритмично изменяет свой цвет десятки раз, туда и обратно, становясь попеременно то небесно-голубым, то ржаво-красным, приходя в конце концов (примерно через час после начала химической реакции) в состояние равновесия. На молекулярном уровне такие проявления могли бы выглядеть еще более впечатляюще, если бы, конечно, мы могли наблюдать их: триллионы связанных осцилляторов, пританцовывающих в идеальном синхронизме – самый массовый танец в стиле кантри из тех, которые когда-либо удавалось организовать.
При использовании нового, более утонченного рецепта эта химическая реакция является возбудимой. Поначалу она выглядит обескураживающе инертной. Осцилляции практически отсутствуют. Но если налить тонкий слой этого красного супа в чашку Петри, а затем проколоть этот слой серебряной проволочкой или горячей иголкой, он внезапно запускает голубую круговую волну, которая распространяется, подобно огню на сухой траве. Это химическая волна: импульс запускает реакцию, при которой вещество в чашке Петри окисляется. После того как эта волна пройдет, вещество переходит в состояние покоя и снова приобретает красный цвет, точно так же как трава, выгоревшая в результате пожара, со временем снова начинает расти. (Конечно же, предложенная мною аналогия с травой не идеальна. Химические вещества восстанавливаются гораздо быстрее, чем выгоревшая трава; следом за первой волной может двигаться вторая волна.)
Химические волны совершенно не похожи на волны, изучаемые в традиционных курсах физики (например, звуковые волны или рябь на поверхности пруда). Когда химическая волна распространяется путем диффузии, поверхность жидкости не поднимается и не опускается. Она остается неподвижной. Подвижной оказывается картина возбуждения, своего рода «химическое заражение». Еще одно отличие от обычных волн заключается в том, что химические волны не ослабевают, подобно звуковым волнам или ряби на поверхности пруда, по мере распространения в стороны от места их зарождения. Каждый клочок этой среды служит новым источником энергии, которая подпитывает волну, не давая ей угаснуть.
Допустим теперь, что вы создадите две химические волны в двух разных точках чашки Петри. Голубые круги начнут шириться и приближаться друг к другу. Когда они столкнутся, они не начнут проникать друг в друга или складываться между собой: они взаимно уничтожатся. Это произойдет в силу той же самой причины, по которой горение сухой травы прекращается в результате запуска встречного огня: два пожара – один естественный, а другой искусственный – взаимно уничтожаются, поскольку по обе стороны огня не остается ничего, кроме золы, которая не может гореть. В использованной мною метафоре зола соответствует области истощения, «мертвой» зоне, образующейся позади волны. Химической среде требуется какое-то время для восстановления, прежде чем она снова сможет стать возбужденной.
Во многих отношениях эта химическая среда ведет себя подобно сексуальной реакции человека. Сексуальное возбуждение и возвращение к норме зависят от свойств нервной ткани, которая, подобно супу Жаботинского, принадлежит к общему классу систем, называемых возбудимыми средами. Нейрон может пребывать в трех состояниях: покой, возбуждение и резистентность (абсолютная невозбудимость).
Обычно нейрон пребывает в покое. При недостаточно сильном воздействии он демонстрирует слабую реакцию и возвращается в состояние покоя. Но при достаточно сильном воздействии нейрон возбуждается и приводится в действие. Затем нейрон становится резистентным (в течение какого-то времени его невозможно возбудить) и наконец возвращается в состояние покоя. Параллели с химическими волнами распространяются на потенциалы действия – электрические волны, которые движутся вдоль нервных аксонов. Они также перемещаются, не ослабляясь, а когда две такие волны сталкиваются между собой, они взаимно уничтожаются. Вообще говоря, все эти утверждения относятся в равной мере к электрическим волнам в другой возбудимой среде – сердце. В этом и заключается прелесть данной абстракции: качественные свойства одной возбудимой среды распространяются на все возбудимые среды. Все эти возбудимые среды можно изучать одним махом. Родственная схожесть между супом Жаботинского, нервной тканью и сердечной мышцей сохраняется вплоть до структуры математических уравнений, которые управляют их нелинейной динамикой, – весьма глубокая аналогия.
Однако суп Жаботинского обеспечивает ряд преимуществ, особенно важных для начинающего экспериментатора. Не требуется приносить в жертву животных. Не приходится иметь дело с анатомическими сложностями, наподобие запутанного клубка нейронных сетей или архитектуры сердечной мышцы со скрученными волокнами. Самое главное – эти волны можно наблюдать невооруженным глазом, причем движутся они довольно медленно, а потому отпадает необходимость использования сложного записывающего оборудования. Напротив, визуализация волн на сердце сопряжена с колоссальными техническими проблемами (по крайней мере на сегодняшний день) даже для лабораторий, располагающих внушительным бюджетом, поскольку для этого требуются потенциалочувствительные красители, многоэлектродные системы и прочие новейшие технологии.
С помощью супа Жаботинского ученые начали раскрывать тайны распространения волн в возбудимых средах. В частности, именно с помощью супа Жаботинского удалось открыть новый вид волн – вращающуюся самоподдерживающуюся волну, имеющую форму спирали. Хотя ее геометрия выглядит весьма элегантно, ее последствия носят деструктивный характер. Вращающиеся спиральные волны на сердце – это причина тахикардии и, в самом плохом случае, вентрикулярной фибрилляции, сопровождаемой внезапной смертью от сердечного приступа.
Открытие супа Жаботинского и его впечатляющих спиральных волн – это история догмы, разочарования и окончательного обоснования[210]. Разумеется, термин «суп Жаботинского» – это название, которым предпочитал пользоваться сам Уинфри. В наши дни суп Жаботинского называют «BZ-реакцией» в честь Белоусова и Жаботинского, российских ученых, которые, соответственно, изобрели и усовершенствовали его.
В начале 1950-х годов Борис Белоусов пытался воссоздать в пробирке модель цикла Кребса – метаболический процесс, который происходит в живых клетках. Когда он смешал лимонную кислоту и ионы бромата в растворе серной кислоты (в присутствии цериевого катализатора), он, к немалому своему удивлению, наблюдал, как эта смесь сначала пожелтела, затем, примерно через минуту, стала бесцветной, затем, еще через минуту, снова стала желтой, затем снова бесцветной и т. д. Эти осцилляции повторились несколько десятков раз, пока наконец (примерно через час) не было достигнуто состояние равновесия.
Сегодня уже никого не удивляет тот факт, что химические реакции могут самопроизвольно осциллировать; такие реакции стали стандартной демонстрацией на лекциях по химии. Но во времена, когда Белоусов сделал свое открытие, самопроизвольная осцилляция химических реакций оказалась такой неожиданностью, что в ее возможность отказывались верить. В то время считалось, что, вследствие действия законов термодинамики, все растворы химических реагентов должны монотонно продвигаться к состоянию равновесия. Научные журналы один за другим отмахивались от статьи Белоусова. В письме с отказом опубликовать статью Белоусова один из редакторов даже не удержался от ехидного высказывания в адрес автора, который «вполне возможно, открыл открытие».
Удрученный таким отношением к своему открытию, Белоусов решил никогда не упоминать о нем в разговорах со своими коллегами. Все же он опубликовал краткое резюме своей статьи в материалах одной из медицинских конференций Советского Союза. Впрочем, поначалу никто в научном мире не обратил внимания на эту публикацию. Тем не менее в конце 1950-х годов слухи о его открытии упорно циркулировали среди московских химиков, а в 1961 г. научный руководитель аспиранта, которого звали Анатолий Жаботинский, посоветовал ему ознакомиться с этой статьей. Жаботинский подтвердил, что в эксперименте, поставленном Белоусовым, нет никакой ошибки и что дело обстоит именно так, как изложено в резюме к его статье. Более того, Жаботинский ознакомил с работой Белоусова участников международной конференции, состоявшейся в Праге в 1968 г. и оказавшейся одной из тех редких возможностей, когда западные и советские ученые имели шанс непосредственно пообщаться друг с другом. В то время ученые проявляли повышенный интерес к биологическим и биохимическим осцилляциям, а BZ-реакция рассматривалась как весьма перспективная модель для изучения более сложных систем.
Аналогия с биологией оказалась на удивление тесной. В начале 1970 г. Альберт Николаевич Заикин и Жаботинский обнаружили распространяющиеся волны возбуждения в тонких, невзболтанных слоях BZ-реакции. Эти волны напоминали концентрические окружности; при столкновении такие волны взаимно гасились, водобно электрическим волнам в нейронной или сердечной ткани. Казалось даже, что они возникают из чего-то похожего на задатчики ритма, разбросанные в произвольном порядке точки, которые самопроизвольно порождали волны.
Изучив эту работу, Уинфри отправил Жаботинскому (с которым он познакомился на пражской конференции двумя годами ранее) письмо, чтобы выяснить, встречались ли ему какие-либо другие картины волн, помимо концентрических колец. В своих собственных лабораторных экспериментах с некоторыми видами плесени Уинфри наблюдал спиральные волны[211], но это была гораздо более сложная система, состоящая из живых организмов, которым были присущи циркадные циклы. Уинфри хотел выяснить, наблюдались ли спирали в гораздо более простой химической системе Жаботинского. Он сомневался в этом, исходя из ряда математических соображений; он полагал, что мог бы доказать, что волны должны иметь форму именно замкнутых колец. Однако ответа от Жаботинского ждать пришлось очень долго. Почта из Советского Союза, особенно переписка между учеными, в то время шла очень долго (наверное, службы безопасности с обеих сторон усердно занимались перлюстрацией). Вынужденная приостановка работы выводила Уинфри из терпения. Он самостоятельно состряпал какое-то подобие рецепта, которым пользовались Заикин и Жаботинский, и рецепт, придуманный Уинфри, оказался удачным: спирали появлялись повсюду. Уинфри не знал об этом, но Жаботинский тоже наблюдал эти волны в 1970 г. при подготовке своей диссертации, а Валентин Кринский из г. Пушкино полагал, что такие волны должны возникать в любой возбудимой среде, в том числе и в сердечной мышце. В настоящее время является общепризнанным фактом то, что спиральные волны присущи всем химическим, биологическим и физическим возбудимым средам.
Борису Белоусову было бы, наверное, приятно осознавать, что он является первооткрывателем столь важного феномена.
В 1980 г. он, Жаботинский и трое других ученых стали лауреатами Ленинской премии, высшей государственной награды в Советском Союзе, за их открытия, связанные с осциллирующими реакциями. Впрочем, для Бориса Белоусова это оказалось слабым утешением – он умер десятью годами ранее.
Самым удивительным в спиральных волнах является то, что они кажутся живыми. Это самоподдерживающееся явление. Они не нуждаются в задатчиках ритма: спиральная волна является своим собственным задатчиком ритма. Если вы наблюдаете спиральную волну в тонком слое возбудимой BZ-реакции, она похожа на непрерывное завихрение, гоняющееся за своим собственным хвостом и беспрестанно регенерирующее себя.
Вообще говоря, ее вращение является второстепенным делом. Более существенным для нас является то, что она распространяется в направлении, перпендикулярном себе в каждой точке вдоль фронта волны. В связи с этим возникает путаница, обусловленная спецификой геометрии спирали: распространение спиральной волны выглядит как вращение. (Вспомните оптическую иллюзию, наблюдаемую на вращающихся столбах с нанесенной на них винтовой линией, которые устанавливали в прежние времена возле парикмахерских. Если смотреть на винтовую линию, нанесенную на такой вращающийся столб, то кажется, будто она движется вверх. Разумеется, никакого такого движения нет, просто эта винтовая линия вращается вместе со столбом. В этом случае вращение создает впечатление движения вверх. Примерно с такой же оптической иллюзией мы сталкиваемся, когда наблюдаем за спиральными волнами.)
Тем не менее в каком-то смысле вращение спиральной волны является реальным. Каждая точка в окружающей среде периодически осциллирует: она повторно возбуждается каждый раз, когда через нее проходит волна. Таким образом, каждая точка в чашке Петри проходит циклически через знакомые нам стадии возбуждения, резистентности и покоя, а затем повторного возбуждения. Новым здесь является то, что спиральная волна создала осцилляцию, которая структурирована в пространстве, а также во времени. Вместо жесткой синхронизации – пространственной однородности, которую наблюдал Белоусов в самых ранних своих экспериментах, когда вся мензурка изменила свой цвет одномоментно – осцилляция теперь похожа на «волну», запускаемую на трибунах стадиона болельщиками во время футбольного матча и циркулирующую по трибунам в результате того, что люди встают и садятся в нужные моменты времени.
Рассмотрим еще более тесную аналогию. Вообразите кольцо, составленное на полу из тысячи костяшек домино. Допустим, что мы решили воспользоваться услугами проворного помощника, который берется быстро восстанавливать каждую из костяшек сразу же после того, как она упадет. Мы ударяем первую костяшку, и волна падений начинает быстро распространяться по кольцу костяшек. Наш помощник четко отслеживает распространение этой волны, с трудом успевая восстанавливать на прежнем месте каждую из упавших костяшек. В данном случае удар по костяшке соответствует возбужденному состоянию, упавшая костяшка соответствует состоянию резистентности, а восстановленная костяшка соответствует состоянию покоя. Такая волна будет циркулировать до бесконечности – или до тех пор, пока наш помощник не свалится с ног от изнеможения.
Биологическая версия того же самого эксперимента была выполнена физиологом А. Г. Майером в 1906 г. с помощью медузы[212]. Он соорудил кольцо нейромышечной ткани из обода зонтикообразного купола медузы, а затем воздействовал импульсом электрического тока на одну точку этого кольца, заранее позаботившись о том, чтобы волна распространялась по кольцу только в одном направлении. Нейроимпульс циркулировал по кольцу в течение шести суток, совершив при этом около полумиллиона циклов.
Таким образом, должно быть ясно, что волны могут очень долго циркулировать по одномерным контурам возбудимых сред. Однако при попытке перенести те же идеи на два измерения (важный случай спиральных волн) возникают определенные проблемы. В приведенном выше обсуждении молчаливо предполагалось, что к моменту возвращения волны среда успевает восстановиться из своего периода резистентности. Это вполне допустимое предположение, если контур достаточно велик или если скорость волны не очень высока. Но вблизи центра спиральной волны это предположение не соблюдается: контур, по которому прошло возбуждение, становится слишком маленьким.
В конечном счете ядро спирали не осциллирует подобно остальной части этой среды. Мы не видим на нем ритмических изменений цвета, оно не демонстрирует пиков и падений интенсивности свечения или каких-либо других признаков осцилляции. Амплитуда цикла падает до нуля. Такая точка называется сингулярностью фазы, что означает, что здесь невозможно точно определить фазу окружающей осцилляции. Фаза становится неоднозначной. Эта загадочная ситуация аналогична тому, что происходит на Северном и Южном полюсах. В таких сингулярных точках на поверхности нашей планеты сходятся все временные пояса, а цикл дня и ночи распадается. Солнце никогда не поднимается и не садится: оно просто кружит над горизонтом. На Северном и Южном полюсах вопрос «который час?» лишен всякого смысла. Вы можете жить здесь по любому времени – или вообще вне времени.
Но для спиральной волны сингулярность фазы – это нечто большее, чем точка на нашей планете, где нога человека ступает лишь в очень редких случаях. Для спиральной волны сингулярность фазы – это двигатель, который приводит волну в действие. Поразительно, но пока это ядро остается в неприкосновенности, спиральная волна в целом может регенерировать себя независимо от того, каким повреждениям подверглись ее наружные витки. К тому же спиральные волны нелегко уничтожить еще по одной причине: они испускают волны почти с такой же скоростью, какую допускает соответствующая среда. Поэтому они способны «парировать» другие входящие волны, например концентрические окружности, запускаемые удаленными задатчиками ритма. Эти вторгающиеся волны уничтожаются при столкновениях со спиральными витками. Они не могут продвинуться дальше. Напротив, более быстрые спиральные волны неумолимо надвигаются на более медленные задатчики ритма, захватывая их территорию и постепенно уничтожая их. Именно поэтому на достаточно продолжительном отрезке времени картина BZ-реакции всегда становится похожа на рисунок «пейсли»[213], заполненный спиралями, причем круговые волны вообще не видны. Спирали способна противостоять только другая спираль.
Здесь мы наблюдаем случай самопроизвольного порядка в его чистом и простом виде. Начинаем с «супа» химических веществ, который обладает свойством возбудимости. Затем прикасаемся к нему серебряной проволочкой и шлепаем этой проволочкой по поверхности «супа», чтобы создать таким образом произвольный рисунок возбуждения. Нет никакой структуры, совершеннейший беспорядок, но все же из этого беспорядка возникает рисунок «пейсли». Между тем во всем, что происходит, нет ничего мистического. Такой рисунок является результатом действия законов возбудимой среды, а эти законы, в свою очередь, являются следствием нелинейной динамики.
Поэкспериментировав в лаборатории Уинфри с супом Жаботинского в течение нескольких дней, я смог собрать основные факты, касающиеся спиральных волн. Затем Уинфри поставил передо мной следующую задачу: попытаться воспроизвести эксперимент, касающийся нового вида спиральной волны[214], сообщение о котором недавно появилось в журнале Nature. После пары недель неудач Уинфри стало понятно, что экспериментатор из меня никудышный. Разумеется, для меня это не было новостью; чтобы стать хорошим экспериментатором, требуются годы упорного труда.
К счастью, главная цель Уинфри на те летние месяцы заключалась совсем в другом. Как он упоминал в письме ко мне, он намеревался работать над «загадками, касающимися трехмерных скрученных + заузленных волн в “супе Жаботинского”». Вопрос заключался в следующем: что представляют собой трехмерные обобщения спиральных волн? Как они выглядят? Можем ли мы визуализировать их каким-либо способом? Какие математические законы управляют их допустимыми формами?
К тому времени у Уинфри уже был создан неплохой задел. Вскоре после открытия им в 1970 г. двумерных спиральных волн он размышлял над тем, что может произойти, если взять тонкий слой BZ-реакции, содержащий плоскую спираль, а затем постепенно утолщать этот слой. Подобно барельефу, эта спираль постепенно приобретала бы третье измерение. В результате такого процесса формировалась бы поверхность, похожая на свиток.
Между тем сингулярная точка в ядре постепенно удлинялась бы, превращаясь в нить на краю свитка. И точно так же, как спиральная волна вращается вокруг своего ядра, свиткообразная волна[215] должна вращаться вокруг своей нити.
Вращающаяся свиткообразная волна… До того времени наука не знала ничего подобного. Подходящие аналогии найти было нелегко. Свиткообразная волна – это химический торнадо. Одно существенное различие: жидкость остается неподвижной. Перемещается лишь волна химической активности, трехмерный водоворот расширящегося возбуждения. Кроме того, торнадо тянется от облаков до поверхности земли, а где заканчиваются свиткообразные волны? Уинфри убедил себя, что они не могут просто остановиться в каком-то определенном месте в середине жидкости. Они либо затухали бы на границе (то есть на стенках мензурки или вверху, на границе «воздух-жидкость»), либо вообще нигде не заканчивались бы. Иными словами, свиткообразная волна могла бы кусать свой собственный хвост и замыкаться на самой себе. В таком случае она была бы похожа не столько на торнадо, сколько на колечко дыма.
Этот образ пленил Уинфри. Действительно ли существуют такие «кольца из свитка»? В 1973 г. ему удалось доказать, что такие «кольца из свитка» действительно существуют. Поставленный им эксперимент был весьма остроумным. Вместо использование обычной мензурки, заполненной жидкой BZ-реакцией, он приготовил высокую стопку фильтровальной бумаги из пористой нитроцеллюлозы, пропитанной теми же химическими веществами. После создания подходящих условий, которые требовались, по его мнению, для воспроизведения «кольца из свитка», он предоставил возможность реакции начаться, а затем внезапно затормозил ее химическим способом, зафиксировав характерный рисунок «кольца из свитка» в состоянии приостановленной анимации. Пытаясь проанализировать полученный образец, он разделил эту стопку фильтровальной бумаги на тонкие слои, подобно экспериментатору, подготавливающему для исследования под микроскопом срезы какого-нибудь экзотического организма, а затем реконструировал его, срез за срезом, на листах неотражающего стекла. Образец оказался именно таким, как ожидалось: волна в форме бублика с поперечным сечением в виде спирали.
Но Уинфри хотел понять, существуют ли другие виды «колец из свитка»[216]. Возможно ли скручивание свиткообразных волн на целое число оборотов, прежде чем они замкнутся сами на себя? Пояс можно скрутить таким способом; почему же это невозможно в случае «колец из свитка»? Или их можно завязывать в узлы? Можно ли связывать между собой кольца друг через друга, подобно браслетам или кольчуге? Изучая весь этот спектр бесконечного множества «колец из свитка», связанных между собой, скрученных и соединенных с помощью узлов самыми разнообразными способами, Уинфри вскоре обнаружил, что один из гипотетических элементов этого множества находится под запретом.
Используя одну из теорем топологии, Уинфри доказал невозможность скрученного кольца из свитка, по крайней мере в виде отдельно взятого объекта. Его структура заключала в себе внутреннее противоречие. Если бы такое кольцо было скрученным, оно автоматически должно было бы переплетаться с какой-то другой сингулярной нитью, а это означало бы, что исходное кольцо не было одиночным. Эта топологическая теорема указала на существование второго свитка, непредвиденного, но обязательно связанного посредством первого. В результате дальнейшего анализа Уинфри смог показать, что, хотя отдельно взятое скрученное кольцо из свитка существовать не может, существованию взаимно связанной пары ничто не препятствует. Такая структура представлялась идеально жизнеспособной.
Из этого следовал весьма впечатляющий вывод: геометрия «колец из свитка» была вполне законной. Некоторые конфигурации были допустимыми, тогда как другие – нет. Соответствующие правила еще предстояло выяснить.
Делом первостепенной важности было представить, как выглядят скрученные кольца из свитка. Абстрактная топологическая аргументация Уинфри предполагала, что скрученное кольцо из свитка должно быть переплетено с какой-то другой сингулярной нитью, но ни Уинфри, ни я не могли представить, как складывается воедино такая структура в целом: скрученный свиток плюс дополнительная сингулярность переплетения. Вообще говоря, когда за несколько лет до описываемого мною времени Уинфри попытался изобразить такую структуру, у него получилась фантастическая картинка в стиле Маурица Корнелиса Эшера[217], представителя так называемого имп-арта, который исследовал пластические аспекты понятий бесконечности и симметрии, а также особенности психологического восприятия сложных трехмерных объектов.
Но теперь все должно было быть по-другому. На дворе был 1982 г., а в нашем распоряжении были компьютеры Apple. Компьютер мог изобразить поверхность за нас; от нас требовалось лишь рассказать ему, что он должен изобразить. Моя задача заключалась в том, чтобы написать компьютерную программу, которая вычисляла бы эту поверхность что называется «в лоб». Идея была проста: скрученный свиток – это лишь окружность из ребер спирали, каждое из которых слегка повернуто по отношению к своим соседям. Таким образом, я попросил компьютер вычислить некоторую совокупность точек на спирали, затем скопировать и повернуть всю спираль на один шаг по окружности – и одновременно с этим скрутить ее на один шаг. Эту последовательность действий нужно было повторять снова и снова, пока спираль не вернется в свое исходное положение, совершив один полный оборот по окружности и одно полное скручивание. Невыясненным оставался лишь один вопрос: какой должна быть длина каждого ребра спирали? То есть сколько витков должно быть в ней? Ответ в этом случае дает нам химия: спиральная волна движется до тех пор, пока не столкнется с другой спиральной волной. Части столкнувшихся спиралей, оказавшиеся за этой границей, нужно стереть, поскольку они взаимно уничтожили друг друга (подобно тому, что происходит со столкнувшимися волнами в возбудимой среде).
Как и требовалось, Apple II распечатал таблицу с несколькими сотнями чисел, представляющих точки на поверхности скрученного свитка. Теперь все, что нам оставалось сделать, это ввести полученные таким образом числа в графическую программу, результаты работы которой раскроют наконец загадку скрученного свитка. Я запустил на выполнение графическую программу Bill Budge 3D Graphics System, приобретенную Уинфри, и мы, затаив дыхание, стали ждать завершения ее работы. Хм-м-м… Картинка получилась слишком грубой: количества заданных мною точек оказалось явно недостаточным. К сожалению, программа Bill Budge 3D Graphics System оказалась не в состоянии обработать большее количество точек – она с огромным трудом справилась даже с тем, которое я ей задал. Итак, наши надежды на компьютер не вполне оправдались, поэтому нам пришлось достраивать поверхность от руки. Мы распечатали грубую картинку, полученную с помощью Bill Budge 3D Graphics System, и, вооружившись цветными карандашами, начали «украшать» распечатку, надеясь увидеть нечто более вразумительное. Увы! Мы поняли, что с разгадкой придется подождать.
Тем временем мы с Уинфри приступили к рассмотрению более теоретических вопросов, пытаясь найти правила для топологии свиткообразной волны. Не имея четкого представления о том, в каком именно направлении следует двигаться, мы решили положиться на интуицию. В лаборатории Уинфри хранились изрядные запасы красного и зеленого стоматологического воска, а также оранжевой формовочной глины и превеликое множество ершиков для прочистки трубок. Все это были совершенно необходимые вещи для изготовления моделей узлов, связей и скрученных поверхностей.
Наша работа была организована следующим образом. Пока я сидел за компьютером или за рабочим столом в лаборатории, вылепливая те или иные фигуры из стоматологического воска и пытаясь визуализировать невиданные ранее формы, Уинфри пытался изображать картины свиткообразной волны в блокноте для рисования. Особено понравившиеся ему варианты он вырезал с помощью лезвия для безопасной бритвы (не забывая при этом вскрикнуть «Вжжжик!») и вклеивал их в лабораторный журнал. Шел час за часом. Время от времени один из нас, когда ему в голову приходила интересная мысль, нарушал молчание. После этого мы пытались совместно обсудить эту мысль, прояснить ее и проверить ее рациональность, каждый раз с трудом подбирая нужные слова, поскольку трехмерная геометрия – вообще говоря, весьма труднопередаваемая и неуловимая материя. Но в конечном счете нам всегда удавалось понять друг друга, после чего мы пытались совместными усилиями втиснуть эти новые идеи в рамки какой-то теории. Эти математические обсуждения были весьма бурными, но доброжелательными. Мне вообще казалось, что у меня появился еще один мозг – правда, гораздо лучший, чем мой первый мозг. Так проходили дни, один за другим. Обычно мы обедали вместе, а в солнечные дни мы предпочитали сидеть у фонтана возле его дома: он делал наброски в своем блокноте, а я рисовал разные варианты поверхности в своем воображении. К десяти часам вечера у кого-нибудь из нас начинала раскалываться голова, после чего мы расставались до следующего утра.
К августу мы выяснили правила для всех возможных конфигураций связанных и скрученных колец. С узлами возникли проблемы[218]. Нам не удалось выяснить ни одного правила относительно узлов. Поэтому мы решили начать с простейшего случая: отдельно взятого кольца из свитка, в котором завязан узел в виде трилистника. (Чтобы завязать узел в виде трилистника, возьмите шнурок для ботинок, завяжите на нем узел «клеверный лист», как если бы вы завязывали узел на шнурках своих ботинок, а затем соедините вместе концы шнурка. Результирующая кривая представляет собой петлю с узлом, которая напоминает своим видом клевер-трехлистник.)
Нас интересовало, имеет ли какой-либо математический и химический смысл кольцо из свитка в форме трилистника. А если бы такое кольцо в действительности присутствовало в мензурке BZ-реакции, то должно ли оно всегда быть связано с другими кольцами или оно может существовать само по себе? А если да, то какой должна быть надлежащая степень скручивания? И как должны были бы выглядеть волны, исходящие от него?
Чтобы сделать эти абстракции более осязаемыми, я скатал из стоматологического воска длинные шнуры, а затем согнул их и слепил их концы между собой таким образом, чтобы получилось некое подобие трилистника. Полученная геометрическая фигура должна была представлять собою сингулярную нить – источник и внутренний край свиткообразной волны. Затем мне предстояло изготовить восковую модель самой поверхности свиткообразной волны. Если сингулярная нить похожа на длинный тонкий деревянный штырь свитка, то сама волна похожа на пергамент, который раскручивается с этого штыря. Она представляет собой поверхность, которая начинается и заканчивается на таких штырях, в то же время плотно наворачиваясь на них. К счастью, это наворачивание было для нас в математическом смысле несущественно: от него всегда можно было избавиться, туго растянув свиткообразную волну (представьте, что волна изготовлена из эластичной ткани). Принципиально важным для нас в свиткообразной волне было то, что она начинается и заканчивается на нити. Других границ у такой поверхности нет. Воспользовавшись воском другого цвета, я приступил к конструированию поверхности волны, кусок за куском, каждый раз начиная вдоль нити и продвигаясь дальше, пока все такие куски не сложились в один сплошной лист.
После этого нужно было уяснить, сколько сторон у такого листа: одна или две? На первый взгляд, этот вопрос звучит странно: разве бывают односторонние поверхности? Самым знаменитым примером является так называемый лист (лента, петля) Мебиуса: полоска бумаги, скрученная на полоборота и замкнутая в виде кольца. Если провести пальцем по поверхности такого контура, начиная с любой его точки, то в конце концов ваш палец вернется в ту же точку – но на другой стороне бумаги (правда, такое утверждение было бы неправильным, поскольку никакой «другой» стороны нет: передняя и задняя стороны являются одним и тем же). В этом смысле у листа Мебиуса есть только одна сторона.
Если бы мои восковые поверхности представляли собой нечто подобное, это было бы плохо. С точки зрения химических законов, свиткообразная волна должна представлять собой двустороннюю поверхность из-за непреложного факта, касающегося возбудимой среды: волны распространяются перпендикулярно самим себе, вторгаясь на неактивные территории и оставляя позади себя резистентную «выжженную пустыню». Это означает, что у такой волны есть передняя и задняя сторона, тогда как у листа Мебиуса есть только одна сторона. Это можно сформулировать по-другому. Представьте, что вы закрасили одну сторону листа Мебиуса красным цветом (сторону, которая движется вперед), а другую его сторону вы закрасили черным цветом (сторону, за которой остается «выжженная пустыня»). Но то и другое является одной и той же стороной, и в конце концов вам придется красить черным цветом поверх красного. Все концепция распространения волны вперед утрачивает смысл, если волна оказывается односторонней.
Трилистник можно изображать разными способами. Интересно отметить, что некоторые из них ведут к односторонним поверхностям (и, следовательно, неприемлемы), тогда как другие дают желаемые двусторонние поверхности, то есть являются подходящими кандидатами на форму волнового фронта. Поэкспериментировав еще немного, я пришел к выводу, что все приемлемые поверхности топологически эквивалентны, то есть обладают подходящим изгибом и растяжением, причем каждую из них можно непрерывно деформировать, превращая в любую другую. Таким образом, существовал лишь один правильный ответ, и этот ответ уже был известен нам. Вот как должна была выглядеть поверхность свиткообразной волны для трилистника.
Нам предстояло ответить на следующий вопрос: должен ли результирующий свиток быть скрученным, и если да, то в какой степени. Чтобы измерить это скручивание экспериментальным путем, я укладывал кусок нити вдоль поверхности из воска так, чтобы он всегда пролегал параллельно ее наружному краю, оказываясь лишь на миллиметр внутри ее, и продолжал укладывать эту нить вдоль всей поверхности, пока она не соединялась со своим началом, то есть пока не замкнется контур. Этот контур также образовывал трилистный узел – в точности такой, как первоначальная нить, а вместе они определяли два края воображаемой ленты.
Эта лента напоминала мне что-то из моей дипломной работы в колледже, в которой рассматривалась топология сверхспиральных молекул ДНК. Ключевой концепцией в том случае была математическая величина, называемая числом зацеплений в двухцепочечной сверхспиральной ДНК[219], которая, грубо говоря, показывает, сколько раз одна нить ДНК обвивается вокруг другой нити ДНК, помимо обвивания, предполагаемого самой двойной спиралью. Эта величина зависит как от скручивания в ДНК, так и от ее трехмерного пути в пространстве. Теперь, в случае свиткообразной волны, число зацеплений ленты должно заключать в себе всю важную информацию о скручивании волны, а также о форме ее заузленной нити. Когда я вычислил число зацеплений, оказалось, что оно равняется нулю. Замечательно! Все оказалось так просто. Свиткообразные волны в форме трилистника могут существовать, а число зацеплений у них всегда равняется нулю. Позже нам удалось доказать, что то же самое должно быть справедливо для любого узла, а не только для трилистного узла.
По окончании лета я перебрался в Бостон, чтобы поступить в магистратуру в Гарвардском университете. Впрочем, я продолжал поддерживать контакты с Уинфри. Нам предстояло написать несколько статей; к тому же нам нужно было найти ответы на две давние загадки. Зимой того же года я навестил Уинфри в доме его родителей, в городке Лонгбоут-Ки, Флорида, где нам наконец-то удалось решить проблему топологии свиткообразной волны в ее наиболее общей форме. Нам удалось доказать, что произвольное количество колец из свитка могут быть разнообразными способами связаны, скручены и заузлены между собой при условии, что они удовлетворяют единственному уравнению: число зацеплений ленты каждого кольца плюс все его взаимные связи с другими кольцами должно в сумме равняться нулю. В противном случае соответствующая структура оказывалась недопустимой. С некоторой долей иронии мы называли это принципом исключения[220], по аналогии с принципом исключения Паули в химии, который ограничивает атомную структуру элементов и дает начало картинам, которые мы наблюдаем в периодической таблице элементов. Для нас «элементами» были разрешенные конфигурации колец из свитка и узлов, расположенные в порядке возрастания сложности. «Водородом» было для нас отдельно взятое кольцо из свитка, в котором не было ни узлов, ни скручиваний. «Гелием» было два кольца, связанные друг с другом и скрученные однократно.
Спустя несколько месяцев мы провели лето в Лос-Аламосской национальной лаборатории, работая на самом быстродействующем суперкомпьютере в мире. (Это был Cray-1, но местные творцы атомной бомбы называли его более зловещим именем «X-машина».) С помощью Мела Пруитта, местного специалиста по компьютерной графике, мы наконец-то построили картины скрученного кольца из свитка, которые позволили нам раскрыть секреты неуступчивой сингулярности, которая, как нам было известно на основе абстрактных математических рассуждений, должна проходить через его центр. Увидев эти картины, мы с Уинфри раскрыли рты от удивления. Это было все равно что встретить давнего друга по переписке из какой-то другой страны, которого мы никогда не видели, но образ которого пытались нарисовать в своем воображении.
На протяжении двадцати лет, которые прошли с того времени, в научном мире отмечался всплеск интереса к спиральным и свиткообразным волнам. За это время химики выполнили с помощью компьютерной видеозаписи гораздо более тщательные измерения BZ-реакции и обнаружили, что спирали не всегда вращаются вокруг одной точки – зачастую они отклоняются в стороны[221]. Внутренний кончик спиральной волны может вращаться по кругу, или вырисовывать картины цветков, или даже хаотически блуждать. Математики с жадностью накинулись на эти результаты, объясняя их как нестабильности, являющиеся следствием нелинейной динамики.
Роль Священного Грааля во всем этом продолжает оставаться за сердечными аритмиями[222]. Многие кардиологи и физиологи экспериментальным путем подтвердили, что спиральные и свиткообразные волны могут вызывать тахикардию, хотя путь к вентрикулярной фибрилляции остается противоречивым. Наиболее вероятными подозреваемыми являются блуждающая спиральная волна, разделение одной спирали на несколько и возрастание нестабильности трехмерной свиткообразной волны. Несколько групп кардиологов и математиков упорно работают над решением этой проблемы, и истинный виновник этих опасных недугов вскоре может быть выявлен.
В течение всего этого времени Уинфри неустанно занимался свиткообразными волнами и пытался выяснить их возможную роль в возникновении сердечных аритмий. Его воображение по-прежнему будоражили образы узлов и связей; но теперь его в большей степени интересовала динамика узлов и связей, а не их фиксированная геометрия, которую мы исследовали вместе. Опираясь на огромную мощь современных суперкомпьютеров, он вместе со своими студентами смоделировал движение связанных и заузленных свиткообразных волн[223]. Их нити неистово болтаются из стороны в сторону и скручиваются между собой, когда волны от части одной нити ударяют друг о друга. Тем не менее, многие из этих структур оказываются на удивление устойчивыми: у них не наблюдается самопроизвольное развязывание. В этом смысле они фундаментальны, подобно элементарным частицам в квантовой физике. Они представляют собой базовые локализованные решения уравнений поля для возбудимой среды[224]. Они должны иметь важное значение для нас. Именно поэтому Уинфри никогда не откажется от их изучения.
Он также пытался найти (но еще не нашел) простой закон, который мог бы объяснить, как именно эти нити плавно скользят и скручиваются. Даже если бы удалось найти элегантный ответ на этот вопрос, никто не знает, имеет ли он какое-то значение для выявления причин аритмии. До сих пор в сердечной мышце удалось обнаружить только самую элементарную из свиткообразных волн: прямой свиток без узлов и связей. Не теряя надежды на получение снимка своих неуловимых частиц, Уинфри вернулся в лабораторию и изобрел новый вид оптической томографии[225] для BZ-реакции. Его работы получили заслуженное признание в научном мире: в 1984 г. он получил премию Фонда Макартура, присуждаемую за гениальные научные открытия; в 1989 г. – премию по кардиологии Einthoven Award; а в 2000 г. – премию имени Норберта Винера по прикладной математике. Его сын Эрик – компьютерный вундеркинд подросткового возраста во времена, когда я познакомился с ним – также недавно получил премию Фонда Макартура (между прочим, они стали первой в истории парой «отец и сын», ставшей лауреатами этой престижной премии). Что же касается вклада Уинфри в изучение связанных осцилляторов и синхронизма, то именно он продемонстрировал нам чудеса, которые случаются, когда осцилляторам предоставляется возможность свободно взаимодействовать между собой в пространстве; именно он показал нам, как они самоорганизуются вокруг точек, в которых отсутствует время, продуцируя спирали в двух измерениях и свиткообразные волны в трех измерениях. В предстоящие годы ученые приступят к изучению еще более общей формы соединения, когда осцилляторы оказываются связаны не только со своими соседями в обычном пространстве, но и со своими соседями в одном загадочном и мощном виде сети – виде, который соединяет всех нас лишь шестью степенями связности.
Глава 9. Сети тесного мира
В пьесе «Шесть степеней отчуждения»[226], написанной Джоном Гуэйром в 1990 г., персонаж по имени Уиза размышляет о загадках жизни в тесном мире:
Я прочитала где-то, что всех жителей этой планеты отделяют друг от друга, в смысле взаимного родства, лишь шестеро других людей. Шесть степеней отчуждения. Например, между мною и любым другим жителем этой планеты. Им может быть президент США. Гондольер в Венеции. Можно назвать имя любого другого человека. Я пришла к выводу, что A) такая близость чрезвычайно приятна мне и B) такая близость сродни пресловутой китайской пытке водой. Поскольку, чтобы установить родственную связь с кем-либо из людей, мне нужно всего-навсего найти именно тех шестерых, через кого осуществляется эта связь. Ими вовсе не обязательно должны быть какие-то знаменитости. Это может быть кто угодно. Индеец из бразильских джунглей. Коренной житель архипелага Тьерра Дель Фуего. Эскимос. Одним словом, я связана родственными узами с любым человеком на этой планете посредством цепочки из шести людей. Потрясающая мысль: каждый человек – это новая дверь, которая открывает вам путь в другие миры.
Через несколько лет, одним хмурым зимним днем в Ридинге, Пенсильвания, трое не вполне трезвых студентов колледжа Allbright College, считавших себя побратимами, пришли примерно к такому же заключению поистине космического масштаба[227]: каждый американский киноактер может быть связан с Кевином Бейконом (снимавшимся в таких фильмах, как Footloose («Свободные») и Tremors («Дрожь земли»)) посредством не более четырех «рукопожатий». Например, Чарли Чаплин связан с Кевином Бейконом через три «рукопожатия». Чарли Чаплин был режиссером фильма «Графиня из Гонконга», в котором снимался Марлон Брандо[228], который снимался в фильме «Апокалипсис сегодня» с Лоуренсом Фишберном (в роли Тайрона «Чистого» Миллера), который, в свою очередь, снимался в фильме «Брокер» с Кевином Бейконом в роли Джека Кэйси. Решив, что им пришла в голову гениальная идея, студенты-побратимы обратились к организаторам популярного в то время на MTV ток-шоу Jon Stewart Show с предложением провести соответствующую игру в прямом эфире. Их идея показалась организаторам ток-шоу интересной, и они получили приглашение провести один раунд такой игры. Игра вызвала большой интерес публики и впоследствии перекинулась на интернет. Особый ажиотаж она вызвала у студентов колледжей. Сайт Oracle of Bacon, который автоматически вычисляет кратчайшую возможную цепочку киноактеров между Кевином Бейконом и каким-либо другим киноактером, был выбран журналом Time как один из десяти лучших сайтов 1996 г. На пике своей популярности он получал до 20 тысяч обращений в сутки.
Вскоре последовали другие салонные игры. В 1999 г. в Германии «шесть степеней Марлона Брандо» породили неожиданное увлечение у немцев, когда читатели еженедельной газеты Die Zeit попытались установить связь между одним из поставщиков фалафели в Берлине и его любимым киноактером посредством самой короткой цепочки их общих знакомых. А когда разгорелся скандал с Моникой Левински, газета The New York Times опубликовала схему знаменитых людей, укладывающуюся в «шесть степеней Моники»[229]; в этой схеме фигурировали Билл Клинтон, Саддам Хусейн, О. Джей Симпсон и, конечно же, Кевин Бейкон.
Какой бы глупостью это ни казалось, за всем этим скрывается кое-что серьезное. Представляя собою некое сообщество людей, мы увлеклись выявлением связей между отдельными людьми в этом сообществе. Мы пытаемся извлечь какой-то смысл из сложных сетевых структур, которые в последнее время начали все больше проникать в нашу жизнь. Охват этих сетей поистине огромен, однако мы имеем лишь весьма приблизительное представление об их структуре, а их функционирование приводит нас в замешательство. Мы с трудом представляем себе возможные последствия глобализации, нас сбивает с толку интернет, нас беспокоит непредсказуемое поведение финансовых рынков, на нас наводит ужас деятельность террористической группировки Аль-Каида. Иногда наши страхи, к счастью, оказываются несостоятельными: пресловутая «проблема 2000-го года» не вызвала катастрофических последствий, которые предрекали пессимисты. Однако 10 августа 1996 г. сбой двух линий электропередачи в штате Орегон привел к отсутствию электричества в 11 штатах и двух канадских провинциях[230]; это стало следствием возникновения целой последовательности сбоев, когда один сбой автоматически вызывал другой, который, в свою очередь, вызывал третий сбой и т. д. В результате примерно 7 миллионов человек, проживающих на этих территориях, в течение 16 часов были лишены возможности пользоваться электричеством. Компьютерный «червь» Love Bug – на сегодняшний день одна из самых тяжелых по своим последствиям компьютерных атак – в течение всего дня 4 мая 2000 г. «гулял» по интернету и причинил ущерб на сумму несколько миллиардов долларов.
Сама наука все больше внимания уделяет изучению сложных сетевых структур. Например, с завершением проекта «геном человека» основное внимание молекулярной биологии переключилось с открытия новых генов на анализ генных структур[231]. Традиционно геном рассматривался как образец, или шаблон для конструирования белков, которые, в свою очередь, исполняют роль строительных блоков для клеточных структур и молекулярных машин, важных для жизни. Но сегодня мы рассматриваем эту метафору как слишком статичную и слишком линейную, как пережиток ментальности «сборочных конвейеров» предыдущей эпохи. Некоторые из самых важных генов (так называемые регуляторные гены) служат кодом для белков, которые влияют на деятельность других генов, включая или выключая их, формируя цепи и контуры обратной связи. Сейчас геном все меньше напоминает нам шаблон и все больше – компьютер. Функционирование такого компьютера – и его неправильную работу в случае перерождения клеток – мы не сможем расшифровать до тех пор, пока не уясним логику генных сетей.
Аналогично, во всех остальных областях науки исследователи лишь сейчас начинают выявлять структуру сложных сетей, начиная с нервных систем простых организмов и заканчивая взаимно перекрывающимися составами советов директоров крупнейших компаний в Соединенных Штатах. Величина таких сетей поражает воображение: 30 тысяч генов в геноме, миллионы видов в наземной экосистеме, миллиарды людей на Земле, и в один прекрасный день – 10 миллиардов страниц в интернете. Однако проблема оказывается еще более запутанной, чем та, которую я только что изобразил. Даже если бы в нашем распоряжении оказалась исчерпывающая схема структуры любой из этих систем – перечень всех ее узлов (генов, видов, людей) и соединений между ними, – мы все равно не знали бы, что именно нам нужно вычислить. Вся эта масса данных оказалась бы просто неподъемной для нас. До тех пор пока мы не поймем, что именно мы хотим найти, мы не сможем раскрыть секреты сложных сетей.
Сейчас мы нуждаемся главным образом в новых идеях: простых организующих принципах, которые помогали бы нам ориентироваться в этой трясине данных. Если исходить из того, что универсальным ориентиром нам может служить история, то самые проникающие идеи можно позаимствовать из математики. В силу самой своей природы математическое изучение сетей позволяет преодолеть обычные границы между разными дисциплинами. Теория сетей занимается изучением связей между отдельными элементами сетей, картин их взаимодействия. Конкретная природа этих элементов игнорируется в расчете на то, что таким путем удастся выявить более глубокие закономерности. Рассматривая любую систему взаимосвязанных компонентов, специалист по теории сетей должен видеть абстрактную картину точек, соединенных линиями. Для него имеет значение лишь эта картина, архитектура взаимосвязей, а не особенности точек как таковых. Если рассматривать сети именно с такой точки зрения, то многие из них, не имеющие, на первый взгляд, ничего общего между собой, начинают выглядеть одинаково.
В 1998 г. мы вместе с моим бывшим студентом Дунканом Уоттсом опубликовали результаты первого сравнительного изучения сложных сетей именно с такой точки зрения[232]. Выполненный нами анализ показал, что какой бы ни была подлинная природа узлов в сети – идет ли речь о соединенных в сеть нейронах или компьютерах, людях или электростанциях, – каждый элемент сети соединяется со всеми остальными элементами короткой цепочкой посредников. Иными словами, феномен под названием «тесный мир» представляет собой нечто гораздо большее, чем особенность социальной жизни людей: это объединяющая характеристика разнообразных сетей, встречающихся как в природе, так и в технологии. С тех пор не только мы, но и многие другие ученые начали изучать влияние взаимосвязей, существующих в тесном мире, на распространение инфекционных заболеваний, устойчивость интернета к сбоям в отдельных его частях, устойчивость экосистем, а также влияние этих взаимосвязей на множество других явлений.
Изучение сложных сетей является лишь очередным логическим шагом в движении к более отдаленной цели: созданию теории самообразующегося порядка[233]. На пути к этой цели мы уже добились определенных успехов, перейдя от изучения самой примитивной формы координированного поведения – пары идентичных ритмов в синхронизме – к попыткам описания гораздо более сложных «хореографий» во времени и пространстве: от двух осцилляторов к большим совокупностям осцилляторов, от идентичных осцилляторов к разнообразным осцилляторам, от ритмов к хаосу, от глобальной связности к локальным взаимодействиям в пространстве. Следующий шаг заключается в переходе к более общим видам организации соединений в сети, когда соседство элементов сети определяется в неком абстрактном смысле, то есть вовсе не обязательно в географическом смысле. Точно так же как пространственная связность между нелинейными системами породила новую форму коллективного поведения – самоподдерживающиеся спиральные и свиткообразные волны, – которая не может возникнуть в более простых геометриях, сложные сети порождают еще более сложные формы самоорганизации. Вообще говоря, сложные сети являются естественной средой обитания для самых загадочных форм группового поведения, известных науке в наши дни. Если когда-нибудь наступит день, когда нам станет понятен механизм возникновения жизни в результате сложного взаимодействия неживых элементов (химических веществ) или механизм возникновения сознания в результате сложного взаимодействия миллиардов нейронов, каждый из которых не обладает сознанием, то такое понимание, несомненно, будет основываться на всесторонне проработанной теории сложных сетей. Пока же такая теория остается для нас тайной за семью печатями. Хорошо, однако, уже то, что нам известно, с чего следует начинать. Нам нужно уяснить принципы сетевой архитектуры и понять, как природа сплетает свои запутанные сети. Неудивительно, что в ходе нашего первого посещения этой территории мы продвигались по маршруту синхронизма, начав с истории изучения сверчков, стрекочущих в унисон.
Начав осенью 1994 г. свою преподавательскую деятельность в Корнельском университете, в качестве одной из своих первых служебных обязанностей я должен был организовывать проведение ритуала, известного как квалификационный экзамен. Четверо профессоров сидели бок о бок в аудитории, где, кроме них, находился лишь экзаменуемый студент, который стоял у доски, вооружившись кусочком мела. В течение получаса мы донимали беднягу вопросами по математике. Предполагалось, что экзаменуемый отвечает на вопросы с ходу, без предварительного обдумывания. Если у экзменаторов складывалось впечатление, что ответ на очередной вопрос не вызывает у студента затруднений, его прерывали и задавали следующий вопрос. Вопросы задавались в порядке возрастания их сложности. Задавая вопросы, профессора пытались нащупать «слабые места» экзаменуемого.
Я задавал вопросы по прикладной математике. За день нам предстояло проэкзаменовать четырех или пятерых студентов. Одним из экзаменуемых был Дункан Уоттс, долговязый австралиец с уверенной улыбкой и развитой мускулатурой, что делало его похожим на «зеленый берет». Он поступил в Корнельский университет из-за своего увлечения теорией хаоса. У себя дома, в Австралии, он считался весьма авторитетным физиком. Он был одним из лучших студентов во время учебы в Академии вооруженных сил и претендентом на получение стипендии, учрежденной фондом Rhodes Scholarship (эта стипендия считается одной из самых престижных в мире).
Председатель экзаменационной комиссии кивнул головой в мою сторону: «Профессор Строгац задаст первый вопрос». Я попросил Дункана решить уравнение Лапласа в серповидной области, воспользовавшись методом конформного отображения. Другие профессора с недоумением воззрились на меня. Им было очевидно, что эта тема не изучается в университетских курсах математики (будучи начинающим преподавателем, я не знал этого). Дункан несколько секунд бормотал что-то себе под нос (с трудом разобрав несколько слов, я понял, что во время учебы в колледже он не изучал конформные отображения). Осознав свою оплошность, я предложил ему ответить на другой вопрос, но одному из моих коллег, по-видимому, понравилось, как накаляется атмосфера в аудитории, и он предложил Дункану ответить именно на первый вопрос.
Шаг за шагом, Дункан нащупывал свой путь к решению этой задачи (разумеется, ему не был известен стандартный способ ее решения). Тем не менее, непонятно как, но он все же нашел путь к правильному ответу (возможно, это удалось ему исключительно за счет огромного волевого усилия). Думаю, он сильно волновался, но каких-либо внешних проявлений волнения не было заметно. Более того, он производил впечатление человека, которого увлекает сам процесс поиска решения.
Такая реакция Дункана на необычную ситуацию сыграла для меня решающую роль несколько месяцев спустя, когда я обратил внимание на его фотографию, прикрепленную к двери его кабинета. На этой фотографии Дункан был запечатлен висящим на кончиках пальцев на краю Пойнт-Перпендикуляр, морской скалы высотой около 70 метров в Австралии. Я сразу же понял, что нашел для себя еще одного достойного аспиранта.
Мы начали с подбора подходящей темы для написания диссертации. Может быть, остановиться на какой-либо проблеме, связанной с использованием хаотических лазеров для обеспечения информационной безопасности в системах связи, проблеме, связанной с осцилляциями в сосудах лимфатической системы? Но ни лазеры, ни лимфатическая система не вызывали у нас прилива энтузиазма. После полугодового пребывания в состоянии неопределенности мы оба испытывали большое разочарование.
Однажды весной 1995 г. я читал на факультете нейробиологии и поведения лекцию по синхронизации светлячков; на этом факультете мой коллега Рон Хой вместе со своими студентами занимался изучением системы связи у сверчков. В ходе лекции я подчеркнул, сколь незначительно до сих пор поле соприкосновения между теорией синхронизации и какими-либо реальными биологическими примерами, и поинтересовался, не могут ли они оказать нам какую-либо помощь в этом отношении, организовав, например, проведение ряда экспериментов по коллективному поведению сверчков. Один из младших научных работников, Тим Форрест, проявил интерес к моему предложению. Во время учебы в колледже он считался одним из лучших знатоков математики, а сейчас слыл экспертом по биоакустике. Он сказал мне, что охотно занялся бы изучением того, как в местах большого скопления сверчков самцы сверчков синхронизируют свое стрекотание, стремясь обратить на себя внимание самок[234]. Он предложил изловить некоторое количество этих «животных» (именно так он называл их) и вызвался организовать проведение ряда экспериментов с целью проверки наших математических моделей и, возможно, даже поиска каких-то новых моделей.
Дункану понравилась идея такого проекта, и он начал регулярно общаться с Тимом по вопросам подготовки к реализации этого проекта. Между тем мы размышляли над экспериментами, которые нам хотелось бы провести. Мы мечтали о том, чтобы «измерить» одновременно трели всех сверчков и отследить, буквально секунда за секундой, их продвижение в сторону синхронизма: ничего подобного еще не было сделано в отношении светлячков, клеток-задатчиков циркадных ритмов или какой-либо другой совокупности биологических осцилляторов. Еще одной нашей мечтой было протестировать фазовый переход, существование которого было уже давно предсказано моделями Уинфри и Курамото, но никогда еще не проверялось эмпирическим путем. Наш план в этом отношении заключался в том, чтобы систематически изменять связь между сверчками. При низком уровне связи, когда они практически не способны услышать друг друга, разница в их естественных частотах стрекотания должна мешать установлению синхронизма между ними. Подобно бегунам на дорожке стадиона, которые не могут все время бежать плотной группой, поскольку их физические способности слишком различны, быстрые сверчки должны опережать медленных в случае, если уровень связи очень низок. В таком случае стрекотание большого сообщества сверчков будет напоминать какофонию. С другой стороны, если бы нам удалось постепенно повышать степень взаимного влияния сверчков (все больше повышая громкость их стрекотания или каким-либо образом повышая чувствительность сверчков), то, согласно теории Уинфри – Курамото, мы смогли бы выявить критический уровень связи, при котором наблюдается резкий переход сверчков к синхронному стрекотанию.
Даже если бы нам не удалось обнаружить фазовый переход, в любом случае мы надеялись зафиксировать, как возникает взаимная синхронизация в реальной популяции сверчков. Эксперименты, которые проводил когда-то один из бывших консультантов Тима, показали, что отдельно взятый сверчок приспосабливается к сигналам, выдаваемым другими сверчками. Таким образом, если он услышит такой сигнал непосредственно перед тем, как он собрался застрекотать, он переводит стрелку своих внутренних часов вперед. Или, если он услышит стрекотание сразу же после своего собственного стрекотания (а это указывает на то, что он несколько поторопился со своим стрекотанием), его нервная система автоматически скорректирует его внутренние часы таким образом, чтобы в следующий раз он начал стрекотать несколько позже. (В этом отношении нервная система сверчка действует во многом подобно маятниковым часам Гюйгенса, когда отрицательная обратная связь вносит такие коррективы, которые способствуют достижению синхронизма.) Если бы мы могли оценить количественно ритм стрекотания многих отдельных сверчков в изоляции и описать, каким образом каждый отдельный сверчок изменяет свой ритм в ответ на стрекотание других сверчков, наши математики наверняка смогли бы предсказать коллективное поведение сверчков в достаточно широком диапазоне условий.
Тим сконструировал весьма оригинальные маленькие звукоизолированные коробочки, в каждую из которых предполагалось поместить одного сверчка. Каждая такая коробочка была снабжена миниатюрным микрофоном для передачи стрекотания обитателя данной коробочки другим сверчкам, а также миниатюрным громкоговорителем, чтобы было слышно сигналы, поступающие извне. Эта весьма изощренная экспериментальная конструкция позволяла нам управлять степенью взаимодействия между сверчками: мы могли усиливать стрекотание или ослаблять его до уровня едва слышного шепота. Более того, мы могли даже устанавливать связи между конкретными сверчками, то есть определять, какой сверчок какого слышит, соединяя коробочки между собой в те или иные конфигурации.
Размышляя над теми или иными возможностями, Дункан начал обдумывать вопрос связей в более общем плане. В полевых условиях было невозможно утверждать наверняка, какие сверчки каких слышат. Сторонний наблюдатель мог лишь сказать, что сверчки расселись по деревьям, но в том, как именно они расселись, невозможно было бы уловить какую-то закономерность. Например, самец мог бы обращать внимание лишь на ближайших своих соперников. Возможно, он прислушивался бы ко всем остальным сверчкам. Невозможно было бы даже понять, какую роль в этом случае играет система связей между сверчками; может быть, они синхронизировали бы свое стрекотание в любом случае.
Однажды в январе 1996 г. Дункан заглянул ко мне в кабинет и высказал оригинальную идею, которая касалась еще одного изменения направления его исследований. Размышляя над вопросом связей между сверчками, он внезапно вспомнил о том, что однажды сказал его отец: о том, что лишь шесть рукопожатий отделяют каждого из нас от президента Соединенных Штатов. Дункан подумал: если теория шести рукопожатий действительно верна, то что она может означать с точки зрения связей, существующих в нашем мире в целом?
Я ответил ему, что, конечно же, слышал о шести степенях отчуждения. Шесть степеней отчуждения – это скрытая математическая проблема, которую еще предстоит сформулировать.
Но это еще не все, продолжал Дункан. Эти шесть степеней отчуждения связаны с тем, что мы пытаемся выяснить в отношении сверчков. Допустим, некая сеть биологических осцилляторов связана между собой таким образом, что каждый из них находится на расстоянии пары-тройки рукопожатий от остальных. Влияет ли такая система связей на то, как именно такая группа будет достигать синхронизации? Будет ли она синхронизироваться очень быстро и очень легко по причине наличия столь тесных связей в этой группе? Будет ли в такой системе по-прежнему наблюдаться фазовый переход по мере увеличения степени связности, подобно тому, как это происходит в модели Курамото?
Вряд ли кто-либо сможет сейчас ответить на эти вопросы, сказал я ему. Ведь мы никогда не занимались изучением таких видов сетей. В том-то и дело, ответил Дункан. Специалисты по теории осцилляторов всегда исходили из того, что их сети являются идеально регулярными и столь же замечательно упорядоченными, как атомы в кристаллической решетке. Уинфри, Пескин и Курамото строили модели с максимальной связностью, когда каждый осциллятор связан со всеми остальными осцилляторами. Более высокая степень связности в сетях вообще недостижима, и нет сетевой архитектуры, более простой, чем эта. В последующих усовершенствованиях этих моделей математики укладывали осцилляторы рядом друг с другом, формируя длинную цепь, или размещали их симметрично по углам квадратной сетки или трехмерной решетки. Использование регулярных геометрий, подобных этим, представлялось вполне оправданным для задач, проистекающих из физики и техники: например, в массивах переходов Джозефсона сверхпроводящие осцилляторы намеренно укладываются аккуратными рядами и столбцами. Даже в сплошной среде, наподобие мензурки с реакцией Белоусова-Жаботинского, система связей по-прежнему остается регулярной: химические вещества диффундируют в первую очередь в своих ближайших соседей.
С другой стороны, для сложного переплетения нейронов в мозге, где клетки в значительной степени связаны со своими ближайшими соседями, но, помимо этого, связаны длинными волокнами с клетками, находящимися на другом конце того же полушария мозга, использование структур, наподобие сетки и пространственной решетки, заведомо неприемлемо. Более подходящая модель геометрии должна предусматривать использование более свободного типа структуры, некоторого сочетания порядка и случайности, с местными соединениями, объединенными в кластеры, и хаотическими глобальными соединениями. Возможно, то же самое относится и к сверчкам. Возможно, существует целый новый класс осцилляторных сетей, которые еще предстоит проанализировать.
Идея Дункана поначалу не вызвала во мне энтузиазма. Связанные осцилляторы на регулярных сетках уже представляли собой задачу огромной сложности; эти же новые, гибридные сети были бы просто безнадежны. Впрочем, мне не хотелось с ходу отвергать инициативу Дункана.
Когда мы приступили к детальному обсуждению его идеи, я уловил ее глубинный, более универсальный смысл. Те же соображения обязательно должны были возникнуть при рассмотрении других видов динамических систем, а не только связанных осцилляторов. Когда нелинейные элементы оказываются связанными в гигантские сети, схема соединений элементов в таких сетях обязательно имеет значение. Вот базовый принцип: структура всегда влияет на функцию. Структура социальных сетей влияет на степень распространения информации и заболеваний; структура электросетей влияет на устойчивость систем передачи электроэнергии. То же самое относится к видам в экосистемах, компаниям на глобальном рынке, каскадам реакций ферментов в живых клетках. Структура сети должна оказывать огромное влияние на ее динамику.
Тем не менее, теоретики, как правило, предпочитали уклоняться от изучения проблемы связей, бросаясь из одной крайности в другую. Они принимали за основу либо нереалистично регулярную структуру, либо совершенно хаотичную систему связей. Например, в 1969 г. биолог-теоретик Стюарт Кауффман предложил идеализированную модель генных сетей[235], в которой каждый ген регулировался продуктами двух других, выбранных произвольно из остального генома, причем это объяснялось не тем, что он полагал, будто его модель соответствует действительности, а тем, что в 1969 г. никто не знал, как именно организованы связи в генных сетях. Предположение о произвольности связей равноценно гаданию на кофейной гуще: принятие нулевой гипотезы в отсутствие какой-либо информации. Эпидемиологи-математики зачастую прибегали к такой же аппроксимации: они предполагали, что инфицированные люди взаимодействовали случайным образом с людьми, восприимчивыми к инфекции, несмотря на то что в случае определенных видов заболеваний (особенно в случае заболеваний, передаваемых половым путем) сеть контактов никоим образом не может носить случайный характер. Подобно регулярным сетям, произвольные сети являются весьма соблазнительными идеализациями. Теоретикам они кажутся привлекательными не из-за их правдоподобия, а потому, что анализировать такие сети проще всего.
К 1996 г. осталось не так уж много ученых, готовых верить в правдоподобие регулярных и произвольных сетей. У каждого, кто пользовался интернетом, возникало ощущение, что интернет – это, с одной стороны, некая упорядоченная структура, а с другой стороны, некий запутанный лабиринт, где веб-страницы связаны главным образом с другими веб-страницами по той же теме, но время от времени способны вывести вас на маршруты, не имеющие ничего общего с вашими первоначальными намерениями. СПИД и вирус Эбола продемонстрировали, что инфекционные заболевания распространяются главным образом в изолированных и сплоченных сообществах, но также разносятся по всему миру на самолетах. Таким образом, не было ничего удивительного в том, что Дункан предложил отправиться на эту неизведанную территорию, в мир, находящийся на грани порядка и случайности.
Мы приступили к попыткам представить в наглядном виде сеть, находящуюся посреди порядка и случайности. Простейший подход заключался в том, чтобы взять регулярную сеть и плавно преобразовать ее в произвольную (что-то наподобие голливудского спецэффекта плавного преобразования одного лица в другое, как в известном видеоклипе Майкла Джексона «Черное или белое» (Black or White)). Например, выполнив такое преобразование примерно наполовину, мы могли бы выбрать половину первоначальных связей в какой-либо сети, удалить их и заменить их одинаковым количеством связей, разбросанных между произвольными парами узлов. В результирующей сети будет такое же количество связей, что и в исходной, однако теперь сеть будет наполовину произвольной и наполовину регулярной. Или, вместо того чтобы переустанавливать половину связей, мы могли бы выбрать любое другое соотношение между регулярными и произвольными связями. Задавая любую желаемую нами долю переустанавливаемых связей, мы могли бы постепенно настраивать свою сеть от 0 (первоначальная, исходная сеть, в которой количество переустановленных связей равняется 0) до 1 (полностью переустановленные, произвольные связи). Все, что находится между этими полюсами, представляло бы собой настраиваемое сочетание того и другого.
В качестве конкретного примера рассмотрим 6 миллиардов узлов, расположенных по окружности. Эти узлы могут представлять компьютеры, нейроны, людей – то есть компоненты, из которых состоит рассматриваемая нами сеть. Предположим, что каждый узел сети соединяется с 1000 соседних узлов: 500 узлов слева и 500 узлов справа. Это чрезвычайно упорядоченная сеть, идеально симметричная кольцевая структура. На этой стадии коэффициент настройки равен 0 (регулярный край спектра). Теперь начнем выполнять преобразование, медленно поворачивая ручку настройки от 0 в сторону 1. Несколько связей оторвутся от мест своего крепления и переустановятся случайным образом в других местах. По мере продолжения этой метаморфозы все большее и большее количество связей будет переустанавливаться случайным образом в других местах, нарушая таким образом симметрию исходной кольцевой структуры, в то же время оставляя неизменной какую-то ее часть.
Для количественной оценки изменяющиеся архитектуры этой сети мы ввели два статистических показателя. Один из них, «средняя длина пути», формализует интуитивное представление о степенях отчуждения. Чтобы вычислить этот показатель, нужно взять какую-либо пару узлов и подсчитать количество связей в кратчайшей цепочке между ними, а затем повторить эту процедуру для всех остальных пар узлов и усреднить результирующие длины цепочек.
В случае первоначальной кольцевой структуры такое вычисление не представляет серьезной проблемы, особенно если вооборазить такую сеть как некое общество, где каждый узел представляет какого-то человека, а связи представляют дружеские отношения между людьми. Этот воображаемый мир («кольцевой мир») несколько похож на наш реальный мир в том отношении, что количество элементов в том и другом случае равняется 6 миллиардам. Однако во всех остальных отношениях эти два мира совершенно непохожи. Обитатели нашего воображаемого мира вынуждены жить в условиях очень жестких ограничений: они должны стоять плечом к плечу, расположившись по огромному кругу. Допустим, каждый человек обязан дружить с 500 людьми, расположенными по правую руку от него, и с 500 людьми, расположенными по левую руку, – и ни с кем больше. В таком мире не было бы шести степеней отчуждения – в нем было бы целых 3 миллиона степеней отчуждения!
Чтобы понять, почему так, рассмотрим длину пути между вами и самым отдаленным от вас («диаметрально противоположным») человеком в кольце. Чтобы добраться до него по кратчайшей цепочке, вы должны послать какой-то сигнал своему 500-му другу (то есть ближайшему к «диаметрально противоположному» вам человеку в кольце). Кратчайшим путем от него до интересующего вас человека опять-таки будет его 500-й друг, и так далее, каждый раз совершая прыжок длиною в очередные 500 человек. Таким образом, чтобы совершить все это путешествие, придется выполнить 6 миллионов «прыжков» (3 миллиарда, поделенные на 500 шагов). Впрочем, в данном случае речь идет о самом удаленном от вас человеке. Когда же вам нужно добраться до самой близкой цели – человека, стоящего рядом с вами, – требуется лишь один шаг. Таким образом, в среднем расстояние между вами и «типичным» человеком составляет примерно 3 миллиона рукопожатий, 3 миллиона степеней отчуждения.
На другом конце этого спектра, когда наше преобразование завершено и сеть стала совершенно произвольной, вычисление оказывается столь же простым. Теперь – и это удивительно! – каждый расположен на расстоянии лишь четырех шагов от каждого. Этот удивительный результат объясняется экспоненциальным ростом. В мире случайности, если вам известно 1000 человек (в среднем), а каждому из них также известно 1000 человек, это означает, что существует 1 миллион (= 1000 1000) человек, находящихся на расстоянии двух шагов от вас, 1 миллиард человек, находящихся на расстоянии трех шагов от вас, и 1 триллион – что гораздо больше населения нашей планеты – на расстоянии четырех шагов.
Возникает соблазн экстраполировать такой метод рассуждений на наш реальный мир, объяснив таким образом пресловутые «шесть степеней отчуждения». Но нельзя, поскольку здесь не учитывается то обстоятельство, что реальные отношения дружбы перекрываются между собой: многие из друзей ваших друзей являются также вашими друзьями и поэтому учитываются дважды.
Однако в случае гипотетической сети, которую можно охарактеризовать и как рассеянную (разбросанную), и как совершенно произвольную, указанное вычисление было бы справедливо, поскольку перекрытием отношений дружбы в данном случае можно было бы пренебречь. Когда вы выбираете случайном образом 1000 человек из огромного множества, составляющего 6 миллиардов человек, и то же самое делают все ваши друзья, вероятность перекрытия отношений дружбы составляет лишь 1 шанс из 6 миллионов. Таким образом, двойной счет в данном случае весьма маловероятен. Разумеется, это был бы довольно странный мир, в котором вероятность вашего знакомства с каким-нибудь крестьянином из Гималаев, принцем Уэльским или человеком, проживающим по соседству с вами, была бы одинаковой. Ваши друзья были бы разбросаны по всем континентам и по всем классам общества; они могли бы принадлежать к любой расе и исповедовать любую религию. В мире без перекрывающихся отношений дружбы существование какой-либо социальной структуры, семей или местных сообществ было бы просто невозможно.
Такие доводы подчеркивают важность понимания концепции перекрытия в более общем плане. Средняя величина перекрытия в сети оцеивается с помощью второго статистического показателя. Этот статистический показатель – он назвается «кластеринг» – определяется как вероятность того, что два узла, связанные с каким-либо общим для них узлом, также окажутся связаны друг с другом (или, возвращаясь к нашему примеру с отношениями дружбы между людьми, вероятность того, что друзья некого третьего лица также дружат между собой). Применительно к двум крайним ситуациям, обсуждавшимся выше, можно показать, что кластеринг изменяется от 0,75 (максимально возможная величина) в случае первоначального кольца до исчезающе малой величины, составляющей 1 к 6 миллионам, в случае произвольной сети.
Например, чтобы прийти к случаю, когда кластеринг равняется 0,75, вам нужно исходить из того, что у вас есть практически все те же друзья, что и у человека, являющегося вашим непосредственным соседом в кольце (точнее говоря, 998 из 1000), в результате чего ваше перекрытие с этим, ближайшим к вам человеком, по сути, равняется 1. С другой стороны, с самым отдаленным вашим другом, находящимся от вас на расстоянии 500 шагов в кольце, у вас есть только половина общих друзей (это 499 человек, находящихся между вами и самым отдаленным вашим другом), в результате чего ваше перекрытие с этим самым отдаленным вашим другом равняется 499/1000, или примерно . Для всех остальных ваших друзей, находящихся между ближайшим и самым отдаленным другом, перекрытие плавно изменяется от до 1, что составляет, в среднем, , или 0,75 – упоминавшееся выше значение кластеринга. Далее примерно такие же, но несколько более простые рассуждения мы можем применить для вычисления кластеринга в случае произвольных связей: в этом случае кластеринг равнялся бы 1 к 6 миллионам (попытайтесь доказать это сами). Здесь важно лишь не запутаться в деталях. Принципиальным моментом здесь является то, что, подобно средней длине пути, кластеринг изменяется почти в миллион раз, когда мы преобразуем сеть, переводя ее с одного края спектра в другой.
Несмотря на то что эти два статистических показателя снижаются примерно на один и тот же коэффициент, они отражают принципиально разные аспекты архитектуры сети. Средняя длина пути отражает глобальную структуру; она зависит от способа соединения сети в целом, и ее невозможно оценить с помощью какого-либо локального измерения. Кластеринг отражает локальную структуру; он зависит лишь от способа соединений в типичной «близкой окрестности», межродственных связей среди узлов, соединенных с каким-то общим для них центром. Грубо говоря, средняя длина пути измеряет величину (масштаб) сети. Кластеринг измеряет близость родственных отношений (фигурально выражаясь, степень «кровосмесительности») в сети.
До сих пор основное внимание мы уделяли традиционным краям спектра сетей. Но мы по-прежнему пребываем в неведении относительно того, что происходит в середине этого спектра. Сами по себе края спектра говорят нам лишь о том, что преобразование сети каким-то образом сильно сжимает кольцо и разрушает его кластеры. Нам по-прежнему неизвестно, является ли этот переход постепенным или резким. Ни Дункану, ни мне не было понятно, как решить эту проблему чисто математическими средствами, поэтому мы воспользовались компьютером для моделирования такого преобразования на сетях достаточно большой, но все же вполне обозримой величины, начиная с исходных колец, содержащих 1000 узлов, по 10 связей на каждый узел. Чтобы отобразить в графическом виде структурные изменения на этом среднем уровне, мы представили зависимость средней длины пути и кластеринга от доли связей, которые были произвольно переустановлены.
Полученный результат удивил нас. Даже самая ничтожная доля случайности приводила к колоссальному сокращению сети. Сначала резко снижалась средняя длина пути: при увеличении количества произвольно переустановленных связей лишь на 1 % (это означало, что стала случайной лишь одна из каждых 100 связей) кривая снижалась на 85 % по сравнению со своим первоначальным уровнем. Дальнейшая переустановка связей оказывала лишь минимальное влияние: кривая превращалась практически в горизонтальную линию, пролегающую на низком уровне; это указывало на то, что сеть уже сократилась до минимально возможного размера, как если бы она была полностью произвольной. Между тем изменение кластеринга было весьма несущественным. При увеличении количества произвольно переустановленных связей на 1 % кластеринг снижался лишь на 3 %. Связи изымались из хорошо упорядоченных окружений, однако это не оказывало существенного влияния на кластеринг. Лишь на гораздо более поздней стадии преобразования, гораздо позже резкого сокращения средней длины пути, кластеринг начинал существенно снижаться.
У таких результатов есть интуитивное объяснение. В начале преобразования первые несколько произвольных связей действуют как перемычки – мосты между частями сети, которые в противном случае были бы слишком удалены друг от друга. Их непропорционально сильное влияние является следствием мощного нелинейного эффекта: они не только соединяют друг с другом два узла – они соединяют друг с другом целые миры. Например, мне нравится играть в шахматы в режиме он-лайн в Шахматном клубе интернета, где я подружился с Эмилио, редактором одного из голландских журналов. Благодаря возникновению этой «перемычки» я, конечно, очень сблизился с Эмилио – однако не только с ним, но и с тысячами других граждан Голландии: всеми его друзьями и друзьями этих друзей. И хотя мои собственные друзья даже не подозревают об этом, все они сейчас сблизились с Эмилио и его друзьями – и все это благодаря единственной «перемычке», созданной мною и Эмилио. Один этот мост играет очень важную роль.
В проведенном нами моделировании первые несколько «перемычек» резко сократили величину мира, но оказали весьма незначительное влияние на кластеринг. Из этого следует, что переход к тесному миру практически невозможно заметить на локальном уровне. Если бы вы сами проживали в мире, подвергающемся такому преобразованию, то ничто в вашем ближайшем окружении не говорило бы вам о том, что ваш мир стал маленьким. Количество ваших друзей осталось бы неизменным, а вы сами, возможно, даже не подозревали бы о том, что они могут быть связаны с более широким кругом людей. Человеку, проживающему в таком мире, могло бы казаться, что ему совершенно не угрожает опасность такого тяжелого заболевания, как СПИД – поскольку, например, никто из его половых партнеров не входит в группы повышенного иска, – хотя в действительности такая опасность вполне может подстерегать его в случае появления одной или двух «перемычек».
Самый важный результат такого моделирования заключался в том, что в достаточно широком промежуточном диапазоне переустановленных связей модельные сети были очень кластерированы и, вместе с тем, очень малы. Столь специфическое сочетание было новостью для математики. В традиционных сетях размер и кластеринг идут рука об руку. Произвольные сети малы и плохо кластерированы; напротив, регулярные сети велики и сильно кластерированы. Сети с переустановленными связями умудрялись быть и малыми, и сильно кластерированными одновременно.
Сети с такой парой взаимно противоречивых, на первый взгляд, свойств мы назвали «сетями тесного мира», отдавая дань такому же дуализму, который кажется столь парадоксальным, в связях между людьми: мы движемся в компактных кругах, но в то же время все мы связаны друг с другом на удивление короткими цепочками. Теперь вопрос заключался в следующем: встречается ли столь странная форма сетевой архитектуры в природе, а если встречается, то для чего она может понадобиться?
Наше моделирование показало, что «сети тесного мира» должны иметь широкое распространение в природе, поскольку для этого хватило бы даже очень малой доли «перемычек». Чтобы проверить этот вывод, нам были нужны эмпирические примеры. Найти их оказалось не так-то легко. На любого кандидата нужно было получить исчерпывающую характеристику, схема его связей должна быть известна до последней детали, каждый узел и каждая связь должны быть задокументированы. В противном случае мы не могли бы вычислить кластеринг и среднюю длину пути.
Тогдая вспомнил, что Кьени Бей, одна из студенток, которым я в прошлом году читал курс лекций по теории хаоса, выполнила проект, касающийся энергосистемы западных штатов США. Эта энергосистема представляла собой совокупность из примерно 5000 электростанций, связанных между собой высоковольтными линиями электропередачи, охватывающими штаты к западу от Скалистых гор, а также западные провинции Канады. Кьени и ее консультант Джим Торп поделились своими данными с Дунканом. Эти данные содержали огромный объем подробнейшей информации, которая была очень важна с инженерной точки зрения – максимально допустимое напряжение на линиях электропередачи, классификация узлов как трансформаторов, подстанций или генераторов, – однако мы проигнорировали все за исключением схемы соединений между узлами этой сети. Таким образом, эта сеть превратилась в абстрактную схему из точек, соединенных линиями. Чтобы проверить, является ли такая схема сетью тесного мира, мы сравнили ее кластеринг и среднюю длину пути с соответствующими показателями для произвольной сети с таким же количеством узлов и связей. Как и предполагалось, реальная сеть оказалась почти так же мала, как произвольная, но гораздо сильнее кластерирована. В частности, ее длина пути оказалась лишь в полтора раза больше, чем у произвольной сети, тогда как ее кластеринг оказался в 16 раз большим.
Решив не ограничивать свои исследования лишь технологическими сетями, мы обратили свои взоры к нервной системе крошечного червя под названием C. elegans[236]. Об этом скромном создании – прозрачная нематода длиной около 1 миллиметра, обитающая в почве – нам известно гораздо больше, чем о каком-либо другом животном, в том числе о мушке-дрозофиле (любимый объект исследований генетиков) и мыши (любимый объект исследований онкологов). Каждая из 959 клеток этого червя исследована на каждой стадии своего развития, начиная с момента ее зарождения и заканчивая смертью. Последовательность всего генома этого червя была установлена еще в 1998 г. Каким бы сложным этот организм ни показался вам, его исследование позволило выявить несколько фундаментальных клеточных процессов, начиная с отмирания клетки и заканчивая выработкой сигналов клетками и управлением нервными путями, причем все эти процессы поначалу были открыты биологами, специализирующимися на изучении червей, а впоследствии оказалось, что исследование этих процессов важно и для человека. Именно поэтому червю C. elegans уделяется столь большое внимание. Возможно, это именно тот простейший организм, многие биологические процессы в котором очень важны для жизни человека.
С точки зрения нашего исследования, привлекательность червя C. elegans заключалась в том, что его нервная система была полностью представлена в схематическом виде[237] – достоинство, которым не обладал ни один другой организм. Вообще говоря, схема соединений его 302 нейронов имелась на дискете в цифровом виде[238]. Как и в случае с энергосистемой, мы пренебрегли подробностями, которые могли показаться самыми существенными специалисту по изучению червей. Мы рассматривали все нейроны как идентичные друг другу (хотя биологи различают 118 разных классов нейронов) и считали два нейрона соединенными между собой, если они были связаны друг с другом либо синапсом (химическое соединение), либо нексусом (электрическое соединение).
Результирующая абстрактная сеть опять-таки оказалась сетью тесного мира. Средняя длина пути в ней оказалась лишь на 18 % большей, чем средняя длина пути соответствующей произвольной сети, тогда как ее кластеринг оказался в шесть раз большим. Неясно было, что все это означает. Вполне могло быть, что столь короткая средняя длина пути облегчает быструю передачу сигналов в организме этого существа, тогда как высокий кластеринг, возможно, отражает наличие контуров обратной связи и модульной структуры в его нервной системе.
Две радикально разные сети, энергосистема и нервная система: одна из них создана человеком, а другая – результат долгой эволюции. Одна из них относится к числу крупнейших технологических систем в мире и представляет собой обширную сеть синхронизированных электрогенераторов, связанных электрическими кабелями, общая протяженность которых составляет сотни тысяч миль. Другая сеть – микроскопическая ажурная ткань, результат миллионов лет естественного отбора, тончайшее кружево, вплетенное в организм червя. Тем не менее, несмотря на указанные различия, их архитектуры на удивление схожи между собой. Обе эти сети почти так же малы, как это только возможно. Обе чрезвычайно структурированы и, несомненно, не произвольны. Правда, наши аппроксимации не позволяли правильно трактовать эти результаты: архитектура обеих этих сетей тесного мира могла не иметь никакого отношения к выполняемым ими функциям и, следовательно, могла не иметь в данном случае никакого значения. Только время могло бы дать ответ на этот вопрос. Но на тот момент совпадение казалось весьма соблазнительным.
Социальные сети также представлялись нам похожими на тесные миры, хотя нам не были известны какие-либо свидетельства, помимо ряда разрозненных фактов, которые подтверждали бы это впечатление. В частности, нас интересовало, основывается ли высказывание о «шести степенях отчуждения» на надежных данных, которые можно было бы проверить. Возможно, это было не чем иным, как досужим вымыслом. (Сам Джон Гуэйр не мог вспомнить, что – или кто – является источником такого высказывания[239]. Он полагал, что оно могло исходить от Гульельмо Маркони, изобретателя беспроволочного телеграфа, который еще в конце XIX столетия выдвинул идею радиосвязи, позволившую создать на нашей планете сеть телеграфных станций. Эта сеть обеспечила жителей Земли надежной беспроводной связью.) Не располагая реальными данными, мы, разумеется, не могли быть уверены в широкой применимости нашей теории (хотя очень надеялись на это). Применима ли она к сетям, состоящим из живых людей, а не только к энергосистемам и нервным системам?
Одна из первых подсказок появилась в результате нашего общения с Джоэлом Коэном, биологом-математиком из университета Рокфеллера, который использовал теорию сетей для моделирования структуры сетей экологического питания. Когда в разговоре с ним я упомянул о том, что мы пытаемся получить какую-то дополнительную информацию об эмпирической основе представлений о «шести степенях отчуждения», он сказал: «Вы, наверное, имеете в виду задачу тесного мира»[240] и посоветовал нам ознакомиться с классической работой Стенли Милгрэма[241].
В 1967 г. Милгрэм, специалист по социальной психологии из Гарвардского университета, разработал эксперимент, цель которого заключалась в том, чтобы выяснить, на что в большей степени похоже американское общество: на некий массив разобщенных островков или на единую гигантскую взаимосвязанную паутину. Этот эксперимент был призван проследить линию общих знакомых между двумя случайно выбранными людьми в Соединенных Штатах. Милгрэм вручил папку (красиво оформленный буклет, что-то наподобие паспорта с поставленной на нем печатью Гарвардского университета) некому человеку, который должен был стать первым звеном в цепочке знакомств, и попросил его отправить эту папку определенному человеку (так называемому «целевому лицу»), но с одним условием: «Если вы лично не знакомы с этим человеком, не пытайтесь обратиться к нему напрямую. Вместо этого отправьте эту папку по почте кому-то из своих личных знакомых, вероятность знакомства которого с целевым лицом, как вам кажется, должна быть выше, чем у вас. Подчеркиваю, это должен быть лично знакомый вам человек». Именно таким образом эта папка должна была проделать свой путь через всю страну, от одного знакомого к другому, оказавшись в конечном счете у целевого лица. Чтобы привести в действие всю эту цепочку знакомств, Милгрэм решил воспользоваться услугами волонтеров из Среднего Запада США по причинам, которые впоследствии он объяснил так: «В качестве первого приближения мы полагали, что лучше всего было бы выбрать первое звено в наших цепочках из какого-либо отдаленного города, например Уичито, Канзас, или Омаха, Небраска (для человека, проживающего в Кэмбридже, эти города казались очень далекими от него, расположенными где-то на Великих равнинах или бог знает где еще)». Исследование, проводившееся в штате Небраска, охватило 160 человек, которые играли роль начального звена в соответствующих цепочках, причем все они пытались выйти в конечном счете на одно и то же целевое лицо, некого биржевого брокера, проживавшего в Шарон, Массачусетс, и работавшего в Бостоне. В то время Милгрэм не был уверен в том, что хотя бы какая-то из таких цепочек будет пройдена от начала до конца, а если и будет пройдена, то сколько шагов понадобится для этого. «Когда я спросил у одного из своих приятелей – между прочим, весьма неглупого человека, – сколько, на его взгляд, шагов понадобится для этого, он ответил, что для того, чтобы папка Милгрэма смогла добраться из Небраски до Шарона, понадобится не менее 100 промежуточных лиц», – написал Милгрэм.
Результат эксперимента оказался таким: после прохождения через руки лишь 2–10 промежуточных знакомых 44 папки успешно добрались до целевого лица. Среднее количество «посредников» составило 5, что соответствует 6 звеньям в цепочке. В поп-культуре именно это число сейчас называют «шестью степенями отчуждения». (Другие цепочки, использовавшиеся в ходе эксперимента, оказались незавершенными, что объясняется нежеланием людей, оказавшихся волей случая участниками этого эксперимента, заниматься подобными «пустяками».)
Какими бы интригующими ни казались эти результаты, они считаются неубедительными[242]. Цепочки, задействованные в ходе этого эксперимента, вполне могли быть не самыми короткими из возможных, поэтому оценить истинную среднюю длину пути не представляется возможным. Она даже могла бы оказаться бесконечной: в Соединенных Штатах вполне можно найти пары людей, которые обитают в «социальных вселенных», между которыми отсутствуют какие бы то ни было социальные связи. А в отсутствие дополнительной информации о локальной связности в такой сети невозможно вычислить ее кластеринг. Чтобы получить ответы на эти, более детальные вопросы, нам нужно было найти социальную сеть, все характеристики которой – буквально каждый узел и каждая связь – были бы известны нам.
Сами математики в шутку инициировали такое перечисление, поставив в центр своей вселенной Пала Эрдёша, выдающегося венгерского математика[243], который был до невероятности беспомощен во всех аспектах повседневной жизни – поговаривают, он не умел даже намазать масло на кусок хлеба. Тем не менее Эрдёш был одним из самых плодовитых и изобретательных математических умов XX столетия. Злоупотребляя крепким кофе и амфетаминами, бесконечно странствуя по миру со своим неизменным, видавшим виды чемоданчиком, он появлялся у вас на пороге и заявлял: «Я открыт для любых идей». Это означало, что он готов работать вместе с вами над любой нерешенной математической проблемой.
Эрдёш сотрудничал со столь многими людьми, что большой популярностью среди математиков пользовалась игра на вычисление вашего «числа Эрдёша»[244]. Если вы принадлежите к числу немногих избранных, кто опубликовал статьи в соавторстве с Эрдёшем (а таковых насчитывалось 507 человек), то ваше число Эрдёша равняется 1. Если вы не опубликовали ни одной статьи в соавторстве с самим Эрдёшем, но опубликовали статьи в соавторстве с тем, кому приходилось публиковать статьи в соавторстве с самим Эрдёшем, то ваше число Эрдёша равняется 2. Математики шутили, что если вы чего-то стоите как математик, то ваше число Эрдёша не должно быть меньше 2. Существует даже сайт, на котором перечислены все, кому посчастливилось иметь число Эрдёша, равное 1 или 2. Для лиц, у которых число Эрдёша равно 3, списка не существует. Если бы кто-то смог составить такой список, то он оказался бы чрезвычайно большим. (Я тоже попал бы в него.) К сожалению, не располагая полным списком, мы не могли бы вычислить среднюю длину пути или кластеринг для этой социальной сети. Человеческие сети оказались дьявольски неуловимы.
Каждый раз, когда мы пытались описать свою работу людям, далеким от науки, они неизменно вспоминали игру «в Кевина Бейкона». Мы всегда высмеивали ее как нечто, не достойное серьезного обсуждения. Но теперь мы увидели в этом интересную возможность, выход из нашего затруднительного положения. Такая сеть из киноактеров могла служить суррогатом социальной сети. Вместо людей, которых соединяют друг с другом отношения дружбы, такая сеть состояла бы из киноактеров, которых соединяют друг с другом фильмы, в которых они снимались. Считается, что два актера, которые снимались в одном и том же фильме, «отчуждены» друг от друга на один шаг, и т. д. Такая сеть, хоть и кажется несколько эксцентричной, обладает тем преимуществом, что ее характеристики могут быть известны нам во всей их полноте. В интернет-базе данных фильмов (Internet Movie Database) содержатся сведения об исполнителях ролей практически всех художественных фильмов, которые когда-либо выходили на экраны. С другой стороны, величина этой базы данных сама по себе может стать серьезной проблемой: по состоянию на апрель 1997 г. она содержала сведения почти о четверти миллиона актеров, поэтому объем соответствующей вычислительной работы оказался бы поистине гигантским. Даже суперкомпьютер Корнельского университета, один из крупнейших в мире, столкнулся бы с серьезными проблемами, если бы всю эту информацию ему пришлось хранить в своей памяти.
К счастью, Бретт Тьяден (он же «Оракул Бейкона»[245]), ученый-компьютерщик в университете Вирджинии, уже потратил несколько недель на вычисление кратчайшей цепочки фильмов между любой парой актеров. В ходе этих вычислений он выяснил, что такая сеть обладает интересной глобальной структурой. В ней доминирует одна огромная взаимосвязанная область (получившая название «гигантский компонент»), заключающая в себе 90 % всех актеров, в том числе Кевина Бейкона и всех остальных киноактеров, о которых вам приходилось слышать. Но она также содержит небольшое количество крошечных островков, групп малоизвестных киноактеров, отрезанных от остальной «актерской вселенной» (это могли быть, например, люди, игравшие в одном фильме, который они снимали в актерской школе вместе со своими друзьями, причем ни один из них больше не снимался ни в каком другом фильме).
Воспользовавшись данными, полученными Тьяденом, Дункан подсчитал, что любые два произвольно выбранные киноактера в «гигантском компоненте» отчуждены в среднем 3,65 фильмами – впечатляюще малая величина, если учесть, что в этих фильмах участвуют актеры из многих стран, а сами фильмы относятся к разным жанрам и эпохам, начиная с эпохи немого кино и до настоящего времени. Если бы сеть была полностью произвольной, соответствующее число было бы меньшим, не ненамного: 2,99. Кластеринг, с другой стороны, оказался чрезвычайно большим: 0,79, то есть примерно в 3000 раз больше, чем в случае произвольной сети.
Таким образом, снова проявилась такая же дуальность: короткие цепи и высокий кластеринг, что является признаком сети тесного мира. По какой-то причине – может быть, в силу счастливого стечения обстоятельств, а может быть, в силу каких-то более глубоких причин – все три сети оказались именно тем, что нам требовалось. Каждая из сетей, на которые мы сразу же обратили внимание (а они не были специально отобраны), оказались сетями тесного мира. Такая схожесть была особенно удивительна в свете несопоставимости их размеров и научного происхождения. У нас начало складываться впечатление, что архитектура тесного мира встречается повсеместно.
Между прочим, этот анализ низвел Кевина Бейкона с его пьедестала. Он оказался лишь 669-м в списке киноактеров, имеющих самые многочисленные связи. (Этот показатель измерялся средним отчуждением киноактера от всех остальных в этом «гигантском компоненте». Согласно этому показателю, центром голливудской «вселенной» является Род Стайгер. Как ни странно, вторым и третьим номерами оказались Кристофер Ли и Дональд Плисенз, известные главным образом своими ролями во второсортных фильмах ужасов.
После того как мы продемонстрировали, что сети тесного мира не только существуют в реальности, но даже могут встречаться повсеместно, нам оставалось ответить на исходный вопрос Дункана: будут ли осцилляторы, связанные между собой по типу сети тесного мира, синхронизироваться с большей или меньшей готовностью, чем они синхронизировались бы в традиционной регулярной сети? На этот вопрос можно было бы в конце концов ответить, по крайней мере теоретически, с помощью разработанной ранее модели преобразования. Каждый узел в такой сети теперь представлял бы некий самоподдерживающийся осциллятор – которым мог бы быть стрекочущий сверчок, мерцающий светлячок, нейрон-задатчик ритма, – а связи в такой сети отражали бы соответствующую картину взаимодействий.
Одна из простейших моделей такого рода была к тому времени уже изучена Курамото и его коллегами Хидецугу Сакагути и Сигеру Синомото[246]. Они рассматривали те же виды осцилляторов, что и в оригинальной модели Курамото: фазовые осцилляторы с распределенными естественными частотами, связанные между собой силой притяжения синусоидальной формы. (Представьте себе помещение, в котором собралось множество людей. Каждый из присутствующих пытается аплодировать в унисон, то ускоряя, то замедляя свое хлопанье в зависимости от временного сдвига между его собственным хлопаньем и коллективными аплодисментами. Поскольку скорость коллективного хлопанья постоянно меняется в диапазоне от размеренного до неистового, людям, собравшимся в этом помещении, все время приходится подравнивать скорости своего хлопанья к текущей скорости коллективных аплодисментов.) Но, в отличие от первоначальной модели Курамото, которая предполагала, что осцилляторы соединены между собой по принципу «каждый с каждым», на этот раз японские физики предполагали кольцевой принцип соединения осцилляторов, согласно которому каждый осциллятор соединялся с фиксированным количеством соседей по обе стороны от себя. (Представьте себе арену, наподобие футбольного стадиона, где каждый болельщик слышит лишь тех, кто сидит рядом с ним.) Курамото и его коллеги обнаружили, что кольцо разнородных осцилляторов с трудом достигает всеобщего синхронизма; вообще говоря, такое кольцо фрагментируется на множество небольших групп соседей, причем члены одной группы осциллируют с одной и той же средней скоростью, однако в разных группах эта скорость оказывается разной. Разные сектора стадиона в этом случае хлопали бы с разными скоростями.
Мы хотели выяснить, приведет ли переустановка связей в кольце к повышению его способности синхронизироваться. Как и в ходе предыдущих сеансов моделирования, мы преобразовывали кольцевую структуру в сторону произвольной сети, превращая некоторые из ее первоначальных соединений в произвольные. (Это подобно тому, как если бы у некоторых из болельщиков были мобильные телефоны, с помощью которых они могли бы слышать аплодисменты, раздающиеся в других секторах стадиона, но неслышные для их соседей по сектору.) Мы обнаружили, что крошечный процент таких «перемычек»[247] – порядка 1–2 процентов в кольце из 1000 осцилляторов – резко изменял динамику системы в целом. Система самопроизвольно переходила от локального несовпадения к глобальному консенсусу. Теперь все осцилляторы приводили свои ритмы к единой компромиссной частоте.
Хотя нам не удавалось объяснить эти результаты с математической точки зрения, напрашивалось интуитивное объяснение: «перемычки» создавали каналы быстродействующей связи, благодаря чему взаимное влияние быстро распространялось по всей популяции. Разумеется, такого же эффекта можно было достичь путем непосредственного соединения осцилляторов по принципу «каждый с каждым», но при этом существенно возрастало бы количество соединений. Совершенно очевидно, что архитектура тесного мира позволяла добиться глобальной координации гораздо эффективнее.
К тому же архитектура тесного мира, возможно, оказалась бы предпочтительным вариантом в других случаях, когда приходится обеспечивать быстрое продвижение информации по чрезвычайно сложной системе. Следующий случай, который мы решили изучить, представляет собой классическую задачу компьютерной науки, которая называется «проблемой классификации плотности для одномерных двоичных автоматов»[248]. Попробуем сформулировать ее более простым языком. Представьте себе кольцо из 1000 лампочек. Каждая из этих лампочек может быть либо включена, либо выключена. На очередном временном шаге каждая из этих лампочек смотрит на трех своих соседей по обе стороны от себя и с помощью некоторого правила (которое еще предстоит определить) решает, в каком состоянии (включена или выключена) ей нужно пребывать в следующем цикле. Задача заключается в том, чтобы разработать правило, которое позволит такой сети решить определенное вычислительное задание. Поначалу это задание кажется до смешного простым: решить, было ли большинство этих лампочек поначалу включено или выключено. Если более половины лампочек было поначалу включено, то предполагается, что повторное выполнение этого правила приведет всю сеть к конечному состоянию, в котором все лампочки включены (и наоборот, если поначалу большинство этих лампочек было выключено, то предполагается, что конечное состояние соответствует всем выключенным лампочкам).
Эта задача оказывается тривиальной при наличии центрального процессора – «всевидящего ока», которое способно контролировать такую систему в целом и определять, было ли большинство лампочек поначалу включено или выключено. Однако нужно учитывать, что в данном случае речь идет о децентрализованной системе. «Всевидящего ока», которое обладало бы глобальным знанием, в этой системе нет. Лампочки страдают близорукостью: по определению, каждая из них может видеть лишь трех своих соседей по левую и по правую сторону от себя. Именно это и делает нашу задачу столь непростой: как может такая система, пользуясь неким локальным правилом, решить задачу, которая по своему характеру является фундаментально глобальной?
В этой задаче ухвачена суть того, что называют коллективным вычислением. Представьте себе колонию муравьев, строящих муравьиную кучу. Каждый из отдельно взятых муравьев не знает, в чем заключается цель работы, выполняемой колонией, но в своей совокупности они ведут себя так, будто обладают разумом. Вспомните концепцию «невидимой руки рынка», принадлежащую Адаму Смиту. Согласно этой концепции, если каждый, выполнив свое «локальное вычисление», решает действовать в своих собственных интересах, то экономика в целом будет двигаться к состоянию, которое оказывается полезным для всех. В нашем случае, то есть в случае «проблемы классификации плотности для одномерных двоичных автоматов», подобные (но гораздо более простые) вопросы могут быть решены в неком идеализированном, хорошо контролируемом окружении. Проблема заключается в том, чтобы придумать правило, которое позволит сети решить, было ли большинство лампочек поначалу включено или выключено, при любой первоначальной конфигурации. Такой сети предоставляется возможность действовать в течение времени, равного ее удвоенной длине. Таким образом, если наша сеть содержит 1000 лампочек, то такой системе предоставляется возможность выполнять свое локальное правило в течение 2000 шагов, после чего она должна принять решение (вынести свой вердикт).
Никому до сих пор не удалось найти правило, которое срабатывало бы каждый раз. Мировой рекорд поставило правило, которое позволяло получить правильный результат примерно в 82 % случаев – то есть оно правильно классифицировало примерно 82 % всех исходных условий как «большинство лампочек включено» или «большинство лампочек выключено», уложившись в заданное время. Первое правило, которое могло бы показаться вам подходящим для проверки – «правило большинства», согласно которому каждая лампочка подражает тому, что делает большинство ее соседей, – совершенно неработоспособно. Сеть замыкается в неком «полосатом» состоянии, в котором блоки включенных смежных лампочек перемежаются с блоками выключенных лампочек. Такой результат совершенно неприемлем для нас, как неприемлемо жюри суда присяжных, которое неспособно вынести вердикт по причине разделения мнений. Предполагается, что такая сеть должна сойтись к единодушному вердикту, когда все лампочки либо включены, либо выключены.
Мы с Дунканом предположили, что сеть тесного мира, составленная из лампочек[249], должна решить эту задачу более эффективно, чем первоначальная кольцевая структура. Превращение небольшого числа связей в произвольные «перемычки» должно предоставить возможность удаленным лампочкам быстрее общаться между собой, что, вероятно, предотвратит застревание в «полосатом» состоянии. Мы изучили действие «правила большинства» в кольцевых сетях с разными объемами произвольной переустановки связей. Как и ожидалось, когда объем произвольной переустановки связей был очень незначительным, «правило большинства» по-прежнему не срабатывало: полученная система была неотличима от первоначального кольца и в очередной раз скатывалась в тупиковое «полосатое» состояние. Когда мы увеличили объем переустановленных связей, какое-то время функционирование сети оставалось плохим, но затем, после достижения определенного порога, резко улучшалось. Это происходило примерно на том этапе, когда от каждой лампочки исходила одна «перемычка», в среднем. В этом режиме «правило большинства» начало работать блестяще, правильно классифицируя примерно 88 % всех первоначальных конфигураций. Другими словами, довольно примитивное правило («правило большинства») в случае его применения к эффективной архитектуре (тесный мир) позволило достичь результатов, которые превзошли мировой рекорд.
В такой сети самопроизвольно вырабатывалась способность к вычислению после внесения даже незначительных изменений в схему соединений этой сети. Это позволяет сделать вывод о том, что использование архитектуры тесного мира может оказаться весьма эффективным способом решения других задач коллективного вычисления – способом, который придает огромную дополнительную силу даже простейшим локальным правилам. Возникает даже соблазм предположить, что процесс эволюции мог использовать эту архитектуру при формировании нервных систем живых организмов.
Важность системы связей тесного мира оказывается еще более очевидной при рассмотрении процессов распространения инфекций. Все, что может распространяться – инфекционные заболевания[250], компьютерные вирусы, идеи, слухи и т. п., – будет распространяться гораздо эффективнее и быстрее в тесном мире. Менее очевидным моментом является то, что буквально нескольких «перемычек» может оказаться достаточно для того, чтобы создать тесный мир.
Необычайная эффективность «перемычек» была трагически проиллюстрирована распространением СПИД[251] в Северной Америке, подстегнутым, как полагают, так называемым «нулевым пациентом», неразборчивым в своих половых связях франкоговорящим канадским стюардом, который летал в самолетах по всему миру и был завсегдатаем саун в Сан-Франциско, Лос-Анджелесе, Ванкувере, Торонто и Нью-Йорке. По меньшей мере 40 из 248 мужчин, у которых был диагностирован СПИД, вступали в половые связи с ним или с одним из его предыдущих партнеров.