Физика и жизнь. Законы природы: от кухни до космоса Черски Элен

Взбираясь по винтовой лестнице внутри башни, вы слышите, как гудение то усиливается, то ослабевает. Вы можете даже почувствовать, как все это сооружение содрогается под напором ветра. По мере приближения к вершине башни ваши глаза улавливают вспышки света: это солнечный свет отражается то в одной, то в другой лопасти ветряка. Поднявшись на самый верх башни, на высоту 67 метров, вы попадаете в закрытую галерею кругового обзора, расположенную непосредственно под ступицей турбины. От ощущения покоя и безмятежности не остается и следа. Три гигантские лопасти, каждая длиной 30 метров, вращаются с такой мощью, что при взгляде на них не остается никаких сомнений, что из этого вращения можно извлечь немалую энергию. На то, как ветер усиливается и ослабевает, гудение и скорость вращения лопастей реагирют практически мгновенно. Это само по себе уже способно произвести сильное впечатление.

Но самое главное скрывается в белом мундштуке – той части механизма, которая находится за лопастями. При взгляде вверх можно увидеть вращающуюся ступицу турбины. Прямо у меня над головой ее край, ближайший к башне, плавно вращается вокруг неподвижного внутреннего кольца. Этот край ступицы обложен сильными постоянными магнитами; таким образом, они вращаются вокруг внутренней части ступицы. А неподвижное внутреннее кольцо обложено катушками из медного провода, каждая из которых подсоединена к соответствующей электрической цепи. В ходе движения каждого магнита мимо катушек провода в проводе возникает электрический ток. Несмотря на то что магниты и провода не соприкасаются между собой, энергия вращения преобразуется в электрическую энергию, вырабатываемую в проводах катушек. Вращение лопастей ветряка обеспечивает движение магнитов мимо катушек провода, а законы электромагнитной индукции создают в каждой из катушек электрический ток. Именно так вырабатывается электрическая энергия в ветротурбинах.

Те же законы электромагнитной индукции применяются на всех наших электростанциях независимо от исходного источника энергии, которым может служить уголь, мазут, ядерная энергия или энергия волн. Какой бы ни была исходная энергия, ее задача – обеспечивать движение магнитов мимо катушек провода, в результате чего исходная энергия преобразуется в электрическую. Прелесть ветротурбины в том, что энергия ветра преобразуется непосредственно в электрическую энергию. В теплоэлектростанции, работающей на угле, вода нагревается и превращается в пар, который вращает лопатки паровой турбины, а та, в свою очередь, вращает магниты. Конечный результат тот же, но для его достижения приходится использовать дополнительные преобразования энергии. Каждый раз, включая какой-либо электрический прибор, вы потребляете энергию, которая возникла вследствие того, что движение магнита мимо катушки с медным проводом вызывало в этом проводе упорядоченное движение электронов. Электричество и магнетизм неразделимы. Наша цивилизация использует энергию, которая вырабатывается электромагнитной индукцией, вызываемой движением электрического проводника в магнитном поле. Мы научились ловко скрывать процессы генерации электроэнергии, пуская ее по руслу экранированных проводов, прокладываемых в стенах зданий, и электрических кабелей, зарытых в земле. Мы настолько преуспели в маскировке этих процессов, что ребенок, родившийся в наши дни, может никогда в жизни не увидеть и не пощупать собственными руками, что такое электричество и магнетизм. Будущие поколения вообще могут быть лишены возможности наблюдать непосредственные проявления электромагнетизма и не смогут оценить их элегантность и важность для человечества: невидимый покров прогресса надежно скроет их от нас. Тем не менее мы всегда должны помнить о них, поскольку в наше время ткань человеческой цивилизации прочно сшита электромагнитными нитями.

Глава 9. Чувство перспективы

Каждый из нас полагается в жизни на три системы жизнеобеспечения: наше тело, планета Земля и человеческая цивилизация. Параллели между ними очевидны, поскольку все они существуют в рамках одной и той же физической системы. Обрести более глубокое понимание этих систем – наверное, лучшее из того, что мы можем сделать для сохранения жизни на планете и обеспечения процветания нашей цивилизации. Вряд ли что-либо другое может быть более прагматичным и вдохновляющим, чем такая задача. Вот почему последняя глава представляет собой некий общий обзор, посвященный описанию указанных трех систем. Рассмотрим каждую из них в отдельности.

Человек

Я дышу, как и все другие люди. Наш организм нуждается в молекулах кислорода и получает их из окружающего воздуха. При каждом выдохе мы избавляем организм от углекислого газа. Каждый из нас существует в собственной, личной системе жизнеобеспечения, коей есть наше тело. Оно представляет собой сочетание внутреннего содержания и наружной оболочки. Внутреннее содержание может выполнять множество функций, однако лишь при условии определенной «подпитки» извне, а это энергия, вода и молекулярные строительные блоки, необходимые человеческому организму. Дыхание – лишь один из маршрутов, по которым она осуществляется. Процесс дыхания восхитителен сам по себе: вы расширяете грудную клетку, увеличиваете объем легких – и огромное множество микроскопических молекул воздуха, пребывающих поблизости вашего рта, проталкивается в ваши дыхательные пути воздухом, находящимся дальше от вас. Вдохните глубже – и ваши легкие расширятся еще больше, создавая пространство для поступления большей порции воздуха, которая вступит в соприкосновение с крошечными структурами в ваших легких. Затем, когда вы расслабите мышцы, окружающие вашу грудную клетку, ваши ребра сожмутся, объем легких сократится и под действием возросшего давления молекулы воздуха, содержащиеся в легких, устремятся наружу и снова окажутся в окружающем воздухе. Кислород – не единственный вид молекул, попадающих в ваши легкие и используемых организмом. Когда воздух проходит мимо рецепторов, расположенных в верхней части носа, какая-то часть из множества молекул, соударяющихся со стенками, сталкивается с более крупной молекулой, прикрепленной к стенке, и входят в нее, как ключ в замок. Клетка рецептора фиксирует удар молекулы, попадающей в нее. Это начальная стадия обоняния: попадание в нужное место небольшого количества молекул определенного типа. Теперь внутренняя составляющая вашего организма получила какую-то информацию о том, что происходит снаружи.

Человеческое тело – это огромное множество хорошо скоординированных клеток (согласно самым последним подсчетам их количество составляет примерно 37 триллионов), каждая из которых представляет собой крошечную фабрику. Каждая отдельно взятая клетка нуждается в подпитке. Кроме того, ей требуется безопасная и комфортная среда: надлежащая температура, уровень pH и уровень влажности, поскольку человеческому организму постоянно приходится приспосабливаться к изменчивым окружающим условиям. Если вы проводите много времени в теплом помещении, то молекулы, расположенные вблизи вашего кожного покрова, колеблются быстрее, так как получают больше энергии. Если бы эти колебания передавались глубже в ваше тело, они нарушили бы нормальное функционирование клеток организма. Таким образом, когда вы находитесь в теплом помещении, вам необходимо отдавать энергию. На первый взгляд это не должно составлять проблемы: в теплом помещении молекулы воды легко испаряются, забирая с собой энергию, а организм человека содержит очень много воды, которая может испаряться. Однако она не торопится его покидать, потому что ваше тело водонепроницаемо. Человек нуждается в потении.

Ваша кожа имеет очень тонкий слой жирных молекул, расположенный непосредственно под ее наружными клетками и исполняющий роль барьера, который препятствует выходу/поступлению жидкости в организм. Но когда вы находитесь в теплом помещении, в вашем кожном покрове (в упомянутом выше барьере) открываются туннели, так называемые поры. Пот просачивается через них, проникает в водозащитный слой и выходит наружу. Отдельные молекулы воды соударяются друг с другом и теплой поверхностью кожи до тех пор, пока самые энергичные не вырвутся наружу. Одна за другой они выходят в окружающее пространство, в результате чего ваша кожа охлаждается. Когда она достаточно охладится, поры закроются и кожа снова станет водонепроницаемой. Водонепроницаемость кожи препятствует не только свободному проникновению воды в ваше тело, но и ее свободному выводу из него, поскольку внутренний резерв воды в организме весьма ограничен. Вода в нем переносится потоком крови – внутренней системой снабжения, распределяющей ресурсы организма между разными органами и клетками. Эта система снабжения должна работать непрерывно, обеспечивая нормальную жизнедеятельность всех клеток. Каждый из нас может убедиться в ее функционировании, просто пощупав свой пульс.

Наш пульс представляет собой пространственное возмущение: перемещающуюся волну давления, которая позволяет получить определенную информацию о кровотоке. Сердце человека прокачивает кровь через свои камеры, повышая давление жидкости и заставляя кровь двигаться по артериям. Сердце человека – довольно мощный насос. Сокращение его мышц придает крови сильный толчок. Когда цикл очередного сокращения сердца подходит к концу, давление жидкости в его камерах падает. Теперь направление силы, действовавшей на кровь, меняется на противоположное, и только что вытолкнутая кровь хлынула бы обратно, если бы не наличие препятствующих этому обратных клапанов. Под напором крови, которая пытается вернуться обратно, клапаны закрываются, и обратное движение крови останавливается. Обратный удар настолько силен, что раздвигает окружающие ткани, которые, в свою очередь, воздействуют на ткани, расположенные дальше. Эта волна давления распространяется по всему телу, слегка сжимая мышцы и кости на пути своего движения. Чтобы она достигла кожного покрова тела, требуется примерно шесть миллисекунд. Если приложить к телу человека стетоскоп или просто ухо, вы можете услышать этот удар. Это не что иное, как сердцебиение. Если бы волны давления не распространялись по тканям организма, то мы бы его не слышали. На самом деле каждый удар сердца не одиночный, а двойной. Мы слышим сдвоенную пульсацию: «тук-тук», поскольку сердце содержит четыре клапана, причем закрываются они попарно: сначала одна пара, потом другая. Это случайное сочетание физики и физиологии – самый важный признак того, что мы живем.

После процесса потоотделения ваша кровь переносит в себе меньшее, чем прежде, количество молекул воды. Теперь ваше тело нуждается в пополнении резервов со стороны. Чтобы вы могли просто попить воды, клеткам вашего организма нужно согласовать свою деятельность. Решения и действия, требуемые для координации разных частей тела, чтобы эти решения можно было выполнить, принимаются и реализуются человеком сначала на подсознательном, а затем на сознательном уровне.

Отдельно взятая клетка человеческого мозга бесполезна. Она приносит пользу лишь благодаря тесной связи с остальными клетками, и эта сеть взаимных связей, по-видимому, не менее важна, чем клетки мозга как таковые. Поскольку решение выпить стакан воды возникает из этих взаимных связей между клетками мозга, было бы вполне логичным предположить, что клетки мозга связаны не только друг с другом, но и с остальными клетками человеческого организма. Средством передачи сигналов между клетками служат нервные волокна: тонкие нити, выходящие из клеток наподобие электрических проводов. Передавая электрически заряженные частицы через мембрану на одном конце нервного волокна, клетка мозга запускает электрический сигнал, который распространяется по нервному волокну. Конец первого нервного волокна соединен с другим нервным волокном и т. д. В результате происходит передача управляющего электрического сигнала по длинной цепочке клеток, входящих в состав ряда нервных волокон, от мозга к какому-либо из органов. На то, чтобы управляющий электрический сигнал, сформировавшийся в одной из клеток мозга, достиг одной из мышц вашей ноги, может понадобиться доля секунды. Примерно в то же время на другие мышцы ноги поступают скоординированные электрические сигналы (сообщения) с других нервных волокон, вследствие чего мышцы вашей ноги сокращаются, поднимая вас с дивана. Ощущение пола под ногами и изменение температуры кожи в результате совершаемого вами движения передаются по нервным волокнам обратно в мозг в виде других электрических сигналов.

В нашем теле циркулирует колоссальный объем информации, передаваемой либо по нервным волокнам в виде электрических сигналов, либо посредством химических носителей сообщений, таких как гормоны. Сочетание всевозможных органов и структур составляет единый человеческий организм. Его единство обусловлено не только общностью ресурсов, но и информацией – ее обширными, скоординированными и взаимно перекрывающимися потоками. Задолго до наступления «информационной эпохи» мы сами представляли собой сложные информационные системы.

Эта информация бывает двух видов. Первый – перемещающаяся информация: нервные и химические сигналы, которые движутся в нашем теле прямо сейчас. Но в человеческом теле также огромное количество сохраненной информации – нечто наподобие молекулярной библиотеки, сконцентрированной в нашей ДНК. В окружающем мире миллионы одинаковых атомов группируются вместе, образуя крупные агломерации стекла, сахара или воды. Но в гигантской молекуле, коей является нить ДНК, каждому атому отведено строго определенное, лишь для него одного предназначенное место, и это точное размещение отдельных атомов разных типов обеспечивает наличие своего рода алфавита. Молекулярный механизм клетки позволяет считывать этот генетический алфавит, состоящий из букв A, T, C и G, в процессе перемещения вдоль нити ДНК и использовать полученную информацию для строительства белков или регулирования деятельности клетки. Человеческое тело должно иметь гигантские размеры по сравнению с атомами, потому что каждая клетка, представляющая собой фабрику в миниатюре, сама по себе достаточно сложная структура.

Человеческое тело – огромный невероятно сложный механизм; даже отдельно взятая клетка может содержать миллиард молекул, а их в теле человека порядка 10 миллионов миллионов (1013) клеток. Человеку нужна чрезвычайно разветвленная сигнальная и транспортная система, которые бы координировали функционирование множества составных частей организма, причем следует помнить, что такая координация также требует какого-то времени. Никто из нас не обладает так называемыми молниеносными реакциями, поскольку плата за нашу потрясающую сложность – значительное время, уходящее на выполнение того или иного действия. Кратчайшее время, которое мы в состоянии оценить, – это моргание глазом, занимающее примерно треть секунды. За столь короткий отрезок внутри нас должны образоваться миллионы белков и миллиарды ионов должны диффундировать сквозь синапсы наших нервов, между тем как более простой мир, находящийся за пределами нашего тела, за то же время успевает уйти далеко вперед.

Пока мы переходим из одной комнаты в другую, наша внутренняя информационная система продолжает неустанно работать. Но ей требуется информация о происходящем вокруг нас. Вот именно сейчас мне нужно найти воду. В наше тело встроены чувствительные датчики – рецепторы, которые изменяют свое состояние в ответ на те или иные изменения в окружающей среде и передают информацию об этих изменениях в мозг. Самые яркие – ощущения, получаемые посредством зрения.

Мы практически все время погружены в свет, но наше тело почти не впитывает его в себя. Это море света несет в себе информацию об окружающем мире, поскольку сама природа света напоминает нам о его происхождении, однако львиная доля этой информации проходит мимо нас. Лишь ничтожная часть от всего светящегося изобилия попадает на зрачки наших глаз: два маленьких кружка диаметром не более двух-трех миллиметров. Только крошечная часть световой информации, попадающей на наши зрачки, заключена в видимых световых лучах, и только она воспринимается нами. Именно она несет в себе все визуальное богатство, которое мы воспринимаем как нечто само собой разумеющееся. В момент достижения наших зрительных органов видимые световые волны нужно как-то упорядочить, чтобы мы могли воспринять заключенную в них информацию. Наши окна в мир защищены мягкими прозрачными линзами, которые замедляют свет до 60 % от его скорости в воздухе. При замедлении эти световые лучи отклоняются. Форма линз регулируется крошечными мышцами таким образом, чтобы все лучи, исходящие от какого-либо отдельно взятого объекта, находящегося за пределами нашего тела, снова сходились в одной точке позади глаза. Процесс восхитителен сам по себе. Нам кажется, будто мы видим все, что открыто нашему взору, но в действительности выхватываем лишь самую незначительную часть, которая и оказывается картиной, нарисованной нашим зрением.

Световые лучи, попадающие на сетчатку глаза, могли отразиться от Луны или кончиков наших пальцев, но все они оказывают одинаковое воздействие. Отдельно взятый фотон поглощается отдельно взятой молекулой опсина, скручивая эту молекулу и запуская процесс, который по цепочке нервных волокон передает соответствующий электрический сигнал в наши управляющие системы. Когда наше проголодавшееся бренное тело направляется на кухню в поисках чего-нибудь съестного, фотоны, отразившиеся от раковины, водопроводного крана и чайника, устремляются в наши глаза; наш мозг моментально обрабатывает эту информацию, подсказывая нам, что следует сделать в первую очередь. Если на кухне темновато, мы включаем освещение – и лампочка испускает целый сноп световых волн. Проходя по кухне, они видоизменяют ее мир, отражаются, преломляются и поглощаются до тех пор, пока наши глаза не воспримут результирующую картину. При этом следует помнить, что свет – далеко не единственное, что нас окружает и воздействует на нас.

Человек – существо социальное. Мы поддерживаем свою социальную сеть посредством коммуникаций, отправляя сигналы партнерам и принимая сигналы от них. Наш голос – одно из важнейших средств коммуникации, гибкий музыкальный инструмент, способный создавать звуковые волны и придавать им ту или иную форму. Затем эти звуковые волны передаются через среду, в которой мы находимся. Любой британец, захотев выпить чашечку горячего чая на работе, обязательно предложит остальным разделить трапезу. Это предложение будет озвучено. Коллеги воспримут сигнал посредством органов слуха (ушей), что запустит новый поток информации в их телах. Ее обработка, то есть расшифровка ее смысла и последующая передача по нервным волокнам соответствующих сигналов на голосовые мышцы, позволит всем присутствующим в комнате выразить свой ответ. Как только он будет воспринят остальными, они тотчас же начнут изменять окружающий мир: расставлять чашки, вынимать из сумок бутерброды, рассаживаться за столом и т. д.

Человеческое тело состоит из множества разных атомов, но каким бы удивительным ни казалось это разнообразие, возможности человека ограниченны именно из-за способа их соединения между собой. Однако люди весьма изобретательны по части создания инструментов, способных делать то, что им не под силу. Мы не можем вскипятить воду в руках, но можем это сделать в чайнике. Человеческое тело не может служить воздухонепроницаемым контейнером для хранения высушенных листьев, но стеклянная банка с плотно завинчивающейся крышкой вполне справится с этой задачей. У нас нет когтей, клыков или прочной раковины, в которой мы могли бы укрыться от врагов, но мы умеем изготавливать острые ножи, одежду и приспособления для открывания консервных банок. Мы можем налить в керамическую кружку горячий чай и спокойно держать ее в руках, не опасаясь обжечь пальцы. (Напоминаю, керамика плохо проводит тепло.) Металлы, пластмассы, стекло и керамика – наряду с материалами биологического происхождения (такими как дерево, бумага и кожа) – помогают нам жить в этом мире.

Чайник служит контейнером для воды, придавая ее молекулам при нагреве (на огне или с помощью электричества) дополнительную энергию в форме колебаний на микроскопическом уровне. В результате они соударяются друг с другом на гораздо более высоких скоростях. Затем мы переносим эти «разгорячившиеся» молекулы воды в керамическую кружку. К сожалению, мы не можем видеть всех деталей всплеска молока при его добавлении в чашку с горячим чаем, хотя он происходит прямо у нас на глазах, потому что человек не в состоянии обрабатывать соответствующие сигналы с необходимой скоростью. Вы уже не можете видеть дно чашки, так как ранее частично прозрачная жидкость теперь стала непроницаема, поскольку свет отражается от миллионов крошечных капелек жира.

Проводя те или иные манипуляции с окружающим миром, мы даже не замечаем, что твердо стоим на полу благодаря действию силы земного притяжения, ведь в течение многотысячелетней эволюции наши тела привыкли к ее действию и научились успешно с ней справляться. Если бы сила земного притяжения была гораздо большей, то нам, наверное, понадобились бы более мощные ноги, а передвигаться на «своих двоих» стало бы куда труднее. Если бы сила земного притяжения была намного меньшей, то люди, вероятно, были бы выше, чем сейчас, но жизнь протекала бы медленнее, так как все падало бы значительно дольше. Когда мы поднимаем одну ногу, чтобы сделать шаг, мы полагаемся на действие силы тяжести, которая заставит нас падать вперед. Мы совершаем поворот вокруг стопы, опирающейся на землю, и к тому моменту, когда останавливаем свое падение вперед, поставив стопу шагающей ноги на землю, все наше тело сдвинется на один шаг вперед. Если бы не сила земного притяжения, мы не могли бы ходить. В процессе эволюции наши тела адаптировались к ее действию. Размеры и форма человеческого тела идеально приспособлены для ходьбы. Когда мы берем в руку чашку воды и направляемся к двери, мы пользуемся нашими телами как перевернутым маятником, попеременно ставя вперед то одну, то другую ногу и совершая на каждом шаге поворот вокруг опорной стопы и бедра. Ритм нашей ходьбы, определяемый качанием этого перевернутого маятника, влияет на воду в чашке, заставляя ее раскачиваться в том же темпе.

При ходьбе мы используем жидкость в нашей черепной коробке, которая помогает нам сохранять равновесие. Она раскачивается глубоко в крошечной полости внутреннего уха: продолжает раскачиваться, когда мы останавливаемся, и с некоторым запозданием начинает раскачиваться, после того как возобновляем ходьбу. Рецепторы, расположенные на стенках этой полости, передают соответствующую информацию в гигантскую нейронную сеть мозга, помогая нашему организму принимать решения о том, какие мышцы тела задействовать в каждый очередной момент времени.

Итак, мы добрались до двери, толкнули ее свободной рукой и вышли из дому.

Земля

Выйдя из дому, мы можем посмотреть сквозь невидимую атмосферу и увидеть окружающий мир. Наша планета – это система, состоящая из пяти взаимосвязанных компонентов: горных пород, атмосферы, океанов, льда и живой природы. Каждому из них присущи собственный ритм и динамика, но невероятное разнообразие, наблюдаемое на Земле, – это результат бесконечного движения, соединяющего все эти компоненты друг с другом. Одни и те же силы приводят их в движение, а сходства между ними можно обнаружить в самых неожиданных местах. Пока мы всматриваемся в окружающий мир сквозь невидимые молекулы воздуха, рядом с нами осуществляются интереснейшие процессы, о которых мы даже не задумываемся. Например, непрерывные взаимные перемещения воздушных масс. Воздух, нагретый зданием, из которого мы только что вышли, устремляется вверх, поскольку его плотность меньше, чем у окружающего воздуха. Высота столбов воздуха, поднимающегося от теплой земли, может достигать двух-трех километров, причем его поднятие на высоту одного километра, а также преодоление каждого очередного километра может занимать около пяти минут. В это же время холодный, более плотный воздух опускается под действием силы земного притяжения. Эти конвекционные потоки охватывают всю территорию, открывающуюся перед нами. Воздух никогда не пребывает в состоянии полного покоя.

Если силой своего воображения проникнуть в глубь Мирового океана, мы обнаружим там картину, аналогичную только что наблюдаемой в воздухе. Холодные и соленые воды Северной Атлантики устремляются вниз, по направлению к центру Земли, точно так же как это происходит с холодным и более плотным воздухом. Достигая океанского дна, воды растекаются в стороны и движутся так до тех пор, пока не прогреются или не смешаются с менее соленой водой и не устремятся снова вверх, к поверхности океана. В небе полный цикл поднятия и опускания воздуха занимает несколько часов. В океане полный цикл опускания и поднятия водных масс может занимать до четырех тысяч лет, причем за это время вода успевает обогнуть половину Земного шара.

Глубоко под нашими ногами прямо сейчас происходит движение горных пород. Большая часть массы планеты приходится на мантию Земли – толстый слой между наружным ядром и тонким слоем земной коры, плавающим поверх мантии. Мантия – жидкая, но достаточно вязкая и медлительная субстанция. Этот расплав все время подогревается как горячим ядром Земли, так и медленным распадом радиоактивных элементов, скрывающихся глубоко в ее недрах. Движение энергии в мантии Земли происходит прямо сейчас, у нас под ногами. Слои горных пород, из которых состоит мантия Земли, по мере нагрева поднимаются, а более холодные слои горных пород опускаются; в результате горячие и холодные слои меняются местами. Но на перемещения расплавленных горных пород при столь высоких температурах и давлениях уходит очень много времени. Глубоко под нами подъем столба магмы на два сантиметра может занять целый год. На полный цикл подъема от нижнего уровня мантии до ее верхнего уровня может понадобиться 50 миллионов лет. Но центр Земли подчиняется тем же физическим законам, что и атмосфера и океан: теплые массы (воздуха, воды или расплавленных горных пород) поднимаются, а более холодные – опускаются.

Огромное количество тепловой энергии непрерывно движется от центра Земли наружу, но оно ничтожно по сравнению с количеством световой энергии, доставляемой Солнцем на Землю. Почти на каждом земном пейзаже есть зеленый цвет. Он может прятаться по углам или доминировать в ландшафте, но будет присутствовать практически всегда. Это могут быть едва заметные следы мха на кирпичной стене или «зеленый ад» тропических джунглей, но растения повсеместно обитают на нашей планете. Каждый листик служит поддерживающей структурой для слоев клеток, богатых хлорофиллом, каждая из которых представляет собой миниатюрную молекулярную фабрику, преобразующую солнечный свет и углекислый газ в сахар и кислород. Какая-то часть энергии в потоке света, омывающем каждый листик, усваивается растением и накапливается в виде сахара (запас топлива на будущее). Даже в самые безмятежные солнечные дни в поле, где все кажется неподвижным и неизменным, растения напряженно трудятся. Молекула за молекулой они вырабатывают кислород, которым мы дышим, поддерживая атмосферу, состоящую на 21 % из кислорода, и обеспечивая жизнь всем остальным живым существам на Земле. Эти миниатюрные молекулярные фабрики непрерывно восстанавливают пятую часть атмосферы на планете. Вглядываясь в окружающий нас воздух, мы не видим (и, конечно, не можем видеть) молекулярную продукцию многочисленных папоротников, деревьев, водорослей и трав, вырабатываемую на протяжении многих тысячелетий, – щедрый подарок этой зеленой армии.

С занимаемой нами позиции на Земле, когда мы выходим из дома, мы можем видеть лишь ничтожную часть планеты. Умея летать, мы увидели бы гораздо больше. Чем дальше от поверхности Земли, тем разреженнее атмосфера и тем меньше в ней молекул воздуха. Гравитация притягивает молекулы воздуха к Земле. Вблизи земной поверхности она может удерживать лишь очень тонкий его слой. На высоте примерно 20 километров от земли 90 % молекул в атмосфере окажутся под нами. Самая глубокая точка в океане находится на расстоянии 11 километров от уровня моря. Ниже ее располагаются плотные горные породы. Чтобы добраться до центра Земли, вам придется преодолеть примерно 6360 километров таких пород. Если бы не космические ракеты, люди не смогли бы подниматься выше каких-то жалких 30 километров. Слой лакокрасочного покрытия шарика для пинг-понга имеет такую же толщину по сравнению со сферой, которую он покрывает.

Принято считать, что на высоте 100 километров мы находимся на границе между Землей и открытым космосом и можем видеть ее как зеленую, коричневую, белую и голубую, вращающуюся в черноте бескрайнего космоса. С этой границы особенно заметно, что наша планета – это главным образом океан, состоящий из простых молекул воды. Вода – холст для картины жизни, но лишь в «зоне Златовласки[85]», то есть энергетическом диапазоне, в пределах которого движение молекул обеспечивает существование в форме жидкости. Придайте этим молекулам дополнительную энергию, и они разрушат любые сложные молекулы, которые окажутся в воде. Придайте им еще большую энергию, и они испарятся, то есть превратятся в газ, непригодный для защиты хрупкой жизни. На нижнем конце «зоны Златовласки», к которому мы приближаемся по мере снижения энергии, колебания молекул замедляются и в конечном счете молекулы замыкаются в кристаллической решетке льда. Такая неподвижность – враг жизни. Даже сам по себе процесс формирования этих негибких кристаллов льда может разрушить любую живую содержащую их клетку. Наша планета выделяется среди подавляющего большинства других планет не только наличием воды, но и тем, что эта вода в основном пребывает в жидком состоянии. Со стокилометровой высоты особенно заметно, что самый ценный актив Земли, вода, преобладает на ее поверхности.

Возможно, прямо сейчас в мрачных глубинах Тихого океана голубой кит создает звуковые волны. Если бы вы могли проследить их прохождение сквозь толщу морской воды, то увидели бы, как они движутся от Гавайских островов до побережья Калифорнии. Но звуковые волны движутся под водой, и без помощи чувствительных приборов, способных их обнаружить, вы их просто не заметите. Океаны полны звуков, порождаемых волнами, разбивающимися о прибрежные скалы, винтами судов и дельфинами. Глухое громыхание антарктических льдов может разноситься по океанским просторам на тысячи километров. Впрочем, находясь на стокилометровой высоте над поверхностью Земли, вы можете даже не подозревать о существовании этих звуков.

Все на нашей планете вращается вокруг земной оси со скоростью одного полного оборота в сутки. Ветры, дующие над вращающейся поверхностью Земли, как правило, стремятся двигаться по прямой, хотя трение о землю и торможение со стороны окружающего воздуха ограничивают их путь. Со стокилометровой высоты можно заметить, что ветры в Северном полушарии склонны заворачивать вправо (относительно земной поверхности), невзирая на вращение Земли вокруг собственной оси. Вращается и погода, особенно вдали от экватора. Вращаются ураганы, штормы тоже вращаются, прокатываясь по океанам. Так называемый глаз шторма исполняет роль оси колеса, и каждое такое колесо должно вращаться, потому что вращается Земля.

Над Антарктикой собираются толстые снежные облака. В каждом таком облаке миллиарды отдельных молекул воды существуют в виде газа, колеблясь рядом с молекулами кислорода и азота. Но по мере охлаждения облака они отдают свою энергию и замедляют движение. Когда самые медленные молекулы воды ударяются о зарождающийся кристалл льда, они прикрепляются к нему, причем каждая занимает фиксированное место в кристаллической решетке льда. Когда такая снежинка порхает вверх и вниз внутри облака, молекулы на всех шести гранях исходного кристалла оказываются в одинаковых условиях и одинаково прикрепляются. Молекула за молекулой формируется симметричный кристалл снега. После нескольких часов медленного роста он становится достаточно большим для того, чтобы преобладающее воздействие на него оказывала сила тяжести: и он срывается с нижней стороны облака. Внизу на тысячи километров расстилаются антарктические льды – крупнейшая агломерация льда на Земле, – толщина которых достигает 4,8 километра. Их вес настолько велик, что под ним проседает весь континент. Но каждая молекула этого бескрайнего белого простора упала на него в виде снежинок, которые накапливались в течение очень долгого времени. Часть воды намерзала на протяжении миллиона лет. В течение всего этого времени молекулы непрерывно колебались относительно своих фиксированных положений в кристаллической решетке, но никогда их колебания не были достаточно быстрыми для того, чтобы лед снова стал жидкостью. Напротив, температура молекул, извергающихся в виде лавы из вулканов на Гавайских островах, опускается ниже 600  впервые со времени образования Земли, которое произошло 4,5 миллиарда лет тому назад.

Основной источник тепла на поверхности Земли – энергия солнечного света. Когда она прогревает скалы, океан или атмосферу или запускает процесс выработки сахара в листьях растений, возникает дисбаланс в распределении энергии. И пока он существует, всегда есть вероятность изменений. Энергия движения падающего дождя способна разрушать горы (все знают пословиу «вода камень точит»). Переизбыток тепловой энергии на экваторе стимулирует возникновение тропических ураганов, вырывающих с корнем пальмы, вздымающих гигантские волны и обрушивающих их на берег. Энергия, запасаемая в растениях, понадобится при формировании ветвей, листьев, плодов и семян и в конце концов исчерпает свою полезность в качестве низкоуровневого тепла. Останутся лишь семена – совокупность генетической информации, предназначенной для возобновления жизненного цикла за счет поступления новой энергии солнечного света. Жизнь на Земле поддерживается за счет постоянного притока энергии солнечного света, нарушающего баланс и не позволяющего планете скатиться в вечное, неизменное равновесие. Оттуда, со стокилометровой высоты, не разглядеть множества мелких подробностей, но зато видна общая картина: потоки энергии, направляющиеся от Солнца к Земле, проникающие сквозь атмосферу в толщу океана и возвращающиеся обратно в космос в виде тепла, излучаемого нашей планетой. Количество энергии, принимаемой на себя Землей, равно количеству энергии, возвращаемой ею в космос. Но Земля – гигантская дамба на пути потока энергии, – запасает и использует этот бесценный ресурс всевозможными способами, прежде чем вернет его в космос.

При спуске со стокилометровой высоты поближе к земной поверхности становится заметно, что морское побережье теперь выглядит не просто как граница между сушей и морем, а как некий процесс, как пестрая смесь множества разных масштабов времени и шкал размеров. Океанские волны разносят по бескрайним водным просторам энергию штормов. Разбиваясь о берег, перемалывают песок и камни, бесконечно растирают их и шлифуют друг о друга. Чтобы отколоть от камня микроскопический кусочек, требуется миллисекунда, но чтобы сделать камень идеально гладким, понадобится не один год. По масштабам геологического времени, превращение берега моря в широкую полосу отшлифованной гальки – не такой уж длительный процесс. Он практически завершится к тому моменту, когда количество новых камней, появляющихся на берегу, сравняется с количеством камней, вымываемых в море. Приливные побережья влекут нас потому, что здесь можно наблюдать за тем, как дважды в сутки приливы и отливы шлифуют камни и песок, и любоваться синевато-серым, аспидным цветом идеально отполированной гальки. Но, любуясь этими нерукотворными творениями, мы забываем о том, что каждое из них создавалось на протяжении десятков лет. Когда-то давным-давно эта идеально отполированная галька высилась скалой, которую омывало море. Регулярные приливы и отливы выполняли свою работу, то скрывая большую часть скалы под водой, то выставляя ее под палящие лучи солнца и ветер. Свою часть работы сделали и волны, неустанно обрушивающиеся на скалу. Это попеременное воздействие перепада температур, попеременное высушивание и увлажнение разрушали и подтачивали скалу, откалывая от нее камень за камнем. Камни падали в воду, откуда под действием тех же волн то подкатывались ближе к берегу, то уносились обратно в море. Непрестанное трение одних камней о другие и о песок довершало процесс их первичной обработки, шлифовки и полировки, превращая некоторые из них в настоящие произведения искусства, достойные стать музейными экспонатами. Берег больше, чем что-либо, олицетворяет собой, с одной стороны, вечность и бесконечность жизни, а с другой – ее быстротечность и мимолетность. Когда энергии и питательных веществ хватает для поддержания жизни в прибрежных водах, между скал, она буквально бурлит здесь. При нехватке энергии и питательных веществ жизнь появляется в других местах. Виды эволюционируют, иначе используя доступный для них физический инструментарий и совершая одну генетическую мутацию за другой. Запасаясь энергией, двигаясь, взаимодействуя или воспроизводясь, все они применяют (только по-разному) одни и те же принципы.

Энергия поступает на Землю и излучается ею, при этом сама Земля пребывает в непрерывном процессе переработки. Почти весь алюминий, углерод и золото, ее составные элементы, находятся в ее недрах миллиарды лет, переходя из одной формы в другую. Кому-то может показаться, что в ходе столь длительной эволюции Земли эти разные субстанции должны были перемешаться, превратившись в некое подобие гигантской сборной солянки планетарного масштаба. Но физические и химические процессы вокруг нас непрерывно сортируют эти субстанции, группируя между собой однородные атомы. Гравитация позволяет жидкостям просачиваться сквозь пористые твердые тела, и вода, впитываясь в почву, пополняет огромные подпочвенные водоносные горизонты, тогда как почвенный слой остается неизменным. Когда обширные колонии крошечных морских существ, называемых планктоном, живут, а затем гибнут на поверхности океана, под действием силы тяжести они опускаются на дно. Обширные морские кладбища, которые иногда образуются из останков планктона в мелководных морях, с течением времени спрессовываются и в конечном счете превращаются в белый известняк. Солевые отложения формируются в результате испарения молекул воды, которые, получив достаточную энергию, превращаются в газ, тогда как соль испариться не может. У лавы, образующейся в вулканических подводных горах, гораздо большая плотность, чем у воды, поэтому она остается на океанском дне, создавая новые слои коры. Сама жизнь постоянно отбирает материалы из окружающего мира, придает им новые формы и преобразовывает их, создавая живые организмы, а затем, после их смерти, пускает их останки на переработку и повторное использование.

Глядя темной ночью на звездное небо, мы видим волны, прошедшие через нашу Солнечную систему, или нашу галактику, или нашу Вселенную и достигшие наших глаз. Тысячелетиями световые волны служили для нас единственной связью с космосом, единственным, что позволяло нам думать, что мир не сводится только к тому, что нас непосредственно окружает. Буквально пару десятков лет назад начались исследования тонких потоков материи, достигающих Земли: нейтрино и космических лучей. Затем настал черед гравитационных волн – третьего способа, который позволяет прикоснуться к остальной части Вселенной. В феврале 2016 года мы наконец получили окончательное подтверждение, что катастрофические события астрономического масштаба, подобно поглощению черных дыр, также посылают волны (нечто вроде «ряби» в самом пространстве космоса). Гравитационные волны проходили сквозь нас всегда, всю нашу жизнь – и мы наконец-то открыли их для себя. Свет и гравитационные волны, проносящиеся мимо Земли, несут в себе богатую информацию, которая позволяет составить более полное представление о Вселенной, нарисовать ее картину и добавить стрелку с надписью: «Мы здесь!»

Но в самый обычный день на Земле приходится думать о гораздо более простых и насущных вещах. Выйдя из дому и наблюдая за течением жизни, разворачивающимся у тебя перед глазами, поневоле начинаешь задумываться о том, что каждый из нас – лишь малая частица гигантской системы. Все мы, живущие на планете Земля, представляем собой лишь узкую полоску жизни, которая поддерживает функционирование системы в нынешней конфигурации. Когда впервые появился гомо сапиенс, у каждого человека было лишь две системы жизнеобеспечения: его тело и планета Земля. Но добавилась третья система.

Многие виды вносили какие-то изменения в эту планету. Но лишь человек на протяжении нескольких последних тысячелетий перестраивает окружающую среду совершенно осознанно, стараясь сделать ее более пригодной для существования. Сейчас наша планета напоминает единый организм, пронизанный разветвленной системой связей между его отдельными клетками – мыслящими личностями. Каждая из этих личностей находится в сильной зависимости от остальных людей – настолько сильной, что от этого зависит ее выживание. В то же время каждый из нас вносит собственный вклад в жизнь общества. Понимание законов физики – один из столпов, на которые опирается общество. Без этого у нас не было бы ни транспорта, ни возможности рационально использовать ресурсы, ни коммуникаций, ни способности принимать эффективные решения. Наука и технологии сделали возможным величайшее коллективное достижение человечества – нашу цивилизацию.

Цивилизация

Свеча и книга. Переносимая энергия и переносимая информация, получаемая по необходимости, но с потенциалом на столетия. Все это нити, сшивающие жизни отдельных людей и формирующие нечто гораздо большее: общество сотрудничающих между собой индивидуумов, которое всегда основывается на работе предшествующих поколений. Поток энергии через нашу цивилизацию не должен прекращаться никогда; свечу можно хранить практически вечно, но использовать всего раз. Знание можно накапливать, поэтому одна книга может побудить к действию многие умы. Свечи и книги были у человека две тысячи лет тому назад; есть они у нас и сейчас. Свечи и книги – достаточно простые технологии, но, несмотря на простоту, актуальны и поныне. Мы построили современный мир, запасая энергию и делясь информацией о том, как ее использовать.

Мы ассоциируем цивилизации с городами, но любая цивилизация уходит корнями в те времена, когда никаких городов еще не было. Любая цивилизация использует энергию, чтобы строить, проводить исследования, действуя методом проб и ошибок. В результате люди научились использовать растения, извлекать солнечную энергию, запасенную в них, и направлять ее на восполнение запаса жизненных сил. Люди возделывают почву, сеют в нее семена и поливают их, чтобы вырастить растения, необходимые для превращения световых волн в сахар. Люди научились строить собственную «зеленую дамбу», которая позволяет им использовать очень малую долю потока солнечной энергии и пожинать плоды этих усилий. Проникнув в земную атмосферу, эта ничтожная доля накормила людей и животных и помогла преобразовать мир, в котором мы живем.

Нам кажется, что мы живем в современном обществе, но это не совсем так. Мы пользуемся инфраструктурой, созданной предыдущими поколениями – иногда десятки лет назад, иногда сотни, а иногда и тысячи. Дороги, здания и каналы, построенные нашими предками, все еще продолжают служить людям как связующие нити отдаленных и зачастую разрозненных частей общества. Сотрудничество и торговля приносят огромные выгоды, и эти обширные и разветвленные сети связей между людьми наделяют каждого индивидуума гораздо большими возможностями, чем те, которые бы ему обеспечивали лишь его собственные физические и умственные силы.

Современный город можно уподобить лесу зданий, каждое из которых выполняет собственную функцию и обладает собственными архитектурными и конструктивными особенностями. Под этими зданиями пролегает обширная и разветвленная сеть толстых медных кабелей. Их многочисленные отростки пронизывают полы и стены зданий, в конечном счете обнаруживая себя в виде настенных электрических розеток. Как только вы вставляете в одну из таких розеток вилку какого-либо устройства, питающегося от электросети, электрический контур замыкается и по нему начинает циркулировать упорядоченный поток электронов, обеспечивая работу нужного вам устройства. Если бы вы могли видеть только эти кабели, но не сам город, то их сеть напоминала бы вам артерии современной жизни, которые питают нас энергией, поступающей с удаленных электростанций. Электросети такого рода охватывают каждую страну. Они могут быть автономными, обслуживая лишь отдельно взятую страну, или объединенными, рассчитанными на несколько стран, обеспечивая возможность перетока электроэнергии из энергосистемы одной страны в энергосистемы других стран.

Впрочем, энергосистемы – далеко не единственный вид сетей, удовлетворяющих разнообразные потребности жителей отдельных городов и целых стран. У Земли есть собственный водный цикл планетарного масштаба, связывающий в единую систему океаны, дожди, реки и водоносные горизонты почвы. Солнце поставляет на Землю энергию, обеспечивающую испарение и перемещение воды в земной атмосфере и выпадение осадков в тех или иных регионах планеты. Люди периодически вмешиваются в этот естественный водный цикл, отклоняя течение воды в нужном им направлении и прокачивая ее через человеческую цивилизацию, прежде чем возвратить Земле. Дождевая вода, собранная в резервуаре, до того как вернуться непосредственно в почву, реки или океаны, сначала используется человеком для собственных целей. С помощью насосов, питающихся от электричества, она закачивается в трубы диаметром около метра, проложенные под землей, и по их разветвленной системе подается в дома, к водопроводным кранам в наших квартирах. Использованная вода удаляется через канализацию. Она поступает по трубопроводам большого диаметра в очистную установку или непосредственно в реку. Водопроводный кран в доме – лишь маленький отросток разветвленной водопроводной системы, крошечное звено в гигантском контуре водоснабжения и водоотвода. При подаче воды в дома мы затрачиваем энергию для создания в водопроводной системе напора, обеспечивающего доставку воды на верхние этажи. Сток воды и ее возвращение в природу обеспечиваются за счет силы земного притяжения.

Образно говоря, большой город – это место, где несколько разных сетей, удовлетворяющих те или иные человеческие потребности, спрессованы между собой, поскольку в городах сконцентрировано большое количество людей, нуждающихся в них. К числу сетей, обслуживающих человеческие потребности, относятся, в частности, системы распределения продуктов питания, транспортные системы и торговые сети.

Добыв огонь, человек начал экспериментировать с искусственным освещением и обогревом, перестав полагаться исключительно на световые волны, излучаемые Солнцем. Появление свечей означало, что мы в состоянии обеспечить освещение (пускай и недостаточно сильное), когда та сторона Земли, на которой мы находимся, повернута в сторону, противоположную от Солнца. Какие-нибудь сто пятьдесят лет тому назад вечерний город освещался световыми волнами, излучаемыми горящими свечами, дровами, углем или лампадным маслом. Сегодня небо над любым городом озаряется невидимым светом, сияющим круглосуточно. Если бы мы могли видеть радиоволны, то поняли бы, что в течение примерно ста последних лет наша планета была вовсе не так темна, как нам казалось. Но эти новые волны предназначены отнюдь не для иллюминации. Радиоволны, телевизионные трансляции, Wi-Fi и сигналы мобильных телефонов образуют жестко скоординированную сеть информации, обтекающей нас со всех сторон и проходящей сквозь нас. Любой представитель нашей цивилизации имеет электронные устройства, которые можно быстро настраивать на ту или иную длину волн, что позволяет ему смотреть телевизионные трансляции новостей, знакомиться с прогнозами биржевых котировок, наблюдать реалити-шоу, управлять воздушным движением, участвовать в радиолюбительской коротковолновой связи, слышать голоса друзей и членов семьи. Коммуникационные технологии дают возможность получать информацию из разнообразных источников и общаться практически со всем миром. Фермеры могут планировать производство той или иной сельскохозяйственной продукции, основываясь на информации о текущих потребностях рынка продуктов питания. Новости о природных катаклизмах в разных уголках планеты можно получать в реальном времени. Самолеты могут вносить изменения в маршруты, основываясь на текущих прогнозах погоды. Автомобилисты могут выбирать наименее загруженные трассы к пунктам назначения, получая в реальном времени информацию об автомобильных пробках. Разные системы радиосвязи могут работать совместно, не создавая друг другу помех, потому что владельцы этих систем договариваются между собой и координируют свои действия. Выработаны общенациональные и глобальные правила, касающиеся использования тех или иных диапазонов волн. Большую часть истории человечества существовали волны, но не было информационных сетей. Лишь на протяжении пяти последних поколений людям удалось создать информационную сеть на основе радиоволн. Сейчас нам уже трудно представить без нее мир.

В прошлом люди могли проживать лишь в небольшом числе регионов ввиду скудости ресурсов либо неподходящего (чересчур жаркого или, напротив, слишком холодного) климата в других местах. Когда молекулы окружающего воздуха обладают слишком малой или слишком высокой тепловой энергией, молекулам, из которых состоят наши тела, приходится приспосабливаться к своему окружению. Если тонкий баланс между молекулярной активностью и застоем в наших телах утрачивается, мы начинаем страдать. Но человечеству удалось практически полностью снять географические ограничения. Мы строим здания, защищенные пути для пешеходов и транспорта, создавая уровни энергии, воспринимаемые нами как комфортные. Воздушное кондиционирование в Дубаи и системы централизованного отопления на Аляске обеспечивают людям приемлемую среду обитания (что-то вроде «защитных оболочек») даже в регионах, не самых подходящих для жизни. Мы забываем о неудобствах реального мира и относимся к этим защитным оболочкам как к чему-то само собой разумеющемуся. Мы все еще очень далеки от создания обитаемых поселений на других планетах, но уже разработали ряд технологий, позволяющих осваивать ранее необитаемые территории на собственной земле. Главный принцип остается тем же: экспериментировать со средой до тех пор, пока она не будет в полной мере отвечать условиям нашего выживания. А это наличие достаточного количества воды, молекулярных строительных блоков и энергии. Построив одну такую защитную оболочку, мы строим еще одну и т. д., осваивая шаг за шагом новые территории и формируя как можно более обширные сети выживания.

По мере развития нашей цивилизации мы сталкиваемся с теми или иными проблемами. Чем многочисленнее население, тем больше ресурсов и свободного места требуется для формирования нормальных условий его проживания. Человечество уже осознало, что за использование ископаемых видов топлива, приведшее к промышленной революции и быстрому экономическому росту развитых стран мира, придется заплатить высокую цену. В то самое время, когда люди выращивали растения, вбиравшие в себя энергию Солнца и создававшие зеленый энергетический резервуар, которым можно было бы пользоваться по мере необходимости, значительная часть энергии поступала из другого источника. Земля уже располагала энергетическим резервуаром, образовавшимся из потока солнечной энергии, который наполнялся в течение сотен миллионов лет и которым мы пользовались весьма расточительно. На протяжении всего этого времени небольшая доля растений, поглотивших энергию Солнца, сама была поглощена нашей планетой, похоронена и спрессована глубоко под землей. Это медленное накопление уловленной солнечной энергии привело к формированию огромного подземного хранилища энергетических ресурсов. Мы называем эти древние энергетические кладовые ископаемым, или органическим, топливом. Энергия, запасенная в них, легко высвобождается и ставится на службу человеку. Ее использование не представляет проблемы: это лишь сохраненная солнечная энергия, которая в конечном счете высвобождается и возвращается обратно в космос. Проблема в другом: что делать с «упаковкой», в которую она заключена. Растения поглощают углекислый газ, который является для них источником роста. При высвобождении запасенной в органическом топливе энергии образуется углекислый газ, выбрасываемый в атмосферу. Его молекулы попадают в воздух и влияют на прохождение электромагнитных волн в атмосфере. Вследствие этих процессов Земля в целом становится несколько большим, чем прежде, резервуаром энергии Солнца. В результате сжигания запасов органического топлива, накапливавшихся в земных недрах на протяжении миллионов лет, человечество понемногу разогревало планету. Сейчас на Земле сформировалось новое состояние равновесия. Чтобы научиться жить и правильно себя в нем вести, человечеству придется проявить немалую изобретательность.

Впрочем, люди не раз доказывали, что их изобретательность безгранична. Человечество накопило огромный запас информации в области науки, медицины, техники и культуры. Она сосредоточена в гигантской информационной сети, охватывающей всю планету. Каждый раз, обращаясь к этой сети, мы извлекаем пользу из знаний, добытых с огромным трудом многими поколениями наших предков.

Не так давно человечество открыло для себя микромир – явление иного, непривычного для нас пространственного масштаба, – и у ученых появилось новое и чрезвычайно обширное поле деятельности. Размеры человеческого тела и структур, входящих в его состав, неизменны: человек представляет собой очень сложную систему, но она занимает пространство, величина которого не меняется со временем. Размеры кроватей, столов, стульев, а также количество потребляемой нами пищи практически не меняются, поскольку каждый из нас существует в этом, своем теле. Но когда мы учимся обращаться с микромиром и соответствующим образом сужаем свое поле зрения, мы учимся также строить фабрики, очень сложные, но такие крошечные, что их невозможно рассмотреть невооруженным глазом. Работая с теми или иными объектами микромира, то есть переходя в другую пространственную шкалу, мы вынуждены переходить в другую временную шкалу, так как в микромире процессы протекают гораздо быстрее, чем в привычном для нас макромире. В микромире ежесекундно могут выполняться миллиарды процессов. Компьютер – не более чем электронный суммирующий автомат, составленный из огромного множества микроскопических компонентов. Современные компьютеры кажутся нам довольно компактными, но по сравнению с атомами, из которых они состоят, они выглядят колоссальными архитектурными феноменами, выполняющими невероятно сложные функции. Пользуясь компьютером и наблюдая за его работой, мы нередко забываем о том, что вся эта «магия» происходит в других, непривычных для нас временных и пространственных масштабах. Уже сейчас эти компактные фабрики, состоящие из огромного множества микроскопических суммирующих автоматов, становятся важными инструментами управления миром. В дальнейшем они еще глубже интегрируются в нашу цивилизацию. Более многочисленная цивилизация требует более эффективных решений, более быстрого их принятия и более быстрого потока информации для координации работы крошечных шестеренок этой системы. Это становится возможным при переходе к пока еще непривычным нам масштабам.

Сегодня среда обитания и деятельности человека ограничена нашей планетой и ближним космосом, но человечество уже давно засматривается на далекие звезды. Сегодня, впервые за всю историю человеческой цивилизации, мы можем взглянуть на Землю с высоты нескольких сотен километров. Искусственные спутники вращаются вокруг нее, собирая метеорологическую информацию, обеспечивая связь и трансляцию телевизионных сигналов. С орбит, по которым они вращаются, хорошо видны следы деятельности человеческой цивилизации: яркие огни ночных мегаполисов, теплый воздух вокруг городов, расположенных в суровых климатических условиях, изменение цвета земной поверхности в сельскохозяйственных регионах. Вокруг Земли вращается также обитаемый искусственный спутник – Международная космическая станция, совершающая каждые девяносто две минуты один полный оборот. Да, человеческая цивилизация уже шагнула в космос. На борту МКС могут одновременно находиться до десяти человек. Эти люди имеют возможность видеть нашу планету такой, какой ее никогда не увидит подавляющее большинство землян. Вряд ли люди, побывавшие на борту МКС, смогут донести до остальных жителей планеты все богатство впечатлений от ее вида, открывающегося из иллюминатора. Впрочем, нужно отдать им должное: они пытаются.

Выше орбит, по которым вращаются искусственные спутники Земли, и далеко за границами магнитного щита, защищающего ее от космических лучей, следы нашей цивилизации отсутствуют. Там, в дальнем космосе, нет понятия «верх» и «низ». Там из-за отсутствия гравитационного воздействия на маятник не смогли бы работать маятниковые часы. Простота всего, что там есть, означает, что там все происходит или чрезвычайно быстро по человеческим меркам или, наоборот, чрезвычайно медленно. Быстрые ядерные реакции делают Солнце колоссальным источником энергии, но за миллиарды лет оно меняется крайне медленно. Крошечные атомы взаимодействуют между собой, но результатами этого взаимодействия становятся объекты величиной с планету или даже Солнечную систему. Наша неоднородная, сложная цивилизация в нашем неоднородном, сложном мире находится примерно в середине пространственных и временных шкал.

Мы – исключение во Вселенной.

Люди смотрят в космос. Возможно, оттуда, из невообразимой космической дали, на нас устремлен встречный взгляд, тоже выискивающий следы разумной цивилизации. Свет по-прежнему остается нашим главным средством связи с объектами, расположенными в дальнем космосе, а молекулярные изменения, происходящие в результате попадания света далеких звезд на сетчатку нашего глаза, связывают нас со Вселенной. Вот мы, прекрасный, сложный, разумный слой, тонкое покрытие на маленькой каменистой планете, обитающее на границе между космосом и Землей. Вот мы, продукт наших трех взаимосвязанных систем жизнеобеспечения, сформированных физическими законами Вселенной.

Вот я, стоящая у своего дома, глядящая в небо, где собираются облака и скрывают от моих глаз звезды. Вот я, современный человек с чашкой в руках, изготовленной из минералов, скрытых в недрах Земли, размышляющий о сложности мироздания. Меня окружают разнообразные системы и структуры, которые я могу потрогать. Я заглядываю в чашку с чаем, который помешиваю ложечкой, и вижу жидкость, закручивающуюся в спираль. Прекратив помешивать чай, я выжидаю несколько секунд, снова заглядываю в чашку и вижу совершенно иную картину. На поверхности жидкости появилось яркое, прекрасное и очаровательное изображение – отражение неба у меня над головой. Прямо здесь, в своей чашке, я могу наблюдать бурю!

Благодарности

Интересная особенность, связанная с написанием раздела «Благодарности», заключается в том, что люди, заслуживающие благодарности, как таковые делятся на две категории, взаимосвязанные между собой. К одной относятся те, которые оказывали конкретную помощь в написании книги. К другой – непосредственные участники изложенных историй; все эти люди сделали мою жизнь разнообразнее и насыщеннее интересными событиями, были моими надежными спутниками, сопровождали в увлекательных поездках и подсказывали, в чем еще мы могли бы поучаствовать. Я испытываю чувство огромной благодарности к тем и другим.

Моими партнерами по исследованиям были Даллас Кэмпбелл, Ники Черска, Ирена Черски, Льюис Дартнелл, Тамсин Эдвардс, Кэмпбелл Стори и собака по кличке Инка. Доброжелательные сотрудники Green Britain Centre (Зеленого центра Британии, на одной из ветротурбин которого мне удалось побывать) были чрезвычайно гостеприимны и с огромным терпением отвечали на все мои вопросы. Доктор Джефф Уиллмотт и профессор Кейт Ноукис оказали мне неоценимую помощь, проконсультировав по темам микрофлюидных устройств и заболеваний, передаваемых воздушно-капельным путем соответственно. Элли Николсон, Фил Эктор и Фил Рид любезно согласились вычитать отдельные части книги и высказали ценные замечания по поводу прочитанного. Мэтт Келли заслуживает огромной благодарности за ценные советы относительно плана книги и многих ее глав; а его собственный писательский опыт, которым он щедро делился со мной, оказался как нельзя кстати. Дружба и неизменная поддержка Мэтта в ходе реализации проекта значили для меня очень многое. Том Уэллс подтолкнул меня к написанию этой книги и на протяжении всей работы над ней служил для меня чем-то наподобие резонатора и подопытного кролика. Джем Стэнсфилд, Алом Шаха, Гайя Винс, Алок Джа, Адам Резерфорд и многие другие фантастические люди, с которыми мне посчастливилось подружиться в научном мире, стали для меня неиссякаемым источником вдохновения и юмора.

Черчилль-колледж Кэмбриджского университета многие годы был моим интеллектуальным домом и до сих пор остается таковым в моем сердце. Черчилль-колледж и Кавендишская лаборатория дали мне понимание основ физики. Особого упоминания в связи с этим заслуживает д-р Дейв Грин, мой научный руководитель. Надеюсь, эта книга отвечает его высоким научным стандартам, и в частности, что избыток СЛОВ в ней компенсирует нехватку РИСУНКОВ. Все, с кем я подружилась в Черчилль-колледже, стали важной частью моей жизни. Когда у вас есть такие замечательные и надежные друзья, не страшны никакие трудности.

В мир физики пузырьков я попала по чистой случайности, когда д-р Грант Дин из Института океанографии Скриппса согласился стать моим научным руководителем, хотя до того времени мы с ним даже не были знакомы – я была для него «человеком с улицы». Грант Дин – не только ученый в полном смысле этого слова, но и просто замечательный человек. Думаю, это был подарок свыше, когда он согласился стать моим научным руководителем. Он показал мне, что может дать наука человеку, который искренне в нее влюблен. В то же время он стал для меня ярким примером того, как должен работать ученый, чтобы с полным правом носить это звание. У меня нет слов, чтобы выразить чувство благодарности, которую я испытываю к Гранту Дину за поддержку, оказанную (и оказываемую) мне во всех моих научных проектах.

Университетский колледж Лондона (University College London) – мое нынешнее место работы, и я считаю, что мне очень повезло: это замечательное научное учреждение. Будучи сотрудником факультета машиностроения, я чрезвычайно благодарна его декану, профессору Яннису Вентикосу, за огромный энтузиазм, который он проявил, узнав о том, что я взялась за этот проект. Я сравнила бы профессора Марка Мьодовника с неиссякаемым фонтаном энергии и душевного тепла. Его дружба и разумные советы помогли мне найти такой прекрасный очаг науки. Я в неоплатном долгу перед Марком, оказавшим мне бесценную помощь.

Мой литературный агент, Уилл Фрэнсис, давно советовал мне написать книгу. Он проявлял невероятное терпение, пока я наконец не выбрала подходящее время, чтобы приступить к этой работе, и в ее ходе оказывал невероятную поддержку и давал ценные советы. Сусанна Уэйдисон (издательство Transworld Publishers) твердо держала руку на пульсе моего проекта. Я очень признательна ей за дальновидность и честность.

Моя семья – компания удивительных людей. Их интересует буквально все, что происходит в мире, они самоотверженно помогают друг другу и питают большую страсть к экспериментированию буквально со всем, что попадает им под руку. Возможно, мое увлечение физикой передалось по наследству. Моя сестра Ирена просто восхитительна; она и Малкольм, наверное, самые гостеприимные и любящие люди среди тех, кто встречался на моем пути. Сейчас я могу утверждать, что в свое время поступала правильно, внимательно выслушивая рассказы Наны, Пат Джолли, тетушки Кейт и мамы о первых шагах телевидения в нашей стране и о чудесах выходного строчного трансформатора.

Спасибо моим родителям, Яну и Сьюзан. Они научили нас любознательному отношению к окружающему миру. А еще они учили нас делать свое дело наилучшим образом. Я люблю их обоих, и моя благодарность к ним безгранична.

Об авторе

Элен Черски преподает на факультете машиностроения Университетского колледжа Лондона (University College London). Она – физик, исследующий воздушные пузырьки, которые образуются под разбивающимися волнами в открытом океане. Цель исследований – определить их влияние на погоду и климат.

Элен регулярно участвует в телевизионных программах BBC, посвященных физике, океану и атмосфере, а также воздушным пузырькам, Солнцу и погоде на земле. Она также была обозревателем в журнале Focus, а в 2014 году вошла в шорт-лист претендентов на звание «Колумнист года», присуждаемое Ассоциацией профессиональных издателей (Professional Publishers Association – PPA). Элен Черски – автор многочисленных статей для газеты Guardian.

Библиография

Глава 1. Попкорн и ракеты

Ian Inkster, History of Technology, vol. 25 (London, Bloomsbury, 2010), p. 143.

Elephant anatomy: respiratory system, Elephants Forever, http://www.elephantsforever.co.za/elephants-respiratory-system.html#.VrSVgfHdhO8.

Elephant anatomy, Animal Corner, https://animalcorner.co.uk/elephant-anatomy/#trunks.

The trunk, Elephant Information Repository, http://elephant.elehost.com/About_Elephants/Anatomy/The_Trunk/the_trunk.html.

John H. Lienhard, How Invention Begins: Echoes of Old Voices in the Rise of New Machines (New York, Oxford University Press, 2006).

Magdeburger Halbkugeln mit Luftpumpe von Otto von Guericke Deutsches Museum, http://www.deutsches-museum.de/sammlungen/meisterwerke/meisterwerke-i/halbkugel/?sword_list[]=magdeburg&no_cache=1.

Bluebell Railway: preserved steam trains running through the heart of Sussex, http://www.bluebell-railway.co.uk/.

Rocket post: that’s one small step for mail… Post&Parcel, http://postandparcel.info/33442/in-depth/rocket-post-that%E2%80%99s-one-small-step-for-mail%E2%80%A6/.

Rocket post reality, сайт острова Харрис, http://www.isleofharris.com/discover-harris/past-and-present/rocket-post-reality.

Christopher Turner, Letter bombs, Cabinet Magazine, no. 23, 2006.

A sketch diagram of Zucker’s rocket as used on Scarp, July 1934 (POST 33/5130), Bristol Postal Museum and Archive.

Глава 2. Все возвращается на круги своя

D. Driss-Ecole,A. Lefranc and G. Perbal, A polarized cell: the root-statocyte, Physiologia Plantarum, 118 (3), July 2003, pp. 305-12.

George Smith, Newton’s Philosophiae Naturalis Principia Mathematica, in Edward N. Zalta, ed., Stanford Encyclopedia of Philosophy, Winter 2008 edn, http://plato.stanford.edu/archives/win2008/entries/newton-principia/.

Celia K. Churchill, Diarmaid  Foighil, Ellen E. Strong and Adriaan Gittenberger, ‘Females floated first in bubble-rafting snails’, Current Biology, 21 (19), Oct. 2011, pp. R802-R803, http://dx.doi.org/10.1016/j.cub.2011.08.011.

Zixue Su, Wuzong Zhou and Yang Zhang, New insight into the soot nanoparticles in a candle flame, Chemical Communications, 47 (16), March 2011, pp. 4700-2, http://dx.doi.org/10.1039/C0CC05785A.

Глава 3. Маленький – значит замечательный

Peter J. Yunker, Tim Still, Matthew A. Lohr and A. G. Yodh, Suppression of the coffee-ring effect by shape-dependent capillary interactions, Nature, 476, 18 Aug. 2011, pp. 308-11, http://dx.doi.org/10.1038/nature10344.

Robert D. Deegan, Olgica Bakajin, Todd F. Dupont, Greb Huber, Sidney R. Nagel and Thomas A. Witten, Capillary flow as the cause of ring stains from dried liquid drops, Nature, 389, 23 Oct. 1997, pp. 827-9, http://dx.doi.org/10.1038/39827.

Целиком книга Micrographia опубликована на этом сайте: https://ebooks.adelaide.edu.au/h/hooke/robert/micrographia/contents.html.

Homogenization of milk and milk products, University of Guelph Food Academy, https://www.uoguelph.ca/foodscience/book-page/homogenization-milk-and-milk-products.

Blue tits and milk bottle tops, British Bird Lovers, http://www.britishbirdlovers.co.uk/articles/blue-tits-and-milk-bottle-tops.

Rolf Jost, Milk and dairy products, in Ullman’s Encyclopedia of Industrial Chemistry (New York and Chichester, Wiley, 2007), http://dx.doi.org/10.1002/14356007.a16_589.pub3.

Aaron Fernstrom and Michael Goldblatt, Aerobiology and its role in the transmission of infectious diseases, Journal of Pathogens, 2013, article ID 493960, http://dx.doi.org/10.1155/2013/493960.

Ebola in the air: what science says about how the virus spreads, npr, http://www.npr.org/sections/goatsandsoda/2014/12/01/364749313/ebola-in-the-air-what-science-says-about-how-the-virus-spreads.

Kevin Loria, Why Ebola probably won’t go airborne, Business Insider, 6 Oct. 2014, http://www.businessinsider.com/will-ebola-go-airborne-2014-10?IR=T.

N. I. Stilianakis and Y. Drossinos, Dynamics of infectious disease transmission by inhalable respiratory droplets, Journal of the Royal Society Interface, 7 (50), 2010, pp. 1355-66, http://dx.doi.org/10.1098/rsif.2010.0026.

I. Eames, J. W. Tang, Y. Li and P. Wilson, Airborne transmission of disease in hospitals, Journal of the Royal Society Interface, 6, Oct. 2009, pp. S697-S702, http://dx.doi.org/10.1098/rsif.2009.0407.focus.

TB rises in UK and London, NHS Choices, http://www.nhs.uk/news/2010/12December/Pages/tb-tuberculosis-cases-rise-london-uk.aspx.

World Health Organization, Tuberculosis factsheet 104, 2016, http://www.who.int/mediacentre/factsheets/fs104/en/.

A. Sakula, Robert Koch: centenary of the discovery of the tubercle bacillus, 1882, Thorax, 37 (4), 1982, pp. 246–51, http://dx.doi.org/10.1136/thx.37.4.246.

Lydia Bourouiba, Eline Dehandschoewercker and John W. M. Bush, Violent expiratory events: on coughing and sneezing, Journal of Fluid Mechanics, 745, 2014, pp. 537–63.

Improved data reveals higher global burden of tuberculosis, World Health Organization, 22 Oct. 2014, http://www.who.int/mediacentre/news/notes/2014/global-tuberculosis-report/en/.

Stephen McCarthy, Agnes Pockels, 175 faces of chemistry, Nov. 2014, http://www.rsc.org/diversity/175-faces/all-faces/agnes-pockels.

Agnes Pockels, Surface tension, Nature, 43, 12 March 1891, pp. 437–9.

Simon Schaffer, A science whose business is bursting: soap bubbles as commodities in classical physics, in Lorraine Daston, ed., Things that Talk: Object Lessons from Art and Science (Cambridge, Mass., MIT Press, 2004).

Adam Gabbatt, Dripless teapots, Guardian, Food and drink news blog, 29 Oct. 2009, http://www.theguardian.com/lifeandstyle/blog/2009/oct/29/teapot-drips-solution.

Martin Chaplin, Cellulose, http://www1.lsbu.ac.uk/water/cellulose.html.

D. Klemm, B. Heublein, H-P.Fink and A. Bohn, Cellulose: fascinating biopolymer and sustainable raw material, Angewandte Chemie, international edn, 44, 2005, pp. 3358–93, http://dx.doi.org/10.1002/anie.200460587.

Alexander A. Myburg, Simcha Lev-Yadun and Ronald R. Sederoff, Xylem structure and function’, eLS, Oct. 2013, https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470015902.a0001302.pub22.

Michael Tennesen, Clearing ad present danger? Fog that nourishes California redwoods is declining, Scientific American, 9 Dec. 2010.

James A. Johnstone and Todd E. Dawson, Climatic context and ecological implications of summer fog decline in the coast red-wood region, Proceedings of the National Academy of Sciences, 107 (10), 2010, pp. 4533-8.

Holly A. Ewing et al., Fog water and ecosystem function: heterogeneity in a California redwood forest, Ecosystems, 12 (3), April 2009, pp. 417–3.

S. S. O. Burgess, J. Pittermann and T. E. Dawson, Hydraulic efficiency and safety of branch xylem increases with height in Sequoia sempervirens (D. Don) crown’, Plant, Cell and Environment, 29, 2006, pp. 229–39, http://dx.doi.org/10.1111/j.1365–3040.2005.01415.x.

George W. Koch, Stephen C. Sillett, Gregory M. Jennings and Stephen D. Davis, The limits to tree height, Nature, 428, 22 April 2004, pp. 851-4, http://dx.doi.org/10.1038/nature02417.

Martin Canny, Transporting water in plants, American Scientist, 86 (2), 1998, p. 152, http://dx.doi.org/10.1511/1998.2.152.

John Kosowatz, Using microfluidics to diagnose HIV, March 2012, https://www.asme.org/engineering-topics/articles/bioengineering/using-microfluidics-to-diagnose-hiv.

Phil Taylor, Go with the flow: lab on a chip devices, 10 Oct. 2014, http://www.pmlive.com/pharma_news/go_with_the_flow_lab-on-a-chip_devices_605227.

Eric K. Sackmann, Anna L. Fulton and David J. Beebe, The present and future role of microfluidics in biomedical research, Nature, 507.7491, 2014, pp. 181-9.

Low-cost diagnostics and tools for global health, Whitesides Group Research, http://gmwgroup.harvard.edu/research/index.php?page=24.

Глава 4. Момент во времени

Eric Lauga and A. E. Hosoi, Tuning gastropod locomotion: modeling the influence of mucus rheology on the cost of crawling, Physics of Fluids (1994–present),18 (11), 2006, 113102.

Janice H. Lai et al., The mechanics of the adhesive locomotion of terrestrial gastropods, Journal of Experimental Biology, 213 (22), 2010, pp. 3920–33.

Mark W. Denny, Mechanical properties of pedal mucus and their consequences for gastropod structure and performance, American Zoologist, 24 (1), 1984, pp. 23–36.

Neil J. Shirtcliffe, Glen McHale and Michael I. Newton, Wet adhesion and adhesive locomotion of snails on anti-adhesive non-wetting surfaces, PloS one, 7 (5), 2012, p. e36983.

H. C. Mayer and R. Krechetnikov, Walking with coffee: why does it spill? Physical Review E, 85 (4), 2012, 046117.

Marc Reisner, Cadillac Desert: The American West and its Disappearing Water, rev. pb edn (New York, Penguin, 1993).

B. J. Frost, The optokinetic basis of head-bobbing in the pigeon, Journal of Experimental Biology, 74, 1978, pp. 187–95.

Engineering aspects of the September 19, 1985 Mexico City earthquake, NBS Building Science series 165, May 1987, http://www.nist.gov/customcf/get_pdf.cfm?pub_id=908821.

Daniel Hernandez, The 1985 Mexico City earthquake remembered, Los Angeles Times, 20 Sept. 2010, http://latimesblogs.latimes.com/laplaza/2010/09/earthquake-mexico-city-1985-memorial.html.

William F. Martin, Filipa L. Sousa and Nick Lane, Energy at life’s origin, Science, 344 (6188), 2014, pp. 1092-3.

S. Seager, The future of spectroscopic life detection on exoplanets, Proceedings of the National Academy of Sciences of the United States of America, 111 (35), 2014, pp. 12634-40, https://doi.org/10.1073/pnas.1304213111.

Глава 5. От воды до Wi-Fi

A. A. Michelson and E. W. Morley, On the relative motion of the Earth and of the luminiferous ether, Sidereal Messenger, 6, 1887, pp. 306-10, http://adsabs.harvard.edu/full/1887SidM….6..306M.

Sindya N. Bhanoo, Silvery fish elude predators with light-bending, New York Times, 22 Oct. 2012, http://www.nytimes.com/2012/10/23/science/silvery-fish-elude-predators-with-sleight-of-reflection.html?_r=0.

Alexis C. Madrigal, You’re eye-to-eye with a whale in the ocean: what does it see? The Atlantic, 28 March 2013, http://www.theatlantic.com/technology/archive/2013/03/youre-eye-to-eye-with-a-whale-in-the-ocean-what-does-it-see/274448/.

Leo Peichl, Gunther Behrmann and Ronald H. H. Kroger, For whales and seals the ocean is not blue: a visual pigment loss in marine mammals, European Journal of Neuroscience, 13 (8), 2001, pp. 1520–8.

Jeffry I. Fasick et al., Estimated absorbance spectra of the visual pigments of the North Atlantic right whale (Eubalaena glacialis), Marine Mammal Science, 27 (4), 2011, pp. E321-E331.

University of Oxford, press pack for Marconi exhibition: https://www.mhs.ox.ac.uk/marconi/presspack/.

Bill Kovarik, Radio and the Titanic, Revolutions in Communication, https://revolutionsincommunication.com/features/radio-and-the-titanic/.

RMS Titanic radio page, http://hf.ro/.

Yannick Gueguen et al., Yes, it turns: experimental evidence of pearl rotation during its formation, Royal Society Open Science, 2 (7), 2015, 150144.

Глава 6. Почему у уток не мерзнут лапы?

Molecular dynamics: real-life applications, http://www.scienceclarified.com/everyday/Real-Life-Physics-Vol-2/Molecular-Dynamics-Real-life-applications.html.

Einstein and Brownian motion, American Physical Society News, 14 (2), Feb. 2005, https://www.aps.org/publications/apsnews/200502/history.cfm.

Back to basics: the science of frying, http://www.decodingdelicious.com/the-science-of-frying/.

1000 days in the ice, National Geographic, 2009, http://ngm.nationalgeographic.com/2009/01/nansen/sides-text/4.

Jing Zhao, Sindee L. Simon and Gregory B. McKenna, Using 20-million-year-old amber to test the super-Arrhenius behaviour of glass-forming systems, Nature Communications, 4, 2013, p. 1783.

Intergovernmental Panel on Climate Change, Climate Change 2007: Working Group I: The Physical Science Basis, IPCC Report 2007, FAQ 5.1: Is sea level rising? https://www.ipcc.ch/publications_and_data/ar4/wg1/en/faq-5-1.html.

Oliver Milman, World’s oceans warming at increasingly faster rate, new study finds, http://www.theguardian.com/environment/2016/jan/18/world-oceans-warming-faster-rate-new-study-fossil-fuels.

The coldest place in the world, NASA Science News, 10 Dec. 2013, http://science.nasa.gov/science-news/science-at-nasa/2013/09dec_coldspot/.

Webbed wonders: waterfowl use their feet for much more than just standing and swimming, http://www.ducks.org/conservation/waterfowl-biology/webbed-wonders/page2.

Temperature regulation and behavior, https://web.stanford.edu/group/stanfordbirds/text/essays/Temperature_Regulation.html.

Barbara Krasner-Khait, The impact of refrigeration, http://www.history-magazine.com/refrig.html.

Simon Jol, Alex Kassianenko, Kaz Wszol and Jan Oggel, Issues in time and temperature abuse of refrigerated foods, Food Safety Magazine, Dec. 2005-Jan.2006, http://www.foodsafetymagazine.com/magazine-archive1/december-2005january-2006/issues-in-time-and-temperature-abuse-of-refrigerated-foods/.

Alexis C. Madrigal, A journey into our food system’s refrigerated-warehouse archipelago, The Atlantic, 15 July 2003, http://www.theatlantic.com/technology/archive/2013/07/a-journey-into-our-food-systems-refrigerated-warehouse-archipelago/277790/.

Глава 7. Чайные ложечки, спирали и спутник

Hugh Gladstone, Making tracks: building the Olympic velodrome, Cycling Weekly, 21 Feb. 2011, http://www.cyclingweekly.co.uk/news/making-tracks-building-the-olympic-velodrome-53916.

Rachel Thomas, How the velodrome found its form, Plus Magazine, 22 July 2011, https://plus.maths.org/content/how-velodrome-found-its-form.

Determination of the hematocrit value by centrifugation, http://www.hettweb.com/docs/application/Application_Note_Diagnostics_Hematocrit_Determination.pdf.

Astronaut training: centrifuge, RUS Adventures, http://www.rusadventures.com/tour35.shtml.

Centrifuge, Yu.A. Gagarin Research and Test Cosmonaut Training Center, http://www.gctc.su/main.php?id=131.

High-G training, https://en.wikipedia.org/wiki/High-G_training.

Lisa Zyga, The physics of pizza-tossing, Phys.org, 9 April 2009, http://phys.org/news/2009-04-physics-pizza-tossing.html.

Alison Spiegel, Why tossing pizza dough isn’t just for show, HuffPost Taste, 2 March 2015, http://www.huffingtonpost.com/2015/03/02/toss-pizza-dough_n_6770618.html.

K.-C. Liu, J. Friend and L. Yeo, The behavior of bouncing disks and pizza tossing, EPL (Europhysics Letters), 85 (6), 26 March 2009.

International Space Station, http://www.nasa.gov/mission_pages/station/expeditions/expedition26/iss_altitude.html.

Eleanor Imster and Deborah Bird, This date in science: launch of Sputnik, 4 Oct. 2014, http://earthsky.org/space/this-date-in-science-launch-of-sputnik-october-4-1957.

Roger D. Launius, Sputnik and the origins of the Space Age, http://history.nasa.gov/sputnik/sputorig.html.

Paul E. Chevedden, The Invention of the Counterweight Trebuchet: A Study in Cultural Diffusion, Dumbarton Oaks Papers No. 54, 2000, http://www.doaks.org/resources/publications/dumbarton-oaks-papers/dop54/dp54ch4.pdf.

Riccardo Borghi, ‘On the tumbling toast problem’, European Journal of Physics, 33 (5), 1 Aug. 2012.

R. A. J. Matthews, Tumbling toast, Murphy’s Law and the fundamental constants, European Journal of Physics, 16 (4), 1995, pp. 172-76, http://dx.doi.org/10.1088/0143-0807/16/4/005.

Dizziness and vertigo, http://balanceandmobility.com/for-patients/dizziness-and-vertigo/.

Steven Novella, Why isn’t the spinning dancer dizzy? Neurologica, 30 Sept. 2013, http://theness.com/neurologicablog/index.php/why-isnt-the-spinning-dancer-dizzy/.

Глава 8. Когда противоположности притягиваются

One penny coin, http://www.royalmint.com/discover/uk-coins/coin-design-and-specifications/one-penny-coin.

The chaffinch, http://www.avibirds.com/euhtml/Chaffinch.html.

Dominic Clarke, Heather Whitney, Gregory Sutton and Daniel Robert, Detection and learning of floral electric fields by bumble bees, Science, 340 (6128), 5 April 2013, p. 66–9, http://dx.doi.org/10.1126/science.1230883.

Sarah A. Corbet, James Beament and D. Eisikowitch, Are electrostatic forces involved in pollen transfer? Plant, Cell and Environment, 5 (2), 1982, pp. 125-9.

Ed Yong, Bees can sense the electric fields of flowers, National Geographic Phenomena’ blog, 21 Feb. 2013, http://phenomena.nationalgeographic.com/2013/02/21/bees-can-sense-the-electric-fields-of-flowers/.

John D. Pettigrew, Electroreception in monotremes, Journal of Experimental Biology, 202 (10), 1999, pp. 1447-54.

U. Proske, J. E. Gregory and A. Iggo, Sensory receptors in monotremes, Philosophical Transactions of the Royal Society of London B: Biological Sciences, 353 (1372), 1998, pp. 1187–98.

Cathode ray tube, University of Oxford Department of Physics, http://www2.physics.ox.ac.uk/accelerate/resources/demonstrations/cathode-ray-tube.

Non-European compasses, Royal Museums Greenwich, http://www.rmg.co.uk/explore/sea-and-ships/facts/ships-and-seafarers/the-magnetic-compass.

Wynne Parry, Earth’s magnetic field shifts, forcing airport runway change, LiveScience, 7 Jan. 2011, http://www.livescience.com/9231-earths-magnetic-field-shifts-forcing-airport-runway-change.html.

Wandering of the geomagnetic poles, National Centers for Environmental Information, National Oceanic and Atmospheric Administration, http://www.ngdc.noaa.gov/geomag/GeomagneticPoles.shtml.

Swarm reveals Earth’s changing magnetism, European Space Agency, 19 June 2014, http://www.esa.int/Our_Activities/Observing_the_Earth/Swarm/Swarm_reveals_Earth_s_changing_magnetism.

David P. Stern, The Great Magnet, the Earth, 20 Nov. 2003, http://www-spof.gsfc.nasa.gov/earthmag/demagint.htm.

Drummond Hoyle Matthews, https://www.e-education.psu.edu/earth520/content/l2_p11.html.

F. J. Vine and D. H. Matthews, Magnetic anomalies over oceanic ridges, Nature, 199, 1963, pp. 947–9.

Kenneth Chang, How plate tectonics became accepted science, New York Times, 15 Jan. 2011.

Эту книгу хорошо дополняют:

Глазами физика

Уолтер Левин

Квантовая вселенная

Брайан Кокс, Джефф Форшоу

Атомы у нас дома

Владимир Антонец

Сейчас. Физика времени

Ричард Мюллер

Страницы: «« 1234

Читать бесплатно другие книги:

Зарисовки кошачьих будней. У кошки Мориски, как и у людей, есть свои страхи. Она боится неких похити...
«Есть, молиться, любить» заканчивается историей о том, как во время своего путешествия на Бали Элиза...
Столкнувшись с изменой гражданского мужа и оказавшись на моральном дне жизни, пробыв три года в депр...
Врач по профессии Сергей Иванович Филонов в доступной форме рассказывает о сухом лечебном голодании,...
Эта книга посвящена одной из самых древних загадок – тайне перевоплощения Души, истории прошлых жизн...
3033 год. Ежегодная экстремальная гонка «Бритвашторм». В состязании «бритв», профессиональных киберн...