Эластичность. Гибкое мышление в эпоху перемен Млодинов Леонард
Трудность любых загадок состоит в том, что из-за их устройства на ум автоматически приходит неправильное толкование обстоятельств, сознание в этом участвует мало или не участвует вовсе. Эту трактовку наши мозги считают наиболее вероятной, основываясь на предыдущем опыте, такое скрытое допущение мы делаем, не отдавая себе в этом отчета, но подобная картинка не сообразна совершенно новой для нас ситуации в загадке. Как и многие каверзные задачи, загадки трудны не потому, что мы чего-то не знаем, а потому что как раз знаем – или нам кажется, что знаем, а на самом-то деле нет.
Возьмем первую загадку. В абсолютном большинстве обстоятельств, в каких почти всем нам доводилось оказываться, человек, читающий книгу, действительно вперяет взгляд в страницы. И пусть это один из возможных сценариев, описываемых загадкой, мы вскоре убедимся, что есть и другая возможность, и осознать это, отставив исходный образ, и есть ключ к успеху. Так же устроены сдвиги парадигмы в предпринимательстве и науке. В этих областях из-за перемены обстоятельств теряют действенность допущения, настолько глубоко усвоенные людьми, что не вызывают никаких сомнений, и принять, что они более недействительны, оказывается трудно. Успех приходит к тем, кто это сознает и способен пересмотреть свое понимание ситуации.
Вот вам ответы к загадкам. В первой человеку для чтения свет не нужен, потому что человек этот слепой и читает книгу, напечатанную брайлем. Во второй фокусник кидает шарик вверх, а не горизонтально, а потому движение обращено вспять силой тяготения, а не столкновением с землей, столом или стенкой. В третьей поймано всего три рыбы, потому что две матери и две дочери – это три женщины: девочка, ее мать и мать ее матери. В четвертой Марша и Марджори – это не весь выводок: родилась не двойня, а тройня.
В жизни мы имеем дело с многочисленными испытаниями. Знаем, как справляться с некоторыми, потому что уже натыкались на них. Попадаются нам и совершенно новые препятствия, но мы способны одолеть их, применяя пошаговое аналитическое мышление. И все же случаются задачи, не поддающиеся нашим попыткам решить их. Зачастую, как в этих загадках, это потому, что в рамках того, как эти загадки воспринимаются, решения не существует, – зато оно может быть найдено, если принять свежую точку зрения.
Рассуждая о победах интеллекта, мы склонны сосредоточиваться на блистательном аналитическом мышлении – мысли, производимой могучей логикой. Но при этом едва отдаем должное способности переизобретать рамки, в которых мыслим, и понятия, в каких наш ум определяет рассматриваемый нами вопрос. Переизобретать все это удается, мысля эластично: это задача, требующая рыхлого навыка под названием «проницательность». Автоматизировать создание новых представлений трудно, и большинство животных едва справляется с этим, но зачастую как раз такое создание и есть ключ к успешному решению задач человеческого мира.
Задача собаки и кости
В этот век вопросы, требующие от нас изменения рамок нашего мышления, возникают куда чаще, чем когда-либо прежде. В этом и состоят революционные перемены: это перемены, требующие новых парадигм и свежих способов мышления. Психологи называют процесс смещения рамок, в пределах которых вы анализируете тот или иной вопрос, реструктуризацией. От этого глубинного действия, совершаемого нашими мозгами, зачастую зависит, найдем мы ответ или упремся в тупик. Или же, оказавшись в тупике, выбраться из него мы можем, лишь произведя реструктуризацию. Ныне, когда допущения прошлого устаревают со скоростью, поражающей воображение, способность реструктурировать собственное мышление необходима уже не для выдающихся достижений, а ради выживания.
Важность реструктуризации ученый-компьютерщик Даглас Хофстедтер иллюстрирует посредством так называемой задачи собаки и кости[97]. Вообразите, что вы – собака, а некий добрый человек бросил вам кость, но она упала к соседу во двор, по ту сторону сетчатого забора в десять футов высотой. Позади вас открытые ворота, перед вами – вкусная снедь. При виде кости у вас текут слюнки, но как вам до нее добраться?
Столкнувшись с такой задачей впервые, большинство собак решает ее строго топографически. Пес составляет в уме карту своего положения и положения кости, прикидывает по этой карте расстояния, а затем ставят себе цель со временем сократить это расстояние. Начинает пес в тридцати футах от кости, скажем. Двигаясь к кости, пес сокращает расстояние, из чего, согласно своей внутренней программе, делает вывод, что, когда расстояние сократится до нуля, цель будет достигнута.
Собака – или робот – с такой программой будет бежать к кости, пока не наткнется на забор, и тут решение поставленной задачи зайдет в тупик. Расстояние до кости, может, и сократилось буквально до нескольких дюймов, но дальше хода нет. Некоторые собаки просто станут таращиться на кость и лаять от неудовлетворенности – или же плюхнутся на спину, чтобы вы почесали им пузо. Другие псы, знакомые с подкопом как методом перемещения под предметами, возможно, попробуют подкоп. Но некоторым особенно толковым псам достанет эластичности мышления, чтобы сменить рамки, в которых мыслится вся эта ситуация: они осознают, что физическое расстояние до кости не равно расстоянию до цели.
Стоя у забора, такие псы поймут, что, пусть до кости всего несколько дюймов, от того, чтобы добраться до нее, они очень далеки. А потому изменят представление о расстоянии, применяемом к этой задаче. Они поймут, что, даже если они стоят физически рядом с костью, в смысле достижения цели открытые ворота к кости ближе. А потому вместо того, чтобы применять буквальное геометрическое расстояние как мерило успеха, они применят определение, которое ученые-когнитивисты называют «пространством задачи».
В нашем случае пространство задачи есть длина пути, который надо преодолеть, чтобы добраться до кости. В пространстве задачи, если собака отправляется в путь, двигаясь к кости, она увеличивает расстояние до своей цели, но если она при этом перемещается к открытым воротам, она это расстояние сокращает. А потому псы, задающие своему мышлению такие вот новые рамки, устремляются к открытым воротам.
Решить задачу собаки и кости, стоит только задать ей действенные рамки, нетрудно. Но осознать, что эти новые рамки нужны, а затем задать их – вот что требует эластичного мышления. Эффективное мышление нередко сводится именно к этому – к способности реструктурировать рамки своего мышления о фактах и вопросах. А потому задача собаки и кости, пусть и простая, отделяет мыслителей от не-мыслителей, людей и смышленых собак – от компьютеров-шахматистов.
Как мыслят математики
Если уж выбирать среди всех областей знания такую, какой не бывать без реструктуризации, – и ей, следовательно, есть чему нас научить в новаторстве и творческом мышлении, – это математика. Большинство из нас понятия не имеет, как математики мыслят, но ловкость, с которой они создают альтернативные рамки восприятия для всяких сложных вопросов, для нас очень поучительна.
Возьмем задачку, которая на самом деле математическая, хоть и прикидывается бытовой загадкой. Есть шахматная доска восемь на восемь и тридцать две костяшки домино. Каждая костяшка домино покрывает собой две горизонтально или вертикально соседствующие клетки, и легко сообразить, как расставить кости, чтобы закрыть ими все шестьдесят четыре клетки. А теперь представьте, что мы выкидываем из игры одну костяшку домино и выключаем две клетки доски – из двух диагонально противостоящих углов. Можно ли накрыть оставшиеся шестьдесят две клетки тридцатью одной костью? Независимо от того, положительный вы даете ответ или отрицательный, объясните его. Класть кость так, чтобы она торчала за пределы доски, нельзя.
Берясь решать эту загадку, большинство людей пробует по-всякому размещать костяшки на доске, а затем, когда ничего не выходит, начинает подозревать, что замостить вот так всю доску невозможно[98]. Но как это доказать? Пробовать один неудачный вариант за другим – не метод, поскольку вариантов слишком много.
Загадка «вырезанной доски» – усложненная разновидность простой задачи с собакой и костью. У загадки есть простой ответ, но чтобы его добыть, необходимо взглянуть на поставленный вопрос в новых рамках, реструктурировав его так, чтобы отставить буквальные попытки накрыть всю доску и переформулировать задачу по-новому. Как?
Ключ вот в чем: вместо того, чтобы формулировать задачу как поиск в пространстве способов расставить домино по всей доске, сформулируйте ее в понятиях поиска в пространстве законов, управляющих расстановкой домино на доске. Разумеется, сперва придется сформулировать сами законы. Вот, например: каждая кость домино покрывает две клетки. Еще что-нибудь приходит на ум? Когда выявите все мыслимые правила – а их немного, – рассмотрите вопрос, можно ли покрыть всю обрезанную доску костяшками домино в контексте этих правил. Выяснится, что есть правило, которое придется нарушить, иначе не удастся покрыть всю доску костяшками, а потому ответ «нет, нельзя».
Эту загадку вы, скорее всего, разгадали, если додумались вот до этого закона: поскольку каждая костяшка закрывает два соседних квадрата, следовательно, любая костяшка на доске покрывает одну белую и одну черную клетку. Этот закон означает, что разместить костяшки на доске, где белых и черных клеток не поровну, никак не получится. У полной шахматной доски белых и черных клеток одинаковое число, а потому этот закон не возбраняет расстановку костяшек так, чтобы покрыть всю доску. А вот у обрезанной доски при вынутых двух диагонально противоположных уголках тридцать две белые клетки и тридцать черных (или наоборот), и, соответственно, согласно закону, обрезанную доску костяшками домино не обставить никак.
Анналы математики и решение большинства задач вообще в любых областях знания можно рассматривать как постоянную борьбу с бесплодными рамками мышления оружием реструктурирования. Вот вам пример из настоящей математики: каково решение уравнения x2 = – 1? Поскольку квадрат любого числа – число положительное, предложение кому бы то ни было решить эту задачу равносильно вопросу: «У тебя есть два фунта камбалы и морковка. Как будешь варить говяжье рагу?» Долгие века математики считали, что ответа здесь не существует. Но они мыслили в рамках обычной математики – ныне мы называем это «действительные числа».
В XVI веке итальянский математик Рафаэль Бомбелли осознал, что, пусть квадратный корень из – 1 не есть число, которое мы, допустим, можем показать на пальцах, это не означает, что это число бесполезно для нас умозрительно. В конце концов, мы же используем отрицательные числа, а они тоже никак не соответствуют ни пальцам на руках, ни каким бы то ни было другим физическим величинам. Пятьсот лет назад случилась Бомбеллиева великая реструктуризация: давайте воспринимать числа как абстракции, подчиняющиеся правилам, а не как конкретные сущности. Исходя из этого Бомбелли задался вопросом, могут ли существовать те или иные законные математические рамки, в которых возможно существование квадратного корня из – 1, независимо от того, можно ли такими числами считать или измерять что-то вещественное?[99]
Бомбелли подходил к вопросу так: предположим, такое число в самом деле существует. Ведет ли это к логическому противоречию? Если не ведет, то каковы были бы у этого числа свойства? Ученый обнаружил, что число, удовлетворяющее равенству x2 = – 1, не ведет к логическому противоречию, и успешно выяснил кое-какие прежде неизведанные свойства этого числа. Ныне мы обозначаем число Бомбелли буквой i и называем его мнимым числом.
Мнимые числа теперь преподают на обычных уроках математики. Толковые старшеклассники запросто осваивают то, что большинство серьезных средневековых ученых не могло ни постичь, ни принять, потому что, как и идея увеличенных порций, это противоречило парадигме тогдашней привычной мысли.
Влияние культуры
Истории Уоллерстина и Бомбелли – очень, очень разные, однако обе показывают, что один важный фактор влияния на нашу способность производить новые представления, внешний по отношению к нам, – это фактор наших профессиональных, общественных и культурных норм. Ими могут быть нормы нашей семьи, коллег, страны, этноса, профессиональной среды или даже той или иной компании, на которую мы работаем. Мы склонны считать, что национальная и этническая культуры влияют на индивидуальное мышление сильнее прочих, но если вы знакомы хоть с одним математиком, он, вероятно, мыслит совсем не так, как ваши знакомые юристы, а те, в свою очередь, совсем не так, как повара, бухгалтеры, следователи-оперативники и поэты, с какими вам доводилось общаться, и различия могут быть не менее значимые.
Каким бы ни был источник культуры, ее влияние настолько мощно, что распространяется даже на наше восприятие физических объектов[100]. Задумаемся над недавними исследованиями, проведенными в Мичиганском университете психологом Синобу Китаямой и его коллегами, – они изучали различия между тем, как американцы европейского и японского происхождения воспринимают простые геометрические фигуры.
Культура для группы есть то же, что личность для индивида. Европейская культура, как обнаружили психологи, подчеркивает ценность личной автономии и буквального мышления, тогда как японская культура более коммунальна и считает важными обстоятельства и контекст. Чтобы разобраться, каковы в таком случае последствия этих различий, в одной серии экспериментов Китаяма показывал своим испытуемым «стандартный» квадрат, нарисованный на листке бумаги, в котором был проведен отрезок прямой длиной ровно в треть высоты квадрата вертикально вниз от верхней грани, как показано на рисунке:
Испытуемым выдали по листку бумаги, на каждом был похожий квадрат. Однако на листках у испытуемых квадрат отличался от стандартного размерами, и у него не было вертикального отрезка, проведенного от верхней грани вниз.
Каждому испытуемому выдали карандаш и попросили воспроизвести вертикальный отрезок прямой, как он нарисован в стандартном квадрате. Кого-то попросили провести линию той же длины, что и в стандартном квадрате, а кого-то – той же пропорции (одна треть по высоте) относительно обрамляющего квадрата. У этих двух заданий есть сущностная разница. В первом человек может не обращать внимания на квадрат, а во втором соотношение квадрата и отрезка – ключевые.
Исследователи замыслили это исследование, сосредоточившись на такой разнице, потому что квадрат – контекст для отрезка, а контекст – элемент, значимый для японской культуры. Китаяма предсказал, что японцы справятся лучше европейцев, если попросить их соблюсти пропорцию, но все будет иначе, если японцев попросить нарисовать отрезок равным по длине; эксперимент показал в точности такие результаты.
Квадраты Китаямы.
Слева: длина отрезка соотносится с исходным рисунком.
Справа: пропорция отрезка соотносится с исходным рисунком
Китаяма в своем исследовании пощупал то, как люди думают, но культурные различия, проникающие так глубоко, что влияют даже на физическое восприятие, наверняка фундаментально влияют и на подходы разных людей к решению задач в пределах, принятых в сообществах этих людей. А потому социологи задались вопросом: влияет ли культура на уровень новаторства в том или ином сообществе? Если да, то сравнительный рейтинг стран относительно новаторства вряд ли меняется со временем и тем самым отражает глубинную культуру общества.
Приведу таблицу, показывающую результаты одного исследования, посвященного как раз этой теме. Оно оценивает США и тринадцать европейских стран примерно сопоставимого благополучия относительно количества изобретений, запатентованных из расчета на душу населения за 1971–1980 годы[101]. Таблица показывает, что у большинства стран рейтинг сохранялся на протяжении всего десятилетия.
Это исследование не было статистическим выбросом. Например, в таблице ниже приведены аналогичные рейтинги, полученные другими учеными и за другое десятилетие – с 1995 по 2005 год. В этой работе изучали отдельный подкласс изобретений, поэтому эти две таблицы впрямую сравнивать нельзя, но важно то, что рейтинги похожи – и они устойчивы во времени[102].
Наша культура способна предложить нам подход к вопросам, полезный в их решении, но может и мешать нам. Сильное культурное самоопределение, если оно порождает глубоко запрограммированный подход к тем или иным вопросам, может затруднять смену этого подхода, пусть даже он и не действен. Соприкасаться же с другими культурами полезно, потому что те, кто вырос или работает в чужой культуре, зачастую относятся к жизни иначе, и исследования показывают, что простое взаимодействие с такими людьми способно раздвинуть рамки нашего мировосприятия и увеличить у нас эластичность мышления[103]. Чем шире взгляд на мир, возникающий при таких взаимодействиях, тем с большей вероятностью мы будем готовы ломать свои старые привычки и освобождаться от жестких закономерностей мышления, которые не дают нам двигаться вперед.
Но независимо от того, нужны ли нам новые рамки мышления или мы способны отыскать решение в существующих мыслительных структурах, откуда все же берутся эти самые идеи, которые мы ищем? В следующей главе я объясню, как процесс производства идей происходит в глубоких недрах нашего бессознательного ума – и деятельнее всего он как раз тогда, когда сознательные процессы аналитического мышления находятся в покое.
6
Думаем, когда не думаем
У природы есть запасной план
Лежа в постели в швейцарской деревне Колони у Женевского озера, Мэри Годвин маялась. Третий час ночи, еще одна унылая ночь унылым дождливым июнем. Беспрестанные дожди сами по себе не диво: Мэри выросла в Лондоне, а к тому же провела немало времени в Шотландии. Но этой ночью погодный мрак – точь-в-точь ее настроение.
Мэри, бледная, хрупкая женщина с каштановыми волосами и глубокими карими глазами, была к себе сурова. Одна тысяча восемьсот шестнадцатый год, ей всего восемнадцать. Пришлось проводить лето в Швейцарии со своей единокровной сестрой, друзьями и возлюбленным. Как-то раз поздно ночью, когда лило особенно сильно, все собрались у камина почитать вслух сборник страшных историй, а затем решили: пусть каждый в компании напишет такую историю сам.
К следующему вечеру все справились – кроме Мэри. Шли дни. Друзья не оставляли ее в покое: «Ну как, сочинила?» – а она продолжала отвечать «стыдливым отрицаньем». Начала уже чувствовать себя недостойной интеллектуального собрания друзей и возлюбленного. Неуверенность в себе лишь умножала ее муки.
Друзья Мэри продолжали свои ночные бдения, и как раз тем вечером разговор зашел о «природе и принципах жизни». Собравшиеся рассуждали о неких экспериментах Эразма Дарвина, в которых он вроде как «хранил обрезок вермишели в стеклянном ящике, покуда тот неким сверхъестественным манером не задвигался по своей воле». Прочитав эти слова, я поймал себя на мысли, что у всех нас оставались такие объедки. Но там-то компания подобралась ученая, и они задумались: можно ли создать жизнь вот так запросто – и какою силой? Ближе к полуночи все отправились спать – все, кроме Мэри: та лежала в постели, уставившись в потолок. Спать не могла, но зажмурилась и решила успокоить ум. Пора уже было отвлечься от усилий сочинить ту историю.
И вот как раз в том «расслабленном» состоянии ума у Мэри возник проблеск сюжета, который она так ждала. Видимо, ее вдохновили вечерние разговоры, как сама она впоследствии вспоминала: «…Мое воображение незвано завладело мною, повело меня». Мэри говорила: «Я увидела – с закрытыми глазами, но острым умственным зрением… бледного ученика грешных искусств, стоящего на коленях перед предметом, который он создал». Мэри Годвин – она выйдет замуж за своего возлюбленного и станет Мэри Шелли – посетило видение, которое в 1818 году приведет ее к сочинению книги «Франкенштейн, или Современный Прометей».
Жизнь любого творения начинается с брошенного вызова, а всякий ответ начинается с вопроса. Как уже было сказано в Главе 3, между желанием написать полотно, решить загадку, изобрести прибор, составить бизнес-план или доказать предположение в физике есть много общего. Общее у них и то, что, если выдержать такие же могучие внутренние мытарства, какие претерпела Мэри Шелли, из глубоких недр нашего эластичного ума может внезапно возникнуть идея.
Эластичное мышление, производящее идеи, – это не паровозик мыслей, как в аналитическом рассуждении. Иногда крупные, временами непримечательные, толпами или по одиночке, наши идеи словно просто возникают. Но они не приходят из ниоткуда – их производит наш бессознательный ум.
Для Мэри режим ее размышлений, приведший к первому приблизительному, но вдохновенному видению «Франкенштейна», остался в дымке волшебства и тайны. Как получилось, что история, над сочинением которой она билась несколько дней, явилась к ней, когда Мэри отдыхала в постели и ни о чем конкретном не думала?
До возникновения нейробиологии и методов, позволивших ей родиться, было неимоверно трудно разобраться, как грезы или блуждающий ум способны рождать ответы, которые сознательными усилиями нам добыть не удалось. Но в наши дни мы знаем, что спокойный ум не есть ум праздный, что в периоды умственного покоя наше бессознательное может бурлить деятельностью. Ныне, через двести лет после рождения «Франкенштейна», мы умеем измерять и наблюдать физические процессы, питающие эту деятельность. Мы понимаем, что, каким бы волшебным это ни казалось, мышление, происходящее, когда мы сознательно не сосредоточены, – глубинная черта мозга млекопитающих, ею наделены даже низменные и примитивные грызуны. Именуемый пассивным режимом работы мозга, этот режим – ключевой для эластичного мышления[104].
Темная энергия мозга
Маркус Рэйкл называет то, что изучает последние двадцать лет, темной энергией[105]. В астрофизике понятием «темная энергия» обозначают нечто загадочное, проницающее все пространство и составляющее две трети всей энергии во Вселенной, однако в повседневной жизни его невозможно засечь. В результате астрономы и физики много веков не замечали темную энергию, пока случайно не обнаружили ее в конце 1990-х. Но Рэйкл – нейробиолог, а не астроном, и энергия, которую он изучает, – «темная энергия» мозга, энергия пассивного режима его работы.
Аналогия здесь уместна: как и темная энергия астрофизиков, темная энергия пассивного режима – своего рода «фоновая», она возникает из фона мозговой деятельности. И она так же, вопреки своей вещественности, долго от нас скрывалась, поскольку пассивный режим работы в повседневных делах не задействован. Он как раз оживляется, когда исполнительный мозг не направляет нашу аналитическую мысль ни на что конкретное.
Исследования пассивного режима работы мозга сейчас повалили валом – это результат цикла статей, которые Рэйкл написал в 2001 году, после того как провозился с этой темой всего несколько лет[106]. Сейчас, пока я сочиняю эту книгу, ту первую статью процитировали уже более семи тысяч раз – в среднем больше чем в одной научной статье на заданную тему в день, и каждая – плод месяцев или даже лет труда. Но, как и многие научные прорывы, понятие о пассивном режиме работы мозга болталось непризнанным в великом море научных идей задолго до того, как Рэйкл открыл его заново и опубликовал статью, придавшую этим представлениям их современный вес.
Эта сага началась в 1897 году, когда один двадцатитрехлетний выпускник аспирантуры приступил к работе в психиатрической клинике Университета Йены в Германии[107]. Его специальностью была нейропсихиатрия. Корни этого направления в науке уходят в XVII век, в труды Томаса Уиллиса – его исследования того, как умственные расстройства можно увязать с теми или иными процессами в мозге. В 1897 году наблюдать эти процессы можно было лишь одним способом – вскрыв испытуемому череп, а потому в эту научную область желающие не то чтобы ломились. Но тот молодой психиатр все изменил – он проработал в Йене сорок один год и создал первый замечательный инструмент нейробиологии.
Сослуживцы Ханса Бергера описывали его как застенчивого, молчаливого, сдержанного, задумчивого, внимательного к деталям и невероятно самокритичного человека. Кто-то даже сказал, что Бергер «очевидно обожал свои инструменты и физические приборы и вроде как боялся своих пациентов»[108]. Другой человек, позднее ставший объектом Бергеровых экспериментов, говорил, что Бергер никогда «не предпринимал ничего, выходящего за рамки [ему] привычного. Его дни походили один на другой, как две капли воды. Год за годом он читал одни и те же лекции. Он был воплощением статики»[109].
И вместе с тем у Бергера была тайная и дерзкая внутренняя жизнь. У себя в дневнике он запечатлевал головокружительно нетрадиционные научные соображения. Перемежал их оригинальной поэзией и духовными рассуждениями. А в своих исследованиях, которые он фактически держал в тайне от всех, Бергер увлекался тем, что в его время было шокирующими научными помыслами. И одна такая затея была связана с опытом, который он пережил в двадцать лет, когда служил в армии.
Во время учений Бергера сбросила лошадь, и он едва выжил. В тот же вечер он получил телеграмму от отца – первое за все время службы послание от родни, – в которой отец интересовался его здоровьем. Как позднее выяснилось, сестра Бергера, жившая далеко, попросила отца связаться с ним, поскольку в то утро ее вдруг одолела тревога за сохранность брата. Наложение этих событий убедило Бергера, что пережитый им ужас как-то передался его сестре. Как он писал много лет спустя, «то был случай спонтанной телепатии, при котором, оказавшись в смертельной опасности, я осмыслял неминуемую гибель и передавал свои мысли, тогда как моя сестра, по-особенному со мной близкая, оказалась приемником»[110]. После этого он сделался одержим попытками понять, как энергию человеческой мысли можно передать от одного человека другому.
В наши дни понятие ментальной телепатии представляется ненаучным, поскольку ее давно и тщательно исследовали и опровергли; в век же Бергера свидетельств против телепатии было куда меньше. Так или иначе, ценность научного исследования определяет не то, что именно исследуется, а насколько тщательно и разумно исследование проведено. Бергер занимался своими исследованиями с той же неукоснительной научной строгостью, какую его коллеги ему всегда приписывали. Но чтобы привнести эту строгость в понимание энергетических преобразований в нервной системе и увязать их с умственным опытом, ему пришлось искать способ измерить энергию мозга.
Хотя никто прежде не брался решать эту задачу, Бергера посетила гениальная идея, как это устроить. Вдохновленный работами итальянского физиолога Анджело Моссо, Бергер рассудил, что, поскольку метаболизм требует кислорода, можно снимать данные от тока крови как с посредника энергопередачи. Этот подход опережал свое время чуть ли не на сто лет – это ключ к функциональной магнитно-резонансной томографии (фМРТ), способствовавшей началу нейробиологической революции 1990-х. Конечно фМРТ зависит от массивных сверхпроводящих магнитов, мощных компьютеров и теоретических разработок, основанных на квантовой теории, а ничего из этого Бергеру, когда он принялся за свои исследования в начале ХХ века, доступно не было. Располагал он лишь инструментами, какие ныне водятся в физической лаборатории какой-нибудь средней школы, да еще пилой. Как же ему при таком оснащении удалось наблюдать ток крови в мозге?
Ответ довольно тошнотворный, но тут Бергеру повезло: клиника Йены, где он работал, предоставила ему доступ к пациентам, которые, либо из-за той или иной опухоли, либо, что случалось нередко, из-за несчастных случаев при верховой езде, вынуждены были подвергаться частичному удалению черепной кости в процессе лечения. Что одному человеку потолок, другому – пол; одному человеку краниотомия, а другому – окно в мозг.
Первым подопытным Бергера оказался двадцатитрехлетний фабричный рабочий с восьмисантиметровой дырой в черепе – таков был результат двух хирургических попыток извлечь застрявшую пулю. Хотя пациент маялся судорогами, умственно он никак не пострадал. С его разрешения Бергер соорудил небольшой резиновый пузырь, наполнил его водой и ловко закрепил в дыре у человека в голове. Подсоединил этот пузырь к прибору, записывавшему перемены в объеме пузыря: когда кровь приливала к области мозга под пузырем, мозг слегка распухал и нажимал на пузырь.
Бергер попросил своего пациента проделывать разные задания – простые арифметические упражнения, например, считать пятна на стене напротив и ожидать прикосновений к уху перышком. Он называл мысли, необходимые для выполнения этих задач, «волевой сосредоточенностью» и измерял прилив крови к мозгу, когда пациент выполнял задания. Измерял Бергер и ток крови при «невольном внимании». Порядок проведения эксперимента в этом случае был несколько менее невинный: он вставал позади своего неосведомленного пациента и палил из пистолета.
Если и существовал в области нейропсихиатрии в те времена какой-либо этический кодекс, планка его вряд ли была высока. Вдобавок к общей обременительности для пациентов, эксперименты Бергера полнились техническими трудностями. За годы исследований они привели к нескольким публикациям – например, к книге 1910 года «Изучение температуры мозга», где Бергер доказывал, что химическую энергию мозга можно превращать в тепло, работу и электрическую «психическую энергию». Но его выводы – и его данные – оказались слабы, Бергера снедали сомнения в себе и мучила неотступная депрессия.
Однако к 1920 году Бергер осмелел. Он исследовал функции мозга, вводя электроды в мозг пациентам и воздействуя на него электрическим током. План состоял в том, чтобы увязать географию мозга с тем, что подопытный ощущает, когда разные области коры стимулируются слабым электрическим током. Бергер вел подобные эксперименты на мозге семнадцатилетнего студента колледжа в июне 1924 года, и тут его посетило озарение: а что если подсоединить электроды не к стимулятору коры головного мозга, а к прибору, который меряет электрический ток? Иными словами, Бергер перевернул эксперимент с ног на голову: не подавать ток к мозгу, а изучать собственное электричество мозга.
Оказалось, это ключ к успеху: за следующие пять лет Бергер научился считывать эти данные, не внедряясь в черепную коробку испытуемому, а подсоединяя электроды к поверхности головы. Как можно себе вообразить, это сильно расширило поле добровольцев. Метод можно было применять к кому угодно, и конечно, Бергер снял тысячи показаний, в том числе – и с собственного сына.
Бергер назвал свой прибор электроэнцефалографом – ЭЭГ. В 1929 году, в свои пятьдесят шесть, Бергер наконец-то опубликовал первую статью, посвященную этим исследованиям, – «Об электроэнцефалограмме человека». В следующие десять лет он издаст еще четырнадцать статей, все с одним и тем же названием, различие – только в порядковом номере.
Бергерова электроэнцефалография стала одним из самых важных изобретений ХХ века. Ученый открыл окно в мозг, позволил нейропсихиатрии стать настоящей наукой. Ныне исследователи постоянно применяют ЭЭГ для изучения мыслительных процессов, подобных тем, что вдохновили мозг Мэри Шелли в тот вечер, когда она расслабила ум. Но первое большое открытие в этом направлении произвел сам Бергер.
Применив свой новый прибор, Бергер показал, что мозг деятелен, даже если человек не занят сознательным мышлением, когда мозг грезит или блуждает, – как это было с Мэри Годвин, когда у нее родился замысел сюжета. Что еще неожиданнее: электрическая энергия, характерная для такого неактивного состояния, измеренная при помощи ЭЭГ, уменьшалась в тот же миг, когда начиналась «волевая сосредоточенность» или же внимание испытуемого устремлялось к какому-нибудь событию в окружающей среде.
Соображения Бергера противоречили научному видению того века: считалось, что мозг электрически активен, только если исполняет задачу, требующую внимания. Бергер проповедовал важность своего нового открытия, но мало кто слушал[111]. Ученые понимали, что, когда человек не думает, должна происходить некая остаточная деятельность, чтобы обеспечивать всякие функции вроде дыхания и сердцебиения, и потому сочли, что Бергеров ЭЭГ засекает какой-то случайный шум. Такое отношение не было лишено смысла, но все же, окажись ученое сообщество более открытым, стало бы ясно, как это было ясно и Бергеру, что сигналы отнюдь не случайны. Как ни печально, то был случай, когда существовавшая парадигма встала на пути у интеллектуального прогресса; дело более чем обычное.
К концу 1930-х работы Бергера с ЭЭГ породили громадное научное поле, но никто не изучал энергию покоящегося ума. Современные Бергеру исследования развивались в других направлениях, а сам Бергер остался позади. И тут 30 сентября 1938 года, когда Бергер делал обход пациентов в клинике, его внезапно вызвали к телефону: нацистские власти сообщили ему, что он с завтрашнего дня уволен. Вскоре всю его лабораторию распустили.
В мае 1941 года, в разгар Второй мировой войны, его карьере помешали нацисты – исследования ЭЭГ не пошли в том направлении, в каком Бергеру хотелось, – и он записал у себя в дневнике: «Не сплю ночей, размышляю и борюсь с самобичеванием. Не в силах ни читать, ни работать упорядоченно, однако хочу заставить себя, ибо так, как есть, невыносимо»[112].
По сути, оставшись со сломанной научной карьерой, Бергер счел, что своей главной цели жизни – увязать электрические процессы в мозге с тем, что переживает ум, – он достичь не смог. Он сделал важный шаг на этом пути, выявив электричество мозга, занятого грезами, однако не смог ни развить эту тему, ни убедить кого бы то ни было в ее важности. Последние слова, которые Бергер опубликовал на бумаге, – призыв к коллегам отнестись к этой идее серьезно:
Я бы желал обратить внимание на соображение, высказанное мною в прошлом. Когда производится умственная работа или же когда деятельность того рода, какую принято называть активной сознательной деятельностью, проявляется так или иначе… в связи с этим сдвигом в деятельности коры головного мозга наблюдается значительное уменьшение амплитуды потенциала колебаний[113].
С тем же успехом Бергер мог вопить в космический вакуум. Его слова ничьих ушей не достигли – вот как, в частности, расплачиваешься за то, что так далеко обогнал свое время. Тридцатого мая 1941 года Ханс Бергер покончил с жизнью. На стене в его кабинете висело стихотворение[114], сочиненное его дедом по материнской линии, поэтом Фридрихом Рюккертом:
- Пред очами у каждого образ
- Того, кем судьба ему стать.
- Покуда он не достигнут,
- Нет полного мира душе.
Симфонии в праздных умах
Мы беседуем с Нэнси Андреасен, брюнеткой с короткой стрижкой; ей скоро восемьдесят. Она врач, доктор наук, специалист по английскому языку. Не самое обычное сочетание навыков, какие встретишь в нейробиологии – да и где угодно еще в науке. Докторская диссертация сложилась первой и привела Нэнси на пост профессора литературы Возрождения в Университете Айовы. А затем однажды, пока Нэнси лежала в постели через неделю после трудной беременности и родов и витала в облаках, ее посетила судьбоносная мысль – внезапное осознание, что ей хочется революции.
Андреасен излагает все это мне, а я думаю о Мэри Шелли и о том, как ее посетил замысел истории о Франкенштейне. Разница только в том, что у Андреасен история, которую она замыслила, стала переделкой сюжета всей ее жизни. Во время того озарения «Принстонское университетское издательство» только-только приняло к публикации книгу Андреасен о поэте Джоне Донне – такое почти для любого профессора английского языка на заре карьеры стало бы великой победой. Но не для Андреасен[115]. «Я осознала, что хочу совершить нечто такое, что изменит жизни людей, а не просто написать книгу о Джоне Донне», – сказала она.
Найти нечто такое, что изменит жизни людей сильнее, чем книга о Джоне Донне, – задача не самая непосильная. Большинству из нас хватает и стакана шардоне. Однако Андреасен замахнулась на «нечто» очень дерзкое. Она решила поступить в медицинский вуз и изучать нейропсихиатрию – поле Бергера. Довольно радикальный шаг для человека со специальностью по английскому языку с очень небольшим объемом знаний по естественным наукам или математике. Карьеру предстояло строить с нуля. И заниматься этим во времена, когда перед женщинами было гораздо больше преград в профессии, чем сегодня.
На дворе конец 1960-х. Студентке Андреасен пришлось отказаться от престижной стипендии в Гарварде, потому что ее отец считал недопустимым, чтобы юная девушка болталась так далеко от родного дома. Как научный работник, желающий публиковаться в журналах, она усвоила, что к ней будут относиться серьезнее, если скрывать в статьях свой пол за инициалами. «Я была первой женщиной на университетском факультете английского языка, нанятой на постоянную профессорскую должность, а потому тщательно следила за тем, чтобы публиковаться под бесполым именем Н. Дж. К. Андреасен», – вспоминает она в статье, написанной для «Атлантика» много лет спустя[116]. Давление на женщин, желавших заниматься медициной, было не меньшим. В аспирантурах их было немного, и в медицинских вузах им не очень-то радовались. Но вот поди ж ты: теперь она, желая стать врачом, оказалась среди своих бывших студентов в почти исключительно мужских коллективах.
Вопреки всем этим препятствиям, Андреасен преуспела. К 1980-м она стала мировым специалистом по ПЭТ (позитронно-эмиссионной томографии) – это метод, в котором радиоактивное вещество доставляется в ту или иную часть тела (в исследованиях Андреасен его вводили в мозг), и тем самым получают изображение тканей. С точки зрения нейропсихиатрии и новой области исследований – нейробиологии, изображения, полученные методом ПЭТ, стали первым исполинским технологическим рывком после Бергерова ЭЭГ.
Технология сканирования ПЭТ в наши дни очень отличается от тогдашней. «Это все происходило до бума сканирования, произошедшего в 1990-е, – рассказывает мне Андреасен. – Тогда приходилось работать с радиохимиком, со специалистом-физиком и с врачом, нужно было хорошо разбираться в анатомии мозга и в статистике, а еще уметь сотрудничать с программистами. Не то, что сейчас, когда все уже собрано в программные пакеты, скачивай и пользуйся. Теперь и тебе статистика вот она, и анатомия мозга».
Упорный труд Андреасен принес плоды: ей удалось заново открыть любопытные рисунки электрической активности, производимой праздным мозгом, – той самой энергии, которую описал Бергер, а позднее возьмется изучать Рэйкл. И хотя Рэйкл предложит понятие пассивного режима, Андреасен называла такой режим работы мозга «покой» (REST). Эта аббревиатура на английском языке означает «случайное эпизодическое безмолвное мышление» и не лишено иронии[117], Андреасен вложила в него намек: это лишь кажется, что ум человека в покое, это на самом деле не так. Ум занят переработкой данных бессознательно, в особом режиме.
Чтобы понять, как Андреасен сделала это открытие, нужно немного знать о том, как делаются снимки мозга. Как и любые научные эксперименты, снимки мозга предполагают контрольное задание. Смысл его в том, чтобы исследователь мог вычесть деятельность, производимую в той или иной области мозга во время контрольной задачи, из данных, получаемых о состоянии той же области мозга при выполнении задачи экспериментальной.
Во многих экспериментах контрольная задача была проста: лежать неподвижно. Исследователи в таких случаях обычно говорили своим испытуемым что-нибудь вроде «опорожните свой ум». Им казалось, что в мозге, когда он входит в такое вот расслабленное состояние, не будет происходить почти ничего. «Это допущение не давало мне покоя, – говорит Андреасен. – Я сомневалась, что ум вообще хоть когда-нибудь бывает “опорожненным”». А потому она решила проанализировать саму деятельность покоящегося мозга, а не использовать ее как точку отсчета в других исследованиях.
Вот тут-то Андреасен и пришла к тому же пониманию, к какому и Бергер несколькими десятилетиями ранее. «В состоянии покоя деятельности было не просто немало – ее была уйма, и сосредоточивалась она в определенных структурах», – рассказывает Андреасен. Поразительное противоречие с общепринятыми взглядами – столь же поразительное, как и во времена Бергера. Но по-настоящему изумило Андреасен то, где эта деятельность сосредоточивалась. Она происходила в системе, состоящей из нескольких структур, о которых прежде думали как о мало связанных друг с дружкой, – теперь это все называется сетью пассивного режима работы мозга.
Что еще интереснее, по словам Андреасен, «это не просто галдеж – это была симфония. Деятельность в тамошних структурах менялась от секунды к секунде, как это всегда и происходит, однако разные области, причем не все из них соседние, срабатывали синхронно». Синхронное срабатывание трех очень разных областей подсказало Андреасен, что тут все неспроста.
Много всего написано о размерах человеческого мозга и особенно – о размерах его префронтальной коры. Но ученые в наши дни начинают подозревать, что это обманка, и для нашего разума и психики гораздо важнее степень связности.
Как я уже рассказал в Главе 4, мозг иерархичен, а в проекте «Коннектом человека», запущенном в 2009 году, сейчас создают карту нейронных связей между структурами на каждом следующем более масштабном уровне. Однако еще в 1995 году Андреасен знала, что многие функции мозга обслуживаются союзами структур, и роль любой структуры может меняться в зависимости от того, в каком союзе она задействована. То, что несколько различных областей срабатывали совместно, означало, что Андреасен обнаружила очередной такой союз.
Но что все это значит? Андреасен повторила открытие Бергера и при помощи ставших теперь доступными более развитых методов смогла узнать гораздо больше, чем Бергер, о том, какие взаимосвязанные структуры мозга подключаются к работе и что за работа вообще производится. Однако Андреасен проникла всего лишь под поверхность происходящего, и пассивный режим стал одной из центральных тем нейробиологических исследований через несколько лет, когда Рэйкл исследовал этот режим гораздо подробнее[118].
В последние десять лет ученые обнаружили дополнительные структуры, участвующие в пассивном режиме работы мозга, и мы все еще пытаемся получше разобраться в их роли. Но мы точно знаем, что пассивный режим управляет внутренней умственной жизнью – нашим диалогом с самими собой, и сознательным, и бессознательным. Он включается, когда мы отвлекаемся от потока сенсорных данных, производимых внешним миром, и направлен на нашу внутреннюю самость. Когда это происходит, нейронные сети нашего эластичного мышления получают доступ к обширным базам знаний, воспоминаний и чувств, накопленных мозгом, и могут собирать понятия, которые мы сходу друг с другом не связываем, а также выявлять связи, которые мы не распознаем. Вот почему отдых, мечты и другие тихие занятия, в том числе и прогулки, способны мощно помогать с производством идей.
Ассоциативно смышленые
Мощь пассивного режима работы мозга связана с тем, где в мозге он коренится: все составляющие сети пассивного режима находятся в подотделах мозга, именуемых ассоциативными зонами. Такие зоны есть для каждой из пяти сенсорных систем и для каждой области моторики, а еще у нас имеются так называемые ассоциативные зоны высшего порядка – для сложных умственных процессов, не связанных ни с моторикой, ни с сенсорикой. В Главе 4 я говорил, что нейронные сети, представляющие те или иные идеи, способны активировать друг друга, создавать ассоциации. Ассоциативные зоны коры головного мозга – как раз те области, где такие связи устанавливаются.
Ассоциации помогают придать смысл тому, что мы видим, слышим, пробуем на вкус, обнюхиваем и ощупываем. Например, область мозга, именуемая первичной зрительной корой, засекает основные черты зрительно воспринимаемого мира – границы предметов, свет, тьму, расположение и тому подобное. Но это всего лишь данные. Что эти данные означают? Что это за люди, места и предметы, на которые вы смотрите, и каково их значение? Как раз ассоциативная кора определяет предметы, которые вы выявили во внешней среде.
Когда вы читаете надпись «ПОСТОРОННИМ ВХОД ВОСПРЕЩЕН», отпечатанные буквы создают у вас на сетчатке изображение. Это всего лишь воспроизведение линий, из которых составлены буквы. Смысл этой надписи возникает, лишь когда информация передается с сетчатки в зрительную кору и далее, в ассоциативную: там-то и происходит определение смысла этой надписи, букв и слов, содержащихся в ней. Но тут все только начинается. Образ передается дальше, другим ассоциативным зонам, где этим же словам придают дополнительное значение коннотации, эмоциональный тон и ваши личные воспоминания и жизненный опыт.
Ни у кого нет прямого знания о том, как мыслят животные, но ученые, наблюдающие за ними, отмечают, что у зверей, судя по всему, способности к абстрактному ассоциированию очень ограничены. Посредством довольно затейливых экспериментов с конкретными предметами ученые способны показать, что макаки резус умеют складывать один и один, чтобы получилось два[119]. Но ассоциативная связь орбиты Луны и геометрической фигуры «эллипс» им, надо полагать, уже не под силу. У людей же, напротив, почти три четверти нейронов мозга располагается в ассоциативных зонах – это в пропорции ко всему мозгу гораздо больше, чем у любого другого животного.
Наши ассоциативные нейроны – то, что позволяет нам думать и производить идеи, а не просто реагировать на внешние возбудители. Ассоциативные нейроны – источник наших воззрений, благодаря которым мы отличаемся друг от друга, они помогают нам определять себя как индивидов. Они же – источник нашей изобретательности. Наша культура склонна рассматривать открытия и новаторство как материализацию чего-то из ничего, как продукт бестелесного волшебства одаренного интеллекта. Но и революционные, и будничные идеи зачастую возникают из ассоциаций и перекомпоновки того, что уже болталось по углам у нас в уме.
Это возвращает нас к теме пассивного режима. «Когда ум находится в покое, он на самом деле гоняет туда-сюда всякие мысли, – говорит Андреасен. – Ассоциативные зоны фоново работают непрестанно, но именно когда вы не сосредоточены на какой бы то ни было задаче, то есть когда заняты чем-нибудь бездумным – ведете автомобиль, например, – вот тут-то уму самое большое раздолье блуждать. Вот почему здесь активнее всего рождаются новые идеи».
Как это часто бывает в нейробиологии, один из способов разобраться в том, какую роль та или иная структура или сеть играет в мозге, – изучать поведение людей, у которых деятельность этой структуры или сети нарушена. Рассмотрим знаменитый случай пациентки Дж., у которой из-за инсульта в лобной доле прекратилась деятельность мозга в пассивном режиме, а затем прямо-таки чудом восстановилась[120].
Сразу же после инсульта пациентка Дж. молча лежала в постели и пребывала в сознании. Она откликалась на просьбы и указания и отвечала на адресованные ей слова. Но сама никаких разговоров не затевала. В отсутствие внутреннего умственного диалога, производящего ассоциации, на ум ей ничего не приходило.
Представьте себе какой-нибудь обыденный разговор. Если врач спрашивал ее: «Как вам больничное питание?» – пациентке Дж. удавалось ответить: «Не очень». Здоровый человек, возможно, добавил бы что-нибудь помимо буквального ответа. Возможно, Дж. могла бы сказать: «Если бы я уже не лежала в больнице, с такой едой запросто могла бы в больницу загреметь». Или: «Но всяко лучше мясной мистики у моего ребенка в школьной столовой». Но такие замечания возможны лишь после того, как извлечены из закромов ума личные умственные ассоциации – «скверная еда» и «пищевое отравление» или «больничная еда» и «школьная еда». Такие замечания не добыть из непосредственной внешней среды или обстоятельств. Это выражения вашей личности, за ними вам необходимо обратиться внутрь себя. Все это было пациентке Дж. недоступно. Она утратила способность производить новые идеи, а потому потеряла навык беседы. После того, как пациентка Дж. поправилась, у нее спросили, почему она не говорила ничего, кроме прямого ответа на заданный вопрос. Она ответила, что ей попросту «нечего было сказать». Ум у нее, по ее словам, был «пуст».
Как важно быть бесцельным
Я имел удовольствие проработать несколько лет со Стивеном Хокингом. В последние примерно пятьдесят лет Стивен жил с БАС[121], заболеванием, поражающим нейроны, которые управляют произвольными движениями тела. Из-за почти полной невозможности двигаться Стивен общался, выбирая слова на компьютерном мониторе при помощи мышки. Это нудный процесс. Сперва на экране возникает курсор, движущийся от буквы к букве. Когда Хокинг выбирал ту или иную букву, он далее мог, щелкнув еще раз, выбрать слово из списка предлагаемых слов, начинающихся с выбранной буквы, либо повторить процесс – определить вторую нужную букву, и так далее, пока не выбрано или не напечатано все слово целиком.
Когда мы начали сотрудничать, он щелкал курсором при помощи большого пальца. Болезнь прогрессировала, и в очки Хокингу вмонтировали датчик движения, чтобы ученый мог щелкать мышкой при помощи мышцы у себя на правой щеке. Если вам доводилось смотреть интервью со Стивеном по телевизору, быстрота, с которой он отвечает на вопросы, – иллюзия. Он получает список вопросов очень заранее, и на ответы ему нужны дни или даже недели. Затем, когда интервьюер задает вопрос, Стивен просто щелкает мышью и запускает чтение своего ответа – или же звукорежиссер добавляет его позже.
Когда я работал со Стивеном, он собирал фразы со скоростью примерно шесть слов в минуту. В результате мне обычно приходилось ждать по нескольку минут, пока он составит даже несложный отклик на то, что я сказал. Поначалу я сидел нетерпеливо и, дожидаясь, пока он завершит ответ, то и дело начинал витать в облаках. Но в один прекрасный день, пока я смотрел через его плечо на экран компьютера, где была видна фраза, которую он собирал, я задумался над его развивавшимся у меня на глазах ответом. К тому времени, как ответ был составлен, я уже несколько минут размышлял над идеями, которые в этом ответе содержались.
Тот случай привел меня к озарению. В обычных разговорах мы ожидаем ответов друг от друга через считанные секунды, и в результате пулеметные очереди наших речей – едва ли не машинальные, из поверхностных слоев ума. В моих беседах со Стивеном те считанные секунды превращались в минуты, и это оказывало неимоверно благотворное действие. Так мне удавалось глубже осмыслить то, что он говорит, и покрутить собственные идеи и отклики так, как ни в каких беседах с другими людьми. В результате снижение скорости придало нашим беседам глубину мысли, невозможную в спешке обычного общения.
Эта спешка влияет не только на очные разговоры. Мы торопимся ответить на СМС, отстукиваем электронные послания, мечемся между ссылками онлайн. Помощи от автоматизации и техники у нас столько, сколько никогда прежде не бывало, но мы и заняты, как никогда. Нас бомбардируют информацией, мы вынуждены беспрестанно принимать решения, выполнять задачи по спискам и рабочие требования. Взрослые в наше время ежедневно обращаются к своим смартфонам в среднем в тридцать четыре краткие сессии (по тридцать секунд или короче), не говоря уже о более долгих телефонных звонках, играх и прочем. Пятьдесят восемь процентов взрослых проверяет телефон по крайней мере раз в час, а восемнадцати-двадцатилетние обмениваются в среднем ста десятью текстовыми сообщениями в день[122].
Технологии влияют на нашу жизнь благотворно. Мы теснее связаны с друзьями и родственниками. Через телефон или планшет у нас есть простой и почти непрерывный доступ к телепрограммам, новостным сайтам, играм и другим приложениям. Но и от нас вместе с тем ждут постоянной – и повсеместной – доступности, а поскольку теперь можно работать из дома и быть в еще более плотной связке с нашим нанимателем, от нас иногда ожидают, что мы будем работать или откликаться на позывные едва ли не круглосуточно. Даже у нашей связи с друзьями и семьей есть своя оборотная сторона: на эту связь можно подсесть.
В одном исследовании, где участников попросили два дня воздерживаться от текстовых сообщений, испытуемые докладывали, что запрет на обмен сообщениями с близкими делает их «раздражительными», «тревожными» и «взвинченными»[123]. В другом эксперименте пользователи «айфона», как выяснилось, страдают тревожностью, учащенным сердцебиением и увеличением кровяного давления, если не давать им отвечать на звонки. В третьем исследовании обнаружили, что 73 % пользователей смартфонов, если спрятать их мобильный телефон, ощущают панику. Была и такая еще экспериментальная работа, в которой выяснили, что многие люди не могут не быть на телефонной связи, даже если понимают, что не обязаны. Это все классические признаки привыкания, а описанные синдромы до того серьезны и распространены, что психиатры уже начали придумывать им имена – «айфон-разлука», «нетмофобия» (от «нет-мобильного-телефона-фобия» [nomophobia]) или в более общем смысле «айрасстройства».
Привыкание возникает, потому что постоянная бомбардировка действиями, с которой мы сжились, способна изменить функционирование нашего мозга. Механизм тут очень похож на химическое привыкание. То, что мы не знаем, на что наткнемся, проверяя любимую социальную сеть или электронный почтовый ящик, порождает предвкушение у нас в мозге, а обнаружив что-нибудь интересное, мы ощущаем небольшое оживление в цепи вознаграждения. Через некоторое время возникает рефлекс на это оживление, и когда его нет, вам делается скучно. Тем временем писк, шорохи и трямканье постоянно напоминают нам, что вознаграждение нас по-прежнему ждет.
Одноруких бандитов в Лас-Вегасе не напоминает? По словам Дэвида Гринфилда, психиатра, основателя Центра интернет- и технологической зависимостей, «Интернет – величайший игровой автомат в мире, а смартфон – самый маленький»[124]. Видеоигры, в том числе и простенькие, в которые можно играть на телефоне, – и того хуже. Цитируя одно исследование, «мощное усиление в количестве дофамина, высвобождающегося в мозге, совершенно отчетливо наблюдается при видеоигре, особенно в областях, которые считаются ответственными за вознаграждение и обучение. Мощь этого усиления поразительна, она сопоставима с тем, какое вызывают вводимые внутривенно амфетамины»[125].
Результат нашей зависимости от постоянной деятельности – недостаток праздного времени, а значит, и недостаток времени, когда мозг находится в пассивном режиме. И хотя некоторые считают, что «бездельничать» непродуктивно, недостаток разгрузки наносит ущерб нашему благополучию: праздность позволяет мозгу в пассивном режиме осмыслить недавно пережитое или познанное. Наше интегративное мышление при этом увязывает между собой различные идеи без цензуры исполнительного мозга. Праздность дает нам помозговать о наших желаниях и перебрать недостигнутые цели.
Такие внутренние разговоры питают нашу повесть жизни, рассказываемую от первого лица, они помогают развить и укрепить наше переживание собственной самости. Они также позволяют нам собрать воедино очень разные данные и создать новые связи, отступить от тех или иных наших вопросов и задач, чтобы сменить рамки, в которых мы их формулируем, или же произвести новые идеи. Так сети восходящего эластичного мышления у нас в мозге получают возможность искать творческие, неожиданные решения мудреным задачам. В ту ночь, когда родился замысел персонажа Франкенштейна, Мэри Годвин, владей она мобильным телефоном, возможно, не отдыхала бы, предоставив мыслям блуждать, а потянулась бы к аппарату: его многочисленные соблазны могли бы привлечь ее осознанное внимание и подавить возникновение литературного замысла.
Ассоциативные процессы эластичного мышления не бурлят, если сознательный ум сосредоточен. Расслабленный ум исследует новые идеи, занятый ум перебирает идеи наиболее привычные, а они обыкновенно – самые неинтересные. Увы, мы даем нашим сетям пассивного режима работы мозга действовать все больше по остаточному принципу, у нас все меньше рассредоточенного времени на внутренний диалог. В результате меньше возможностей стягивать воедино те случайные ассоциации, что ведут к новым идеям и осознаниям.
Парадокс: технологическое развитие, из-за которого наше эластичное мышление делается все более значимым, уменьшает наши возможности им заниматься. А потому, чтобы применять эластичное мышление, как того требует наш стремительный век, нам приходится противостоять постоянным вмешательствам и отыскивать островки времени, когда можно от всего отключаться. В последние несколько лет эта трудность сделалась настолько явственной, что внезапно возникла и развилась новая область исследования – экопсихология.
Экопсихологи собирают научные данные, чтобы подкрепить свои представления, но многие рекомендации экопсихологии не новы. Например, нам говорят, что один из способов выделить себе тихое время – отключить связь и скрыться от всего, выйдя на пробежку или встав под душ. Прогулки – тоже хорошее дело, но мобильный телефон тогда оставляйте дома. Такие прогулки позволят включиться пассивному режиму работы мозга и помогут восстановить нисходящие исполнительные функции ума. Вернувшись к привычной суматохе, вы почувствуете, что посвежели, – но для этого надо гулять в тихом месте[126]. В шумных городских районах полно стимулов, они захватывают и направляют ваше внимание – например, приходится следить за тем, чтобы на кого-нибудь не наткнуться или не попасть под машину. Впрочем, не только прогулка или бег способны освободить вам ум – полезно и просто полежать в постели несколько минут после пробуждения. Не думайте о расписании наступившего дня, не перебирайте список дел – воспользуйтесь тишиной и поглазейте в потолок, получите удовольствие от уюта и расслабьтесь немного, прежде чем вскакивать и нестись навстречу миру.
На работе не надо постоянно пытаться преодолевать трудности кавалерийскими наскоками, можно cпланировать себе паузы из каких-нибудь бездумных занятий. Если держать в уме даже что-то простое – вроде списка продуктов, которые надо купить, – это может мешать эластичному мышлению, а потому старайтесь очистить поток мыслей и от того, над чем работали, и от предстоящих задач. Если успешно освободить мозг, можно и какую-нибудь простую работу произвести, и позволить эластичному уму искать революционный выход из тупика. Полезна даже ежечасная прогулка до кулера и обратно. Такие интерлюдии позволят вашему эластичному уму переварить – и пересмотреть – все то, что произвело за истекший час сосредоточенное мышление.
Как ни удивительно, отлынивать тоже бывает полезно. Исследования показывают положительную корреляцию между долгой раскачкой и творчеством: если оставить сознательные попытки решить ту или иную задачу или принять решение, остается больше времени для кратких сессий бессознательного осмысления[127].
Леонардо да Винчи так высоко ценил бессознательную работу мысли, что, трудясь над «Тайной вечерей», бывало, ненадолго вдруг бросал свое занятие. Священник, оплачивавший этот заказ Леонардо, подобные заминки не одобрял. По словам историка искусств Джорджо Вазари, «настоятель этой обители упорно приставал к Леонардо с тем, чтобы тот закончил эту роспись, так как ему казалось странным видеть, что Леонардо иной раз целых полдня проводил в размышлениях, отвлекаясь от работы, а настоятелю хотелось, чтобы он никогда не выпускал кисти из рук, как он это требовал от тех, кто полол у него в саду»[128]. Но Леонардо «много с ним рассуждал об искусстве и убедил его в том, что возвышенные таланты иной раз меньше работают, но зато большего достигают». Когда в следующий раз уставитесь в окно, помните: вы не от отлыниваете, а позволяете работать творческому в себе. И если вы к таким перерывам не склонны, возможно, стоило бы выделять на них время.
7
Откуда берется озарение
Когда невообразимое становится очевидным
Двадцать первого декабря 1941 года через две мрачные недели после атаки на Перл-Харбор, президент Франклин Рузвельт объявил на собрании Объединенного комитета начальников штабов в Белом доме, что Японию необходимо разбомбить как можно скорее – и ради поддержки боевого духа американского народа, и чтобы посеять семена сомнения у японцев, чьи лидеры внушили им, что Япония неуязвима. Вопреки безотлагательности этой задачи, она казалась невыполнимой: не существовало такого бомбардировщика, какой долетел бы до Японии.
Холодным днем еще через несколько недель капитану подводной лодки Фрэнсису Лоу вспомнился вызов, брошенный Рузвельтом, когда капитан наблюдал тренировочные полеты бомбардировщиков на военно-морской авиабазе в Норфолке, Вирджиния[129]. Тренировочной целью бомбардировщикам служил прямоугольный силуэт палубы авианосца, нарисованный на взлетно-посадочной полосе. Как и все прочие, кому сообщили о пожелании Рузвельта, Лоу разводил руками. Всю жизнь прослужив во флоте, профессиональный капитан субмарины, в бомбардировщиках Лоу не разбирался. Но, пока он наблюдал за тенями самолетов, пересекавшими нарисованный контур, у него в сознании вдруг вспыхнула идея. Эксперт отмахнулся бы от нее как от абсурдной. А что если запускать бомбардировщики с палубы авианосца?
То был как раз случай, где ключом к решению задачи было невежество – или по крайней мере способность сделать вид, будто наличное знание не истинно. Лоу не был совершенно не осведомлен – он понимал кое-какие причины, почему его идея «несостоятельна», но решил ими пренебречь. Он позволил себе допустить, что все должно получиться, и принялся прикидывать, как преодолеть препятствия.
А их было множество. Авианосцы проектировались так, чтобы перемещать юркие легкие истребители, а не бомбардировщики – для коротенькой взлетно-посадочной полосы авианосца они слишком тяжелые. Кроме того, бомбардировщики не очень-то маневренные, потому их легко сбить, а следовательно, их приходится сопровождать истребителями, но на авианосце места не хватит, чтобы везти и то, и другое. Однако самое главное – вот в чем: даже если удастся как-то разместить бомбардировщик на авианосце, и авианосец подвезет его достаточно близко к Японии, чтобы бомбардировщик долетел, высокий и хрупкий хвост такого самолета не позволит вмонтировать в него тормозной гак, и возвращающеся с задания бомбардировщики невозможно будет посадить обратно на авианосец. У Лоу не было почти никаких ответов на все эти вопросы, но с невозможностью их отыскать он не смирился.
Вернувшись в Вашингтон, он отправился повидать своего командира, адмирала Эрнеста Кинга. В присутствии начальника Лоу всегда было неуютно, а на той встрече – и подавно. Его предложение наверняка покажется суровому адмиралу дурацким. Лоу подождал, чтобы они с Кингом остались один на один, и, когда в разговоре возникла пауза, – возьми да ляпни о своей идее.
Хотя план выполнимым не казался, времена были отчаянные. А потому в следующие несколько месяцев бомбардировщики облегчили, как только смогли, и добавили им дополнительные топливные баки, чтобы летали дальше. Летчиков обучали взлетать с короткой палубы авианосцев и держаться пониже, чтобы не попадаться японцам на радарах, тем самым отменяя необходимость сопровождающих истребителей. Неувязку же с невозможностью посадки «устранили», приняв неизбежность того, что после сбрасывания бомб летчикам надлежало лететь к ближайшей суше или же бросать самолеты в китайской или советской глухомани. Эти страны отказали американцам в позволении использовать свои территории для организации атак, но если нужно просто посадить самолеты, китайское и советское руководства можно даже не ставить в известность. Экипажам брошенных самолетов, увы, предстояла устрашающая задача самостоятельно выбираться к союзникам.
Организовать и провести налет на Японию начальник штаба военно-воздушных сил генерал Хенри Х. Арнолд поручил технически подкованному полковнику Джимми Дулиттлу, Дулиттл собрал восемьдесят добровольцев, которым предстояло управлять в этой операции шестнадцатью самолетами «Б-25». Поскольку мысль о том, что американские бомбардировщики способны добраться до Японии, казалась такой несусветной, почти никакого противовоздушного огня они не встретили – более того, многие японцы на земле приветственно махали им, думая, что это тренировочный полет японских же военно-воздушных сил. Короче говоря, самолеты сбросили шестнадцать тонн бомб на Японию, в основном – в районе Токио. После того налета команды всех бортов совершили аварийную посадку или попрыгали с парашютами в китайской глубинке; не выжили всего шестеро летчиков.
Чтобы понять, до чего безумным показался замысел Лоу экспертам того времени, вдумайтесь: у японцев, отчаянно желавших предотвратить риск дальнейших подобных налетов, в голове не умещалось, что бомбардировщики можно привезти на авианосце. Они уверились, что атака произошла с атолла Мидуэй, единственного возможного участка суши, и заслали флот, чтобы захватить тот остров. Американские военные корабли, опередив японцев на один шаг, ждали в засаде и потопили все японские авианосцы, кроме одного. Японский флот оказался, по сути, уничтожен, и это поражение военный историк Джон Кигэн назвал «самым убийственным и решительным ударом в истории морских войн»[130].
Иногда мощнейшее возможное озарение состоит в том, чтобы понять: поменялись обстоятельства. Правила, к которым привык, более не действуют. Успешной может оказаться тактика, отвергаемая по старым правилам. В результате случается освобождение. Оно способно подтолкнуть вас сомневаться в своих убеждениях и помочь подняться над закрепленными парадигмами, реструктурировать мышление.
В нашем примере авианосец – фрагмент привычной военной мозаики. Как и бомбардировщик. В обычных обстоятельствах эти фрагменты не стыковались. Лоу необходимо было осознать, что в результате событий в Перл-Харборе мозаика поменялась. Соответствующим требованиям тех исторических обстоятельств был порядок действий, со всей очевидностью не соответствовавший игре традиционной войны. История – как и обычная человеческая жизнь – полна возможностей, упущенных из-за того, что не распознали возникшие перемены и то, что ранее немыслимое теперь стало посильным.
Когда его спрашивали, как он додумался до этой идеи, Лоу отвечал, что она просто ему «удачно подвернулась»[131], – можно подумать, будто он зашел в китайский ресторан, и в печенье с предсказанием оказалась бумажка с соответствующей надписью. Несомненно, так его сознательный ум это и воспринял. Но теперь-то мы знаем, что подобные озарения, как у Лоу, возникают не на ровном месте. Это результат сложного процесса, который происходит у нас в бессознательном мозге после того, как сознательное логическое рассуждение, ограниченное общепринятыми правилами и установками, не приносит плодов.
В предыдущей главе мы узнали о пассивном режиме работы мозга и выяснили, что наш мозг обустраивает ассоциативные связи, даже когда мы сознательно не сосредоточены ни на чем конкретном. Эти связи в основном так и не всплывают в нашем сознательном уме. В случае с Лоу отчаянное положение подтолкнуло его ум обдумать крайнюю меру, мысль, какая иначе была бы отвергнута. В этой главе мы рассмотрим механизм, посредством которого подобные ассоциации попадают в поле нашего сознания, и что определяет, обыденные ли представления явлены нашему сознанию или же гениально свежие озарения.
Рассекаем мозг
Роджер Сперри размышлял над тем, что обнаружил[132]. На дворе был конец 1950-х. Сперри экспериментировал с животными, которым предварительно рассек мозолистое тело – структуру, находящуюся между правым и левым полушариями мозга. Ученый отдавал себе отчет, что большинство его коллег считает его работу потерей времени: что мозолистое тело играет в мозге неинтересную техническую роль. Эту структуру считали своего рода корсетом, не позволяющим полушариям «обвисать». Сперри же представлял себе более значимую функцию – сообщения между полушариями. Но совершенным открытием он поразил даже самого себя.
Согласно тогдашним привычным представлениям, коммуникация между полушариями виделась почти совсем ненужной. Считалось, что левая сторона мозга отвечает за функции в диапазоне от понимания языка до арифметических рассуждений и управления произвольными движениями. Правое же полушарие, напротив, вроде как в целом не имеет высших когнитивных функций – оно немое, не способное ни говорить, ни писать, даже у левшей. В результате врачи обычно сообщали пациентам, у которых случался инсульт, поражающий правую сторону мозга, что им повезло, поскольку это полушарие «мало чем занято». Некоторые коллеги Сперри даже считали правую сторону мозга «относительно умственно отсталой»[133]. С учетом всего этого, с чего бы сообщению между полушариями быть значимым?
Сперри на привычные представления не покупался. Они основывались на наблюдениях за пациентами с поражениями мозга, а Сперри таким исследованиям не доверял, поскольку ученые в них мало чем управляли: пациенты никогда не приходили поучаствовать в экспериментах с повреждениями именно тех структур мозга, какие хотелось бы поизучать. Сперри рассудил, что можно добиться большего. Применив свои блестящие навыки лабораторного хирурга, он сумел точно вырезать те или иные участки мозга и наблюдать, как влияет на поведение отсутствие той или иной конкретной структуры, – пусть и, конечно, только у животных. Как раз это он проделал, взявшись разбираться с ролью мозолистого тела: он хирургически удалил эту структуру. Мозг животного с рассеченным мозолистым телом ученые называют расщепленным.
Поначалу Сперри разочаровался[134]. Он обнаружил, как его и предупреждали, что на повседневное поведение животного эта процедура почти никак не повлияла. Но тут Сперри придумал новую обойму экспериментов, чтобы тщательнее отделить одно полушарие от другого. Результаты как раз этих опытов его и поразили.
В одном из них Сперри прикрывал котам с рассеченным мозолистым телом один глаз. Коты смотрели на мир одним глазом, Сперри учил их различать треугольник и квадрат. Геометрия – не самый любимый кошачий предмет, но в конце концов удалось добиться некоторых успехов. Затем Сперри прикрыл своим одопытным другой глаз и вновь провел с ними эксперимент. Удалось ли натренировать другое полушарие? Сперри выяснил, что при перерезанном мозолистом теле коты оказались «неспособны различать зрительные образы одним глазом, если обучали их через другой»[135]. Перерезав мозолистое тело, ученый прервал сообщение между полушариями.
Посредством целой череды подобных тщательных экспериментов Сперри выяснил, что с каждым из полушарий животного мозга можно взаимодействовать по отдельности, и в переработке данных они, как оказалось, поразительно самодостаточны. «И у того, и у другого полушария, – писал он позднее, – протекают свои независимые процессы восприятия, обучения, памяти и другие. Словно одно полушарие не ведает, что творится в другом»[136].
Иными словами, заявлял Сперри, у животных вроде как два ума. Их индивидуальные способности и потенциал независимого мышления обычно не очевидны, поскольку в здоровой особи эти умы сильно взаимосвязаны посредством мозолистого тела и работают в гармонии друг с другом. Однако если связь эту прервать, два ума проявляют свои индивидуальные самости.
Сперри счел полученные результаты революционными, но окружающим так не показалось. Они считали, что подобные выводы применимы лишь к «низшим животным». Сперри понимал, что его задача – доказать то же самое на людях, но как? Не притащишь же человека в лабораторию и не рассечешь ему мозолистое тело, как зверьку.
И вот тут-то нейрохирург Джозеф Боген показал Сперри очерк собственного авторства, посвященный эпилепсии, – «Довод в пользу рассечения мозолистого тела человека»[137]. В 1940-е годы хирурги экспериментировали с рассечением мозолистого тела, чтобы уменьшить силу припадков у людей с тяжелой эпилепсией, и Боген подумывал воскресить этот подход. Он предложил Сперри исследовать пациентов с рассеченным мозолистым телом, если Богену доведется такую операцию произвести.
В 1962 году Боген провел первую в серии из шестнадцати таких операций и позвал Сперри поэкспериментировать с пациентами. Результаты тех экспериментов подтвердили то, что Сперри выяснил в работе с животными: привычные взгляды на роль левого и правого полушария ошибочны. Полушария нашего мозга и впрямь представляют собой некое подобие независимых сущностей. Например, одну пациентку спросили, сколько припадков случилось с ней за последнее время[138]. Правая рука у нее вскинулась и показала на пальцах два. Левая же рука, управляемая противоположным полушарием, потянула правую руку вниз. Затем вскинулась левая рука и показала один палец. Правая рука схватила левую, они сплелись и принялись драться, как сердитые дети. В конце концов пациентка заявила, что ее чудачка левая рука частенько «действует сама по себе».
Назвав свою левую руку чудачкой, пациентка вроде бы приняла сторону правой. Это оттого, что правой рукой управляет левое полушарие – оно же управляет и речью. Это иллюстрирует важное соображение: хотя правое полушарие мозга не «умственно отсталое», как было принято считать, разница в способностях у полушарий действительно есть. Например, правое полушарие способно понимать устную речь, но производить речь не может. Поэтому, когда пациенты с рассеченным мозолистым телом разговаривают, это выражает себя левое полушарие.
Понимание различий между полушариями позднее окажется ключом к выявлению источника идей, подобных тому внезапному наитию, какое посетило Фрэнсиса Лоу. Но во времена Сперри ученые отнеслись к этим новым результатам скептически, и исследования Сперри вскоре вызвали всплеск противоречий. Дело даже не только в том, что Сперри усомнился в устоявшихся научных идеях – его находки угрожали философским и даже теологическим взглядам. Что же получается: то, что любой из нас есть «я», – иллюзия? Если в нас две «сущности», означает ли это, что любой из нас – это два человека или что у нас по две души? Этими вопросами наука себя не занимала, но Боген не желал подвергать себя возможным сокрушительным нападкам ни ученых, ни кого бы то ни было еще. Он попросил убрать свое имя из публикаций Сперри. Эти работы, впрочем, выдержали испытание временем, и в 1981 году Сперри получил за них Нобелевскую премию.
Сперри умер в 1994 году – примерно через тридцать лет после своего революционного исследования. Все эти годы ученые продолжали изучать роли полушарий, но все продвигалось медленно. Дело пошло быстрее как раз вскоре после смерти Сперри – благодаря доступности фМРТ и других новейших методик получения изображений мозга.
В истекшие два десятилетия произошел настоящий прорыв в понимании ролей полушарий и их внутренних структур. А один из поразительных выводов последних лет состоит в том, что правое полушарие, над которым когда-то насмехались, наделено особым талантом производить оригинальные идеи, в каких велика потребность, когда организм сталкивается с новизной и переменами – или же с непреодолимыми на первый взгляд трудностями.
Связь между речью и решением задач
Происхождение новых идей – одна из тем когнитивной психологии, области исследований того, как мы, люди, думаем. До относительно недавнего времени ученые могли делать выводы лишь по косвенным данным, получаемым из исследований поведения – и из догадок. Но в 1990-е это научное поле породило новую науку – когнитивную нейробиологию, где задействованы данные, добытые новыми методами получения снимков мозга. Первопроходцы науки стремились применять эти инструменты, чтобы изучить физические процессы в мозге, в которых возникают наши мысли, чувства и поступки, разобраться, как они взаимосвязаны, и можно ли ими управлять. Ученые обнаружили, что новые технологии наделили нас возможностью не только понимать, как мы думаем, но и менять это.
Один из таких пионеров – Джон Куниос, в ту пору – молодой помощник профессора в Университете Тафтса. Куниос сосредоточился на применении технологических методов для изучения соматосенсорных вызванных потенциалов – ССВП, чтобы выяснить, как мозг перерабатывает язык и речь. Приведенная аббревиатура означает «связанный с событием вызванный потенциал» – это электрическая деятельность мозга, возникающая в ответ на внутренний или внешний стимул. Еще со времен Бергера было известно, что ССВП можно измерить при помощи Бергерова ЭЭГ, но у новых методов возникло подспорье в виде мощных компьютеров, благодаря чему картина сделалась гораздо точнее.
Однажды, анализируя, как развивается во времени нейронная деятельность, когда мозг пытается понять смысл тех или иных слов и фраз, мозг самого Куниоса породил свежую ассоциацию. Куниос вдруг увидел аналогию между процессами, связанными с пониманием определенной фразы и эластичным мышлением, необходимым, чтобы отыскать ответ на прямо-таки пугающую умственную задачу – из таких, какие привели Лоу к его великой затее во времена Второй мировой войны, или какая могла бы выручить вас в новых жизненных обстоятельствах, при решении загадки или какой-нибудь мудреной головоломки.
Как так: языковые фразы подобны головоломкам? Любая фраза – это же упорядоченный список слов и знаков препинания. Но у большинства слов есть много значений, и эти значения можно комбинировать многими разными способами, в зависимости от грамматики и контекста. В этом-то и состоит головоломка: выбрать среди разнообразных определений отдельных слов такие, чтобы фраза целиком оказалась осмысленной, и смысл этот соответствовал большему контексту, если таковой есть. Это действительно упражнение на интегративное мышление: мозг не пытается определить значение каждого отдельного слова по мере его произнесения, а постигает эти смыслы, удерживая в поле внимания всю фразу целиком и контекст шире.
Чтобы добиться этого, мы слышим или прочитываем каждое слово, держим его возможные значения в оперативной памяти, пока мозг усваивает остальные слова во фразе и оценивает диапазон их возможных значений. И лишь в конце мы собираем все это воедино. Рассмотрим, к примеру, фразу: «Учительница домоводства сказала, что от маленьких детей проку в стряпне мало». Ваш бессознательный ум, познакомившись с этой фразой, быстренько перебирает разные значения слов и отделяет сообразные. Теперь прочтите такую фразу: «Людоед сказал, что от маленьких детей проку в стряпне мало». Скорее всего, на этот раз вы приписали словосочетанию «проку в стряпне мало» иное значение. Эта фраза отличается от предыдущий всего одним понятием, но оно меняет контекст, а потому и толкование всей фразы вашим мозгом. Аналогичную важность приписывают и знакам препинания: читая фразу «казнить, нельзя помиловать», вы усваиваете одно значение всей этой фразы целиком, а в случае постановки запятой «казнить нельзя, помиловать» смысл получается совсем другой.
Одно из поразительных свойств человеческого мозга состоит в том, что когда мы слушаем или читаем любые фразы, подходящие значения приходят нам на ум быстро и без сознательных усилий. Но это все исключительно потому, что мозг наш бессознательно настроен производить эту работу – благодаря миллионам лет эволюции, обеспечившей наше церебральное оснащение, и многим тысячам часов, проведенным в среде родного языка, позволившим прописать его программно. По-настоящему ценить этот замечательный дар у нас получается, когда б ни слушали мы или ни читали текст на языке, который знаем плоховато. Задача это непростая, она требует усилий, поскольку наша бессознательная оснастка пока еще не натренирована, и в значениях слов приходится сознательно разбираться.
В 1950-е годы, когда цифровые компьютеры все еще были в новинку, а ученые-информатики считали, что искусственный интеллект вскоре посоревнуется с человеком, лингвисты-компьютерщики потрясающе недооценивали мощь обработки речи нашим бессознательным. Ученые думали, что запрограммировать компьютер, чтобы распознавал речь, будет легко. Безуспешность тех попыток иллюстрирует байка об одном из ранних компьютеров, который перевел морализаторское «The spirit is willing, but the flesh is weak» на русский и обратно на английский, и получилось: «The vodka is strong, but the meat is rotten»[139]. Пока в переводчике «Гугл» не начали применять нейронные сети, он тоже допускал подобные ошибки.
Испытание полушарий
Заинтересовавшись тем, как способность мозга понимать речь может быть связана с умением решать другие задачи, Куниос взялся копаться в существовавшей тогда литературе. Обнаружилось много работ, где психологи устраивали разнообразные испытания то одному полушарию, то другому, но – по отдельности, как Сперри в своих экспериментах с котами.
Эти ученые выявили любопытные намеки на то, что правое полушарие играет особую роль в производстве изобретательных идей, но статьи с такими результатами полагались на сообщения о своих мыслях самих испытуемых. Как ни жаль, самосознание у многих людей распространяется ненамного глубже мысли, что им хочется пива. В результате, даже когда никаких противоречий не возникает, самоописания бывают не очень надежны.
В какой мере? Привычка приходить к выводам без исчерпывающего понимания, с чего мы такие выводы делаем, не давала мне покоя, пока я работал один сезон штатным сценаристом в телесериале «Звездный путь: Следующее поколение»[140]. В отличие от выборов, которые я сделал в своей личной жизни или в физических исследованиях, решения, которые мы принимали в том сериале, могли сильно повлиять на людей – например, когда мы покупали присланные сценарии или отказывались от них, или же распределяли роли среди актеров. И поэтому, когда участвовал в обсуждениях, кому какую роль дать, я всегда спрашивал, что продюсеры видят в том или ином актере или актрисе. Обычно мне отвечали что-то такое: «Видна же личность». На что мой буквальный, аналитический ум отвечал вопросом: «Что это означает?» А что – может быть не видна? Ну, только если человек вовсе не явился на прослушивание, правда же? Задним-то числом я осознаю, что любые объяснения продюсеров сводятся к тому, что они улавливали на бессознательном уровне. Однако источник этого чего-то выразить в словах обычно не получалось.
Основываясь на находках ученых в последующие десятилетия, мы теперь понимаем, что архитектура мозга не допускает нас до всякого закулисного, посредством чего бессознательный ум влияет на мышление. В результате, пусть интроспекция и способна помочь разобраться с некоторыми сторонами сознательного мышления и аналитического решения задач, на эластичное мышление она света почти не прольет. Но как раз в тех подпороговых процессах эластичного мышления Куниос и заподозрил источник внезапных озарений, прославленных в анналах открытий и новаторства и отвечающих за прозрения в нашей жизни. Вот почему, вопреки десяткам работ, посвященных поведению человека, наука об озарениях развивалась очень слабо: в экспериментах полагались на то, что испытуемый говорит о себе сам.
Прежде чем вдаться в науку озарения, давайте для пользы дела задумаемся о том, что психологи-когнитивисты подразумевают под словами «идея» и «озарение», или «инсайт». В обиходной речи идея может быть составной, возникать долго и включать в себя множество понятий – как «идея кванта», например. В науке о мышлении, впрочем, «идея» обычно обозначает нечто более простое, что можно уместить в единую мысль и что внезапно возникает у нас в сознании. Озарение, или инсайт, в этом смысле определяется как идея, представляющая собой оригинальный и плодотворный способ понимания того или иного вопроса или подхода к решению определенной задачи.
«Источник инсайта был увлекательной загадкой, – рассказывает Куниос, – и я знал, что ее решение может оказаться важным для экономического успеха людей. И все же тогда по тем или иным причинам почти никаких исследований на эту тему не существовало. Вот и прекрасно: лаборатория у меня была маленькая, а преимущества – они у больших, хорошо финансируемых лабораторий. У них оборудование лучше, сотрудников больше, работа спорится быстрее. Но озарением они не занимались»[141]. Вот так Куниос принял судьбоносное решение: на следующем этапе своей карьеры он будет разбираться с процессом озарения, применяя технические возможности, которые он использовал, исследуя нейронную деятельность мозга при понимании речи.
В то же самое время, когда Джон Куниос начал исследовать физиологическую подоплеку озарения, в нескольких сотнях миль от него, в Национальных институтах здоровья тем же самым занимался Марк Бимен. Как и Куниос, Бимен исследовал обработку мозгом речевых данных. И, как Куниос, он читал о первопроходческих работах Сперри еще в колледже и удивлялся тому, до чего упорно ученые продолжают пренебрегать ролью правого полушария мозга.
Как и у скептиков во времена Сперри, недостаток интереса у ученых происходил из наблюдений за пациентами с инсультом и с другими повреждениями правого полушария. Умственная недостаточность таких пациентов зачастую оказывалась менее уловимой, чем у людей с повреждениями левого полушария, но Бимен был убежден, что они значимы. Например, люди с определенными потерями в левом полушарии утрачивали дар речи, тогда как ущерб правому полушарию к таким результатам не приводил. Вместе с тем люди с повреждениями в правом полушарии кое-какие языковые трудности испытывали. Говорить они, положим, все еще могли, но, по словам Бимена, «им едва под силу понимать шутки и метафоры, улавливать тему рассказываемой истории или подтексты»[142]. По его мнению, в этом-то и есть ключ к пониманию роли правого полушария.
Что общего у этих трудностей с обработкой речи? Что общего у чутья на соль анекдота и понимания метафор? Как и Куниос, Бимен размышлял о том, как наши мозги разбираются с речью. Столкнувшись с тем или иным словом, бессознательное вытаскивает из запасов все возможные значения этого слова, определяет вероятность, с какой то или иное значение может быть уместным в заданной фразе. Самые очевидные и привычные значения оцениваются как наиболее вероятные. Слушая произноимую фразу, мозг обновляет значения этих вероятностей согласно новому контексту.
Ассоциации, которые мы связываем со значениями слов, играют важную роль в этом процессе. Вы слушаете фразу, а мозг тем временем отыскивает области, где ассоциации, связанные со всеми словами в этой фразе, накладываются друг на друга, и, применяя эту информацию, старается угадать, что же говорящий пытается донести. Например, в случае фразы «Учительница домоводства сказала, что от маленьких детей проку в стряпне мало», контекст, связанный со словами «учительница домоводства», сообщает вашему уму, что сообразное значение словосочетания «проку в стряпне мало» относится к тому, как дети готовят пищу. Вместе с тем, читая фразу: «Людоед сказал, что от маленьких детей проку в стряпне мало», контекст, связанный со словом «людоед», подсказывает вам, что «проку в стряпне мало» относится к тому, что дети представляют собой как пища.
Хотя эти два смысла – наиболее вероятные и очевидные толкования предложенных фраз, и ту, и другую можно было бы составить иначе. Автор предложения «Учительница домоводства сказала, что от маленьких детей проку в стряпне мало», мог, в общем, иметь в виду, что учительница домоводства только что слопала маленьких детей на закуску, тогда как автор предложения «Людоед сказал, что от маленьких детей проку в стряпне мало» мог, в принципе, подразумевать, что людоед презрительно относится к кулинарным способностям маленьких детей. Ваш бессознательный ум отметил эти возможности, но, вероятно, не уведомил вас о таких маловероятных толкованиях (или отдаленных, как их называют психологи).
Прежде чем идея попадает к вам в сознание, мозг производит своего рода проверку, в ходе которой оценивает все свидетельства в пользу всевозможных значений, произведенных бессознательным умом. Лишь после этого передает он сознанию то, что счел самой крепкой догадкой. Пока ваш мозг взвешивает значения, полушария бодаются между собой. Левое отстаивает очевидные и буквальные значения, а правое ставит на чудаков – на значения, которые поначалу кажутся отдаленными, несколько притянутыми за уши, но иногда верны как раз они.
Бимен осознал, что, если так посмотреть на роли полушарий, языковые трудности пациентов с поврежденным правым полушарием объяснимы. Для примера возьмем метафоры. Это фигуры речи, где слово или оборот обычно означает не то, что обычно. Слово «свет» обычно описывает электромагнитное явление, однако «свет моей жизни» означает радость или счастье. Слово «сердце» обычно означает орган, однако словосочетание «разбитое сердце» описывает эмоциональное состояние. Когда вы понимаете метафору, это у вас получается потому, что ваше правое полушарие настояло на более расплывчатом толковании, какое позволяет понимать такие вот обороты – и как раз поэтому если у вас инсульт в речевом центре правого полушария, навык понимать метафоры отказывает.
Анекдоты зачастую опираются на похожий процесс. Вот вам пример из монолога Конана О’Брайена: «Сообщают, что из-за рождения дочки Крис Браун[143] решил перестать называть женщин “шкурами” у себя в композициях. Говорит, что теперь предпочитает более традиционное “телка”»[144].
Понятие «традиционный» обычно вытаскивает на свет контекст старых устоявшихся культур, возможно, даже древних или религиозных практик. Слово же «телка» в хип-хоп-кругах, описывающее в целом любую женщину, в ходу сравнительно недавно. Соответственно, эта шутка собьет ваше левое полушарие с толку: если слово «традиционное» понимать как обычно, слово «телка» – невпопад. А вот правое полушарие шутку улавливает – допускает более широкое и размытое толкование понятия «традиционный», оно подразумевает и сарказм в том числе. Бимена поразила эта способность к нечеткой логике у правого полушария, и его заинтересовало, может ли она иметь применение за пределами обработки речи. «И тут до меня дошло, – рассказывает он. – Я осознал, что роль правого полушария в инсайте подобна его роли в речи и языке». Теперь они с Куниосом двигались в одном и том же направлении.
Уроки CRAP
В конце нулевых пути Куниоса и Бимена все-таки пересеклись. Куниос вел исследования вызванных потенциалов посредством электроэнцефалографии, тогда как Бимен освоил новый метод фМРТ. В определении времени ЭЭГ гораздо точнее, зато фМРТ обеспечивает более точные карты мозговых структур и изображение их активации – как раз в этом ЭЭГ не очень хорош. «Задумались мы об этом, – поведал мне Куниос, – и тут у нас все сошлось. Мы поняли, что, работая вместе, сможем определить, и когда, и где что-то происходит». Куниос и Бимен договорились о партнерстве.
Ученые решили разработать цепочку параллельных экспериментов[145]. Надо раздельно привлечь испытуемых и записать отклики их мозга, работая по своим лабораториям, применяя свои методы. Но задачи испытуемым в обеих лабораториях поставят одни и те же. Так Куниосу удастся определить время откликов в мозге, а Бимену – географию этих откликов. Объединив полученные данные, исследователи получат полную картину того, какие структуры мозга задействованы и как их деятельность обустроена.
Куниос с Бименом хотели придумать игру слов, в которой можно разобраться либо бессознательным прозрением, либо сознательным аналитическим рассуждением. Ученые решили применить головоломку, устроенную похоже на то, что психологи называют тестом на отдаленные ассоциации, или по-английски RAT[146]. Свою версию они назвали «задачами на составные отдаленные ассоциации» – по-английски CRAP[147], сокращают до CRA, так лучше смотрится в научных статьях.
Вот как эти CRA устроены. Испытуемым показывают три слова – например, «сосна», «краб» и «соус». Их просят придумать четвертое слово – слово-ключ, с которым все три исходных могут образовывать осмысленное словосочетание. Слово-ключ можно ставить и до, и после исходного слова. Например, возьмем слово «орех». «Сосновый орех» годится, «ореховый соус» тоже. Но ни «крабовый орех», ни «ореховый краб» смысла не имеют, а потому слово «орех» как ключ не годится.
Отдать должное умственному процессу, который наблюдали Куниос и Бимен у себя в лабораториях, вы сможете, попробовав решить задачку сосны-краба-соуса. Испытуемые Куниоса и Бимена разобрались лишь в 59 % предложенных им загадок, поэтому, если у вас не получится, не огорчайтесь. Тут главное – прочувствовать, как эта штука действует, а потому дайте себе полминуты на это, а затем продолжайте читать. До решения мы с вами доберемся совсем скоро.
Куниос с Бименом разработали свои загадки так, чтобы два из трех слов вызывали сильные и очевидные ассоциации. В нашем случае «сосна» – предположительно разновидность дерева, а потому на ум приходят, например, «шишка» (сосновая шишка) или «высокая» (высокая сосна). При слове «краб» в уме быстро возникают ассоциации «крабовое мясо» или «крабовые палочки», допустим. Но поскольку ни то, ни другое ни с сосной, ни с соусом не сочетаются[148], вы догадываетесь, что слово-ключ, вероятно, не имеет ничего общего ни с деревьями, ни с членистоногими. Иными словами, чтобы решить этот ребус, необходимо расстаться с первыми попавшимися ассоциациями между словом «сосна» и деревьями, а также между словом «краб» и членистоногими, и допустить ассоциации послабее, менее очевидные. Вот почему это трудно, однако инсайт состоит именно в этом: посредством эластичного мышления допустить необычные ассоциации, которые аналитический ум нащупывает с трудом.
Можно попробовать решить эту загадку сознательным, аналитическим размышлением. Начать, скажем, со слова «краб» и придумать к нему «довесок» – чтобы получилось, допустим, crab cake[149]. Если, как в этом примере, подобранное слово (cake), не образует словарного слова или словосочетания ни со словом «сосна», ни со словом «соус», пробуем дальше – и пробуем, пока решение не отыщется. Процесс этот, впрочем, может оказаться довольно изнурительным. А вот те, кто позволяет себе озарение, расслабляют ум и блуждают мыслями, пока не наткнутся на ответ – на идею, которая, кажется, возникает внезапно, из ниоткуда. В нашем случае решение – слово «яблоко»[150].
В экспериментах Куниоса – Бимена испытуемым давали по тридцать секунд на каждую попытку. Большинство подключало инсайт в одних задачках и аналитическое мышление – в других, несмотря на краткость выделенного времени, а кто-то менял подходы посреди решения той или иной задачи. Во всех случаях испытуемые сообщали, какой метод привел их к решению задачи. Примерно на 40 % больше задачек было решено озарением, чем логическим анализом, и как раз в мыслительных процессах, приведших к решениям, Куниос с Бименом пытались разобраться[151].
Подопытные Бимена решали задачи CRA, лежа внутри томографа во время проведения фМРТ. Участники экспериментов Куниоса ломали головы в удушливо жаркой лаборатории с поломанным кондиционером, облаченные в некое подобие купальных шапочек с закрепленными в них десятками электродов, которые Куниос закрепил на коже головы и лица у испытуемых. «Участники потели, и это мешало снимать показания», – вспоминает Куниос. Однако оно того стоило, поскольку эксперимент в итоге стал в своем роде классикой. Обнаруженные результаты прояснили процесс, порождающий у людей прозрение, как никакие другие прежде.
Как устроено озарение
Находки Куниоса и Бимена потрясли всех. Главная новость состояла вот в чем: несмотря на то что наш сознательный опыт озарения подсказывает, что это мгновенное переживание, возникает оно в результате долгой цепочки закулисных событий, зеркальных процессам, связанным с пониманием языка и с похожим разделением труда между правым и левым полушариями.
Вот как Куниос и Бимен разложили по полочкам процесс инсайта, будь то в словесных шарадах вроде их CRA или в любых других обстоятельствах. Когда перед вами возникает задача, мозг принимается перебирать возможные решения – как перебирает возможные значения того или иного слова во фразе. Процесс это быстрый и протекает за пределами вашего сознания. Левое полушарие собирает все очевидные ассоциации и все очевидные ответы. Правое же ищет ассоциации смутные – и причудливые ответы. Если выражаться точнее, Куниос с Бименом обнаружили, что причудливые ответы возникают из оживленной нейронной деятельности в складке мозговой ткани над правым ухом, эта складка называется передней частью верхней височной извилиной (пВВИ).
Разница в подходах, применяемых правым и левым полушариями мозга, иллюстрирует прозорливость Сперри, более чем за полвека до этого утверждавшего, что полушария нашего мозга подобны двум независимым когнитивным системам. В недрах нашего бессознательного ума и то, и другое полушарие пытаются добиться того, чтобы именно его идеи принял суд исполнительного мозга и допустил их в поле нашего сознательного внимания. Но, очень похоже, есть и судья, способный повлиять на исход слушаний. Эту таинственную структуру мозга нейробиологи называют передней поясной корой, ППК, – размещается она прямо над мозолистым телом.
Одна из ролей ППК – следить за другими областями мозга[152]. Я называю ее судьей, потому что, пусть науке тут не все еще ясно, ученые полагают, что, когда правое и левое полушария берутся каждое по-своему решать поставленную задачу, ППК способна вмешаться и повлиять на то, насколько ярко предъявляют полушария свои находки.
Когда вы только-только подступили к задаче, ваш исполнительный мозг очень узко сфокусирован. Он пренебрегает диковинными идеями и направляет ваше осознанное внимание на всякое старое доброе – на буквальные, логичные или наиболее очевидные из всех возможных ответов, какие производит ваш ассоциативный мозг. Таким образом догадки левого полушария обычно попадают в поле сознательного внимания первыми. Что разумно, поскольку привычными и неоригинальными идеями как правило можно обойтись.
Согласно теории Куниоса и Бимена, если эти начальные идеи не приводят к ответу, ППК расширяет поле внимания, размягчает сосредоточенность на привычных затеях левого полушария и разрешает подняться к поверхности мыслям из правого полушария – тем, что посвежее.
Грубо говоря, ППК достигает этого, организуя свертывание деятельности правой зрительной коры – той части вашего правого полушария, которая отвечает за переработку зрительных данных. Подобно этому вы закрываете глаза, чтобы сосредоточиться, когда пытаетесь решить трудную задачу, но в таком случае ППК блокирует только зрительные данные, поступающие в правое полушарие. Такое подавление зрительной деятельности позволяет идеям, производимым в правой пВВИ, воспользоваться преимуществом и подналечь, и тогда ее идеи прорываются к вам в сознание. Вот почему важна эта черта характера – твердость: оказавшись в тупике, вы, возможно, маетесь, и вам хочется сдаться, но как раз в этот миг, если продолжить бороться, в игру может вступить ППК и начнут проступать ваши самые свежие придумки.
Инсайты – одни из самых блистательных подвигов нашего эластичного мышления, и наконец понять механизм, помогающий нам выбраться из тупика к прозрению, – блистательный подвиг. Но Куниос с Бименом сделали еще одно важное открытие. Вглядываясь в данные мозговой деятельности своих испытуемых, ученые увидели, что у тех, кто решал поставленную задачу внезапным озарением, иногда проявлялась выраженная нейронная активация, и возникала она задолго до самого инсайта. Более того, черты этой активации можно было засечь за несколько секунд до того, как задачу вообще поставили.
Эта деятельность, похоже, была связана с настроем ума на инсайт. Мозги тех участников, которые в силу своего психологического состояния были настроены добиваться результата инсайтом, так или иначе заранее создавали условия для того, чтобы правое полушарие было услышано. Нейронный механизм, посредством которого можно управлять этим процессом, пока неясен, однако следствие его таково, что настрой на прозрение можно развивать – и тем самым закладывать базу того, что позднее может проявиться как спонтанное производство свежих идей. Ключ, судя по всему, – подходить к задаче с «расслабленным» умом, а не сосредоточиваться изо всех сил на применении линейной логики.
Я переживал это явление, когда был молодым физиком. Искал решение довольно сложной задачи. Нашел невыразительный математический подход, который, несомненно, сгодился бы, но подход это был путаный и нудный. Несколько дней я сосредоточенно шел этим путем, и впереди меня ждало еще много работы, но тут наступил вечер пятницы. На тот вечер я пригласил поужинать женщину, а потому как следует постарался расслабить ум и встретил свою даму в ресторане. Как раз заказал лингвини, и тут, без всякого предупреждения, у меня в сознании возникла изящная уловка, с какой можно было решить мою задачу сравнительно легко. Моя сосредоточенность на прямом подходе, судя по всему, мешала мне отыскать более совершенный метод.
Теперь, когда эта уловка пришла мне на ум, я ощутил неутолимую жажду проработать сколько-то математических деталей, чтобы подтвердить состоятельность замысла. Как бы так сказать женщине, что она очаровательна, но не подождет ли пять минут, пока сам я начеркаю на салфетке уравнение-другое? У меня романтический вечер, женщина держит мою руку в своей, а у меня голова забита геометрией бесконечномерного пространства.
В тот вечер я усвоил урок Куниоса и Бимена: когда берешься за зубодробительный вопрос, нетерпение добраться до ответа способно привести к не самому оптимальному решению, попутно мешая отыскать решение получше. Расслабленный же умственный настрой способен подпитать возникновение свежего, изобретательного ответа. А потому, позволив уму расслабиться, вы помогаете пробудить вашу ППК и высвободить силы озарения.
Для тех, кому интересно, как получить власть над этими процессами: это можно упражнять. Погуглите «тест отдаленных ассоциаций» и проделайте предлагаемые упражнения. В каждом случае можете сами решать, сосредоточиться ли вам на аналитическом или же на эластичном подходе, – и понаблюдайте за тем, как отличается мышление в обоих случаях.
Дзэн и искусство идей
Куниос рассказывает, как его лабораторию однажды посетил медитирующий дзэн-буддист. Куниос спросил гостя, не желает ли тот попробовать себя в CRA[153]. Гость согласился. Как оказалось, ум у него до того сосредоточен, что нужное причудливое слово, нужное по условиям CRA, возникло не сразу. Вновь и вновь не удавалось медитатору найти ответ за отведенное для этого время. Так скверно у него это получалось, писал Куниос, что ученый собрался прервать сессию, чтобы почем зря дальше не смущать человека. Но не успел Куниос это предложить, как медитатор наконец справился первый раз. Затем еще раз, и еще. С того момента и далее гость выдал почти все правильные ответы.