Физика и жизнь. Законы природы: от кухни до космоса Черски Элен

Я помню, как впервые наблюдала за работой стеклодувов во время семейной поездки на остров Уайт, расположенный в проливе Ла-Манш неподалеку от побережья графства Хемпшир. Мне тогда было восемь лет. Я зачарованно смотрела на гладкие шарики расплавленного, сверкающего и пузырящегося стекла, постоянно меняющего одну луковицеобразную форму на другую. Меня буквально оттаскивали за руку от этого восхитительного зрелища. Между тем я могла бы целый день наблюдать за волшебством превращения расплавленного стекла в вазы, кувшины, чаши и т. п. Прошло много лет, прежде чем у меня появилась возможность еще раз понаблюдать за работой стеклодувов. Одним промозглым утром в этом году я в сопровождении своего кузена посетила каменный сарайчик, где нам продемонстрировали секреты магии, которой занимаются стеклодувы.

Действо началось с показа емкости с расплавленным стеклом, которая стояла в небольшой печи и испускала ярко-оранжевый свет, указывающий на то, что температура стекла достигла внушительной величины – 1080 . Надев на руки кевларовые перчатки, мы послушно окунули длинные стальные стержни в емкость с расплавленным стеклом и несколько раз провернули стержни в руках. По мере такого проворачивания расплавленное стекло, обладающее консистенцией меда, наматывалось на конец стержня. Впрочем, это была самая легкая часть работы. Все остальное оказалось гораздо труднее. Выдувание стекла похоже на очень осторожное уговаривание, причем существуют три его основные формы, которые мы могли применить. Нагрев стекла приводит к его размягчению. Удерживая расплавленное стекло на весу, вы позволяете силе земного притяжения вытянуть его вниз без вашего непосредственного участия. А если стальной стержень полый, вы можете выдувать из расплавленного стекла пузыри.

Мы опробовали по очереди каждый из трех способов. В работе с расплавленным стеклом меня больше всего восхитило то, как быстро изменяется его природа. При извлечении из печи капли расплавленного стекла вы должны продолжать вращать стальной стержень, так как действительно имеете дело с жидкой субстанцией: прекратите вращение, и капля стекла просто сорвется на пол. Через пару минут мы раскатали стеклянный шарик на металлическом рабочем столе, при этом у нас сложилось впечатление, что стекло приобрело консистенцию пластилина. Еще через три минуты, постукивая этим шариком по металлическому столу, мы могли услышать звук «дзынь», который обычно слышим, когда постукиваем металлической чайной ложечкой по стеклянному стакану. Замечательная особенность стекла – возможность работать с ним в расплавленном состоянии, пользуясь такими свойствами, как плавность и криволинейность форм, которые можно создавать из жидких материалов. Твердый холодный кусок стекла – всего-навсего жидкость, которая когда-то внезапно застыла как заколдованный сказочный персонаж.

Специфические свойства стекла обусловлены особенностями движения его атомов по отношению друг к другу. Самая распространенная форма стекла (именно с ней мы экспериментировали в стеклодувной мастерской) на основе так называемой натровой извести. Такое стекло состоит главным образом из кремнезема (двуокись кремния SiO2, которая составляет основу песка) с вкраплениями натрия, кальция и алюминия. Отличительная особенность стекла – вместо атомов, занимающих строго определенные места в регулярной кристаллической решетке, его атомы хаотически перемешаны между собой. Каждый атом связан с соседними атомами, и между ними не так уж много свободного пространства. Когда стекло нагревается, атомы раскачиваются более энергично и несколько расходятся в стороны, а поскольку изначально они не находились в строго определенных позициях, то без проблем скользят относительно друг друга. Расплавленное стекло, которое мы доставали из печи на концах стальных стержней, состояло из атомов, получивших большой запас тепловой энергии, что позволяло им легко скользить относительно друг друга под действием силы земного притяжения. Но по мере охлаждения стекла подвижность его атомов снижалась, они сближались и жидкое стекло становилось более вязким.

Особенность расплавленного стекла заключается в том, что, когда оно остывает, атомам не хватает времени, чтобы занять строго определенные места (как в лотке для яиц) и образовать регулярную структуру. Стекло затвердевает, когда его атомы становятся слишком пассивными, чтобы продолжать двигаться относительно друг друга. Трудно точно сказать, где в действительности пролегает граница между жидким и твердым состоянием.

Первое задание заключалось в изготовлении «побрякушки». Это означало, что нам предстоит выдуть стеклянный пузырь, а затем наблюдать за тем, как мастер прикрепит к нему колечко из расплавленного стекла. Выдуть стеклянный пузырь оказалось не так-то легко: мои щеки потом ныли так, словно мне пришлось надувать чрезвычайно неподатливый воздушный шар. Самый сложный момент наступает в конце выдувания, когда от стального стержня нужно отделить оставшуюся часть стекла. Вы вытягиваете и формуете стекло так, чтобы в месте, где собираетесь отделить стеклянный пузырь от стального стержня, оставалась лишь тонкая шейка. Затем немного пропиливаете ее, чтобы создать в ней мельчайшие трещины. После этого переносите стеклянный пузырь на так называемый отбивочный стол и слегка постукиваете по стальному стержню, в результате чего стеклянный пузырь отделяется от него. Выдутые нами стеклянные пузыри превосходно отделялись до тех пор, пока мы не добрались до последнего из них: сделанные нами трещины оказались настолько глубокими, что отбивать пузырь не пришлось – он сам отвалился от стального стержня, упал на бетонный пол и подскочил. Дважды! Мастер быстро подхватил его на лету. Но этот хрупкий стеклнный шарик подскочил после удара о бетонный пол. Можно не сомневаться, что если бы он упал на пол примерно через минуту или чуть позже, когда еще немного охладился бы, то разбился бы вдребезги.

Это было для нас наглядным уроком по изучению свойств стекла. То, как ведут себя его атомы, зависит от температуры стекла. Когда оно нагрето до высокой температуры, атомы свободно скользят относительно друг друга. Если охладить стекло настолько, что оно перестанет быть липким, его атомы уплотнятся и перестроятся таким образом, что стеклянный шарик, упав на бетонный пол, может отскочить от него. Если стекло охладить еще больше, атомы жестко зафиксируются на своих местах. Если какой-либо из этих атомов слегка сместить с занимаемого места, в хрупком стекле образуется трещина и оно может разлететься на мелкие острые кусочки.

Стекло – удивительный материал. Оно заключает в себе пластическую прелесть жидкости, при этом вам не нужно беспокоиться о том, куда она потечет. Оно имеет атомарную структуру жидкости – будучи весьма дезорганизованной субстанцией, – но в то же время все признаки твердого тела. Способность отскакивать от твердых поверхностей – один из таких признаков: упругостью обладают твердые тела, но не жидкости. И вы можете видеть последствия наличия подобной структуры, наблюдая за поведением материала при изменениях температуры.

Наверное, настало время развенчать некоторые мифы, касающиеся старых стеклянных окон. Иногда говорят, что трехсотлетние стеклянные окна толще внизу, чем вверху, потому что со временем стекло «стекает» вниз. Это не так: стекло не жидкость и потому не может течь куда бы то ни было. Дело в том, что эти оконные стекла изготавливались весьма своеобразным способом. Шарик расплавленного стекла подхватывали стальным прутом, который очень быстро вращался. В процессе вращения жидкое стекло растекалось в стороны, образуя плоский диск[58]. Диск охлаждался, и затем из него вырезали оконное стекло. Недостаток метода состоял в том, что ближе к центру диск получался толще. Поэтому ромбообразные оконные стекла вырезали таким образом, чтобы утолщение оказывалось на одном из концов, а стекло чаще всего вставляли в раму так, чтобы утолщенный конец находился внизу (это способствовало стеканию дождевых капель с окна). То есть стекло отнюдь не «стекало» вниз, образовывая утолщение. Утолщение находилось внизу изначально!

Нашим стеклянным шарикам не позволили охладиться сразу же и поместили на ночь в печь для того, чтобы их температура снижалась постепенно, в течение всей ночи, пока не сравняется к утру с комнатной. Дело в том, что в первый момент отвердевания стекла позиции его атомов не будут строго фиксированными. Если нагреть такое стекло, позиции атомов несколько изменятся, даже если температура нагрева будет недостаточной для перехода стекла из твердого состояния в жидкое. То же самое происходит при охлаждении стеклянных шариков: позиции атомов несколько меняются. Помещая стеклянные шарики в печь на ночь, мы создаем условия, чтобы это небольшое изменение позиций атомов произошло медленно и равномерно по всей структуре. При быстром и неравномерном протекании процесса несбалансированные внутренние силы разрушили бы стекло. Повторю еще раз: эти дополнительные внутренние напряжения – результат действия очень простого принципа, который гласит, что позиции атомов могут быть фиксированными, но расстояния между соседними атомами таковыми не являются. При нагреве стекло почти всегда расширяется.

У мира цифровых измерительных устройств масса преимуществ, но есть и один несомненный недостаток: мы утратили связь с тем, что измерения означают в действительности. Одна из самых печальных потерь – стеклянный термометр, важнейший измерительный прибор в научных лабораториях и в быту на протяжении двух с половиной столетий. Вы все еще можете купить его в аптеке. Я по-прежнему пользуюсь такими термометрами в своей лаборатории, однако во многих других местах их вытеснили цифровые аналоги. На смену блестящей полоске ртути, которую я помню с детства, пришел подкрашенный спирт, но современная версия стеклянного термометра остается, по сути, такой же, как прибор, изобретенный Фаренгейтом в 1709 году, – узкий стеклянный стержень с еще более узкой трубкой внутри, пролегающей по всей его длине. На нижнем конце она расширяется, превращаясь в пузырек, служащий резервуаром для жидкости. Поместите этот конец термометра во что-либо – ванну, наполненную водой, себе под мышку, в море – и наблюдайте за процессом, сколь элегантным, столь и простым. Температура любого объекта непосредственно связана с величиной тепловой энергии, которой он обладает. В жидкостях и твердых телах тепловая энергия проявляется в виде колебаний атомов и молекул. Если термометр поместить в горячую ванну, то его холодное стекло будет окружено горячей водой. Молекулы воды движутся быстрее и, наталкиваясь на атомы стекла, придают им дополнительную энергию, заставляющую их также убыстряться. Этот процесс называется теплопроводностью. Таким образом, когда вы помещаете термометр в ванну с горячей водой, тепловая энергия передается стеклу. Атомы стекла никуда не уходят, а просто «ерзают» на месте, колеблясь из стороны в сторону. Температура стекла и будет показателем интенсивности этого «ерзания»: стекло нагревается. Затем его атомы начинают интенсивнее взаимодействовать с жидким спиртом, атомы которого, в свою очередь, тоже начинают колебаться быстрее. Это первая часть: пузырек термометра нагревается до тех пор, пока его температура не сравняется с температурой окружающей среды.

Когда атомы твердого тела в результате нагрева колеблются быстрее, они расталкивают – совсем немного – соседние атомы. Стекло при нагревании расширяется, потому что его атомам, колеблющимся энергичнее, чем прежде, требуется больше пространства. Но молекулы спирта при нагревании разбегаются в разные стороны на гораздо большие расстояния: при повышении температуры на одну и ту же величину спирт расширяется примерно в тридцать раз больше, чем стекло. Теперь спирт в пузырьке термометра занимает большее пространство, и единственное место, куда он может устремляться при расширении, – это трубка термометра. По мере роста интенсивности движения молекул спирта жидкость поднимается вверх по трубке термометра. Высота ее поднятия напрямую зависит от тепловой энергии молекул спирта, что позволяет проградуировать термометр в соответствии с величиной тепловой энергии, которой обладает жидкость. Элегантно и просто! Когда жидкость в пузырьке термометра охлаждается, спирт занимает меньший объем, поскольку движение его молекул замедляется. Когда жидкость в пузырьке термометра нагревается, спирт занимает больший объем, так как его молекулы движутся энергичнее. Таким образом, показания стеклянного термометра позволяют нам оценивать энергию соударений атомов жидкости, содержащейся в пузырьке термометра.

При нагревании различные материалы расширяются по-разному. Вот почему нам легче открыть крышку, слишком плотно сидящую на банке с вареньем, поместив ее под струю горячей водой из крана. Под воздействием горячей воды происходит расширение и стеклянной банки, и металлической крышки, но металл расширяется в значительно большей степени, чем стекло. Когда крышка расширится, снять ее с банки гораздо легче. Разность расширения стеклянной банки и металлической крышки оценить на глаз практически невозможно, но разность усилий, требуемых до и после использования горячей воды, вы оцените без проблем.

Как правило, твердые тела при нагревании расширяются меньше, чем жидкости. Расширение составляет лишь ничтожную долю от общего объема, но этого достаточно, чтобы почувствовать разницу. Когда в следующий раз будете пешком переходить дорожный мост, обратите внимание на металлическую полосу, проложенную поперек дороги на обоих концах моста. Она изготовлена из двух сцепленных друг с другом гребнеобразных пластин. Это компенсатор теплового расширения, которым снабжены почти все современные мосты. Его идея заключается в том, что при повышениях и снижениях температуры эти гребнеобразные плстины позволяют материалам, из которых построен мост, расширяться и сжиматься так, чтобы это не приводило к образованию трещин и дальнейшему разрушению моста. Если секции моста расширяются, «пальцы» гребнеобразной пластины сдвигаются (входят в большее взаимное зацепление); если же секции моста сжимаются, «пальцы» гребнеобразной пластины раздвигаются, но это практически незаметно для транспорта и пешеходов.

Принцип действия термометра основан на явлении температурного расширения. В данном случае оно играет положительную роль, но порой может иметь весьма серьезные последствия. Одна из проблем, обусловленных значительными выбросами парниковых газов, – неуклонное повышение уровня Мирового океана. В настоящее время его средние глобальные темпы составляют примерно 3 миллиметра за год, причем с течением времени они ускоряются. По мере таяния ледников вода, которая была сосредоточена на Земле, пополняет воды Мирового океана. Однако таяние ледников – источник примерно половины нынешнего прироста уровня Мирового океана. Другая половина вызвана температурным расширением. В ходе нагрева океаны занимают большее пространство. По текущим оценкам, 90 % всей дополнительной тепловой энергии, которую Земля получает в результате глобального потепления, скапливается в океанах, вследствие чего наблюдается дополнительный подъем уровня Мирового океана.

В августе на Восточно-Антарктическом плато царят тишина и безмолвие. Пока Северное полушарие Земли нежится в лучах летнего солнца, Антарктика погружена во мрак. На гряде высоких гор, которая тянется через все плато, близится конец полярной ночи, длившейся четыре месяца. Здесь выпадает очень мало снега, но толщина ледяного покрова достигает 600 метров. Погода спокойная. Тепловая энергия постоянно вымывается в звездную ночь, но здесь нет солнечного света, который восполнил бы ее убыль. Этот дефицит означает, что вдоль всего высокогорного хребта зимняя температура обычно составляет –80 . Но 10 августа 2010 года температура в этом районе опустилась до рекордных –93,2  – самой низкой из когда-либо регистрируемых на Земле.

В кристаллах льда, из которых состоит снег, тепловая энергия хранится в виде энергии движения (колебания) атомов, находящихся в строго фиксированных позициях в кристаллической решетке твердого льда. Таким образом, ответ на вопрос, до какого уровня может опуститься температура, достаточно прост: до точки, когда движение атомов прекращается полностью. Но даже в самом холодном месте на планете, где нет ни жизни, ни солнечного света, движение существует. Все плато состоит из колеблющихся атомов. Они обладают примерно половиной энергии движения, которую бы имели при температуре, близкой к температуре плавления льда (0 ). Если у атомов воды отобрать всю эту энергию, то температура льда равнялась бы максимально возможной отрицательной температуре. Такая температура называется абсолютным нулем и составляет –273,15 . Она одинакова для любых атомов и любой ситуации и означает полное отсутствие тепловой энергии. В сравнении с абсолютным нулем даже Антарктика в зимний период, несмотря на то что это самое холодное место на планете, кажется довольно теплой. К счастью, замедлить движение атомов до полной остановки очень трудно. Нужна незаурядная изобретательность, чтобы гарантировать, что ничто поблизости не поделится частью своей энергии с образцом, который вы пытаетесь охладить до температуры абсолютного нуля, и не нарушит ваш эксперимент. Немало ученых посвятили жизнь изобретению самых хитроумных способов удаления тепловой энергии из материи. Речь идет о так называемой криогенной технике, позволяющей создавать устройства, которые приносят пользу даже в нашем прекрасном теплом мире, в частности усовершенствованные магниты и приборы для получения изображений внутренних органов в медицине. Однако большинству из нас противна сама мысль о переохлаждении. Вот почему нас так удивляет спокойствие уток, расхаживающих вразвалочку по льду «босиком».

Винчестер – небольшой прелестный городок на юге Англии. Главные его достопримечательности – старинный кафедральный собор и великое множество типично английских кафетериев, где на изящных тарелках подают внушительных размеров ячменные или пшеничные лепешки. Город особенно живописен летом, когда буквально утопает в разнообразных цветах, которые особенно эффектно смотрятся в солнечных лучах, льющихся с ярко-синего неба. Представшая перед вами картина кажется неправдоподобно красивой, как на почтовой открытке. Но однажды я оказалась в Винчестере зимой. В тот день шел снег и небо было хмурым, но город показался мне даже красивее, чем летом. Надев теплые пальто и укутавшись шарфами, мы прошлись из конца в конец по главной улице, пока не достигли небольшой речушки, берега которой были укрыты снегом. Вообще говоря, моя любимая вещь в Винчестере не имеет ничего общего со старинными каменными домами, изящными тарелками с ячменными лепешками или названием города, связанным с королем Артуром. Причина, по которой мы в холодный зимний день совершили неблизкую прогулку через весь город, была гораздо прозаичней: нам хотелось посмотреть на уток. Мы пошли вдоль берега и вскоре заметили их.

Как только мы приблизились, одна из уток, прохаживавшихся по берегу, взмыла в воздух и, перелетев через кромку прибрежного льда, плюхнулась в воду. А затем занялась тем же, чем и другие утки, плававшие в реке: окунула клюв в воду, выпрямила шею и энергично заработала лапами. Время от времени утка потряхивала крыльями, вздымая вокруг себя фонтанчики брызг. Переплывая с места на место, она пыталась найти какой-нибудь корм. Речушка в этом месте довольно мелкая, но быстрая. На ее дне растут водоросли, которыми питаются утки. И птицам не составляло бы большого труда их достать, если бы не быстрое течение. Чтобы оставаться на одном месте, уткам приходилось изо всех сил грести лапами. Речушка была для уток чем-то вроде «беговой дорожки». Наблюдать за утками, пытающимися преодолеть быстрое течение, я могу до бесконечности. Это доставляет мне неописуемое удовольствие. Все они энергично гребут лапами, а их туловища повернуты в одну сторону.

Стоявший рядом с нами маленький мальчик взглянул на свои заснеженные ботинки, затем указал на утку, стоявшую на льду у берега, и задал своей матери вполне логичный вопрос: «Почему у утки не мерзнут лапы?» Мама не ответила, поскольку в этот момент на реке начали разворачиваться весьма интересные события. Одна из уток, непрестанно работающих лапами, подобралась слишком близко к другой утке, что вызвало большой переполох: хлопанье крыльев, тучи брызг и громкое кряканье. Самым смешным было то, что, как только завязалась драка, обе утки прекратили грести и их сразу же начало относить течением. Пока течение делало свое дело, они громко крякали, выражая возмущение. Но внезапно осознав, как далеко оказались от прежнего места, они забыли друг о друге и начали изо всех сил грести лапами, пытаясь туда вернуться. Правда, для этого им потребовалось немало времени.

Вода в реке была очень холодной, но казалось, что утки не чувствуют холода. Дело в том, что у уток сформировался замечательный механизм предотвращения потери тепла через лапы. Здесь нам придется еще раз вспомнить о таком явлении, как теплопередача. Если что-то теплое поместить рядом с чем-то холодным, то более быстрые и энергичные молекулы теплого объекта будут ударяться о молекулы холодного объекта, передавая ему свою энергию. Именно поэтому поток тепла движется от теплых объектов к холодным: малоподвижные молекулы не могут отдавать энергию более быстрым; все должно происходить строго наоборот. Поток энергии от теплых объектов к холодным продолжается до тех пор, пока их температура не уравняется, то есть пока не будет достигнуто состояние равновесия. Реальную проблему для уток представляет кровоток в лапах. Он начинается от сердца, теплового центра утки, где температура крови составляет 40 . Когда эта кровь поступает в конечности, находящиеся под водой, температура которой близка к точке замерзания, возникает большая разница температур. В результате кровь очень быстро отдает свое тепло воде. Затем, когда кровь возвращется в тело утки, теплая утка отдает свое тепло охладившейся крови, вследствие чего ее тело охлаждается. Утки могут несколько ограничивать поток крови к лапам, что препятствует переохлаждению их крови; впрочем, это не решает проблему полностью. Здесь используется гораздо более простой принцип, а именно: чем больше разность температур между двумя соприкасающимися объектами, тем быстрее происходит переток тепла от одного объекта к другому. Этот принцип можно сформулировать иначе: чем ближе между собой температуры двух объектов, тем медленнее происходит переток тепла от одного объекта к другому. Именно это помогает решить проблему переохлаждения уток.

Когда утки продолжали неистово грести, теплая кровь поступала в артерии их лап. Но артерии пролегают рядом с венами, по которым кровь возвращается из лап в тело утки. Кровь в венах имеет пониженную температуру. Молекулы в теплой крови бомбардируют стенки кровеносных сосудов, что приводит в более энергичное движение молекулы в крови с пониженной температурой. Теплая кровь, поступающая в лапы, несколько охлаждается, а кровь, возвращающаяся в тело, немного прогревается. Еще ниже по лапе утки артерии и вены в целом оказываются холоднее, но все же остаются более теплыми, чем вены. Поэтому тепло передается от артерий к венам. При движении крови вниз по лапам утки тепло от ее тела передается в кровь, которая возвращается по венам в тело утки. Но это тепло не передается в самый низ, к лапам. (Речь идет именно о тепле: кровь как таковая поступает и в лапы.) К моменту, когда кровь утки достигнет ее перепончатых лап, ее температура практически сравнивается с температурой воды. Поскольку лапы ненамного теплее воды, они теряют очень мало тепла. А затем, когда кровь течет обратно, к туловищу утки, она прогревается кровью, которая движется от туловища к лапам. Это называется системой теплообмена за счет противотока крови. Такая система – фантастически остроумный способ избежать потерь тепла, опасных для жизни птицы. Позаботившись о том, чтобы тепло не передавалось лапам, организм утки почти полностью исключил возможность потери энергии подобным образом. Следовательно, утки могут спокойно стоять на льду именно потому, что у них всегда холодные лапы. Впрочем, самих уток это не волнует.

В животном мире подобная стратегия развивалась многократно. В хвостах и плавниках дельфинов и черепах похожее расположение кровеносных сосудов. Поэтому в холодной воде они могут поддерживать внутреннюю температуру на требуемом уровне. Похожее расположение кровеносных сосудов и у песцов. Их лапы все время напрямую контактируют со льдом и снегом, однако это не мешает им сохранять тепло в жизненно важных органах. Система очень проста и в то же время чрезвычайно эффективна.

Поскольку у меня и моей спутницы не было столь эффективной системы поддержания тепла в организме, наше пребывание на заснеженном берегу реки было непродолжительным. Понаблюдав еще за несколькими мелкими кратковременными ссорами уток и выразив свое восхищение этими замечательными созданиями (наверняка самыми потешными в мире), мы решили, что самое время подкрепиться фирменными ячменными лепешками в каком-нибудь кафетерии.

После многих тысяч экспериментов, проведенных несколькими поколениями ученых, можно было с уверенностью заявить, что фиксированное направление потока тепла, наверное, один из фундаментальнейших законов физики. Тепло всегда движется от более теплого объекта к более холодному – и никак иначе. Однако этот фундаментальный закон ничего не говорит о скорости передачи тепла. Когда вы наливаете кипящую воду в керамическую кружку, вы можете держаться за ее ручку как угодно долго, нисколько не опасаясь обжечь пальцы, потому что ручка кружки нагревается очень слабо. Но если в кипящую воду погрузить металлическую ложечку и буквально через несколько секунд ухватиться за нее пальцами, то можно испытать весьма неприятные ощущения. Металл очень хорошо проводит тепло, а керамика – плохо (медленно). Это должно означать, что металлы – более эффективные передатчики колебаний от самых энергичных молекул. Однако и металлы, и керамика состоят из атомов, находящихся в жестко фиксированных позициях и способны вибрировать лишь относительно этих позиций. Чем же объясняется разница в теплопроводности?

Керамическая чашка показывает, что происходит, если вы полагаетесь исключительно на передачу атомами своих колебаний. Как было сказано выше, каждый атом подталкивает соседний атом, тот, в свою очередь, подталкивает соседний с ним атом и т. д. Постепенно энергия передается по всей цепочке атомов. Именно поэтому вы можете держаться за ручку керамической кружки, не опасаясь обжечься. Такой метод передачи энергии очень медленный, и прежде чем тепловая энергия достигнет ручки, значительная ее часть рассеется в воздухе. Керамика, как дерево и пластмассы, считается плохим проводником тепла.

Но в металлической ложечке другой способ передачи тепла. В металле, как и в керамике, атомы в основном зафиксированы в определенном положении. Разница между металлом и керамикой заключается в наличии на внешних орбитах каждого атома металла нескольких электронов, довольно слабо связанных со «своим» атомом. Ниже мы рассмотрим подробнее свойства электронов, а сейчас для нас главное то, что они представляют собой крошечные отрицательно заряженные частицы, которые роятся вокруг каждого атома. В керамике они жестко зафиксированы возле своего атома, а в металле соседние атомы могут свободно обмениваться электронами между собой. Таким образом, несмотря на то что положение самих атомов в пространственной решетке металла строго зафиксировано, эти свободные электроны могут перемещаться по всей структуре. Они образуют облако электронов и чрезвычайно мобильны. И именно они обусловливают высокую теплопроводность металлов. Как только вы нальете кипящую воду в керамическую кружку, молекулы воды передадут часть тепловой энергии ее стенкам. Эта энергия медленно распространится по всей кружке за счет соударений между атомами керамики. Но стоит горячей воде коснуться металлической ложечки, она передает колебания своих молекул не только атомам металла, занимающим фиксированные положения, но и облаку электронов в нем. Электроны способны вибрировать и очень быстро перемещаться в структуре металла. Поэтому, когда вы беретесь пальцами за ложечку, крошечные электроны перемещаются по структуре металла, передавая тепловые колебания гораздо быстрее, чем атомы металла. Именно облако электронов так быстро доставляет тепловую энергию к верхнему краю ложечки, прогревая по ходу дела всю ложечку, от одного конца до другого. Среди металлов самая высокая теплопроводность у меди: она проводит тепло в пять раз быстрее стали. Вот почему сковороды и кастрюли иногда изготавливают с медной основой, но стальными ручками. Когда вы готовите еду, желательно, чтобы тепло как можно быстрее и равномернее распределялось по содержимому сковороды или кастрюли, но при этом как можно позже добралось до ручки.

Удостоверившись в существовании атомов, нам хотелось бы понять, в чем их роль в тех или иных ситуациях, что позволило бы уяснить, что же такое тепловая энергия. Зачастую мы представляем себе тепло как некую жидкость, способную перетекать от одного объекта к другому. Но в действительности это энергия движения, которой делятся между собой объекты, вступая в контакт. Температура – непосредственная мера энергии движения. Мы можем контролировать передачу энергии от одних объектов к другим, используя материалы, как хорошо, так и плохо проводящие тепло. Самым характерным примером управления теплом и холодом в нашем обществе может служить система, заметно выделяющаяся на фоне остальных систем своей чрезвычайно важной ролью в нашей жизни. Люди уделяют очень большое внимание обеспечению комфортных условий существования, которые немыслимы без тепла. Но когда речь идет о пище и лекарственных препаратах, нам приходится заботиться о создании оптимальных условий для их хранения, а важнейшее из них – это холод. Так что завершим эту главу рассмотрением холодильников и морозильных камер.

Если нагреть кусочек сыра, его молекулы активизруются, начнут энергичнее двигаться, в системе появится дополнительная энергия, которая может, помимо прочего, расходоваться на поддержание химических реакций. В случае с сыром это означает, что любые микробы, находящиеся на его поверхности, способны привести в действие свои внутренние «фабрики» и инициировать процесс гниения. Для предотвращения этих процессов нужен холод. При охлаждении пищи движение молекул замедляется и энергия, необходимая для активизации микробов, отсутствует. Таким образом, в холодильнике сыр не будет портиться гораздо дольше, чем при комнатной температуре. С помощью хитроумного механизма, положенного в основу работы холодильника, воздух, заключенный внутри устройства, охлаждается за счет нагрева наружного воздуха[59]. Ограничивая степень изменчивости молекул, холод позволяет нам долгое время хранить пищевые продукты в пригодном к употреблению виде.

Только представьте, на что была бы похожа наша жизнь без холодильника. Разумеется, нам пришлось бы забыть о том, что такое мороженое и холодное пиво. Нам пришлось бы гораздо чаще покупать продукты питания, поскольку при комнатной температуре они не могут храниться долго. Нам пришлось бы жить как можно ближе к ферме, если мы употребляем молочные продукты, сыры или мясо, или как можно ближе к морю или реке, если предпочитаем рыбу. Свежие листья салата мы бы ели только в сезон. Конечно, кое-какие продукты можно было бы квасить, сушить, засаливать или консервировать, но свежий помидор в декабре был бы для нас недостижимой мечтой.

Помимо супермаркетов существует обширная сеть складов-холодильников, судов-, поездов- и даже самолетов-рефрижераторов. Голубика, выращенная в Род-Айленде, может поступить в продажу в Калифорнии через неделю после сбора, потому что с того момента, когда она была собрана, и до момента, когда попала на полки супермаркета, она все время хранилась и транспортировалась в охлажденном состоянии. Мы можем не сомневаться в безопасности пищевых продуктов, поскольку на всем их пути до магазина к ним не было доступа тепловой энергии. Это касается не только продуктов питания. Многие лекарственные препараты также следует хранить при определенной температуре. Особенно нуждаются в охлаждении вакцины – подвергать их воздействию тепла совершенно недопустимо. Это становится серьезной проблемой при их доставке в развивающиеся страны. На протяжении всего пути для вакцин приходится поддерживать низкую температуру как в транспортных средствах, так и в местах промежуточного хранения. Холодильники и морозильные камеры у нас на кухнях и в медицинских учреждениях являются последним звеном в неразрывной цепи холода, которая тянется через всю нашу планету, соединяя фермы и города, заводы и потребителей. Когда мы подогреваем молоко, чтобы приготовить горячий шоколад, – это первый случай его нагрева с тех пор, как оно было получено от коровы и пастеризовано. Когда мы его пьем, не опасаясь за свое здоровье, это означает, что мы доверяем всей цепи холода, по которой его доставили к нам. Атомы молока были ограждены от доступа тепловой энергии на всем протяжении этой цепи, что позволило практически полностью исключить вероятность химических реакций, из-за которых оно бы испортилось. Иными словами, чтобы обеспечить пригодность пищевых продуктов к употреблению, нужно максимально оградить их атомы от доступа тепловой энергии.

В следующий раз, бросив кубик льда в какой-либо напиток, понаблюдайте за тем, как он тает, и вообразите микроскопические атомные колебания, отдающие энергию по мере передачи тепла от воды к кубику льда. Хотя вы не можете видеть сами атомы, вы по крайней мере можете наблюдать последствия передачи тепловой энергии от одних объектов к другим.

Глава 7. Чайные ложечки, спирали и спутник

Правила вращения

Пузырьки замечательны тем, что вы всегда знаете, где их искать: наверху. Они либо поднимаются туда, как в аквариуме или плавательном бассейне, либо толпятся наверху, как в бокале с шампанским или кружке с пивом. Пузырьки неизменно прокладывают себе путь на самый верх жидкости, в которой возникают. Но когда в следующий раз будете помешивать ложечкой чай или кофе в чашке, обратите внимание, что при этом происходит на поверхности жидкости. Прежде всего вы заметите воронку, по краям которой жидкость слегка приподнимается, а в центре образуется «отверстие». Что примечательно, пузырьки вращаются вместе с жидкостью у его нижнего края. Наверху жидкости и по краям воронки пузырьков нет. Они скрываются в нижней точке на поверхности и остаются там. Если вы попытаетесь растолкать их в стороны, они все равно вернутся на прежнее место. Если вы создадите новые пузырьки по краям, они по спирали вернутся к центру. Странно.

При помешивании чая ложечкой я оказываю давление на жидкость. Я толкаю ее вперед, но до внутренней стенки чашки жидкости нужно преодолеть очень небольшое расстояние. Если бы я помешивала ложечкой воду в плавательном бассейне, то вода, находящаяся перед ложечкой, двигалась бы вперед и продолжала бы движение до тех пор, пока не смешалась бы с остальной водой в бассейне. Но при помешивании чая этого произойти не может из-за очень ограниченного пространства. Так как боковая поверхность чашки не может никуда сместиться, она отталкивает в обратную сторону жидкость, которая на нее наталкивается, ведь чай не может пройти сквозь чашку и не может двигаться по прямой линии, поэтому начинает движение по кругу вдоль боковой стенки чашки. Но по мере развития процесса жидкость будет собираться у боковой поверхности чашки, поскольку лишь она способна оказывать противодействие жидкости, движущейся в ее сторону. Чай по-прежнему будет стремиться к движению по прямой, но ему придется двигаться по кругу ввиду кривизны боковой стенки чашки.

Это первый урок, касающийся вращения тех или иных объектов. Если бы вы внезапно убрали препятствие, мешающее первоначальному направлению их движения, они продолжили бы его в том направлении, в котором двигались в момент освобождения. Представьте дискобола, вращающегося вокруг собственной оси с диском в руке. После нескольких стремительных оборотов диск движется очень быстро, но по кругу, потому что дискобол надежно сжимает его в руке. В процессе вращения дискоболу приходится тянуть диск к центру вращения. Сила, с которой он тянет диск, направлена к центру вращения и совпадает с линией вытянутой руки дискобола. В момент, когда дискобол выпустит диск, диск начнет двигаться вперед по прямой линии, сохраняя направление и скорость, которые он имел в момент, непосредственно предшествующий раскрытию руки дискобола.

Когда я помешиваю чай, на его поверхности образуется «дыра», потому что каждая его капелька пытается двигаться по прямой, из-за чего наталкивается на боковую стенку чашки, тогда как в середине чашки остается меньше жидкости. Когда я прекращаю помешивать чай, «дыра» в середине чая остается, поскольку жидкость продолжает вращение. По мере замедления вращения стенки чашки оказывают все меньшее обратное давление на жидкость и в конечном счете его становится недостаточно для поддержания вращения жидкости. Жидкость, накопившаяся у боковой поверхности чашки, возвращается к центру. Весь процесс легко проследить в жидкости, которая может свободно двигаться и, следовательно, легко изменять форму.

А в центре кругов, образующихся в результате помешивания, можно наблюдать вращение пузырьков. Их наличие в центре говорит о том, что это место для них самое подходящее. Когда на столе стоит стакан с пивом, пузырьки поднимаются вверх, поскольку пиво выигрывает конкуренцию за право быть как можно ближе ко дну стакана. То же самое можно сказать о чашке чая. Пузырьки собираются в ее середине потому, что чай выигрывает конкуренцию за право двигаться к боковой стенке чашки. Жидкость обладает большей плотностью, чем газ, поэтому газ собирается в освободившемся месте, то есть у центра.

В современном мире масса вращающихся объектов: центрифуги для сушки одежды, дискоболы, карусели и гироскопы. Да и сама Земля вращается вокруг Солнца и одновременно вокруг собственной оси. Вращение – важный вид движения, так как позволяет проделывать множество интересных вещей. Иногда при этом задействуются колоссальные силы и огромные энергии, хотя фактически все остается на месте. Худшее, что может случиться, – вы просто вернетесь в то место, с которого стартовали. Пузырьки в чае – это только начало. Тот же принцип объясняет, почему не следует запускать ракету из Антарктики и как врачи определяют, достаточно ли у вас в крови красных кровяных телец (эритроцитов). Вращение также может играть важную роль в энергетической системе будущего. Все эти вещи проистекают из одного ограничения: отсутствия возможности двигаться по прямой.

Если вы движетесь по кругу, то должно быть нечто такое, что либо тянет, либо толкает вас внутрь, заставляя непрерывно менять направление. Это касается всего, что вращается, независимо от конкретной ситуации. Если убрать эту дополнительную силу, вы продолжите движение по прямой линии. Таким образом, если вы хотите двигаться по кругу, то в вашем распоряжении должно быть что-то, что обеспечит дополнительное усилие, направленное внутрь. Чем быстрее вы вращаетесь, тем большим оно должно быть. Гонки по замкнутому кругу относятся к числу наиболее зрелищных видов спорта: у них такое же достоинство, как и у всего, что вращается. Вы можете достигать огромных скоростей на сравнительно небольшом «пятачке», и зрителям не нужно гоняться за вами, чтобы не упустить деталей. Помещения для гонок в основном делают очень длинными, чтобы гарантировать, что на гонщиков будет воздействовать сила, направленная внутрь и достаточная для того, чтобы гонщика не вынесло за пределы трека. Самые очевидные примеры таких зданий – крытые велотреки. Но когда я впервые оказалась на одном из них, меня поразили не столько его размеры, сколько крутизна.

Всю жизнь я обожала кататься на велосипеде, но этот велотрек не имел ничего общего с моими представлениями о велосипедной езде. Оказавшись на Олимпийском велодроме в Лондоне, я была поражена его ярким освещением, необъятностью размеров и необычной тишиной, царящей внутри. Желающим попробовать себя «в деле» (а я не могла упустить такой шанс) предлагают усесться на невзрачный, «тощий» гоночный велосипед с единственной зубчатой передачей, без тормозов и с самым неудобным сиденьем из тех, на какие мне когда-либо приходилось усаживаться. Когда наконец собралась группа из таких же, как я, новичков, нас вывели на трек. Чтобы усесться на велосипед и поставить ноги на педали, нужно было крепко держаться за поручни трека. Гоночный трек состоит из двух длинных сторон, на которых можно двигаться по прямой, и двух коротких, чрезвычайно крутых (местами крутизна достигала 43°) участков (виражей), – настолько крутых, что создается впечатление, будто перед вами просто отвесная стена. Проехать по ней на велосипеде казалось мне совершенно немыслимым. Впрочем, отступать было поздно. Гоночный трек ждал нас.

Сперва нам предложили прокатиться по ровной дорожке, расположенной внутри главного трека. Ее поверхность была идеально гладкой, и мы получили истинное удовольствие. Затем нам посоветовали попробовать свои силы на голубой дорожке, расположенной под относительно небольшим углом к горизонту. С этой задачей наша группа справилась довольно легко. А потом, чувствуя себя птенцами, которых выпихивают из гнезда, чтобы они научились летать, мы поплелись на главный трек.

Впереди меня ждал неприятный сюрприз. Я-то думала, что вираж имеет переменную крутизну: внизу поменьше, вверху – побольше. Ничуть не бывало! Вверху и внизу его крутизна одинакова. Инстинкт мне подсказывал, что при входе в вираж нужно как можно быстрее крутить педали; именно так я и поступала. После первых трех кругов я напрочь забыла о чрезвычайно неудобном сиденье моего велосипеда. Мы преодолевали круг за кругом, подобно полоумным хомячкам, вертящимся в гигантском беличьем колесе, и лишь время от времени останавливались, чтобы инструкторы могли проверить наше состояние. В течение всех двадцати пяти минут, пока мы наматывали круги, меня всякий раз охватывал ужас при приближении к виражу. Но я ведь только училась!

В трековых велогонках задача гонщика – наклонить велосипед внутрь настолько, чтобы он составлял прямой угол с дорожкой. Единственный способ этого добиться, не свалившись по склону вниз, – ехать как можно быстрее. В этом случае происходящее с гонщиком на треке напоминает ситуацию с размешиванием ложечкой чая в чашке. Велосипед хочет продолжать двигаться по горизонтали, но не может, поскольку на его пути лежит вираж. Обратное отталкивание от трека создает силу, направленную внутрь, благодаря которой вы можете двигаться по кругу. Велосипед настолько сильно надавливает на трек, что если силу этого давления сложить с силой земного притяжения, то создается впечатление, будто сила земного притяжения изменила направление. Теперь все выглядит так, словно вы притягиваетесь к треку, а не вниз, к центру Земли. Чем быстрее вы крутите педали, тем больше изменяете направление «результирующей» силы земного притяжения. Ощущение, что вы движетесь по отвесной стене, не покидает вас, но по крайней мере появляется чувство, что вас удерживает от падения нечто хорошо вам знакомое.

С теоретической точки зрения ничего непонятного для меня нет, но на практике все выглядит несколько иначе. Прежде всего у вас нет возможности немного передохнуть и расслабиться. Вы не можете остановиться и какое-то время двигаться на «свободном ходу» – вам приходится все время крутить педали. Колеса движутся по кругу, ваши ноги движутся по кругу, велосипед движется по кругу – суть езды на велотреке в том и заключается, что все движется по кругу. Пару раз я инстинктивно приостанавливалась, пытаясь сделать передышку хотя бы на две-три секунды, но тотчас же получала гигантскую порцию адреналина из-за угрозы неминуемого и весьма болезненного падения. На велосипедах, предназначенных для гонок на велотреке, вообще невозможно двигаться на «свободном ходу». Вам приходится безостановочно крутить педали, даже если ваши ноги сводит судорога. Если замедлить движение, вы сразу же начинаете «сползать» с трека. Этот опыт позволил мне по-новому взглянуть на велогонщиков, занимающихся этим профессионально. На велотреке во время соревнований, кроме вас, есть и ваши соперники. При попытке обогнать кого-то из них вам приходится проделывать более длинный путь, а для этого необходимо существенно увеличить скорость. Я была счастлива оттого, что мне не нужно прибегать к таким ускорениям – ведь мы не соревновались, а просто осваивали езду на велотреке.

Из опыта езды на велотреке я извлекла следующий урок: если вы все делаете правильно, то более крутые склоны будут оказывать на вас более сильное воздействие, направленное внутрь. А причина, почему оно нужно именно на крутых (то есть на виражах), а не на прямых участках трека, заключается в том, что как раз на полукруглых виражах вы изменяете направление движения. Причем чем быстрее вы это делаете, тем большее воздействие вам необходимо. Если бы вы попытались со столь же высокой скоростью изменить направление движения на плоском (без склона) вираже, то вас неминуемо занесло бы на повороте: одной лишь силы сцепления шин велосипедных колес с покрытием трека оказалось бы недостаточно, чтобы обеспечить нужную силу воздействия, направленного внутрь. Велодром – это следствие решения велогонщиков не ограничивать свое желание наращивать скорость гонок тем, что позволяла им сила сцепления шин велосипедных колес с покрытием дорожки.

Если вас когда-либо интересовало, какие ощущения возникают у однопенсовой монеты, скатывающейся по воронкообразному желобу, в который ее обычно опускают для благотворительных целей, то советую воспользоваться моим опытом езды на велодроме. К концу часа, проведенного на велотреке, я получила изрядную порцию адреналина и была по-настоящему рада завершению эксперимента[60]. Главным, что я узнала о результирующей силе земного притяжения, «втягивающей» меня в трек, стало понимание очень простой вещи: если я внезапно остановлюсь, то на смену результирующей силе придет сила земного притяжения. А мысль о силе земного притяжения, направленной строго к центру Земли, может показаться не очень-то приятной велосипедисту, который внезапно остановился на дорожке, расположенной под углом 43° к горизонту.

Со стороны дорожки на велогонщика воздействует сила, направленная внутрь. По своей природе она такая же, как и та, с которой на нас все время давит земля, когда мы ходим по ней или просто стоим на месте. Если бы земля под нами внезапно разверзлась, то мы начали бы падать вниз под действием силы земного притяжения. Таким образом, сама по себе земля давит на нас снизу, противодействуя тем самым силе земного притяжения. Велогонщики ощущают воздействие со стороны трека, который толкает их в двух направлениях: вверх и внутрь. В целом это будет ощущаться так, словно сила земного притяжения тянет велогонщика вниз и наружу.

В велогонках есть соревнование под названием «быстротечный одиночный заезд на скорость на дистанции 200 метров». Гонщик набирает скорость еще до запуска секундомера. Мировой рекорд в таком заезде, на момент написания этой книги, принадлежал французскому велогонщику Франсуа Первису и равнялся 9,347 секунды. То есть гонщик ежесекундно преодолевает 21 метр, что эквивалентно примерно 76 километрам в час. Чтобы велогонщик прошел на этой скорости вираж велотрека, дорожка должна давить на него внутрь почти с той же силой, с какой толкает его вверх. Франсуа Первис придавливался к дорожке с силой, почти вдвое превышающей обычную силу земного притяжения.

Как было показано в главе 2, постоянная фоновая сила наподобие силы земного притяжения применяется во многих областях нашей жизни, причем некоторые из них (например, сепарация сливок) насчитывают не одну сотню лет. Однако неплохой альтернативой таким силам может служить вращение. Вам не нужно отправляться на другую планету, чтобы воспользоваться преимуществами повышенной гравитации. У велогонщиков, проносящихся по верхнему краю трека, почти всегда есть возможность удвоить свою результирующую силу гравитации, но даже самые быстрые велогонщики в мире достигают «всего лишь» примерно 80 километров в час. Теоретически вы можете двигаться еще быстрее, испытывая на себе действие все больших сил.

Вспомните, как в главе 2 мы говорили, что гравитация помогает каплям сливок отделиться от остального молока и подняться к горлышку бутылки. Если сила, тянущая молоко вниз, будет по крайней мере такой же, как сила земного притяжения, то для отделения сливок от молока понадобится всего два-три часа. Но если молоко поместить в длинную трубку и заставить ее вращаться с высокой скоростью, то сила вытягивания, направленная наружу, окажется настолько большой, что сливки удастся отделить от остального молока буквально за несколько секунд. Именно на этом принципе основано действие современных молочных сепараторов – мы не можем сидеть и ждать, пока сливки отделятся от остального молока сами по себе. У современной пищевой промышленности нет времени на подобную роскошь. Вращение чего-либо создает тянущую силу, которая может быть сколь угодно большой – для ее увеличения нужно лишь повышать скорость вращения. На этом принципе основано действие центрифуги, то есть вращающейся «руки», которая держит контейнер с интересующим нас объектом. В ходе очень быстрого вращения «руки» этот объект, испытывая на себе действие огромной силы, буквально расплющивается о наружную стенку контейнера.

Внутренние силы, возникающие во время вращения, можно сделать настолько мощными, что компоненты, которые ни за что бы не удалось разделить лишь за счет силы тяжести, с их помощью можно отделить друг от друга. Например, если вы когда-либо сдавали кровь на анализ на малокровие, то вам, наверное, будет интересно узнать, что лаборанты поместят ее в центрифугу, которая вращается с такой большой скоростью, что сила, воздействующая на пробу крови в центрифуге и направленная наружу, примерно в двадцать тысяч раз превышает силу земного притяжения. Красные кровяные тельца чересчур малы, чтобы отделять их в обычных условиях только за счет силы тяжести, однако они не в состоянии противостоять силам, создаваемым центрифугой. При обработке в центрифуге достаточно всего пяти минут, чтобы почти все красные кровяные тельца вытянуть из центра центрифуги наружу, в нижнюю часть трубки. Красные кровяные тельца обладают большей плотностью, чем жидкость, в которой они содержатся, поэтому первыми попадают в нижнюю часть трубки. А после того как они там окажутся, трубку можно вынуть из центрифуги, чтобы непосредственно измерить содержание красных кровяных телец в вашей крови: для этого нужно измерить толщину самого нижнего слоя в трубке. Это очень простой тест, который может указывать на наличие определенных проблем со здоровьем; также он используется для взятия проб на допинг у спортсменов. Если бы не силы, создаваемые вращением, выполнить такое измерение было бы гораздо труднее и обошлось бы оно намного дороже. Применить эти силы можно к объектам побольше, чем пробы крови. Одна из крупнейших центрифуг в мире предназначена для вращения человека.

Многие из нас завидуют астронавтам, которые за время пребывания на борту космического корабля получают незабываемые впечатления: могут наблюдать нашу прекрасную планету из космоса, проводить потрясающие научные эксперименты и даже выходить в открытый космос, а после возвращения на Землю рассказывать всевозможные забавные истории из жизни обитателей космической станции и выслушивать слова восхищения в адрес обладателей самой необычной и трудной профессии в мире, доступной лишь немногим избранным. Но спросите у людей, в чем основная причина такой зависти, и чаще всего услышите в ответ: невесомость. Возможность свободно плавать в пространстве, где отсутствуют такие понятия, как «верх» и «низ», и где вы не испытываете чувства тяжести своего тела, как правило, приводит людей в восторг. Именно поэтому людям прежде всего кажется странным, что в процессе подготовки астронавтов так много внимания уделяется решению обратной проблемы: умению справляться с воздействием на человеческий организм сил, намного превосходящих силу земного притяжения. Единственный (по крайней мере на данный момент) способ доставить человека в космос – это усадить его в ракету, которая способна преодолеть силу гравитации за счет движения с огромным ускорением. Еще более сложную проблему приходится решать при возвращении космического корабля на Землю: его вхождение в земную атмосферу может создавать силы, в четыре-восемь раз превосходящие силу гравитации. С воздействием примерно аналогичных сил приходится справляться пилоту современного истребителя, совершающего фигуры высшего пилотажа на огромной скорости. Если во время подъема в скоростном лифте вы испытываете легкий приступ тошноты, можно с уверенностью сказать, что профессии военного летчика и астронавта не для вас. В зависимости от направления дополнительных сил ускорения происходит либо резкий прилив крови к мозгу, либо резкий ее отток от мозга, причем порой и тот, и другой настолько сильные, что могут разрушить мельчайшие кровеносные сосуды (капилляры), пронизывающие кожу человека. Последствия подобного разрушения бывают не самыми приятными. Но люди способны не только пережить воздействие таких сил, но и работать при этом. Именно эти испытания выпадают на долю астронавтов при возвращении космического корабля на Землю. И чтобы астронавты с честью их преодолевали, необходимы упорные и продолжительные тренировки на земле.

Все нынешние астронавты и космонавты проводят много времени в Центре подготовки космонавтов имени Юрия Гагарина, расположенном в Звездном городке на северо-востоке от Москвы. Среди многочисленных лекционных залов, помещений с медицинским оборудованием и макетов космических кораблей вы обнаружите центрифугу ЦФ-18. Из центра огромного круглого зала тянется 18-метровая стрела центрифуги. Капсулу, закрепленную на конце стрелы, можно заменять в зависимости от того, что испытывается в том или ином случае. Тест, который предстоит пройти кандидату на полет в космос, сводится к следующему: его усаживают в капсулу центрифуги, после чего стрела начинает вращаться со скоростью один оборот за каждые две или четыре секунды. Такая скорость вращения на первый взгляд не слишком впечатляет, но, выполнив несложные подсчеты, можно выяснить, что сама капсула при этом движется по кругу со скоростью либо 190, либо 95 километров в час. Как только станет понятно, что кандидат на полет в космос способен выдержать такие условия, ему предлагают выполнять в них ту или иную работу. При этом непрерывно отслеживается состояние его организма. Тестирование на центрифуге проходят не только будущие космонавты, но и будущие летчики-испытатели, а также летчики современных истребителей. На центрифуге может попробовать свои силы любой желающий – если, конечно, в состоянии выложить за это кругленькую сумму. Следует лишь иметь в виду, что испытание на центрифуге вызывает не самые приятные ощущения. А если точнее, то очень неприятные. Но если вы хотите проверить себя на прочность воздействием очень большой силы, то лучшего способа, чем испытание на центрифуге, не найти.

Центрифуга – один из способов применения сил, создаваемых вращением. Она позволяет сгенерировать очень большую силу, действующую в одном направлении и рассматриваемую как искусственная гравитация. Но существует и второй способ применения сил, возникающих при вращении. И помешиваемый ложечкой чай, и велосипедист на велотреке, и астронавт в центрифуге помещены в довольно жесткие рамки: все они двигались лишь по кругу, поскольку для них был воздвигнут прочный барьер, отталкивающий их в обратную сторону и не позволяющий вырваться за его пределы. Но что, если при вращении вовне нет ничего такого, что могло бы принуждать вас двигаться по строго фиксированному круговому пути? Вот довольно типичный сценарий. Мячи для игры в регби, вращающиеся волчки и «летающие тарелки» вращаются без воздействия какой-либо внешней силы, толкающей их внутрь. Давайте рассмотрим это на примере чего-нибудь хорошо знакомого и съедобного, скажем пиццы.

На мой взгляд, у идеально приготовленной пиццы должно быть тонкое и хрустящее основание – жизненно важный, но зачастую недооцениваемый фундамент, который придает особенно привлекательный и аппетитный вид ее начинке. Заготовка для пиццы имеет вид круглого комка хорошо вымешанного теста. Чтобы сделать из него тонкий лист, не порвав, требуется незаурядное мастерство. Более того, многие превращают его в подлинное искусство, а процесс приготовления основы для пиццы принимает вид некоего театрального действа. Повара, специализирующиеся на приготовлении пиццы, освоили чрезвычайно зрелищный прием, положившись на свойства вращения. Зачем вручную раскатывать комок сырого теста, если можно задействовать один из фундаментальных законов физики – особенно когда летающий диск из теста создает вокруг вас мистический ореол кулинара-кудесника!

Подбрасывание и верчение комка теста превратилось в своего рода спортивное состязание – сейчас даже проводят ежегодные чемпионаты мира по жонглированию тестом для пиццы. Более того, даже появились люди, которые называют себя пицца-акробатами. Они проделывают с заготовкой для пиццы (или даже с двумя) всевозможные трюки: в течение нескольких минут подбрасывают ее высоко в воздух, ловят на лету, вращают на пальце, прокатывают вокруг собственного тела и даже демонстрируют всевозможные приемчики в положении вверх ногами и опираясь лишь на одну руку. Вряд ли кто-то отведает пиццу, претерпевающую столько манипуляций, но само по себе зрелище производит неизгладимое впечатление. Однако рядовые мастера не работают на публику: им достаточно непродолжительного вращения заготовки из теста, чтобы получить очень тонкий лист, который послужит основой для превосходной на вид и аппетитной пиццы. Какова же роль вращения в создании тонкого листа из теста?

Несколько моих друзей, больших любителей пиццы, недавно пригласили меня в один уютный ресторанчик с открытой кухней. Я спросила у кого-то из обслуживающего персонала, можно ли понаблюдать за процессом приготовления заготовок для пиццы. Молодые итальянские повара посмеялись в ответ, но потом выбрали добровольца, который согласился продемонстрировать свое мастерство. Немного смущаясь, но в то же время гордясь возможностью покрасоваться на публике, он слегка размял и расплющил в руках комок теста, придав ему форму небольшого толстого диска. Затем поднял этот диск в руке и легким движением придал ему вращение. Диск набрал обороты.

Дальнейшие события происходили с молниеносной быстротой. Диск взмыл в воздух, внезапно освободившись от воздействия каких-либо сторонних сил. Процессы, происходящие при этом, проще всего объяснить, рассматривая какую-либо отдельно взятую точку на краю диска. Она движется по кругу – но только потому, что является составной частью диска и он втягивает ее внутрь. Эта тянущая сила, направленная внутрь, необходима, чтобы объект вращался. В случае велосипедиста, движущегося по велотреку, дорожка все время отталкивает велосипед от наружной части велотрека, заставляя велосипедиста постоянно сворачивать внутрь и кружить таким образом по треку, вместо того чтобы продолжать двигаться по прямой линии. Когда речь идет о заготовке для пиццы, именно стягивающая сила, действующая из середины заготовки, заставляет ее края принимать форму окружности. В том и другом случае должна действовать сила, направленная к центру вращения. Но заготовка для пиццы мягкая и эластичная. Если вы тянете ее, она растягивается. Середина заготовки стягивает ее края внутрь, но это говорит о наличии силы, действующей в обратном направлении и тянущей края заготовки наружу. Поэтому заготовка должна растягиваться. Когда любой твердый объект вращается, это вращение создает внутри него невидимые силы. Сила, тянущая внутрь и придающая заготовке компактную круглую форму, растягивает заготовку, и ее края расходятся все дальше и дальше от центра. Особая ценность этого обстоятельства для мастера по приготовлению пиццы заключается в том, что сила, тянущая внутрь, действует строго равномерно и симметрично по всей площади заготовки. Вращается вся заготовка целиком, поэтому вся она растягивается равномерно и симметрично в направлении от центра.

Иногда вы можете ощутить действие сил, тянущих внутрь, на самом себе. Если взять в руки сумку с каким-либо достаточно тяжелым предметом внутри и попытаться вращаться «волчком» вокруг собственной оси, то вы почувствуете действие тянущей силы, растягивающей вашу руку. Эта сила, тянущая сумку к оси вращения, обеспечивает возможность ее вращения по кругу. К счастью для вас, ваша рука куда менее эластичная, чем тесто для пиццы, поэтому она остается неизменной. Но чем длиннее ваша рука и чем быстрее вы вращаетесь, тем большую тянущую силу будете ощущать.

Итак, пока тесто для пиццы вращалось в воздухе, та же тянущая сила, которая поддерживала движение его края по окружности, постепенно растягивала его от центра в стороны. Я полагаю, тесто находилось в воздухе менее секунды, но это был довольно толстый блин, когда оно поднималось, и красивый тонкий гладкий круг, когда опускалось. Мастер продолжил вращать заготовку и еще раз отправил ее в воздух. Однако на сей раз тянущие силы оказались настолько большими, что она разорвалась посередине. Одним словом, мне показалось, что мастер слегка перестарался. Будто отвечая на невысказанную мною мысль, он скромно улыбнулся: «Именно поэтому мы обычно ограничиваемся лишь одним сеансом вращения. Вообще говоря, тесто, из которого получается наилучшая пицца, не очень-то подходит для вращения, потому что слишком мягкое. Поэтому нам не остается ничего другого, как раскатывать его вручную на доске»[61]. Кстати, заготовки, используемые во время соревнований пицца-акробатов, изготавливаются на основе особого рецепта – потому они такие прочные и эластичные. Если из такого теста приготовить пиццу, не факт, что она вам понравится. Сила, тянущая внутрь и действующая на краях пиццы, может в пять-десять раз превысить силу земного притяжения. Именно поэтому заготовка растягивается гораздо быстрее, когда вы ее вращаете, чем в случае, когда просто поднимаете в воздух и отпускаете, после чего она падает под действием собственного веса.

За вращением заготовки для пиццы интересно наблюдать, потому что она изменяет свою форму в ответ на силы, скрывающиеся в ней самой. Вращение чего бы то ни было (например, мяча для регби или диска «фрисби» – «летающей тарелки») создает тянущую силу, направленную от центра к краю, но вы можете даже не подозревать о ее существовании в твердых предметах наподобие мяча для регби или «летающей тарелки», поскольку они настолько прочны, что не растягиваются. По крайней мере растягиваются так мало, что это невозможно заметить. Однако растяжение происходит в любом случае. Это утверждение относится даже к Земле.

Вращаясь вокруг Солнца, наша планета вращается и вокруг собственной оси и, подобно тесту для пиццы, растягивается силами, которые втягивают каждый ее кусочек внутрь, заставляя его вращаться по кругу. К счастью, гравитация достаточно велика, чтобы предотвратить последствия вроде повреждения заготовки для пиццы, и Земля в основном сохраняет свою сферическую форму. Впрочем, у Земли есть нечто под названием «экваториальное утолщение». Этот термин выглядит как эвфемизм для обозначения тех, кто не привык отказывать себе в еде. Находясь на экваторе, вы оказываетесь на 21 километр дальше от центра планеты, чем тот, кто стоит на Северном полюсе. Земля существует как единое целое благодаря силе гравитации, но форму ей придает вращение вокруг собственной оси. Таким образом, несмотря на то что Эверест – самая высокая гора на планете, ее вершина не является точкой наибольшего удаления от центра Земли, такой точкой будет Чимборасо, вулкан в Эквадоре. Его высота – 6268 метров над уровнем моря, тогда как высота Эвереста – 8848 метров над уровнем моря, но Чимборасо расположен на вершине экваториального утолщения. Поэтому, стоя на вершине Чимборасо, мы находимся примерно на 2 километра дальше от центра Земли, чем тот, кому удалось взобраться на вершину Эвереста. Впрочем, покорение вершины Чимборасо вряд ли принесет вам такую же славу, как восхождение на Эверест.

В целом силы, генерируемые вращением, могут быть полезны в двух отношениях. Один из примеров – пицца. Вращение объекта в условиях отсутствия какие-либо внешних ограничителей создает тянущую силу, направленную внутрь этого объекта и обеспечивающую его целостность во время вращения. Другой пример – велосипедист на велотреке: если для некоего вращающегося объекта создать преграду, отталкивающую его в обратную сторону, то на объект будет воздействовать значительная сила, подобная силе земного притяжения. Но общее у этих двух примеров то, что любая тянущая сила, направленная внутрь, должна откуда-то исходить. При ее исчезновении объект не сможет продолжить круговое движение.

Сохранять свою целостность способен лишь твердый объект вроде теста для пиццы. Жидкостям и газам это не присуще[62]. Такая разница чрезвычайно полезна при наличии смеси твердых объектов и жидкостей, которые необходимо отделить друг от друга. Работа центрифуги для отжима белья заключается в том, что мокрое белье загружается в барабан, который в процессе вращения толкает мокрое белье внутрь, заставляя вращаться вместе с собой. Но воду, которой пропитано белье, ничто не удерживает. Поскольку ее движение ничем не ограничивается, она может свободно вытекать сквозь поры в материале. Вода будет двигаться по кругу, только если будет отталкиваться внутрь от чего-либо твердого. В противном случае она будет постепенно продвигаться от центра к стенкам барабана, и когда на ее пути встретится в них одно из отверстий, она покинет пределы барабана.

Когда вы раскручиваете какой-либо объект, а затем предоставляете его самому себе, вы сначала оказываете на него тянущее воздействие, направленное внутрь, заставляя его двигаться по кругу, а затем внезапно прекращаете оказывать тянущее воздействие. В результате у объекта нет причины продолжать движение по кругу. Поэтому он начинает двигаться по прямой линии. Этот физический принцип революционизировал средневековые средства ведения войны в Европе и восточной части Средиземноморья, позволив инженерам создавать гигантские осадные орудия, способные разрушать толстые крепостные стены. И я воспользовалась им, участвуя в соревнованиях по метанию резиновых сапог на дальность, правда, не столь эффективно.

Когда мне сообщили о присвоении ученой степени доктора философии, я, безусловно, была на седьмом небе от счастья. Представитель экзаменационной комиссии, сообщивший мне эту радостную весть, улыбнулся и спросил, как я намерена провести остальную часть столь знаменательного для меня дня. Наверное, он рассчитывал услышать, что я закачу шумный банкет в ресторане или нечто в этом роде. Однако он никак не ожидал, что я скажу, что собираюсь отыскать в кембриджширских окрестностях какого-нибудь фермера, который согласился бы одолжить мне одну или две старые шины от колесного трактора. Я объяснила, что придумала оригинальное устройство для метания резиновых сапог, которое намерена соорудить из подручных материалов и подходящего хлама на свалке. Поскольку ближайшие соревнования по метанию резиновых сапог на дальность должны были состояться уже через неделю, времени на изготовление придуманного мною устройства оставалось в обрез и я не намерена была его тратить на такие пустяки, как банкет. Когда экзаменатор выслушал мои объяснения, на его лице появилось выражение недоумения. В конце концов он сделал вид, что ничего у меня не спрашивал, а я, соответственно, ничего не рассказывала. Он предпочел быстро переключиться на обсуждение моих ближайших научных планов. Но то, что я ему сказала, было чистой правдой. К тому времени я уже согласилась стать членом исключительно женской команды, чтобы участвовать в соревнованиях под названием Scrapheap Challenge, суть которых состояла в создании какого-либо оригинального приспособления для метания резиновых сапог. В нашей команде было три человека, очень мало денег и времени. И насколько мне казалось, единственный осуществимый вариант в этих условиях сводился к использованию древней и весьма эффективной технологии – катапульты.

Катапульта – чрезвычайно остроумное приспособление, которое разрабатывалось и совершенствовалось на протяжении многих столетий с участием нескольких цивилизаций: Древний Китай, Византия, древние исламские государства и, наконец, Западная Европа. На рубеже XI–XII веков катапульта выглядела громадным неуклюжим хищником, способным уничтожать крепостные сооружения, считавшиеся неприступными. Катапульта могла метать 100-килограммовые камни на расстояния, измеряемые сотнями метров. Появление осадных орудий наподобие катапульты привело в конечном счете к полному исчезновению такого способа защиты городов, как частокол, укрепленный земляным валом. Единственным средством защиты с тех пор стали массивные каменные стены.

Для меня и моей команды преимущества катапульты оставались такими же, как и в древности: простота с инженерной точки зрения и высокая эффективность с точки зрения достигаемого результата. Строительные леса мы позаимствовали на ближайшей стройке; в контейнере для крупногабаритного мусора, установленном во дворе колледжа, раскопали материалы, необходимые для изготовления пращи; уговорили техников из Кавендишской лаборатории одолжить нам пятиметровую стальную балку, свели все это воедино на одной из игровых площадок колледжа и приступили к работе. К тому времени колледж Черчилля в Кембриджском университете стал для меня родным домом – ведь я провела в нем восемь лет. За это время его персонал успел привыкнуть и ко мне, и к моим изобретениям. Оглядываясь назад, я не перестаю изумляться долготерпению его работников и даже их доброжелательному отношению к сумасбродным идеям, время от времени зарождавшимся в головах студентов. На противоположной стороне игровой площадки, где мы сооружали катапульту, на той же неделе кто-то проверял работу воздушного шара, который они намеревались отправить в стратосферу, подвесив к нему плюшевого медвежонка.

В принципе конструкция катапульты (точнее, ее разновидности, называемой требушет) очень проста. Вы сооружаете раму, которая создает центр вращения, находящийся на расстоянии 2–3 метров от земли. Заем прикрепляете к ней длинную балку наподобие детских качелей (в виде доски, уравновешенной в центре), но, в отличие от них, ось вращения устанавливается таким образом, чтобы длина балки по одну сторону от нее была гораздо больше длины балки по другую ее сторону. Теперь у вас получилась А-образная рама, которая выглядит так, словно поверх нее положили длинную палку. В исходном положении длинный конец балки касается земли. Вы прикрепляете к нему пращу и укладываете ее на землю под рамой. День, когда мы впервые собрали эту конструкцию, был почти безветренным и солнечным. Одним словом, условия для испытаний были близки к идеальным.

С самого начала мы столкнулись с проблемой. Восхитительная особенность требушета (если, конечно, вы не мишень для камня) в том, что для придания вращения балке (и, соответственно, праще) используется сила земного притяжения. Вы прикрепляете тяжелый груз к короткому концу балки, и, когда отпускаете его, он очень быстро тянет вниз ее короткий конец. Вся балка начинает вращаться вокруг оси, описывая в воздухе вертикальный круг; праща также вращается вместе с другим концом балки. В результате создается очень быстрое вращение, а метательный снаряд в праще вращается вокруг оси, поскольку со стороны пращи на него воздействует тянущая сила, направленная внутрь. Поначалу процесс развивался так, как и должен. Наша первая задача состояла в том, чтобы добраться до этого момента, но нам не удавалось найти достаточно большой груз, который привел бы весь механизм в действие. Я предложила себя в качестве такого груза, однако мой вес оказался недостаточным. Мы пришли в замешательство. В тот вечер я выплеснула все накопившееся раздражение на нескольких друзей, которые предложили мне съесть побольше пирожных, чтобы срочно набрать вес. Затем кто-то из них выдвинул идею утяжелить вес, надев снаряжение аквалангиста. Она показалась мне разумной. На следующий день я надела десятикилограммовый утяжеляющий пояс, которым обычно пользуются аквалангисты, и мы повторили попытку. На этот раз эксперимент удался на славу. Я качнулась под ось, а праща качнулась в противоположную сторону, оказавшись над осью. Механизм требушета обеспечивал вращение. Теперь настал момент сделать следующий шаг.

Праща подвешивается на балку небольшой петлей. Нужно, чтобы в момент, когда праща окажется почти в самой высокой точке, петля соскользнула с балки. При этом праща, по сути, разрушается. Это означает, что сила, которая тянула метательный снаряд внутрь и заставляла двигаться по кругу, внезапно исчезла. Прямо перед этим метательный снаряд в праще очень быстро двигался вперед и вверх. Как только на него перестает действовать тянущая сила, направленная внутрь, он начинает двигаться по прямой линии. Поскольку до этого он двигался вперед и вверх, то продолжает движение по прямой, направленной вперед и вверх. Но он не движется непосредственно из центра вращения, а продолжает движение по касательной к окружности вращения. По крайней мере так гласит теория. Мы поместили в пращу туфлю и приготовились к метанию. Я уселась на короткую сторону «качели», лицом к ее длинной стороне, и налегла на нее всем своим весом. Другой конец «качели» качнулся вверх и потянул за собой пращу, подняв над осью. Точно в нужный момент (с первого раза!) праща освободилась и туфля пронеслась над моей головой, упав на другом конце площадки. У меня никогда не возникло бы желания провести такой же эксперимент с камнем – туфли оказалось вполне достаточно. Оставалось проверить, справится ли наш требушет с резиновым сапогом, который нам предстояло метать во время соревнований. Попрактиковавшись немного и убедившись, что с сапогом тоже не должно возникнуть проблем, мы разобрали катапульту. Ведь уже завтра предстояло доставить ее к месту соревнований.

Прибыв на следующий день на соревнования, мы утратили уверенность, переполнявшую нас накануне. Команды, с которыми нам предстояло сразиться, состояли в основном из мужчин среднего возраста. По-видимому, они провели не один месяц в гаражах, конструируя оригинальные метательные приспособления. Даже беглого взгляда на представленные ими механизмы было достаточно, чтобы понять, насколько серьезно они отнеслись к созданию этих устройств, каждое из которых можно было принять за выставочный экспонат. Наша катапульта, наскоро собранная из подручных средств и хлама, найденного на свалках, выглядела весьма непрезентабельно на фоне этих шедевров инженерной мысли. Мы, конечно, постарались напустить на себя важный вид и быстро ее собрали. Организаторы соревнований (также мужчины среднего возраста) подошли к нам поближе, чтобы взглянуть на наше изобретение. «Метать с помощью этого устройства – глупая затея, – заявил один из них. – Вам следовало бы поучиться у оружейных мастеров Средневековья и просто тянуть рычаг вниз с помощью каната. Такой механизм был бы намного эффективнее». Мои возражения, что именно противовес был изобретением, обеспечившим успех этого механизма, были встречены скептическими ухмылками. Причина, из-за которой он не стал мощным осадным орудием вплоть до XI века, в том и заключается, что люди пытались приводить его в действие мускульной силой человека. Но наши оппоненты продолжали настаивать на своем, доказывая, что гораздо разумнее было бы тянуть за канат, намекали, что таким неопытным, хоть и полным энтузиазма женщинам, как мы, было бы неплохо прислушаться к советам мужчин, понимающих толк в технике, и вообще, быть благодарными за помощь. Эти препирательства длились бы не один час, если бы мои подруги не проявили мудрость, согласившись с доводами оппонентов. Времени для споров у нас не было – приближался момент начала соревнований.

В рамках первого задания нужно было в течение двух минут метнуть как можно больше резиновых сапог за отметку примерно в 25 метрах от места метания. Лучшие пять команд допускались ко второму этапу соревнований, в ходе которого предстояло метать сапоги на дальность. Итак, секундомер был включен. Мы втроем тянули за канат, поворачивали «качель» и запускали пращу. Но первый сапог едва не расшиб нам головы. Нам не удавалось тянуть вниз достаточно быстро, чтобы заставить «качель» вращаться должным образом. Мы попытались еще раз. И еще раз. Затратив примерно минуту, мы поняли, что придется отказаться от навязанной нам идеи тянуть канат. Я убедила подруг вернуться к первоначальной идее, надела на себя утяжеляющие приспособления аквалангиста, вскочила на небольшой шкаф для хранения документов, который мы использовали в качестве платформы, и нырнула под поворотную ось катапульты. Р-р-раз! И первый сапог просвистел над моей головой, улетев далеко за 25-метровую отметку. Помещаю в пращу следующий сапог, вскакиваю на платформу, наваливаюсь всем своим весом на короткое плечо «качели» – сапог проносится со свистом над моей головой! Следующий сапог… Но тут раздался свисток: наше время истекло. Двух сапог, перелетевших 25-метровую отметку, было недостаточно. Нас не допускают к следующему этапу. Мужчины среднего возраста сочувствуют нам: в другой раз вам повезет больше. Мне не хотелось встречаться глазами с тем из них, кто посоветовал тянуть за канат. Я опасалась, что если заговорю с ним, то выскажу все, что думаю о нем и его советах. Тем не менее я испытывала чувство большого удовлетворения: предложенная мной конструкция сработала – причем именно так, как я ожидала! Нам удалось сражаться на равных с метательными приспособлениями, создатели которых потратили не один месяц, чтобы довести их до совершенства. Единственное, что нас подвело, это изменение плана буквально в последнюю минуту[63]. Между прочим, насколько я могла понять, большинство других конструкций, использованных нашими конкурентами, основывалось на значительно менее эффективных методах. У них был привлекательный внешний вид, зато на нашей стороне – физическая эффективность и простота.

Таким образом, мой личный опыт применения требушетов несколько ограничен, но восемьсот лет назад эта простая и элегантная идея революционизировала методы ведения войны. Способность метать тяжелые камни с высокой точностью означала, что вы можете методично долбить одно и то же место крепостной стены, пока она в этом месте не разрушится. Примерно на протяжении двух веков конструкции требушетов непрерывно совершенствовались, а их размеры становились все больше. Они даже получали красноречивые названия вроде «Камнеметатель господень» и «Вервольф». Для создания огромных катапульт требовалось много древесины, но способность запускать каждые несколько минут в сторону врага очередной 150-килограммовый камень того стоила. Вращение пращи с камнем вокруг оси позволяет достичь очень высокой скорости за очень короткий промежуток времени. Это вращение может быть кратковременным – вы используете его лишь как способ достичь высокой скорости. Как только метательный снаряд обретет ее, вы убираете тянущую силу, направленную внутрь, в тот самый момент, когда он окажется в нужной точке описываемой им окружности (то есть, по сути, когда снаряд, будучи освобожден от действия тянущей силы, станет двигаться в нужном вам направлении). До момента, когда надежность пороха стала достаточной для того, чтобы пушка превратилась в важнейший вид оружия, требушет, с точки зрения разрушительной силы, оставался непревзойденным оружием своего времени.

Вращение – неизменный атрибут нашей жизни. Например, прямо сейчас вы и я вращаемся. Раз в сутки мы совершаем полный оборот вокруг земной оси, хотя мы, конечно, этого не ощущаем, поскольку Земля так велика, что мы очень медленно изменяем направление движения. Если бы мы находились на экваторе, наша скорость движения составляла бы 1670 километров в час. В Лондоне, где я пишу эти строки, моя скорость равна 1050 километров в час, так как я нахожусь ближе к оси вращения. Но если мы обитаем на огромной планете, вращающейся вокруг собственной оси и если любой незакрепленный объект, находящийся на поверхности вращающегося предмета, обязательно слетит с нее и умчится по прямой линии, когда мы перестанем его удерживать, – то почему мы не срываемся с поверхности Земли и не улетаем по прямой в открытый космос? Ответ заключается в том, что сила тяжести, направленная к центру Земли, достаточна для того, чтобы удержать нас на ее поверхности. Вообще говоря, даже когда вы находитесь на околоземной орбите, планета продолжает удерживать вас. А когда поднимаетесь с поверхности Земли на околоземную орбиту, дополнительная скорость, придаваемая вам вращением Земли, может стать чрезвычайно полезным фактором.

Небольшой металлический шарик под названием «Спутник» подал первые сигналы с околоземной орбиты 4 октября 1957 года, что возвестило о начале космической эры. Мир с открытым ртом прислушивался к этим слабым сигналам. Первый искусственный спутник Земли стал огромным технологическим достижением человечества. Спутник совершал один полный оборот вокруг Земли каждые девяносто шесть минут, и если у вас был коротковолновый приемник, то каждый раз, когда спутник пролетал над вами, вы могли слышать его отчетливые сигналы: «бип… бип… бип…» В тот день Америка проснулась, уверенная в своем безоговорочном превосходстве над остальными странами, а к вечеру ее уверенность успела развеяться, как утренний туман. А примерно через год Советский Союз отправил на околоземную орбиту второй, более крупный спутник с собакой по имени Лайка на борту. Запаниковавшие американцы в космос никого не отправили, но учредили НАСА (Национальное агентство по аэронавтике и исследованию космического пространства). Начались нешуточные «космические гонки».

Но в чем заключалось реальное достижение создателей спутника? Дело в том, что его нужно было не только каким-то образом доставить на высоту околоземной орбиты, но и удержать на ней ровно столько, сколько нужно исследователям, запустившим его в космос. На спутник, вращающийся вокруг Земли по околоземной орбите, продолжает воздействовать сила земного притяжения, а это значит, что он все время падает в направлении Земли – но ему никак не удается с ней сблизиться!

Спутник был запущен в космос из казахстанских степей – того места, которое сейчас называется космодромом Байконур. Ракета, доставившая спутник на околоземную орбиту, преодолела плотные слои атмосферы, двигаясь вертикально вверх, а затем изменила направление полета, совершив ускорение по горизонтали – вдоль кривой, огибающей поверхность Земли. К моменту, когда отработала и отвалилась последняя ступень ракеты, спутник начал вращаться вокруг Земли со скоростью около 8,1 километра в секунду. Когда вы движетесь по околоземной орбите, движение происходит не за счет силы, направленной вверх, а за счет силы, направленной вбок.

Маленький металлический шарик отнюдь не избавился от воздействия силы земного притяжения. Более того, он мог оставаться на околоземной орбите лишь за ее счет. В противном случае, преодолев плотные слои атмосферы и выйдя в космос, он продолжал бы все больше и больше отдаляться от Земли. Когда спутник движется с огромной скоростью по орбите, сила притяжения Земли, воздействующая на него, остается почти такой же, как и непосредственно у поверхности Земли[64]. Но поскольку спутник движется с огромной орбитальной скоростью, за то время, в течение которого он слегка снижается над Землей («падает»), он успевает продвинуться вперед настолько, что поверхность Земли вследствие своей кривизны успевает отдалиться от спутника в точности на такое же расстояние, на которое он с ней сблизился. В ходе движения спутника по орбите эта картина все время повторяется: под действием силы земного притяжения спутник все время понемногу снижается, а поверхность Земли вследствие своей кривизны все время понемногу отдаляется от спутника, в результате чего оба процесса взаимно компенсируют друг друга. Этот замечательный баланс постоянно поддерживается, в частности из-за того, что при движении спутника по околоземной орбите практически отсутствует сопротивление воздуха и поэтому спутник может в течение очень длительного времени продолжать движение по орбите.

Чтобы выйти на околоземную орбиту, орбитальная скорость должна быть достаточно высокой: только в этом случае возможно поддержание указанного баланса. А Казахстан изначально обладает весьма значительной боковой скоростью, совершая один полный оборот вокруг земной оси за одни сутки. Чем дальше вы находитесь от оси вращения, тем выше ваша орбитальная скорость. Поэтому, запуская ракеты из какого-либо места вблизи экватора, вы получаете весьма существенное начальное преимущество. Орбитальная скорость порядка 8 километров в секунду необходима для движения по низкой околоземной орбите. Скорость вращения на широте Казахстана приблизительно равна 400 метров в секунду. Поэтому, если запуск осуществляется в восточном направлении, то, учитывая вращение Земли вокруг собственной оси, лишь за счет запуска с территории Казахстана, а не с Северного полюса вы можете сэкономить 5 % энергии, необходимой для достижения требуемой орбитальной скорости.

В центрифуге стиральной машины корпус барабана толкает белье внутрь, не позволяя ему разлететься в стороны. На велодроме тянущая сила, направленная внутрь и не дающая велогонщику вылететь за пределы велотрека, обеспечивается за счет высокой крутизны велотрека. А в случае спутника, возвестившего своими скромными сигналами «бип… бип… бип…» о прорыве человечества в космос, аналогичную функцию выполняла гравитация. Для всего, что вращается, требуется сила, которая все время тянула или толкала бы вращающийся объект в направлении центра вращения. Если бы такая сила внезапно исчезла, то белье в центрифуге стиральной машины и спутник на околоземной орбите начали бы двигаться по прямой линии.

Таким образом, гравитация продолжает играть важную роль даже на высоте нескольких сотен километров над поверхностью Земли. Но, безусловно, самым волнующим событием для человека, оказавшегося в космосе, стала невесомость. Вспомним астронавтов, которые, пребывая в условиях практически нулевой гравитации, отчаянно пытаются не пролить ни капли жидкости, иначе она будет сутками плавать в воздухе. Сейчас на околоземной орбите постоянно находится Международная космическая станция (МКС). Астронавты, пребывающие на ее борту, с гордостью говорят, что выполнют важные задания, но я отнюдь им не завидую. Подумать только: человеку, отправляющемуся на полгода работать на МКС, предстоит в течение шести месяцев падать на Землю! Да-да, они не летят – а все время падают. Подобно спутнику, все время падающему на Землю, астронавты, работающие на борту МКС, пребывают в состоянии непрерывного падения.

Находясь в состоянии свободного падения, вы не можете чувствовать силу тяжести ввиду отсутствия силы, которая толкала бы вас в обратную сторону. Поскольку астронавты не могут испытывать на себе действие какой-либо силы, которая толкала бы их в обратную сторону, они не могут утверждать, что на них действует сила тяжести. Это подобно моменту начала движения лифта, опускающегося вниз: вы ощущаете кратковременное снижение своего веса. Все дело в том, что пол не толкает вас в противоположную сторону с такой же силой, как до этого. Если бы лифт перешел в состояние свободного падения (допустим, у лифта очень глубокая шахта), то вы ощутили бы невесомость. На орбите невозможно избежать гравитации – она просто не ощущается. Но при этом все равно присутствует: ее тянущая сила, направленная к Земле, позволяет вам вращаться вокруг нашей планеты.

Вращение полезно во многих отношениях, но иногда становится досадной помехой. Например, почему бутерброд падает маслом вниз? Вы только что вынули из тостера поджаренный кусочек хлеба и намазали на него слой масла, которое сразу же начало плавиться. В предвкушении удовольствия у вас уже потекли слюнки, но, протянув руку за чашкой чая, вы совершаете неосторожное движение, толкаете локтем тост, и он оказывается на самом краю стола. Остановившись там на какую-то долю секунды и покачнувшись, словно в нерешительности, он в конце концов падает на пол – конечно же, маслом вниз. Подтаявший слой масла, который должен был вызвать у вас массу положительных эмоций, превратился в жирное пятно на полу. И вместо наслаждения поглощением аппетитного тоста вам приходится его убирать, проклиная злой рок, который, как всегда, перевернул ваш бутерброд маслом вниз. Ну почему он переворачивается именно так, а не наоборот?

Все объясняется действием неумолимых законов природы. Разные люди проводили многочисленные эксперименты, в ходе которых безжалостно и целенаправленно сталкивали бутерброды со стола, и в подавляющем большинстве случаев бутерброд падал на пол именно маслом вниз. Конечно, кое-что в этом процессе зависит от начальной фазы его падения, то есть как именно вы сталкиваете его со стола. Но в целом здесь действует неумолимый закон природы, который мы не в силах отменить. Сразу же нужно отметить, что это никак не связано с дополнительным весом масла. Большая его часть уже расплавилась и проникла до середины тоста, но даже если бы масло не расплавилось, в совокупной массе бутерброда его вес составляет лишь незначительную долю.

Прежде всего возникает вопрос: почему бутерброд вообще переворачивается? Это происходит настолько быстро, что заметить момент переворота практически невозможно (с другой стороны, если бы вы внимательно следили за бутербродом, то, наверное, не сбросили бы его со стола, не так ли?). Впрочем, вы можете понаблюдать за этим процессом, если готовы пожертвовать тостом[65] (или хотя бы подставкой под горячее или книжкой подходящих размеров). Итак, положите плашмя тост, который решили принести в жертву, у края стола и столкните его на пол. Обратите внимание: в момент, когда половина тоста пересечет край стола, произойдут две вещи. Во-первых, тост начнет поворачиваться вокруг края стола, который в данном случае играет роль оси вращения. Во-вторых, тост начнет самостоятельно, без внешнего воздействия, соскальзывать за край стола. Соскальзывание, переворот, шлепок на пол.

Итак, вращение начинается, как только большая часть тоста пересечет край стола, поскольку именно в этот момент стол начинает поддерживать меньшую часть тоста. Сила тяжести тянет вниз весь тост. Стол толкает его вверх, но воздух не оказывает практически никакого сопротивления. В момент, когда на краю стола оказывается ровно половина тоста, силы тяжести, которая действует на его свисающую половину, едва хватает на то, чтобы приподнимать ту половину тоста, которая все еще находится на столе. У физиков эту точку, соответствующую половине тоста, принято называть «центром массы». В случае детских качелей она соответствует положению идеального равновесия, когда доска качелей пребывает в строго горизонтальном положении без какого-либо внешнего воздействия.

В момент, когда вы осознали, что тост падает, уже поздно что-либо предпринимать. Как только тост соскользнул с края стола, его падение займет фиксированное количество времени. Если высота стола примерно 75 сантиметров, то на падение уйдет меньше, чем полсекунды. Но как только началось вращение, нет никаких причин для его остановки и в процессе падения тост продолжает вращаться[66]. Поскольку сила земного притяжения всегда одна и та же, а высота всех столов примерно одинакова, тост всегда имеет одинаковую скорость вращения. За 0,4 секунды он повернется на 180 градусов. Так как падение тоста началось с момента, когда масло было вверху, закончится оно в момент, когда масло окажется внизу. Каждый раз физика падения тоста остается в основном одной и той же: тост всегда падает маслом на пол.

Интересно отметить, что в ситуации с падением тоста вы в действительности можете сделать только одно для изменения конечного результата падения[67], но здесь достаточно высок риск неожиданных последствий. Поняв, что нечаянно толкнули тост и он покачнулся на краю стола, вы, согласно законам физики, должны для исправления ситуации придать ему значительную боковую скорость, то есть толкнуть его еще сильнее. После этого, если ваше движение окажется достаточно резким, тост может перелететь через всю комнату, но поскольку в его распоряжении окажется меньше времени на совершение переворота через край стола, скорость его вращения будет гораздо меньше и в процессе падения ему может не хватить времени на переворот на 180 градусов. В результате у вас появляется шанс, что тост не упадет маслом на пол. Правда, без гарантии, что он не упадет на диван или не угодит в вашу собаку.

Тост начинает вращаться, потому что соблюдаются два условия, необходимые для возникновения вращения: во-первых, наличие оси, вокруг которой оно будет совершаться, и, во-вторых, наличие силы, которая заставит тост совершить поворот вокруг оси вращения. Неважно, что эта сила направлена строго вниз и не заставляет тост продолжать движение по окружности. Важно лишь то, что ее вполне достаточно, чтобы придать тосту движение (а становится достаточно после того, как центр массы тоста сместится с края стола и повиснет в воздухе), и что она вынуждает тост совершить поворот вокруг оси вращения хотя бы на небольшой угол. Как только будет инициирован процесс вращения, он продолжится до тех пор, пока что-нибудь его не остановит.

Этот принцип лежит в основе вращения яиц, о котором рассказывалось во введении. Если вы поразмышляете о тех или иных свободно вращающихся объектах – «летающих тарелках», подброшенных вверх монетках, мячах для игры в регби, волчках, – то обратите внимание, что они продолжают вращение как бы сами по себе. Было бы очень странно, если бы подброшенная вверх монетка, находясь в воздухе, внезапно прекратила вращаться еще до того, как опустится вам в ладонь[68]. Все, что вращается, обладает моментом импульса, который является показателем количества вращения соответствующего объекта. Если действие какого-либо фактора (например, трения или сопротивления воздуха) не замедляет вращения, то объект будет вращаться бесконечно долго. Это свойство называется законом сохранения момента импульса. Вращающийся объект будет продолжать вращение, если какое-либо внешнее воздействие его не остановит.

Я совершенно уверена, что в детстве воспринимала головокружение как своего рода игрушку, которая всегда со мной и которую никто не может у меня отнять. Если вам было скучно, вы всегда могли вертеться на месте волчком и наблюдать, кто продержится дольше других, а кто свалится на пол. Мы покатывались со смеху, глядя, как кто-нибудь из нашей компании, совершив столько-то оборотов вокруг собственной оси и остановившись, валился на пол от головокружения. Похоже, что само по себе вращение не создавало проблем. Кратковременная и забавная дезориентация в пространстве наступает, когда вы его прекращаете. Жаль, что взрослые не играют в эту игру: мы могли бы лучше понять себя, если бы вели себя, как в детстве. Ощущение дезориентации в пространстве наступает из-за чего-то происходящего в ваших ушах, что вы не можете видеть, но ваш мозг, несомненно, знает.

Давайте вернемся к вращению сырых и вареных яиц, о котором я рассказывала во введении. Каждое яйцо, еще не очищенное от скорлупы, кладется на бок и раскручивается. Предоставив яйцам возможность вращаться в течение двух-трех секунд, вы быстро касаетесь каждого из них, чтобы остановить вращение. Оба яйца останавливаются. Вы убираете пальцы. После этого одно из яиц возобновляет вращение. Яйцо, будучи твердым предметом, должно остановиться полностью, когда вы останавливаете вращение оболочки. И яйцо, и его оболочка должны вращаться вместе. Но, останавливая сырое яйцо, вы останавливаете только его оболочку. Жидкость внутри нее продолжает вращаться; она не скреплена прочно с оболочкой и поэтому у нее нет причин останавливаться. Таким образом, жидкость толкает оболочку до тех пор, пока та не возобновит вращение.

Когда вы вращаетесь вокруг собственной оси, большая часть вашего тела, к счастью, ведет себя подобно яйцу, сваренному вкрутую: вращается как единое целое. Поэтому, когда вы перестаете вращаться, ваш мозг, и нос, и уши также перестают. Однако это не относится к внутреннему уху. Внутри каждого уха есть небольшие каналы в виде полуокружий, наполненные жидкостью, и именно поэтому они ведут себя подобно сырому яйцу. Жидкость не вращается вместе со своей оболочкой, поскольку к ней не прикреплена. Такое устройство уха наряду с другими механизмами, заложенными в ваш организм, позволяет вашему телу ориентироваться в пространстве: крошечные волоски отслеживают перемещения этой жидкости, а ваш мозг согласует эту информацию с тем, что вы видите. Когда вы поворачиваете голову, жидкость в криволинейном канале не успевает повернуться с той же скоростью; она движется по своим каналам, не поспевая за поворотом вашей головы. Но если вы вращаетесь вокруг собственной оси достаточно долго, эта жидкость также начинает вращаться. Требуется всего две-три секунды, чтобы скорость ее вращения сравнялась со скоростью вращения вашего тела, после чего жидкость в ваших ушах продолжает устойчиво вращаться вместе с каналами, синхронно с движением своего «контейнера». Когда вы внезапно прекращаете вращение, жидкость не останавливается. Подобно сырому яйцу, «контейнер» остановился, но жидкость продолжает вращаться. Таким образом, ваше внутренне ухо сообщает мозгу о том, что вы вращаетесь, а ваши глаза говорят ему, что вы остановились. Именно в момент, пока ваш мозг разбирается, что же происходит на самом деле, вы ощущаете головокружение. Со временем жидкость в вашем внутреннем ухе прекращает вращаться (потому что остановился ее «контейнер») и головокружение проходит.

Это одна из причин, почему балерины, которые крутят фуэте (то есть быстро-быстро вращаются на одном месте), стараются как можно дольше смотреть в одном направлении, а затем, когда тело повернется на достаточно большой угол, очень быстро поворачивают голову вслед за телом (опережая скорость его вращения), чтобы вернуть ее в исходное положение. При столь быстром движении по принципу «старт-стоп» жидкость во внутреннем ухе не успевает синхронизировать свое движение с ритмичным вращением тела, в результате чего балерина, остановившись, не испытывает головокружения.

В сохранении вращательного момента существуют два аспекта. Во-первых, невращающемуся объекту требуется некий начальный толчок, приводящий его во вращение. Объект не может начать вращаться сам по себе. Во-вторых, вращающийся объект будет продолжать вращаться до тех пор, пока на него не подействует внешняя сила, которая остановит вращение. В повседневной жизни роль такой внешней силы играет трение. В результате его действия волчок в конце концов перестает вращаться, а вращающаяся монетка настолько замедляет вращение, что в конце концов переворачивается и падает плашмя. Но в ситуациях, когда сила трения отсутствует, вращение длится бесконечно долго. Именно этим обусловлена смена времен года на Земле.

В северной части Англии регулярная смена времен года задает ритм, вызывающий у меня самые приятные воспоминания. Долгие прогулки в жаркие летние дни вдоль Бриджуотерского канала, хоккейные матчи в сырые и промозглые осенние дни, возвращение домой на рождественские каникулы в морозные зимние дни, улучшение настроения оттого, что весной дольше светит солнце, – разнообразие и смена впечатлений всегда были для меня источником радости. Когда я жила в Калифорнии, мне труднее всего было смириться с отсутствием ритма в природе: создавалось впечатление, что время здесь застыло навсегда. Это сбивало меня с толку и приводило в замешательство. Сейчас я по-прежнему остро чувствую смену времен года. Мне нравится отождествлять свое место в каждом очередном цикле смены времен года по каким-то особым приметам, как ни странно, сохранившимся даже в современном мире: животные, свежий воздух, растения и чистое небо. А основа этого разнообразия и регулярной смены времен года – фундаментальные физические законы, один из которых гласит, что объекты продолжают вращение до тех пор, пока какая-либо внешняя сила не остановит их.

У вращения есть направление, задаваемое осью, вокруг которой оно происходит. Воображаемая ось вращения Земли представляет собой прямую линию, проходящую от Южного к Северному полюсу, немного выступающую с той и другой стороны и указывающую куда-то в космическое пространство. Но поскольку наша Земля давным-давно была ушиблена громадным космическим обломком, бороздившим просторы Солнечной системы (кстати, в результате этого столкновения образовалась Луна), то ось космического волчка, которым, по сути, и есть наша планета, изменила свое направление. Представьте, что вы смотрите на Солнечную систему сверху вниз, причем Солнце находится посередине, а все планеты Солнечной системы вращаются вокруг него в одной плоскости. Ось Земли слегка наклонена влево. И теперь, поскольку Земля вращается вокруг этой слегка наклоненной оси, она в процессе движения вокруг Солнца должна продолжать вращаться вокруг той же оси, а ось – сохранять свое направление. Таким образом, когда Земля расположена, скажем, слева от Солнца, конец этой оси, выступающий из Северного полюса, указывает в сторону от Солнца, куда-то в космос. Но через шесть месяцев, когда Земля окажется по правую сторону от Солнца, конец оси, выступающий из Северного полюса, будет по-прежнему указывать влево – на сей раз в направлении Солнца. Ось вращения Земли вокруг собственной оси не изменяет направления по мере вращения Земли вокруг Солнца: на нее не воздействуют никакие внешние силы, поэтому она не меняет ориентации в пространстве. Но это означает, что Северный полюс получает больше или меньше солнечного света в зависимости от того, в каком месте своей орбиты находится Земля. Эта особенность вращения Земли вокруг Солнца и является причиной смены времен года[69]. Суточный цикл (регулярная смена дня и ночи) обусловлен вращением Земли вокруг собственной оси, а сезонный цикл (регулярная смена времен года) – наклоном земной оси[70].

Вращение – неотъемлемая часть нашей жизни, и тому есть множество подтверждений. Но у одного устройства, принцип действия которого основан на вращении, большое будущее. Я имею в виду маховое колесо, или просто маховик. Все, что вращается, обладает дополнительной энергией, и ее наличие обусловлено именно вращением. Таким образом, если вращающийся объект продолжает вращаться бесконечно долго, это означает, что он может исполнять роль хранилища энергии. Если вы можете ее изъять для той или иной цели, замедлив вращение, то вы, по сути, получаете некое подобие «механической батареи». В этом заключается принцип действия махового колеса. Оно используется на протяжении многих сотен лет, и ничего нового в этом нет. Но в нашу жизнь вскоре может ворваться новая волна маховиков, которые будут представлять собой эффективные современные устройства, способные помочь нам решить одну непростую проблему.

Один из серьезнейших вызовов для любой сети электроснабжения – согласование предложения и спроса на очень коротких отрезках времени. Если все население страны внезапно решит заняться приготовлением еды и одновременно включит электроплиты, то энергопотребление по стране резко возрастет и будет оставаться на этом уровне около часа, а затем столь же резко упадет. В идеале некто, отслеживающий функционирование сети электроснабжения, должен увеличить приток электроэнергии в сеть, когда в этом возникнет необходимость, и согласовать таким образом энергетический спрос и предложение. Но если электроэнергия поступает с угольной теплоэлектростанции, для запуска и остановки которой требуется не один час, возникает серьезная проблема. Более того, величина вырабатываемой электроэнергии и моменты, когда должен обеспечиваться ее дополнительный приток, могут вообще быть нам неподконтрольны. Одна из трудностей со многими возобновляемыми источниками энергии заключается в том, что вы не можете им указывать, когда именно генерировать энергию: легко заготавливать сено (или запасать энергию), когда светит солнце, но как быть, если оно светит не тогда, когда вам это особенно нужно?

Разумеется, вы можете ответить на это так: все, что нам требуется, это батарея, которая будет хранить дополнительную энергию до тех пор, пока она нам не понадобится. Но электрические аккумуляторные батареи не решают данную проблему. Они дороги в изготовлении, для их производства нужны довольно редкие металлы, количество циклов заряда/разряда у них весьма ограниченно, как и скорость запасания и извлечения энергии. Впрочем, в последние годы появились шансы решить эту задачу в связи с разработкой прототипов махового колеса, позволяющих запасать энергию путем преобразования одного ее вида в другой. Маховое колесо представляет собой тяжелый диск или цилиндр, который вращается на подшипниках, обеспечивающих предельно малую силу трения. Будучи приведен во вращение, такое маховое колесо может вращаться очень долго. А поскольку с вращением связана дополнительная энергия, оно может ее запасать. Любую избыточную энергию, появляющуюся в электросети, можно использовать для приведения махового колеса во вращение, и оно будет продолжать вращаться, используя эту избыточную энергию. Затем, когда она вам понадобится, вы будете замедлять вращение махового колеса, отбирая накопленную в нем энергию и преобразуя в электричество. Количество таких циклов «заряда/разряда» у махового колеса не ограничено, а высвобождение накопленной в нем энергии происходит очень быстро. Вы теряете всего около 10 % энергии, которая нужна для приведения махового колеса во вращение. К тому же для его поддержания в рабочем состоянии требуется лишь минимальное техобслуживание. Более того, вы можете приспособить маховое колесо для собственных нужд: небольшое колесо, которое работало бы в сочетании с солнечными панелями у вас на крыше, или группа больших маховиков для сглаживания резких перепадов напряжения в сети электроснабжения в целом. Проводятся испытания небольших мобильных маховиков для использования в транспортных средствах гибридного типа, например в автобусах. Запасание энергии в таких маховиках происходит при каждом очередном торможении автобуса, а возвращение – при развитии скорости. Привлекательность маховых колес заключается в том, что принцип их действия основан на гениально простой идее – преобразовании вращательного момента. Куриные яйца, волчки и чай, помешиваемый в чашке ложечкой, – все подчиняется одному и тому же принципу. Но чтобы этот простой физический принцип позволял решить сложные практические задачи, требуются эффективные современные технологии. Их новое воплощение сейчас пребывает лишь на начальном этапе развития, но вполне возможно, читатели этой книги станут свидетелями гораздо более широкого применения вращающихся маховиков в повседневной жизни.

Глава 8. Когда противоположности притягиваются

Электромагнетизм

Сумка, которая самостоятельно наводит порядок внутри себя, – звучит как несбыточная мечта, но тем не менее она может оказаться реальностью. В прошлом году я посетила лондонский Музей науки, где намеревалась купить несколько симпатичных сферических магнитов (для себя и одной из своих подруг; сувенир с научным подтекстом – лучший подарок, не так ли?). Я остановилась выпить чашку горячего шоколада, а заодно и полюбоваться новыми приобретениями, а затем положила слипшиеся между собой магниты в верхний карман дорожной сумки и отправилась домой. Двумя днями позже, в Корнуолле, я вспомнила, что давненько не любовалась «новыми игрушками», и принялась копаться у себя в дорожной сумке. Я обнаружила их на дне сумки, причем слегка потолстевшими за счет семи монет, двух скрепок для бумаг и металлической кнопки. Я уже поздравляла себя с тем, что мне удалось изобрести новый способ навести порядок в сумке, как вдруг заметила, что далеко не все монеты, валявшиеся на дне сумки, притянулись к магнитам. Я попыталась разобраться, в чем разница между монетами, которые притянулись к магнитам и которые не реагировали на них. Ответить на этот вопрос оказалось не так-то просто. Некоторые из десятипенсовиков притянулись к магнитам, тогда как другие не желали этого делать. Монеты достоинством выше 20 пенсов вообще не притягивались. Большинство одно- и двухпенсовиков притягивались; исключение составляли лишь выпущенные до 1992 года.

Вообще говоря, магниты ведут себя очень избирательно. Большинство материалов – пластмассы, керамические изделия, вода, дерево и живые существа – ими не притягиваются. Другое дело – железо, никель или кобальт. Изделия из этих материалов охотно тянутся к магнитам. Это может показаться странным, но если бы железо не было одним из самых распространенных материалов в мире, то мы, наверное, никогда не столкнулись бы с магнетизмом в повседневной жизни. Лишь на один этот элемент приходится 35 % массы Земли, а сталь (состоящая в основном из железа с добавлением некоторых примесей) составляет существенную часть современной инфраструктуры. Если бы дверцы холодильников не изготавливались с применением стали, то симпатичные магниты, которыми многие домохозяйки украшают их, было бы невозможно прикрепить. Но изделия из стали встречаются буквально повсюду, поэтому магнетизм знаком большинству из нас.

Магниты в моей дорожной сумке рассортировали монетки согласно их химическому составу. Современные одно- и двухпенсовики имеют стальную основу, покрытую снаружи тонким слоем меди. До 1992 года монеты такого достоинства были на 97 % медными. Для меня старые и новые однопенсовики на вид почти неотличимы, но магниты реагируют на их разный качественный состав[71]. «Серебряные» двадцатипенсовики не притягиваются магнитами, поскольку, как ни странно, состоят главным образом из меди. То же можно сказать о более старых десятипенсовиках, но все монеты, которые начали чеканить с 2012 года, имеют стальную основу с никелевым покрытием. Все монеты, притягивающиеся магнитами – даже так называемые медяки, – преимущественно состоят из стали.

Любой магнит окружен магнитным полем – тем, что можно назвать «силовым полем». Это подразумевает наличие вокруг магнита области, которая может притягивать и отталкивать другие объекты, даже если сам по себе магнит к ним не прикасается. На первый взгляд это кажется странным, но так уж устроен физический мир. Проблема с магнитными полями заключается в том, что они невидимы и неосязаемы для нас, поэтому нам трудно их представить. Однако мы можем наблюдать производимое ими действие, и это будит наше воображение, заставляя его строить те или иные научные модели. Самое важное, что можно сказать о магнитах, – у каждого из них есть два особых, четко выраженных конца: северный и южный полюс.

Северный полюс одного магнита будет притягивать южный полюс другого магнита, но северные полюса двух разных магнитов будут отталкиваться друг от друга. Изначально мои монетки не обладали свойствами магнитов, но магниты применили хитрый прием, чтобы притянуть их к себе. Внутри каждого из моих новых однопенсовиков разные участки железа имеют магнитные поля, указывающие в разных направлениях. Эти участки называются доменами, а магнитные поля атомов внутри каждого из них действуют строго однонаправленно. Каждый домен обладает собственным магнитным полем, но поскольку северные полюса всех доменов указывают в разных, притом случайных, направлениях, у железной основы однопенсовой монетки все эти разнонаправленные магнитные поля взаимно компенсируются. Когда я подношу такую монетку к одному из магнитов, его сильное магнитное поле начинает воздействовать на все отдельные домены в монетке. Сами по себе атомы в доменах не движутся, но их магнитные поля переориентируются таким образом, чтобы их северные полюса оказались как можно дальше от северного полюса моего магнита. При этом все южные полюса доменов в монетке выстраиваются как можно ближе к магниту. А учитывая, что противоположные магнитные полюса притягиваются друг к другу, южный полюс монетки притягивается к северному полюсу магнита и монетка прилипает к нему. Стоит оторвать монетку от магнита, и все ее магнитные домены снова станут ориентированы почти случайным образом.

Это явление может показаться странным, однако люди научились им пользоваться, причем с такими примерами мы часто сталкиваемся в повседневной жизни. Речь идет не только о монетках, скрепках для бумаг и магнитах на дверцах холодильников. Магниты также играют важную роль в выработке электроэнергии. В основе каждого устройства, доставляющего ее в электросеть, есть магнит. Однако сами по себе магниты не решают задачу, а магнетизм – лишь половина дела. Магнетизм связан фундаментальным образом с электричеством. Все это имеет жизненно важное значение для современного общества, хотя многие из нас этого просто не замечают.

Однажды писатель-фантаст Артур Кларк сказал, что «любая достаточно продвинутая технология неотличима от волшебства». Электричество и магнетизм в совокупности лежат в основе большинства самых продвинутых современных технологий, даруя нам их поистине волшебные возможности. Если внимательно изучить эти две невидимые силы – электричество и магнетизм, – можно понять, что это две стороны одного и того же явления: электромагнетизма. Они неразрывно связаны между собой, влияя друг на друга. Но прежде чем рассматривать эту связь, давайте копнем поглубже в ту сторону, которая знакома нам гораздо лучше: электричество. К сожалению, первый в жизни опыт непосредственного контакта с электричеством, как правило, малоприятен: мы испытываем удар электрическим током.

Штат Род-Айленд – крошечный дружелюбный кусочек американского северо-востока, где я прожила два года. Род-Айленд еще называют «Океанским штатом». Местные жители совершенно забыли об ироническом подтексте этого названия самого маленького штата Америки, данного в честь самого обширного образования на планете, океана. Менталитет жителей Род-Айленда покоится на двух столпах: побережье и лето. Жизнь – это морские прогулки, домики на берегу, салат из улиток[72] и пляж. Однако зимой здесь бывает очень холодно. Туристы куда-то пропадают, местные жители впадают в зимнюю спячку, а оливковое масло у меня на кухне загустевало, если я выключала отопление, когда приходилось надолго отлучаться.

В наиболее памятные для меня зимние дни я просыпалась с ощущением необычной тишины и неподвижности в природе. Еще до того как открыть глаза, я могла сказать, что ночью выпал первый снег. Для того, кто родился и вырос в сером и скучном Манчестере, такие эмоции были весьма волнующими. Все это мне нравилось – за исключением единственного, повторяющегося из раза в раз момента. Обувшись в уютные зимние ботинки, расчистив снег у наружной двери и с дорожки и посмеявшись вдоволь над белками, копошащимися в снегу, я топала к своему автомобилю. И каждый раз, едва прикоснувшись к нему, ощущала довольно болезненный удар электрического тока. Черт побери, как же я в очередной раз забыла об этом!

Почему-то мне всегда казалось, что всему виной автомобиль. Разумеется, он был вовсе ни при чем. Пока я к нему шла, я тащила на себе группу крошечных и беспокойных пассажиров. Они внимательно высматривали маршрут, по которому могли бы от меня сбежать. Болезненное ощущение в моей руке было лишь побочным эффектом их поспешного бегства. Этими пассажирами были электроны, невероятно маленькие частицы материи, относящиеся к числу самых фундаментальных строительных блоков нашего мира. Одно из их самых удивительных свойств – это то, что обнаружить их движение можно без помощи дорогостоящих ускорителей элементарных частиц и сложных научных экспериментов. В надлежащей ситуации тело человека может выявить движение электронов самым непосредственным образом. Жаль только, что оно регистрирует его как болевые ощущения.

Все начинается с атома. Внутри каждого атома находится тяжелое ядро, в котором сосредоточена практически вся масса атома. Оно обладает внушительным положительным электрическим зарядом, поэтому почти никогда не бывает в одиночестве. Электрический заряд – странная концепция, но на ней держится наш мир. Существует всего три вида строительных блоков, из которых состоит практически все, что нас окружает: протоны, электроны и нейтроны. Каждый из них обладает собственным, присущим лишь ему электрическим зарядом. Протоны гораздо массивнее электронов и являются носителями положительного заряда. Нейтроны имеют примерно такие же размеры, как и протоны, но электрического заряда у них нет. Электрон гораздо меньше по размерам, чем протон или нейтрон, но величина его отрицательного электрического заряда в точности совпадает с величиной электрического заряда протона. Это сочетание строительных блоков определяет структуру всего физического мира. В центре каждого атома сочетание протонов и нейтронов образует тяжелое ядро. Но атом должен быть электрически сбалансированным. Электрические заряды влияют на мир, поскольку разноименные заряды притягиваются, а одноименные – отталкиваются (как мы уже видели на примере магнитов и монет). Таким образом, крошечные электроны кружатся вокруг массивного ядра, потому что заряжены отрицательно и, следовательно, притягиваются к положительному заряду в центре атома. В целом все положительные и отрицательные заряды взаимно компенсируются, но силы притяжения удерживают атом, не позволяя ему развалиться на части. Вся окружающая нас материя полна электронов, но поскольку все сбалансировано, мы их не замечаем. Они дают о себе знать, только когда движутся[73].

Проблема в том, что, когда вам приходится иметь дело со столь малыми и проворными объектами, как электроны, баланс время от времени нарушается. При соприкосновении двух разных материалов электроны довольно часто переходят из одного материала в другой. Это происходит постоянно, но обычно не имеет большого значения, так как избыточные электроны, как правило, довольно быстро возвращаются назад. Хождение по дому в носках не было проблемой: с каждым очередным шагом немногочисленные электроны перебирались с синтетического коврика мне на ноги, но вскоре возвращались обратно на коврик. Ситуация переменилась, как только я надела ботинки с утеплителем из натуральной шерсти и резиновой подошвой. «Бродячие» электроны, как и прежде, перебирались с синтетического коврика на резиновые подошвы моих ботинок. Но какими бы шустрыми они ни были, есть материалы, проникнуть в которые электронам крайне трудно; это так называемые электрические изоляторы, и резина один из них. У резины хватает собственных электронов, но она очень неохотно вбирает в себя любые «посторонние» электроны. Пока я складывала в сумку все, что может мне пригодиться днем, одбирала одежду по погоде и убирала после завтрака, я постепенно накапливала на себе электроны. В результате на поверхности моего тела их скопилось изрядное количество. К моменту, когда я вышла из дому, я несла на себе несколько тысяч миллиардов избыточных электронов – гигантское количество, которое все же составляло лишь микроскопическую долю электронов, принадлежащих моему собственному телу.

Почему же эти избыточные отрицательно заряженные электроны не желали покидать мое тело? Каждый из них отталкивался другими электронами; покинуть меня было бы для них более приемлемым вариантом, чем оставаться на мне. Но непреодолимым препятствием на их пути становились мои ботинки с резиновой подошвой. Помимо стекания на землю, электроны могли бы покидать меня через влажный окружающий воздух. Он содержит множество молекул воды, у каждой из которых есть положительный участок, который мог бы приютить лишний электрон на какое-то время. В большинстве других случаев скопившиеся на мне избыточные электроны постепенно «рассосались» бы, присоединяясь один за другим к молекулам воды. Но в морозные дни после сильного снегопада в воздухе очень мало влаги. Поэтому избыточные электроны, скопившиеся на моем теле, не могли рассосаться постепенно и незаметно для меня.

Таким образом, каждый сухой, снежный день я шла по дорожке от коттеджа к автомобилю, забыв о миллиардах отрицательно заряженных пассажиров на моем теле – по крайней мере до того момента, пока им не представлялся удобный случай от меня сбежать. Мой автомобиль стоял на земле, представляя собой огромный резервуар сбалансированных электронов и ядер. В то самое мгновение, когда мои пальцы прикасались к металлу автомобиля, словно открывался туннель для массового бегства электронов, накопившихся на моем теле. Металл прекрасный электрический проводник, поэтому электроны могут стекать на него практически беспрепятственно. Мои «электронные пассажиры» рванули толпой через небольшой участок кожи на кончике моего пальца, поспешно стекая на металлический корпус автомобиля. Нервные окончания в коже, получив мощный электрический импульс от потока электронов (по сути, электрического тока), вздрогнули не на шутку. Забыв на мгновение об очаровании первого снега и бодрящей свежести морозного воздуха, я невольно чертыхнулась.

В наше время удар электрического тока для большинства из нас – это непосредственное и яркое напоминание об электричестве. Между тем в повседневной суете мы забываем о его вездесущности в нашей жизни. Стены зданий, всевозможные электронные устройства, автомобили и осветительные приборы, часы и электрические фены – буквально все вокруг пронизано электричеством. Но электричество – это не только электрические розетки и провода, электрические цепи и плавкие предохранители. Все это лишь зримые свидетельства способности человека использовать данное явление в своих целях. Наша планета буквально жужжит от пронизывающего ее электричества, причем его можно обнаружить в самых неожиданных местах. Примером может служить обычная пчела.

Представьте теплый погожий летний день в каком-нибудь английском саду. В аккуратно подстриженной траве порхают с места на место в поисках корма птички. Цветы, высаженные на клумбе заботливыми руками хозяев, ведут неспешную, но тем не менее ожесточенную борьбу друг с другом за воду, питательные вещества, солнечный свет и внимание со стороны насекомых-опылителей. По травке стелется аромат жасмина и душистого горошка, рекламируя достоинства того и другого. Над клумбой деловито жужжит пчела, проверяя, нельзя ли здесь чем-нибудь поживиться. На человека такая сцена производит расслабляющее впечатление, но для пчелы это тяжелый труд, расслабляться ей некогда. Чтобы держаться в воздухе, пчела вынуждена прилагать немалые усилия. Ей приходится непрестанно махать своими крошечными крылышками, совершая примерно двести взмахов в секунду. Это постоянное взбивание воздуха настолько интенсивно, что мы способны слышать создаваемые им вибрации – жужжание. Для пчелы оказываемое воздухом сопротивление ощущается гораздо сильнее, чем для человека. С каждым взмахом крылышек ей приходится преодолевать значительное сопротивление со стороны молекул воздуха. Когда вы летите, изо всех сил колошматя крыльями воздух, ваш полет кажется не столь величественным и элегантным, как парение орла. Но если у вас нет иного способа перемещаться по воздуху, то годится и такой. Пчела останавливается в полете на секунду возле розовой петунии, прежде чем решить, что этот цветок заслуживает более тщательного обследования. Подлетев к цветку, но еще не успев прикоснуться к нему, пчела совершает неожиданный маневр. Пыльца, сосредоточенная в центре петунии, внезапно вздымается в воздух, оседая на волосках «воротника», в который укутана пчела. Усевшись на цветок, пчела принимает на себя дополнительную порцию пыльцы. Она еще не успела отведать нектар цветка, но уже приняла на себя покров из ДНК растения, причем все выглядит так, будто пыльца сама «перебралась» на тело пчелы.

Оказывается, полет делает пчелу очень привлекательной – в буквальном смысле слова. Но объясняется это вовсе не ее внешним видом или поведением, а тем, что пчела электрически заряжена – правда, заряд очень слабый. Все дело в том, что, как и в случае с электрическим зарядом, который ударил меня током в момент прикосновения к автомобилю, пчела тоже переносит электроны. Впрочем, на этот раз обошлось без пострадавших.

Собственные электроны пчелы концентрируются возле молекул в ее крылышках. Если что-то проносится мимо пчелы очень быстро (например, воздух) и что-то должно быть сброшено, то этим «чем-то», скорее всего, будет электрон. Именно так все и происходит. Это то же самое, что потереть воздушный шарик о шерстяной свитер: статическое электричество накапливается, а это означает, что в каком-то месте возникает избыток или нехватка электронов. Когда крылышки неистово расталкивали молекулы воздуха на своем пути, электроны смахивались с них в окружающий воздух. На теле пчелы образовывался небольшой положительный заряд, потому что количества оставшихся электронов уже не хватало, чтобы компенсировать положительный заряд всех протонов в ее теле. Однако этот положительный заряд очень мал – и уж во всяком случае недостаточен для того, чтобы человек ощутил удар электрического тока.

Приближаясь к цветку, пчела притягивает отрицательно заряженные электроны и отталкивает положительные заряды. Как северный полюс магнита притягивает к себе свою противоположность (магнитные южные полюса), так и положительно заряженная пчела притягивает к себе отрицательно заряженные электроны. Когда она находится очень близко к цветку, но еще не касается его, ее положительный заряд притягивает поверхность пыльцы с силой, достаточной, чтобы поднять часть пыльцы в воздух и преодолеть небольшой зазор между цветком и пчелой. Затем пыльца прилипает к волоскам на теле пчелы, так же как прилипает к стенке воздушный шарик, на котором скопилось статическое электричество. Когда пчела перелетает к следующему цветку, она переносит на себе всю налипшую на нее пыльцу. Опыление пчелами происходило бы и без статического электричества – исключительно за счет прикосновения к пыльце волосков на теле пчелы, когда она опускается на цветок. В этом случае пыльца прилипала бы к волоскам именно из-за своей липкости. Однако ввиду разности зарядов пыльцы и тела пчелы процесс прилипания существенно ускоряется, начинаясь еще до того, как пчела опустится на цветок[74].

Электроны – крошечные очень подвижные частицы, поэтому, когда электрический заряд перемещается в пространстве, его переносят, как правило, электроны. Несмотря на высокую подвижность электронов, обычно мы не замечаем их движения. Отрицательно заряженные электроны отталкиваются друг от друга, так что, если большое их количество сконцентрируется в каком-то одном месте, они отталкиваются друг от друга и разлетаются в стороны. Значительный заряд никогда не накапливается. Но есть две возможные ситуации, в которых электроны перестают разлетаться в стороны и происходит некоторое накопление заряда: либо электронам просто некуда деваться, либо они не могут двигаться. Когда пчела летит, положительному заряду действительно некуда деваться, поэтому он накапливается снаружи тела пчелы.

Но другая ситуация – когда электроны не могут двигаться – дает нам возможность управлять электричеством. Если пчела опустится на пластмассовый цветочный горшок, положительный заряд не сможет переместиться на пластмассу, поскольку это электрический изолятор. Это означает следующее: хотя в пластмассе предостаточно собственных электронов, они жестко связаны со своими молекулами и не могут свободно перемещаться в таком материале. Сложно добавить в пластмассу хотя бы небольшое число дополнительных электронов или изъять их оттуда, потому что они не могут проскользнуть между собственными электронами пластмассы. Именно в этом особенность электрических изоляторов: они не могут принимать в себя дополнительные электроны или отдавать их. Поэтому, когда пчела садится на пластмассовый цветочный горшок, положительный заряд остается на ней. Если бы пчела опустилась, к примеру, на металлические вилы, то сразу бы лишилась положительного заряда: металлы – превосходные проводники электричества и электроны чрезвычайно легко стекают в них. Причина такого поведения металла заключается в том, что все его атомы охотно делятся друг с другом своими наружными электронами, в результате чего внутри металла образуется нечто наподобие огромного облака, состоящего из электронов, свободно мигрирующих от одного атома к другому. Поскольку эти электроны все время движутся от одного атома к другому и ни один из них не принадлежит какому-то определенному атому, добавление в металл дополнительных электронов или изъятие их оттуда не представляет проблемы.

Люди могут генерировать электрический ток и управлять им лишь потому, что имеют оба типа материалов – и проводники, и изоляторы. Это все, что вам нужно: мозаика из материалов, создающая нечто вроде лабиринта для электронов, где одни пути гораздо легче других, что позволяет управлять движением электронов, заставляя их поток выполнять те или иные полезные функции. Овладев основами такого управления, вы получаете возможность контролировать многие процессы в физическом мире.

Статическое электричество – только начало, истинные перспективы открываются, когда вам удается обеспечить систематическое и упорядоченное движение электронов и электрических зарядов. Электрическая сеть, которую мы используем для передачи электроэнергии на расстояние, – источник безграничных возможностей. Продвигая электрические заряды по проводам и управляя их потоком с помощью всевозможных переключателей и преобразователей, мы можем доставлять электроэнергию в места, где она будет использоваться для удовлетворения тех или иных потребностей человека. Электросеть – лишь один из способов перераспределения электроэнергии. Самое важное качество любой электрической цепи – то, что это цепь. То есть любая электрическая цепь должна представлять собой замкнутый контур, по которому электроны могли бы свободно перемещаться, не накапливаясь где-нибудь «на дальнем конце». Каждая электрическая цепь должна начинаться и заканчиваться на источнике питания – устройстве, которое поддерживает движение электронов, принимая их с одного конца, продвигая по цепи и возвращая обратно в цепь на другом конце. Источник питания немного напоминает лифт, доставляющий детей от подножия горки, по которой они скатываются к ее началу, на самый верх. Дети могут круглосуточно кататься на таком лифте вверх и спускаться по горке – до тех пор, пока лифт будет работать и сможет служить источником достаточной энергии, чтобы каждый раз доставлять пассажиров в ту точку, с которой они начали свой путь по горке. Правило любой электрической цепи гласит, что вы должны потратить всю дополнительную энергию, полученную от источника питания, чтобы доставить электроны обратно в то место, из которого они стартовали.

Что же заставляет электрон двигаться по электрической цепи? Первое обязательное условие – наличие электрического проводника, то есть того, что создает путь, по которому будет перемещаться электрон. Второе – наличие силы, которая будет продвигать электрон по проводнику.

Магнитик, закрепленный на дверце холодильника, и воздушный шарик, несущий на себе электрический заряд, имеют одно общее свойство – демонстрируют возможность создания невидимого силового поля, наличие которого выражается в том, что один стационарный объект отталкивает или притягивает к себе другой объект, находящийся поблизости. Это сходство не случайно, но истинная связь между тем и другим становится очевидной лишь при перемещении электрического или магнитного поля в пространстве. Прежде всего давайте вернемся к принципу силового поля. Нужно заметить, что полями могут пользоваться не только люди.

Дно ручья напоминает мутновато-коричневый лабиринт, устланный камнями, растениями и корнями деревьев. Примерно на метровой глубине под водой едва различимы два усика в виде антенн, осторожно высовывающихся из-за края валуна. Кажется, будто эти усики-антенны тщательно обследуют окружающую обстановку. Рядом появляется какой-то движущийся предмет, и усики мгновенно скрываются за валуном. Это пресноводная креветка – мусорщик, которая питается всевозможными отбросами, случайно попадающими в ручей. Она голодна, но очень чувствительна и осторожна. Где-то выше по течению в воде появился потенциальный враг. Он движется по водной поверхности к середине ручья, энергично загребая воду своими перепончатыми лапами, затем закрывает глаза, зажимает нос, затыкает уши и ныряет. Утконос проголодался и намерен отобедать.

Если креветка будет пребывать в полной неподвижности, это сохранит ей жизнь. Утконос плывет быстро, уверенно продвигаясь вперед, хотя сейчас он ничего не видит, не слышит и не обоняет. Его плоский клюв рыскает из стороны в сторону, сканируя ил, скопившийся на дне ручья. Еще одна креветка – потенциальная добыча утконоса, чувствует его приближение по характерным колебаниям воды, резко поджимает хвост и скрывается под галькой, усеивающей дно ручья. Утконос направляется в ее сторону. Сигнал, приведший к резкому сокращению хвостовой мышцы креветки, был электрическим. Этот электрический импульс создал кратковременное электрическое поле, сосредоточенное на креветке. Электрическое возмущение, передаваясь через воду, кратковременно воздействовало на близлежащие электроны. Хотя оно и заняло какую-то долю секунды, но этого оказалось достаточно. На верхней и нижней поверхностях клюва утконоса сосредоточен массив из примерно сорока тысяч электрических датчиков. Одновременного колебания воды и электрического импульса хватило, чтобы определить нужное направление и расстояние. Клюв ударяет дно ручья в нужном месте – и креветка отправляется в желудок животного.

Шевеление креветки выдало ее с головой, потому что изменило ее электрическое поле. Каждый электрический заряд притягивает или отталкивает другие близлежащие электрические заряды. Электрическое поле – лишь способ описания того, насколько сильно это притягивание или отталкивание в тех или иных местах. Когда же речь идет об электрических сигналах, это означает, что произошло перемещение электрического заряда и нечто, находящееся от него поблизости, уловило это, так как изменилось (увеличилось или уменьшилось) воздействие на это «нечто». Поскольку все мышечные движения сопровождаются перемещением электрических зарядов в мышцах, все эти движения генерируют электрические поля. Поэтому улавливание электрических сигналов – надежный способ ведения подводной охоты, если охотник находится недалеко от своей потенциальной добычи, никакая маскировка не поможет заглушить электрический сигнал. Рано или поздно любое живое существо будет вынуждено пошевелиться, и даже мельчайшее движение создаст электрический сигнал, который выдаст свой источник.

Если это так, то почему же мы не ощущаем электрические поля, которые сами же и создаем? Отчасти потому, что они довольно слабые, но главным образом потому, что в воздухе, который не проводит электричество, электрические поля быстро затухают. Поток воды (а особенно соленая морская вода) – очень хроший проводник электричества, поэтому электрические сигналы удается улавливать на гораздо больших расстояниях, чем в воздухе. Почти все виды живых существ, которые обладают органами, способными улавливать электрические сигналы, – это обитатели морей (к числу известных нам исключений относятся пчелы, ехидна и тараканы).

В электрической цепи электроны движутся потому, что в проводе существует электрическое поле. Оно толкает каждый электрон, продвигая его по проводу. Но откуда берется электрическое поле? Чтобы ответить на этот вопрос, лучше всего начать с батареи. Батареи бывают разных форм и размеров, но одну из их разновидностей я не забуду никогда. Это были специальные морские батареи, и я очень волновалась за их судьбу (они попали в сильный шторм во время проведения важного эксперимента), поскольку от них питался один из научных приборов.

Чтобы изучать физику поверхности океана во время шторма, нам нужно было выходить в море и наблюдать за поведением водной поверхности. Океан – очень сложная среда. Строить всевозможные теории, сидя в кресле в теплом кабинете, можно до бесконечности, только вряд ли такое теоретизирование способно принести реальную пользу, если вы собственными глазами не видели, как все происходит на самом деле. Но даже когда вы оказываетесь в реальной обстановке, на борту корабля в штормящем море, очень трудно «пощупать» именно тот водный слой, который интересует меня больше всего: слой на глубине двух-трех метров от поверхности воды. Знание того, что происходит на этой глубине, позволит нам понять, как «дышит» океан, что поможет давать более точные прогнозы погоды и строить более точные климатические модели. Но чтобы узнать подробности, вам нужно оказаться на указанной глубине, а это очень беспокойное и опасное место. Я не могу плавать в такой воде, но свои эксперименты должна проводить именно там. Для экспериментов с использованием научной аппаратуры требуется электропитание, которое могут обеспечивать электрические батареи. Но им придется работать непосредственно в море, болтаясь вверх и вниз на волнах, невдалеке от корабля. К моему счастью, электрические цепи способны работать не только на суше, но и на море, не боясь волн и болтанки.

Боцман окинул сердитым взглядом горизонт, засунул руки глубоко в карманы своей непромокаемой куртки с капюшоном и направился в мою сторону. Дело было в ноябре, в северной части Атлантики. Мы уже четыре недели не ступали на берег и не видели вокруг себя ничего, кроме серого моря, которое, куда ни обрати взор, сливалось на горизонте с таким же беспросветно серым небом, и непрестанно раскачивались на волнах: вверх-вниз, вверх-вниз… Моток электрического кабеля, который я только что вытащила на палубу, отвлек меня на какое-то время от унылого однообразия морского пейзажа. Я уже успела частично распутать этот моток, и теперь кабель тянулся поперек палубы, упираясь концом в башмак боцмана. Характерный и, на мой взгляд, смешной бостонский акцент боцмана казался совершенно неуместным в столь суровой обстановке. «Сколько вы собираетесь возиться со всем этим?»

Самое неприятное для меня в экспериментах на море – это последние проверки, которые я обязана провести, прежде чем завершить работу. Я немного нервничала, поскольку я, и только я, несла ответственность за данный этап эксперимента. Чтобы определить характеристики воздушных пузырьков, которые образуются непосредственно под бушующими волнами, я использовала большой желтый буй с закрепленными на нем всевозможными измерительными приборами. Боцман отвечал за маневрирование судна возле буя (например, не задевать его корпусом судна и не создавать каких-либо помех работе научной аппаратуры, закрепленной на буе). Приближавшийся шторм обещал быть достаточно серьезным, и я ожидала получить ценную информацию по результатам своего эксперимента. «Мне осталось только подключить электрические батареи, после чего можно приступать», – сказала я. Огромный желтый 11-метровый буй был все еще надежно закреплен на палубе. Подключение батарей я начала с бронированной камеры, установленной наверху буя. Положив ладонь на место подсоединения кабеля питания к камере, я провела рукой по проводу, тянущемуся до дна буя, где были закреплены массивные электрические батареи, и вставила вилку в разъем. Затем таким же способом подсоединила к батареям акустические резонаторы. Нащупать место подсоединения кабеля питания к очередному устройству, провести ладонью по кабелю питания до места его подсоединения к батареям и вставить вилку в разъем. Это называется проверкой надежности подсоединения к источнику питания. Семь раз проверь, один раз измерь – вот мое правило. В ходе этих экспериментов могут проводиться невероятно тонкие и сложные манипуляции в физическом мире, но только при наличии электропитания. В моем случае оно обеспечивалось четырьмя массивными свинцово-кислотными морскими аккумуляторными батареями, весом около 40 килограммов каждая. Эти батареи были изобретены еще в 1859 году, и с тех пор их конструкция не претерпела существенных изменений. Тем не менее они очень надежные.

Когда пришел момент опустить буй с аппаратурой на воду, мы, ученые, в своих непромокаемых комбинезонах, собрались на дальнем конце палубы, а за работу принялась команда судна. С помощью лебедки они приподняли нашего желтого монстра с палубы и осторожно опустили в темные воды. Оказавшись в одиночестве среди бескрайнего бушующего моря, он уже не производил впечатления монстра – скорее, напоминал маленькое желтое пятнышко, которое с трудом угадывалось за вздымающимися вокруг него волнами. Экипаж и ученые, столпившись возле поручней, начали оживленно обсуждать посадку буя на воду и скорость, с которой он удалялся от корабля. Но я не задумывалась об этом. Я думала об электронах.

Там, под водой, началась их гонка. Они отчаливали от батареи, обегали электрические цепи научной аппаратуры, закрепленной на буе, и возвращались в батарею – с другого ее конца. В этих кольцевых гонках по электрическим цепям устройств, задействованных в эксперименте, участвовало фиксированное количество электронов; все они обегали одно и то же кольцо. Электроны не покидали его пределов, никуда не «расходовались» – просто наматывали круг за кругом. Задача заключалась лишь в том, чтобы постоянно подпитывать систему энергией, которая бы заставляла электроны совершать свое поступательное движение. Наматывая круг за кругом по кольцу, электроны затрачивают определенную энергию. Ее источником является батарея, а это весьма хитроумное устройство.

«Фишка» батареи в том, что она организует некую цепочку событий, где каждое звено служит источником электронов, необходимых следующему звену. Таким образом, как только к какой-либо электрической цепи подключают батарею, создаются условия, обеспечивающие движение электронов по этой цепи. У каждой из наших морских батарей было два вывода, с помощью которых они подсоединялись к любой электрической цепи, обеспечив ее питание. Внутри батареи каждый вывод был подсоединен к одной из двух свинцовых, не соприкасавшихся между собой пластин. Пространство между ними было заполнено кислотой (именно поэтому батареи называются свинцово-кислотными). Свинец может вступать в реакцию с кислотой двумя способами. Для одного необходим приток дополнительных электронов, а другой обеспечивает такой приток, вырабатывая дополнительные электроны. Свинцово-кислотная батарея считается полностью заряженой, когда эти две реакции между свинцом и кислотой заходят настолько далеко, насколько это возможно.

Подсоединив научную аппаратуру к батарее, я, по сути, создала путь, пролегающий от одной свинцовой пластины через электрические схемы всей научной аппаратуры к другой свинцовой пластине. Оставалось добавить в этот лабиринт последний, но принципиально важный, недостающий фрагмент: вследствие химических реакций, протекающих на свинцовых пластинах, в проводах возникло электрическое поле. Именно оно приводит в движение электроны, заставляя их перемещаться от одной свинцовой пластины к другой. Но поскольку электроны не могут перемещаться в кислоте, им ничего не остается, как двигаться длинным окольным путем: по «наужной» электрической цепи. Как только электрическое поле создаст для электронов возможность продвижения по электрической цепи, реакции на свинцовых пластинах начинают идти в обратном направлении из-за образования замкнутой электрической цепи. Одна из свинцовых пластин (точнее, следовало бы говорить об «одном комплекте» свинцовых пластин) отдает электроны кислоте, а затем кислота передает этот заряд на другую свинцовую пластину (опять-таки, следовало бы говорить о «другом комплекте» свинцовых пластин), которая в процессе химической реакции принимает на себя электроны. В целом процесс движения электронов по цепи поддерживается, поскольку существует наружная электрическая цепь, по которой они могут возвращаться к первому комплекту пластин. Самое главное, что в процессе перемещения по наружной электрической цепи электроны теряют часть энергии. Такое их перемещение называется электрическим током. Если его прохождение по сложной электрической цепи приводит к выполнению какой-либо полезной функции, реализуемой этой электрической цепью, то это означает, что с помощью электрической батареи вам удалось заставить электрическую энергию работать.

Все эти мысли проносились в моей голове, пока я, перегнувшись через поручни на палубе, наблюдала за желтым буем, пляшущим на волнах. Камера должна была включиться, создав путь для электронов от батареи, которые добрались по проводу до отсека с камерой. Пути прохождения электронов нужно все время контролировать, памятуя о том, что они всегда выбирают самый легкий для себя путь. Пути для движения электронов создаются с помощью проводящих материалов. Кабель питания изготавливается из металла. Продвигаться по металлу электронам гораздо легче, чем по пластмассовой оболочке кабеля, поэтому можете быть уверены, что они будут двигаться именно по кабелю, а не рваться наружу через его пластмассовую оболочку. Помимо управления электрическим током путем комбинирования проводящих и непроводящих материалов, самым основным элементом управления электрическим током является переключатель. Замкнутый переключатель – то место в электрической цепи, где соприкасаются две части электрического провода. Они не соединены между собой «намертво», но когда соприкасаются, электроны могут свободно перетекать из одной части в другую. Чтобы остановить их движение, достаточно просто рассоединить эти части электрического провода. Поток электронов остановится, лишившись легкого пути, чтобы перебраться из одной части провода в другую.

Добравшись по проводу до отсека с камерой, поток электронов разветвляется по двум направлением: одно ведет к компьютеру, а другое – к собственно камере. Говорят, что все дороги ведут в Рим. Применительно к электрическим цепям можно сказать, что они ведут к батарее. Массивный желтый буй был лишь наружной оболочкой для этого ветвящегося потока электронов, а сами они генерировали электрические и магнитные поля, приводя в движение шторки камеры, выполняя роль секундомеров, создавая световые вспышки и фиксируя данные в виде огромной и чрезвычайно сложной синхронизированной последовательности электрических импульсов, прежде чем вернуться к батарее.

И все это происходило во время шторма, разыгравшегося в Северной Атлантике, когда буй раскачивался на огромных волнах (иногда их высота достигала 8–10 метров). Мы маневрировали, отдавшись во власть стихии, рядом с буем на исследовательском судне, где сила земного притяжения была весьма ненадежным товарищем и где видимость порядка поддерживалась лишь стальными тросами, пеньковыми канатами и эластичными шнурами. Через три-четыре дня течение химической реакции в батареях подошло к концу – они снова вернулись в свое первоначальное, незаряженное состояние. Запас электрической энергии на буе закончился, исчерпалась сила, заставлявшая электроны перемещаться по электрическим цепям. Буй превратился в безжизненную оболочку из металла, пластика и полупроводниковых материалов. Но собранные нами данные уже хранились в полупроводниковой памяти компьютера, и это было очень надежное хранилище информации.

Через несколько дней, когда шторм стих, мы подтянули буй к судну и затащили на борт. Я всегда испытывала безмерное восхищение мастерством экипажа нашего исследовательского судна, наблюдая за тем, как умело они вылавливают из воды всевозможные предметы. Корабль нельзя заставить двигаться вбок; он медленно поворачивается и меняет направление. Чтобы получить шанс выловить буй и поднять его на борт, капитану нашего 75-метрового судна нужно было поставить его так, чтобы не повредить буй, но стать рядом с ним настолько близко, чтобы боцман мог зацепить его длинным багром. Как правило, этот маневр удавался капитану с первого раза.

Теперь наступала наша очередь. Батареи подключались к дизель-генератору. Электроэнергия, подаваемая с него, запускала в них обратные химические реакции, которые обеспечивали заряд батарей. Научную аппаратуру, за исключением камеры, извлекали из буя и заносили в помещения. Камеру мы оставляли на холоде, так как у танца электронов есть оборотная сторона и моему бедному аспиранту пришлось бы заплатить соответствующую цену.

Возможно, самый фундаментальный из известных нам физических законов – который из раза в раз подтверждает свою точность и его еще никогда и никому не удавалось опровергнуть – это закон сохранения энергии. Он гласит, что энергию нельзя создать или уничтожить, а можно лишь преобразовывать из одной формы в другую. Батарея заключала в себе химическую энергию, а химические реакции преобразовывали ее в электрическую энергию, после чего она перемещалась где-то между одним терминалом батареи и другим. Но где конкретно? Что-то происходило: камера делала снимки, выполнялись компьютерные программы, на носители информации записывались данные. Но ни одно из этих устройств не сохраняло электрическую энергию в каком-либо новом месте. Она просто незаметно куда-то «вымывалась». За целенаправленное перемещение электронов всегда приходится платить определенную цену, и такой ценой становится тепловыделение. Любое электрическое сопротивление заставляет платить некий «энергетический налог» на электрическую энергию, проходящую через него. Несмотря на то что электроны всегда выбирают путь наименьшего сопротивления, какой-то «налог» приходится платить в любом случае[75].

Камера была заключена в толстый пластмассовый корпус – материал, очень плохо проводящий тепло. Когда она работала, вся энергия электронов, перемещающихся по электрическим цепям, постепенно преобразовывалась в тепло. Пока камера пребывала в воде, это не имело особого значения, так как температура морской воды в то время составляла примерно 8  и вода интенсивно вбирала в себя тепло, эффективно охлаждая корпус камеры. Но воздух гораздо хуже справлялся с этой задачей. В лаборатории при загрузке данных из камеры в компьютер камера перегревалась. Мы делали все, что было в наших силах, но единственным решением, которое нам удалось найти, было оставлять камеру снаружи, в ведре, наполненном водой вперемешку со льдом (благо у нас на корабле был агрегат для его приготовления). Таким образом, моему аспиранту приходилось тратить по девять-десять часов, запуская и останавливая загрузку данных, чтобы предотвратить перегрев камеры и возможную потерю данных, собранных с таким трудом. Вот так творится наука в полевых условиях!

Вот почему в процессе использования нагреваются ноутбуки, пылесосы и фены. Электрическая энергия должна куда-то выходить, и если она не преобразовывается в какие-то другие виды энергии, то неизбежно выделяется в виде тепла. В фенах это свойство используется для нагрева воздуха: они так устроены, чтобы преобразовывать электрическую энергию в тепло очень концентрированным способом. Но производителям ноутбуков приходится думать над тем, как избавиться от тепла, выделяемого в ходе работы устройства, потому что перегрев снижает эффективность функционирования электронных схем. За использование электрической энергии неизбежно приходится платить «тепловой налог»[76].

Таким образом, упорядоченное перемещение электронов обеспечиваетя действием электрического поля. В действительности батарея не является источником электронов – в окружающем нас мире их более чем достаточно. Задача – создать электрическое поле, действие которого обусловливает упорядоченное перемещение электронов. Если электрическая цепь замкнута, это электрическое поле заставит электроны двигаться по образовываемому ею контуру. На первый взгляд ничего сложного. Но что означают все эти числа, нанесенные на электрические разъемы и указанные мелким шрифтом в рекомендациях по соблюдения мер безопасности? Возможно, лучше всего воспользоваться типично британским подходом к решению любых проблем: найти коробку печенья и поставить на плиту чайник?

Главная особенность такого подхода заключается в том, что он включает и перерыв, и чай. Некоторые из моих американских коллег никогда этого не понимали и во время чаепития продолжали говорить о работе. Но для истинного британца «поставить чайник на плиту» означает смену ритма. Я собираюсь сделать это сейчас, причем в данном случае воспользуюсь электрическим чайником. Для этого мне нужно наполнить его водой и вставить вилку в розетку. Я разрешаю своему мозгу расслабиться ненадолго, пока чайник выполняет порученную ему работу.

Нажатие кнопки включения выполняет очень простую функцию: сдвигает маленькую металлическую пластину, в результате чего в электрическую цепь добавляется последний фрагмент, превращающий ее в замкнутый контур, по которому электрический ток может проходить от одного штырька вилки до другого. Правда, в данном случае источник электрического поля не батарея, а гнезда настенной электрической розетки.

У стандартной трехконтактной вилки сверху есть один длинный штырек. Он называется штырьком заземления и полностью отделен от остальной электрической цепи. По сути, он выполняет ту же задачу, что и мой автомобиль холодным снежным утром, – создает путь для отвода избыточных электронов, которые могут накапливаться в нежелательном для нас месте (скажем, на поверхности корпуса чайника). Этот путь не имеет никакого отношения к пути, по которому проходит электрический ток, нагревающий мой электрочайник.

Другие два штырька меньшего размера – это составные элементы электрической цепи, которая служит для нагрева электрочайника. Один из них ведет себя как фиксированный положительный заряд, а другой – как фиксированный отрицательный заряд. Нажимая кнопку включения, я добавляю недостающее звено в электрическую цепь, в результате чего она становится замкнутой. Под действием электрического поля в ней начинается упорядоченное движение электронов. Они отталкиваются от штырька – носителя отрицательного заряда и, проходя через цепь электрочайника, притягиваются к положительно заряженному штырьку. Итак, пока я ищу заварочный чайник и пакетики с чаем, электроны продолжают циркулировать по замкнутой цепи моего электрочайника.

В нижней части электрочайника указано, что он может питаться от сети напряжением 230 вольт (230 V). Напряжение означает силу электрического поля, которое обусловливает упорядоченное движение электронов в замкнутой электрической цепи. Чем сильнее это электрическое поле, тем большую энергию должен потратить каждый электрон при прохождении электрической цепи. Таким образом, величина напряжения говорит нам о количестве энергии, используемой при прохождении электрической цепи. Выше мы приводили аналогию с перемещением людей в кабине лифта. Если ее продолжить, то напряжение – это высота, с которой электрон скатывается по горке электрической цепи к другому штырьку вилки. Чем выше напряжение, тем больше энергии понадобится каждому электрону при прохождении электрической цепи.

Я ополоснула заварочный чайник и опустила в него пакетик с чаем. Чашка и молоко готовы. Остается подождать, пока нагреется вода в чайнике. Для этого требуется всего пара минут, но когда я испытываю жажду, мне не терпится. Скорее же! Я знаю, какое напряжение в электросети, но это далеко не все. Чем оно выше, тем больше энергии может отдать каждый электрон. Но это не говорит о том, сколько электронов проходит по электрической цепи. Чтобы отдать в воду как можно большее количество энергии, нужно, чтобы по цепи двигалось как можно больше электронов. Это называется силой электрического тока, которую мы измеряем в амперах. Чем сильнее ток, тем больше электронов проходит через определенную точку в проводе за одну секунду. Если напряжение источника питания умножить на силу тока, протекающего по цепи, вы получите суммарную величину энергии, выделяющейся за одну секунду. Напряжение, подаваемое на мой электрочайник, равняется 230 вольт, сила тока, протекающего в цепи электрочайника, составляет 13 ампер, так что, умножая, получим 230  13 = 3000 (приблизительно). Согласно паспортным данным моего электрочайника, его мощность равна 3000 ватт (3000 W), что соответствует 3000 джоулям энергии, выделяющейся за одну секунду. Этого достаточно, чтобы нагреть воду до кипения менее чем за две минуты. Правда, какая-то часть тепла при этом рассеивается в окружающей среде, так что на практике кипячение воды в таком чайнике занимает примерно две с половиной минуты.

У меня нет никакого желания это проверять, пока я готовлю чай, но говорят, что «напряжение бьет, а ток убивает». Разница напряжений между мной и моим автомобилем тогда, в морозный день в Род-Айленде, составляла, наверное, 20 000 вольт. Но через мой палец прошла лишь крошечная величина электрического заряда, поэтому он не причинил мне особого вреда. Сила тока была незначительна, и энергии было передано мало. Если бы я прикоснулась пальцами к оголенным проводам, которыми подсоединяется к электросети настенная розетка у меня дома, ситуация оказалась бы совершенно иной. Сильный электрический ток означает упорядоченное перемещение огромного количества электронов, каждый из которых является носителем одного и того же количества энергии. Суммарное количество энергии огромно ввиду колоссального числа ее носителей. Испытать на себе действие энергии такой величины гораздо опаснее, чем удар статического электричества в результате прикосновения к автомобилю, несмотря на то что величина напряжения, подаваемого на электрочайник, составляет лишь сотую долю напряжения, возникающего между моим пальцем и автомобилем. Главную опасность для человека представляет не величина напряжения, воздействующего на него, а сила тока.

Когда электроны проходят через металл нагревательного элемента электрочайника, они движутся под действием электрического поля. Оно придает им некоторое ускорение, но поскольку проводник состоит из множества атомов, эти ускорившиеся электроны неизбежно соударяются с препятствиями, возникающими на их пути, и в результате теряют энергию, нагревая то, с чем соударяются. Таким образом, заставляя огромное количество зарядов упорядочено перемещаться по нагревательному элементу, вы принуждаете их соударяться с препятствиями. В результате огромного числа таких соударений происходит сильный нагрев. Именно в этом и заключается принцип работы электрочайника: ускорение электронов при прохождении через его нагревательный элемент приводит к их многочисленным соударениям с препятствиями, вследствие чего электроны отдают свою энергию в виде тепла. Сами по себе электроны в цепи дрейфуют довольно медленно, со скоростью примерно 1 миллиметр в секунду[77]. Но этого вполне достаточно.

В кипящей воде масса дополнительной энергии. Самое поразительное, что вода получает ее от соударения невообразимо крошечных электронов с препятствиями, возникающими на их пути. Удивительно, но факт: мой чай вскипятился в результате нагрева, вызванного воздействием электрических полей на электроны в проводнике! Это, наверное, простейший из возможных вариантов использования электрической энергии: ее непосредственное преобразование в тепло. Но как только люди научились создавать всевозможные электрические цепи и источники электропитания, варианты применения электричества начали усложняться, причем с нарастающей скоростью.

Существует фундаментальная разница между движением электронов, вызванным электрической батареей, и происходящим при подключении какого-лбо из устройств к настенной электрической розетке. В любом устройстве, работающем от батареи, электроны всегда движутся в одном направлении. Такое их упорядоченное одностороннее движение называется постоянным током (direct current – DC). Стандартная электрическая батарейка типоразмера AA обеспечивает постоянный ток напряжением 1,5 вольта. Но ток, получаемый из настенной электрической розетки, принципиально отличается от постоянного тока – он переменный (alternating current – AC). Переменный ток меняет свое направление со скоростью примерно сто раз в секунду[78]. Переменный ток во многих отношениях более удобен в использовании, чем постоянный ток.

Можно ли переходить с применения переменного тока на постоянный и наоборот? Можно, но это вызывает дополнительные проблемы. С ними сталкивается каждый, кто часто возит с собой ноутбук: в дополнение к нему приходится обязательно брать небольшую, но довольно увесистую коробочку – неотъемлемую часть кабеля питания ноутбука. Это адаптер, преобразующий переменный ток, получаемый от настенной электрической розетки, в постоянный, требуемый для питания ноутбука. Альтернативный источник питания устройства – внутренняя аккумуляторная батарея, которая представляет собой источник постоянного тока. Для преобразования переменного тока в постоянный требуются трансформаторы, это катушки проводов и довольно сложные электрические цепи, поэтому сделать адаптеры очень маленькими пока не удается[79].

Сегодня мы воспринимаем электронику как нечто само собой разумеющееся. Но в пору становления она доставляла нам немало хлопот своей капризностью и непредсказуемым поведением. Мой дедушка хорошо помнит те времена, когда электроника лишь робко входила в наши дома, принося вместе с собой сложности, которые были весьма необычны для живущих тогда людей.

Мой дедушка Джек был одним из первых телевизионных инженеров. В те времена электроника была громоздкой, выделяла много тепла и даже «сильно воняла», как утверждает моя бабушка. Ее описания неисправностей, которые приходилось устранять дедушке, живо напоминали мне об особенностях первых электронных устройств, напрочь забытых в наши времена повсеместного распространения смартфонов и Wi-Fi. Слушая воспоминания бабушки, я не переставала удивляться ее познаниям в области телевизионной техники того периода. Я никогда не слышала, чтобы она интересовалась техникой как таковой, но когда речь заходила о старых телевизорах, бабушка подчас употребляла технические термины, которые были незнакомы даже мне. Однажды она рассказывала: «Важным компонентом был строчный выходной трансформатор. Когда с ним возникали проблемы, из корпуса телевизора вился легкий дымок и чувствовался запах гари». Ее ярко выраженный акцент северянки напоминал мне о том, что люди с севера Англии вообще очень сдержанны в своих эмоциях и высказываниях: возможно, бабушка что-то недоговаривала и в действительности все обстояло гораздо хуже. Пользуясь телевизорами первых поколений, вы всегда рисковали: в любой момент что-либо внутри них могло задымиться, загореться, а то и взорваться. Можно сказать, что мой дедушка присутствовал при рождении новой эпохи – эпохи телевидения – и принадлежал к тому поколению людей, которые могли по-настоящему прочувствовать, что такое мир электричества. Они могли в буквальном смысле пощупать этот мир собственными руками. Впрочем, к моменту окончания трудовой деятельности моего дедушки транзисторы, а затем и микросхемы скрыли от человеческих глаз многие нюансы из жизни этого мира и отдалили от него людей. Крошечные размеры этих компонентов не позволяют человеку разглядеть их богатый и сложный внутренний мир. Но в годы, предшествовавшие появлению современных электронных чипов, вы могли воочию наблюдать многое из того, что происходит в мире электричества.

В 1935 году, в 16-летнем возрасте, мой дедушка нанялся учеником в компанию Metropolitan Vickers. Этот гигант тяжелого электромашиностроения выпускал электрогенераторы, паровые турбины и прочие виды крупного электротехнического оборудования. Когда в двадцать один год дедушка завершил курс обучения и стал специалистом по электротехнике, считалось, что он владеет редкой и очень востребованной профессией. Поэтому его не призвали на военную службу, а оставили работать в Metropolitan Vickers, где в течение пяти лет он испытывал электронные системы управления стрелковым вооружением самолетов. Первый тест таких систем назывался «испытанием на пробой». Вы прикладывали к тестируемой системе напряжение 2000 вольт, и если она выдерживала его, то считалась пригодной к дальнейшему тестированию. Это было, так сказать, начальной стадией приручения электрона, когда люди пытались поставить его себе на службу.

По окончании Второй мировой войны крупная британская компания EMI остро нуждалась в опытных специалистах по электронике, так как первые телевизоры были чрезвычайно капризными и сложными созданиями и для их настройки и ремонта требовались высококвалифицированные специалисты. EMI отправила моего дедушку на курсы повышения квалификации в Лондон, где он должен был освоить профессию инженера-телевизионщика. В то время в мире электроники – и, в частности, в телевизорах – бал правили компоненты весьма внушительных размеров: кинескопы, радиолампы, резисторы, конденсаторы, провода и трансформаторы. Вся эта смесь стекла, керамики и металла имела довольно привлекательный внешний вид и служила основой любого телевизора вплоть до начала 1990-х годов. Задача этих компонентов была достаточно простой: создать направленный пучок электронов и управлять им так, чтобы на экране кинескопа формировалось подвижное изображение.

Дедушка осваивал телевизоры на ЭЛТ. Мне нравится эта аббревиатура, поскольку она соединяет нас с миром, существовавшим задолго до открытия электронов. ЭЛТ расшифровывается как «электронно-лучевая трубка» (cathode ray tube – CRT); дословно «трубка катодных лучей». Когда эти «катодные лучи» только были открыты, они показались довольно странными. Представьте изумленное выражение лица немецкого физика Иоганна Гитторфа, наблюдавшего в далеком 1867 году результаты своего эксперимента, суть которого сводилась к следующему: он брал стеклянную трубку, из которой полностью выкачан воздух, а с обоих концов впаяны два металлических стержня, и подавал на эти стержни высокое напряжение от электрической батареи. В результате внутри трубки возникало течение странной невидимой субстанции от одного стержня к другому. Гитторф был уверен, что эта субстанция действительно возникает при подаче напряжения, подтверждением чему служило свечение, появляющееся на конце одного из стержней. Более того, помещая внутри трубки на пути этой субстанции те или иные препятствия, Гитторф фиксировал появление тени. Хотя никто не знал, что именно представляла собой эта субстанция, ее нужно было как-то назвать. Гитторф решил назвать ее катодными лучами. Катод – это электрод, подключенный к отрицательному полюсу батареи. Именно из катода исходили загадочные лучи.

Прошло еще тридцать лет, прежде чем Дж. Томсон открыл, что «катодные лучи» – вовсе не лучи, а поток отрицательно заряженных частиц, известных сегодня как электроны. Впрочем, их первоначальное название было решено оставить. Затем этот устоявшийся термин перекочевал в название электронно-лучевой трубки – cathode ray tube, или CRT. Сегодня мы знаем, что, приложив к ней высокое напряжение, мы создаем электрическое поле, тянущееся от одного ее конца к другому. Под воздействием этого электрического поля электроны вылетают из отрицательного конца (катода) и направляются в сторону положительного конца (анода). Любая частица, обладающая электрическим зарядом, под воздействием электрического поля будет ускоряться, то есть постоянно подталкиваться вперед на всем пути от одного конца трубки к другому. Таким образом, электроны не просто продвигаются вперед, к положительному концу трубки, потому что притягиваются им, а ускоряются на этом пути. Чем выше разность напряжений между двумя концами трубки, тем быстрее движутся электроны, приближаясь к другому концу. В телевизоре с ЭЛТ электроны в момент соударения с экраном достигают скорости порядка нескольких километров в секунду. Это не так уж мало по сравнению со скоростью света – наибольшей скоростью, которой можно достичь во Вселенной.

Таким образом, тот же фундаментальный процесс, приведший к открытию электрона, использовался в каждом из телевизоров, выпускавшихся в мире каких-нибудь пару десятков лет тому назад. В них применялся прибор, «вырабатывающий» электроны, а именно кинескоп – полая камера, из которой откачан воздух (то есть созданы условия, близкие к вакууму), стало быть, внутри нее нет никаких препятствий. В результате электроны, которыми выстреливает так называемая электронная пушка в кинескопе, движутся в вакууме, пока не ударятся об экран. Такой их поток в кинескопе представляет собой электрический ток в чистом виде: заряженные частицы, движущиеся по прямой линии.

Моя тетя открывает коробку со всевозможным «электронным хламом», оставшимся ей «в наследство» после смерти моего дедушки. В коробке можно найти стеклянные радиолампы, немного напоминающие своим видом цилиндрические осветительные лампочки; правда, вместо обычной нити накаливания внутри них скрывается довольно сложная металлическая конструкция. Радиолампы используются для управления потоком электронов в электрических цепях. Когда дедушка занимался ремонтом телевизоров, он прежде всего старался выяснить, не сгорела ли какая-либо радиолампа, которыми были буквально нашпигованы внутренности каждого телевизора, чтобы заменить ее. Мои мама, тетя и дедушка питали к радиолампам искренние чувства любви и благоговения, поскольку от их исправности зависело очень многое в жизни. Разнообразие радиоламп просто поражает!

А еще в углу коробки можно обнаружить большой кольцеобразный магнит (сейчас он уже раскололся на две части). Глядя на него, я размышляю о великой связи между электричеством и магнетизмом. Если вы хотите управлять электричеством, вам нужны магниты. Если хотите управлять магнитами, вам требуется электричество. Электричество и магнетизм – две стороны одного и того же явления. И электрическое, и магнитное поле могут подталкивать движущийся электрон. Но результаты такого подталкивания разнятся. Электрическое поле будет подталкивать движущийся электрон в направлении действия поля. Магнитное – в сторону, перпендикулярно направлению поля.

Создать направленный пучок электронов – лишь полдела. Главная проблема, которую следовало решать конструкторам старых телевизоров, – управлять этим пучком электронов так, чтобы он попадал в нужные точки экрана. В основе такого управления лежит принцип неразрывной связи между электричеством и магнетизмом. Когда электрон движется через магнитное поле, он отклоняется в сторону. Чем сильнее магнитное поле, тем сильнее отклоняется электрон. Следовательно, изменяя определенным образом величину магнитного поля в ЭЛТ старого телевизора, можно отклонять пучок электронов на тот или иной угол, целенаправленно изменяя точку попадания пучка электронов на экран. Большой кольцеобразный постоянный магнит, покоившийся в углу заветной дедушкиной коробки, был смонтирован вблизи электронной пушки и обеспечивал основную фокусировку. Но управляющие электромагниты, находящиеся несколько ближе к экрану, контролировались непосредственно сигналом, поступающим с телевизионной антенны. Эти электромагниты управляли пучком электронов таким образом, чтобы он сканировал экран по горизонтали, строка за строкой. Сам по себе пучок электронов при прохождении каждой очередной строки то включался, то выключался, и в том месте, где он попадал на экран, появлялась яркая точка. Строчный выходной трансформатор, о котором я упоминала выше, относился к числу устройств, предназначенных для управления сканированием экрана. Чтобы обеспечить непрерывное изображение на экране телевизора, нужно было сканировать 405 строк 50 раз в секунду, при этом пучок электронов следовало включать и выключать в строго определенные моменты времени – соответственно изображению, формируемому на экране.

Управление пучком электронов – невероятно сложный процесс. Для формирования изображений на телеэкране требуется множество электронных компонентов, причем все они должны действовать строго синхронно, исполняя свои функции исключительно в определенные моменты времени. Именно поэтому в телевизорах старых типов множество ручек настройки, позволяющих корректировать и «подстраивать» картинку на экране. Кстати, многие владельцы телевизоров этим злоупотребляли, то и дело (зачастую без реальной необходимости) вращая ручки настройки. Впрочем, для моего дедушки настройка телевизоров была не забавой, а профессиональной обязанностью. Можно сказать, он был знатным специалистом по части ремонта и настройки телевизоров. Со стороны его манипуляции выглядели как некое священнодействие. Настоящих мастеров своего дела уважали во все времена – да и как не уважать мастера, если он делает то, что у тебя не получается! Сейчас мир изменился. Специалисты-электронщики могут «оживить» неработающее устройство, но вы не понимаете, что именно они делают и почему оно работает.

Кажется невероятным, что молчаливые и невидимые электроны, замкнутые в вакууме, могут быть ключом ко всему богатству телетрансляций, полных звуков и красочных кадров. В течение пятидесяти лет работа телевизора основывалась на одном и том же простом принципе: поместите электрон в электрическое поле – и сможете ускорять или замедлять его движение. Поместите движущийся электрон в магнитное поле – и сможете отклонять его в ту или иную сторону. Поддерживайте этот процесс в течение долгого времени – и он будет циклически повторяться.

Масштабный физический эксперимент в ЦЕРН[80] (Женева), уже успевший прославиться открытием бозона Хиггса в 2012 году[81], основан на тех же принципах, что и электронно-лучевая трубка, хотя в Большом адронном коллайдере проводятся эксперименты не только с электронами, но и с другими элементарными частицами. Электрическое поле позволяет придать ускорение любой заряженной частице, а магнитное поле – искривить путь, по которому она движется. В недрах Большого адронного коллайдера – эксперимента, который наконец подтвердил существование бозона Хиггса, – ускорение придается протонам. В коллайдере достигнуты скорости, весьма близкие к скорости света. Они настолько высоки, что даже при использовании чрезвычайно мощных магнитов, управляющих движением частиц, протяженность кольца ускорителя пришлось сделать равной 27 километрам.

Таким образом, базовую концепцию, используемую и для обнаружения самого электрона, и для создания Большого адронного коллайдера в ЦЕРН – управляемый поток заряженных частиц в вакууме, – еще до сравнительно недавнего времени можно было обнаружить и у себя дома. В наши дни громоздкие телевизоры на базе электронно-лучевых трубок почти полностью вытеснены плоскими «плазменными» экранами. В 2008 году общемировые объемы продаж телевизоров с плоским экраном впервые превысили объемы продаж телевизоров на базе электронно-лучевых трубок, и тенденция сохраняется. Появление плоских экранов обусловило разработку смартфонов и ноутбуков, поскольку такие экраны могут иметь малые размеры. Эти новые дисплеи также управляются электронами, но гораздо более сложным способом. Вся площадь экрана делится на множество крошечных квадратиков, пикселов, а электронное управление каждым таким пикселом определяет, светится ли он. Если разрешение экрана составляет 1280  800 пикселов, значит, вы смотрите на сетку, состоящую из более чем миллиона отдельных цветовых точек. Каждая из таких точек управляется (включение/выключение) раздельно путем подачи на них крошечных напряжений. Состояние каждого пиксела обновляется не менее шестидесяти раз в секунду. Координация раздельного управления таким количеством пикселов – чрезвычайно сложная задача, но даже она кажется тривиальной по сравнению со сложностью функций, выполняемых вашим ноутбуком.

Но вернемся к магнитам. Магнитное поле может воздействовать на электроны, поэтому может управлять электрическими токами. Однако взимосвязь электричества и магнетизма этим не ограничивается. Электрические токи могут также создавать собственные магнитные поля.

Как мы уже знаем из главы 5, тостеры обеспечивают весьма эффективный нагрев с помощью инфракрасного света. Однако подлинная прелесть тостера вовсе не в этом – ваш гриль тоже так умеет. Подлинная прелесть тостера в том, что он знает, когда остановиться. Универсальное правило работы тостера заключается в том, что хлеб только тогда исчезает в его недрах, когда вы нажимаете на рычажок с одной стороны. Если вы нажмете на этот рычажок не до самого конца, хлеб просто выскочит обратно из тостера. Но если вы нажмете на рычажок до упора, раздастся щелчок и хлеб останется в тостере до тех пор, пока не обжарится и не выскочит из этой мини-печи. Мне не нужно неотрывно следить за процессом обжаривания, проверяя степень готовности тоста. Когда хлеб превратится в тост, раздастся еще один механический щелчок и тост выскочит из тостера сам собой. Таким образом, пока я занимаюсь какими-то другими делами, например выкладываю из холодильника на стол масло и джем, что-то удерживает тост внутри тостера.

Прелесть тостера – в простоте его конструкции. Когда вы помещаете в тостер хлеб, он оказывается на подпружиненном лотке. Пружины, на которых смонтирован лоток, поднимают хлеб в верхнюю позицию, расположенную достаточно высоко над нагревательными элементами. Впрочем, вам не составит большого труда преодолеть действие этих пружин и протолкнуть хлеб вниз. Когда лоток достигнет дна тостера, выступающая наружу металлическая пластинка замыкает зазор не в одной, а сразу в двух электрических цепях. Одна из этих цепей отвечает за функцию нагрева: электрический ток, проходя по нагревательным элементам тостера, которые являются составными частями этой цепи, начинает подогревать лоток с хлебом.

Но другая электрическая цепь представляет для нас гораздо больший интерес. Электроны в ней циркулируют по отрезку провода, обернутому вокруг небольшого куска железа, так называемого сердечника. Перемещение электронов по отрезку провода напоминает движение по винтовой лестнице: они заходят в отрезок провода с одного его конца, движутся по спирали вокруг железного сердечника, наматывая круг за кругом, а затем, выйдя с другого конца отрезка провода, продолжают движение по цепи, пока не доберутся до штырька вилки, вставленной в электрическую розетку. Вот, собственно, и все, что происходит во второй электрической цепи. Но, учитывая неразрывную связь электричества и магнетизма, проходя по проводу, электрический ток создает вокруг него магнитное поле. Если ток проходит по проводу, намотанному на катушку, то его прохождение по каждому очередному витку провода наращивает магнитное поле в катушке, а железный сердечник, помещенный внутрь катушки, усиливает его. Такая конструкция называется электромагнитом. Когда электрический ток проходит по проводу, получается магнит, когда подача тока прекращается, магнитное поле вокруг катушки исчезает. Поэтому, нажимая на рычажок, вы включаете магнитное поле у основания тостера (до этого момента оно отсутствовало). Так как нижняя сторона лотка с хлебом изготовлена из железа, лоток притягивается к магниту. Другими словами, пока я достаю масло и джем из холодильника, временное магнитное поле удерживает лоток с хлебом в нижнем положении. В тостере сбоку встроен таймер, который запускается при замыкании электрических цепей. По истечении заданного времени таймер прекращает подачу электропитания в цепи тостера. Поскольку электрический ток перестает подаваться на электромагнит, он теряет свои свойства. Магнитное поле перестает удерживать лоток с хлебом в нижнем положении, и пружина толкает его вверх.

Иногда я забываю вставить вилку тостера в электрическую розетку. Впрочем, все довольно быстро выясняется: если я попытаюсь нажать на рычажок тостера, он тотчас же вернется в исходное положение, даже если я повторю нажатие. Это объясняется отсутствием подачи электрического тока на электромагнит, поэтому электромагнит не может удерживать лоток с хлебом в нижнем положении. В такой простой системе все происходит с потрясающей элегантностью. Каждый раз, готовя тост, вы пользуетесь фундаментальной связью электричества и магнетизма.

Электромагниты широко распространены благодаря своему уникальному свойству: возможности включать и выключать магнитное поле. Они применяются в громкоговорителях, электронных дверных замках и компьютерных дисководах. Чтобы электромагнит создавал магнитное поле, на него должно подаваться электропитание – иначе магнитное поле пропадает. Магниты, которые вы прикрепляете на двери холодильников, называются постоянными – их нельзя включать и выключать и на них не нужно подавать электропитание. Электромагниты при подаче электропитания, по сути, исполняют ту же функцию, что и постоянные магниты. Но их удобство в том, что их можно выключить, прекратив подачу электрического тока.

На нас все время воздействуют небольшие, локальные магнитные поля. Какие-то из них постоянные, а какие-то – временные. Эти поля почти всегда рукотворны, то есть искусственного происхождения, и используются для выполнения той или иной полезной функции. Иногда они оказываются побочным продуктом при выполнении какой-либо полезной функции. Магнитные поля действуют в весьма ограниченном пространстве, поэтому их можно обнаружить только вблизи магнита. Но все это лишь слабые проявления гораздо более мощного магнитного поля, которое охватывает всю нашу планету и имеет исключительно естественное происхождение. Мы не можем почувствовать его, но все время им пользуемся.

Большинство из нас – особенно любители совершать длительные пешие походы по незнакомой местности – воспринимают компас как нечто совершенно естественное. Очень удобно брать в походы прибор, стрелка которого всегда указывает на север. Сколько бы компасов у вас ни было – десять, двадцать или двести и как бы вы их не размещали, все они всегда указывают на север. Вы можете перенести свою коллекцию компасов в любое место на Земном шаре, разложить ее на земле – и стрелки всех компасов будут указывать на север. Магнитное поле Земли повсеместно. Оно пронизывает наши города, леса и горные массивы. Мы живем в нем и хотя и не ощущаем его действия, компас всегда напомнит нам о его существовании.

Компас – гениально простой измерительный прибор. Его стрелка – это магнит, поэтому ее концы ведут себя по-разному, будучи северным и южным полюсами магнита. Если два магнита разместить рядом и перемещать относительно друга друга, то вскоре вы заметите, что сдвинуть между собой два северных полюса очень трудно, тогда как разноименные полюса магнитов сильно притягиваются. Именно поэтому так легко определить направление магнитного поля: если поместить небольшой подвижный магнит внутри магнитного поля, он будет поворачиваться вокруг собственной оси до тех пор, пока его северный и южный концы не окажутся ориентированными вдоль этого магнитного поля. Именно в этом и заключается принцип действия компаса: подвижный магнит, который поворачивается в направлении внешнего магнитного поля. Вы не можете видеть обширное магнитное поле Земли, но можете видеть стрелку компаса, реагирующую на него. Впрочем, компасы реагируют не только на магнитное поле Земли. Возьмите в руку компас и походите с ним по комнатам своего дома. Вы наверняка обнаружите магнитные поля вокруг электрических розеток, стальных кастрюль, бытовых электроприборов, магнитов, закрепленных на холодильнике, и даже возле утюга, если он недавно побывал возле какого-либо магнита.

Компасы, понятное дело, используются главным образом для ориентирования на местности. Проложить маршрут, находясь на поверхности сферы, не так-то просто, но магнитное поле Земли уже не одно столетие служит необычайно надежным инструментом для исследователей. У Земли есть северный магнитный полюс и южный магнитный полюс, и каждый обладатель компаса может легко ориентироваться на местности по какому-то из них. В качестве навигационного инструмента магнетизм прост, дешев и безотказен. Однако тут следует сделать несколько важнх оговорок, причем оговорка номер один звучит неожиданно серьезно: магнитные полюса Земли не строго фиксированы и могут со временем менять местоположение.

В день, когда я пишу эти строки, северный магнитный полюс Земли расположен на север от Канады и находится примерно в 430 километрах от «истинного севера», то есть реального Северного полюса, который определяется осью вращения Земли вокруг собственной оси. С того же самого дня в прошлом году северный магнитный полюс сместился на 42 километра; сейчас он движется через Северный Ледовитый океан в направлении России. Это вряд ли вселит оптимизм в тех, кому часто приходится ориентироваться на местности, хотя, учитывая, насколько огромен наш мир, блуждание магнитных полюсов не такая уж проблема, как кажется поначалу. Причина такого блуждания в том, что внутренняя «начинка» нашей планеты отнюдь не похожа на статичный каменный шар.

Глубоко-глубоко у нас под ногами медленно перемешивается и взбалтывается насыщенное железом внешнее ядро Земли, вследствие чего происходит передача тепла от центра Земли к ее поверхности, а вращение планеты заставляет вращаться и расплавленное содержимое ядра. Из-за насыщенности железом это инертное внешнее ядро представляет собой электрический проводник, то есть может вести себя подобно электромагниту в тостере. Ученые полагают, что магнитное поле Земли создается электрическими токами, проходящими через ее внешнее ядро в ходе его вращения. Процесс основывается на медленном перемешивании расплавленной лавы во внешнем ядре Земли, а поскольку процесс перемешивания расплавленной лавы с течением времени меняется, происходит блуждание магнитных полюсов. Их ориентация примерно соответствует ориентации оси вращения Земли, так как вращение насыщенного железом внешнего ядра Земли обусловлено вращением планеты в целом, однако это соответствие лишь приблизительное.

Таким образом, при потребности в более точной навигации вы должны вносить поправку на текущее положение магнитного полюса, потому что он не совпадает с истинным Северным полюсом. Сегодняшние географические карты показывают направление обоих полюсов. Только что я посмотрела на карту южного побережья Великобритании (такие карты издаются картографическим управлением Великобритании и отличаются высокой точностью), в ней наверху указаны и северный магнитный полюс, и истинный Северный полюс. Глядя на нее, я прихожу к выводу, что если бы вы двигались по компасу строго на север и прошли бы при этом 40 километров, то в результате отклонились бы от истинного направления на север примерно на 1 километр в сторону запада. Географическая карта – относительно постоянный документ, тогда как магнитное поле, которое вы используете как инструмент ориентирования на местности, со временем изменяет направление. Наличие современных технологий вроде GPS избавляет нас от беспокойства по поводу блуждания магнитных полюсов. Но в авиации, где применяется одна из самых сложных навигационных систем нашего времени, фактор блуждания магнитных полюсов приходится учитывать.

В следующий раз, оказавшись в аэропорту, обратите внимание на обозначения в начале каждой взлетно-посадочной полосы (ВПП). Каждая ВПП в мире помечается определенным числом, которое обозначает ее ориентацию по отношению к направлению на север и выражается в градусах, поделенных на десять. Так, взлетная полоса в аэропорту Glasgow Prestwick имеет номер 12, поскольку самолет, приземляющийся на нее, должен следовать курсом 120 градусов. Каждая ВПП обозначается числом от 01 до 36[82]. Когда мы говорим о курсе, которым следует самолет, то имеем в виду направление его движения относительно магнитного севера, поскольку компас указывает именно это направление. В 2013 году взлетная полоса 12 в Глазго стала взлетной полосой 13, что было обусловлено смещением магнитного полюса. Разумеется, она осталась на прежнем месте, но магнитное поле Земли изменило ориентацию. Авиаторы отслеживают эти изменения и по мере необходимости вносят соответствующие поправки в обозначения взлетных полос. Учитывая, что полюса блуждают относительно медленно, это не составляет труда.

Впрочем, блуждание полюсов – далеко не вся история. Непостоянство магнитного поля Земли приходится учитывать не только тем, кто решает навигационные проблемы. Оно помогло, пусть и косвенно, окончательно подтвердить одну из наиболее противоречивых, простых и впечатляющих гипотез, когда-либо выдвигавшихся геологами. Континенты, эти бескрайние каменистые массы, которые доминируют на поверхности Земли, не стоят на месте. Они движутся.

В 1950-е годы человеческая цивилизация вступила в новую технологическую и научную эпоху. Закладывались основы современного общества. В ту пору начали появляться и набирать популярность микроволновые печи, Lego, Velcro и бикини. Люди постепенно смирились с необходимостью жить в атомном веке, заново переписывались социальные правила, в нашу жизнь вошли кредитные карточки. Несмотря на эти впечатляющие технологические достижения, мы все еще очень мало знали планету, на которой живем. Геологи классифицировали все минералы, встречающиеся на Земле, но не могли объяснить саму Землю. Как образовались горы? Почему этот вулкан находится здесь, а не там? Почему одни горные породы такие старые, а другие – молодые? Почему горные породы выглядят по-разному в зависимости от того, под каким углом на них смотреть?

Одна из загадок, которую людям особенно не терпелось разгадать, состояла в том, что восточное побережье Южной Америки и западное побережье Африки выглядели так, словно когда-то представляли собой одно целое, а затем его взяли да и разорвали на две части. Там все сходится: виды горных пород, формы и древние окаменелости. Как объяснить такие совпадения? Большинство ученых считали их лишь забавным курьезом, не заслуживающим серьезного внимания. Им казалось немыслимым, что столь огромные образования, как континенты, могли «разъехаться» в стороны. В начале XX века немецкий исследователь Альфред Вегенер, собрав все существовавшие на тот момент научные факты, выдвинул идею «континентального дрейфа». Вегенер предположил, что Южная Америка и Африка когда-то были соединены друг с другом и что одна из этих огромных масс земли откололась от другой и начала дрейфовать по поверхности планеты. Очень немногие ученые серьезно отнеслись к этой гипотезе: мысль о том, что целый континент мог проделать путь в 5000 километров, большинству ученых казалась нелепой. Если бы это на самом деле было так, то под действием какой силы происходил такой дрейф? Сам Вегенер предположил, что континенты «пропахали» себе путь через океанические скальные породы, но не смог подтвердить свою догадку фактами. Правда, никому не удалось выдвинуть более правдоподобную версию. Со временем гипотеза Вегенера была преданы забвению.

К началу 1950-х годов никаких новых идей на сей счет выдвинуто не было, зато появились новые измерения. Лава, извергаемая вулканами, содержит богатые железом соединения. Оказалось, что каждая крупица одного из этих соединений может вести себя подобно стрелке компаса, ориентируясь в направлении локального магнитного поля. Самым интересным было то, что, когда лава остывала и превращалась в твердую скальную породу, эти крошечные вкрапления железосодержащих минералов жестко фиксировались в исходном положении, ориентированном в направлении локального магнитного поля. Наличие этих крошечных «замороженных компасов» означало, что в момент образования скальных пород в них оказалась встроенной существовавшая в то время картина магнитного поля Земли. Когда геологи воспользовались этой картиной, чтобы исследовать изменения магнитного поля Земли, происходившие на протяжении целых геологических эпох, удалось выявить чрезвычайно любопытные факты. Выяснилось, что каждые несколько сотен тысяч лет направление магнитного поля Земли меняется на противоположное, то есть магнитный север и магнитный юг меняются местами. Казалось бы, что нам с того? Но все равно это выглядело очень странно.

Затем геологи обратили взор на морское дно. Одним из множества необъясненных явлений структур Земли было наличие в нескольких океанах длинных цепей подводных гор, тянущихся вдоль обширных «равнин» морского дна. Никто не мог ответить на вопрос, как эти горные цепи там появились. Самая знаменитая горная цепь – Среднеатлантический горный хребет: гряда вулканов, которая берет начало над водой (Исландия представляет собой лишь окончание этого хребта, выступающее над поверхностью воды), а потом уходит под воду и тянется по центру Атлантического океана почти до Антарктики. Но в 1960 году магнитные измерения показали, что магнетизм скальных пород, окружающих этот горный хребет, выглядит чрезвычайно странно. Он необычен своей полосатостью, причем полоски тянутся параллельно хребту. По мере удаления от центрального хребта скальные породы морского дна обладают магнетизмом, который ориентируется сначала на север, затем на юг, потом снова на север, причем эти полоски тянутся по всей длине горной гряды. Но и это еще не все: если взглянуть на другую сторону гряды, то магнитные полоски на ней представляют собой зеркальное отражение первых.

В 1962 году двое британских ученых, Драммонд Мэтьюз и Фред Вайн, высказали идею на этот счет[83]. А вдруг, предположили они, вулканы на морском дне формируют новое морское дно, когда континенты расходятся? Магнетизм, выявленный возле горного хребта, соответствует нынешнему направлению магнитного поля. Но когда континенты расходятся в стороны, горные породы от этих хребтов растягиваются по обе стороны вулканов; при этом образуются новые горные породы. Когда магнитное поле Земли меняет направление на противоположное, магнетизм этой новой лавы также меняет направление на противоположное, давая начало новой полосе, указывающей в противоположном направлении. Причина, почему эти полосы зеркально отражают друг друга, состоит в том, что каждая полоса представляет период одной магнитной ориентации, прежде чем произойдет ее очередная смена. Другие открытия, сделанные примерно в то же время, позволили выявить места, где происходило разрушение старого морского дна, что было очень важно, поскольку размер самой планеты не меняется. По другую сторону Южной Америки существует горный массив Анды, так как именно здесь старое морское дно из Тихого океана заталкивается под континент, обратно в мантию Земли. Когда вы точно знаете, что континенты могут перемещаться, сталкиваясь и разделяясь, создавая и разрушая морское дно в ходе таких перемещений, геологические картины обретают глубокий смысл. Открытие тектоники плит стало поворотным моментом в геологической науке. В наши дни тектоника плит исполняет роль станового хребта всех наших представлений о том, почему Земля именно такая, как есть.

Итак, континенты таки «дрейфуют», правда, при этом не «пропахивают» морское дно. Они плывут поверх того, что под ними, под воздействием конвекционных токов, перемещающихся под поверхностью Земли. И этот процесс разворачивается прямо у нас на глазах. Сейчас Атлантический океан все еще расширяет свои границы со скоростью примерно 2,5 сантиметра в год[84]. В настоящее время продолжается формирование магнитной полосы. Чтобы убедить ученых в том, что поверхность Земли подвижна, потребовалось немало фактов, но неопровержимым доказательством послужили картины магнетизма морского дна. Сегодня мы можем измерить перемещение всех континентов с помощью очень точных данных, поступающих с GPS. Они позволяют нам видеть механизм таких перемещений в действии. Но ключом к прошлой истории Земли и ее нынешнему виду оказался магнетизм, заключенный в древних горных породах планеты, возраст которых сотни тысяч лет.

Сочетание электричества и магнетизма образует симбиоз, играющий огромную роль в нашей жизни. Наша нервная система использует электричество для передачи сигналов к разным участкам тела, электропитание необходимо многим устройствам, жизненно важным для современной цивилизации, а магнетизм позволяет нам сохранять информацию и управлять упорядоченным движением электронов, исполняющим те или иные полезные функции. Мы добились значительных успехов в том, что касается контроля электромагнетизма. Мы довольно редко испытываем удар электрическим током, да и неожиданные отключения электроэнергии стали редкостью. Мы научились эффективно защищать себя от вредного воздействия сильных электрических и магнитных полей; более того, мы живем, даже не замечая их существования. С одной стороны, наше умение управлять электромагнетизмом не может не радовать. С другой – мне становится грустно оттого, что мы так тщательно прячем от себя такую важную часть физического мира, как электромагнетизм. Впрочем, меня не покидает надежда, что в будущем человечество найдет дополнительные способы напоминать людям о наличии электромагнетизма, чтобы мы не забыли о нем окончательно. Перед человечеством встала во весь рост проблема неминуемого исчерпания традиционного источника энергии – ископаемого топлива. В будущем выработка электроэнергии не обязательно будет происходить на удаленных электростанциях. Возобновляемая энергия может вырабатываться гораздо ближе к местам нашего проживания. Не исключено, что появятся какие-то новые способы выработки электроэнергии. Циферблат моих наручных часов представляет собой солнечную батарею. С момента их покупки прошло семь лет, а они тикают, как ни в чем не бывало. Уже разработаны технологии, которые позволяют добывать солнечную энергию из света, проникающего в наши жилища через окна, из кинетической энергии, вырабатываемой при ходьбе, и из энергии волн в устьях рек. Принципы, на которых основаны эти технологии, – все те же законы электромагнетизма.

Мне осталось добавить еще один фрагмент в картину электромагнетизма, иначе она будет неполной. Мы видели, что электрический ток может создавать магнитное поле в тостере. Но этот процесс действует и в обратном направлении. Когда вы перемещаете магнит вблизи проводника, магнитное поле воздействует на заряженные частицы (например, на электроны), а это означает, что вы можете создать в проводнике электрический ток, которого там раньше не было. Речь в данном случае идет не о каких-то технологиях будущего, а о довольно распространенном способе выработки электроэнергии в наши дни. Мы подаем в электрическую сеть электроэнергию, образующуюся за счет перемещения магнитов – либо с помощью вращения турбин тепловых или атомных электростанций, либо вращая ручку так называемого заводного радиоприемника, который работает от встроенной динамо-машины. Один из самых элегантных и простейших примеров использования электричества и магнитов для выработки электроэнергии – ветряной двигатель.

Если смотреть на него снизу вверх, он кажется величественным и безмятежным: высокая белая опора, на которой крепятся элегантные вращающиеся лопасти. Но эта мирная и безмятежная картина исчезает, как только вы вступаете в основание башни. Внутри царит низкое, сильное гудение. Вам кажется, что вы попали внутрь какого-то гигантского музыкального инструмента. Я побывала на одной из таких ветротурбин, расположенных в Своффэме, на востоке Англии. Это один из немногих ветряков, открытых для посещения туристами (в определенные часы). Возможно, вам понадобится немало времени, чтобы добраться до него, но уверяю, вы не пожалеете о времени, потраченном на поездку.

Страницы: «« 1234 »»

Читать бесплатно другие книги:

Зарисовки кошачьих будней. У кошки Мориски, как и у людей, есть свои страхи. Она боится неких похити...
«Есть, молиться, любить» заканчивается историей о том, как во время своего путешествия на Бали Элиза...
Столкнувшись с изменой гражданского мужа и оказавшись на моральном дне жизни, пробыв три года в депр...
Врач по профессии Сергей Иванович Филонов в доступной форме рассказывает о сухом лечебном голодании,...
Эта книга посвящена одной из самых древних загадок – тайне перевоплощения Души, истории прошлых жизн...
3033 год. Ежегодная экстремальная гонка «Бритвашторм». В состязании «бритв», профессиональных киберн...