Удивительная логика Гусев Дмитрий
Если вещество электропроводно, то его невозможно использовать в качестве изолятора.
=> Если вещество является металлом, то его невозможно использовать в качестве изолятора.
В данном случае не только обе посылки, но и вывод силлогизма являются условными (импликативными) суждениями. Другая разновидность чисто условного силлогизма:
Если треугольник является прямоугольным, то его площадь равна половине произведения его основания на высоту.
Если треугольник не является прямоугольным, то его площадь равна половине произведения его основания на высоту.
=> Площадь треугольника равна половине произведения его основания на высоту.
Как видим, в этой разновидности чисто условного силлогизма обе посылки являются импликативными суждениями, но вывод (в отличие от первой рассмотренной разновидности) представляет собой простое суждение.
Стоим перед выбором (Условно-разделительные умозаключения)
Кроме разделительно-категорических и условно-категорических умозаключений, или силлогизмов, существуют также условно-разделительные умозаключения. В условно-разделительном умозаключении (силлогизме) первая посылка является условным, или импликативным суждением, а вторая посылка – это разделительное, или дизъюнктивное, суждение. Важно отметить, что в условном (импликативном) суждении может быть не одно основание и одно следствие (как в тех примерах, которые мы рассматривали до сих пор), а больше оснований или следствий. Например, в суждении Если поступать в МГУ, то надо много заниматься или же надо иметь много денег из одного основания вытекает два следствия. В суждении Если поступать в МГУ, то надо много заниматься, а если поступать в МГИМО, то тоже надо много заниматься из двух оснований вытекает одно следствие. В суждении Если страной правит мудрый человек, то она процветает, а если ею управляет проходимец, то она бедствует из двух оснований вытекают два следствия. В суждении Если я выступлю против окружающей меня несправедливости, то останусь человеком, хотя жестоко пострадаю; если равнодушно пройду мимо нее, то перестану себя уважать, хотя и буду цел и невредим; а если стану всячески содействовать ей, то превращусь в животное, хотя и достигну материального и карьерного благополучия из трех оснований вытекает три следствия.
Если в первой посылке условно-разделительного силлогизма содержится два основания или следствия, то такой силлогизм называется дилеммой, если оснований или следствий три, то он называется трилеммой, а если первая посылка включает в себя более трех оснований или следствий, то силлогизм является полилеммой. Чаще всего в мышлении и речи встречается дилемма, на примере которой мы и рассмотрим условно-разделительный силлогизм (также часто называемый условно-разделительным умозаключением).
Дилемма может быть конструктивной (утверждающей) и деструктивной (отрицающей). Каждый из этих видов дилеммы в свою очередь делится на две разновидности: как конструктивная, так и деструктивная дилемма может быть простой или сложной.
В простой конструктивной дилемме из двух оснований вытекает одно следствие, вторая посылка представляет собой дизъюнкцию оснований, а в выводе утверждается это одно следствие в виде простого суждения. Например:
Если поступать в МГУ, то надо много заниматься, а если поступать в МГИМО, то тоже надо много заниматься.
Можно поступать в МГУ или МГИМО.
=> Надо много заниматься.
В первой посылке сложной конструктивной дилеммы из двух оснований вытекают два следствия, вторая посылка представляет собой дизъюнкцию оснований, а вывод является сложным суждением в виде дизъюнкции следствий. Например:
Если страной правит мудрый человек, то она процветает, а если ею управляет проходимец, то она бедствует.
Страной может управлять мудрый человек или проходимец.
=> Страна может процветать или бедствовать.
В первой посылке простой деструктивной дилеммы из одного основания вытекают два следствия, вторая посылка представляет собой дизъюнкцию отрицаний следствий, а в выводе отрицается основание (происходит отрицание простого суждения). Например:
Если поступать в МГУ, то надо много заниматься или же надо много денег.
Я не хочу много заниматься или же тратить много денег.
=> Я не буду поступать в МГУ.
В первой посылке сложной деструктивной дилеммы из двух оснований вытекают два следствия, вторая посылка представляет собой дизъюнкцию отрицаний следствий, а вывод является сложным суждением в виде дизъюнкции отрицаний оснований. Например:
Если философ считает первоначалом мира материю, то он материалист, а если он считает первоначалом мира сознание, то он идеалист.
Этот философ не материалист или не идеалист.
=> Этот философ не считает первоначалом мира материю, или он не считает первоначалом мира сознание.
Поскольку первая посылка условно-разделительного силлогизма является импликацией, а вторая – дизъюнкцией, его правила – те же самые, что и рассмотренные выше правила условно-категорического и разделительно-категорического силлогизмов.
Приведем еще несколько примеров дилеммы.
Если изучать английский, то необходима каждодневная разговорная практика, а если изучать немецкий, то также необходима каждодневная разговорная практика.
Можно изучать английский или немецкий.
=> Необходима каждодневная разговорная практика.
(Простая конструктивная дилемма).
Если я признаюсь в совершенном проступке, то понесу заслуженное наказание, а если я попытаюсь скрыть его, то буду испытывать угрызения совести.
Я или признаюсь в совершенном проступке, или попытаюсь скрыть его.
=> Я понесу заслуженное наказание или буду испытывать угрызения совести.
(Сложная конструктивная дилемма).
Если он женится на ней, то потерпит полный крах или же будет влачить жалкое существование.
Он не хочет потерпеть полный крах или же влачить жалкое существование.
=> Он не женится на ней.
(Простая деструктивная дилемма).
Если скорость Земли при ее движении по орбите была бы больше 42 км/с, то она покинула бы Солнечную систему; а если ее скорость была бы меньше 3 км/с, то она «упала» бы на Солнце.
Земля не покидает Солнечную систему и не «падает» на Солнце.
=> Скорость Земли при ее движении по орбите не больше 42 км/с и не меньше 3 км/с.
(Сложная деструктивная дилемма).
Все ученики 10Б – двоечники (Индуктивные умозаключения)
В индукции из нескольких частных случаев выводится общее правило, рассуждение идет от частного к общему, от меньшего к большему, знание расширяется, в силу чего индуктивные выводы, как правило, вероятностны. Индукция бывает полной и неполной. В полной индукции перечисляются все объекты из какой-либо группы и делается вывод обо всей этой группе. Например, если в посылках индуктивного умозаключения перечисляются все девять крупных планет Солнечной системы, то такая индукция является полной:
Меркурий движется.
Венера движется.
Земля движется.
Марс движется.
…
Плутон движется.
Меркурий, Венера, Земля, Марс, Плутон – это крупные планеты Солнечной системы.
=> Все крупные планеты Солнечной системы движутся.
В неполной индукции перечисляются некоторые объекты из какой-либо группы и делается вывод обо всей этой группе. Например, если в посылках индуктивного умозаключения перечисляются не все девять крупных планет Солнечной системы, а только три из них, то такая индукция является неполной:
Меркурий движется.
Венера движется.
Земля движется.
Меркурий, Венера, Земля – это крупные планеты Солнечной системы.
=> Все крупные планеты Солнечной системы движутся.
Понятно, что выводы полной индукции достоверны, а неполной – вероятностны, однако полная индукция встречается редко, и поэтому под индуктивными умозаключениями обычно подразумевается неполная индукция.
Чтобы повысить степень вероятности выводов неполной индукции, следует соблюдать следующие важные правила.
1. Необходимо подбирать как можно больше исходных посылок. Для примера рассмотрим следующую ситуацию. Требуется проверить уровень успеваемости учащихся в некоей школе. Предположим, что в ней учится 1000 человек. По методу полной индукции надо протестировать на предмет успеваемости каждого ученика из этой тысячи. Поскольку сделать это довольно сложно, можно использовать метод неполной индукции: протестировать какую-то часть учащихся и сделать общий вывод об уровне успеваемости в данной школе. Различные социологические опросы также базируются на применении неполной индукции. Очевидно, что чем большее число учеников подвергнется тестированию, тем более надежной будет база для индуктивного обобщения и более точным получится вывод. Однако просто большего числа исходных посылок, как того требует рассматриваемое правило, для повышения степени вероятности индуктивного обобщения недостаточно. Допустим, тестирование пройдет немалое число учащихся, но, волей случая, среди них окажутся одни только неуспевающие. В этой ситуации мы придем к ложному индуктивному выводу о том, что уровень успеваемости в данной школе очень низок. Поэтому первое правило дополняется вторым.
2. Необходимо подбирать разнообразные посылки.
Возвращаясь к нашему примеру, отметим, что множество тестируемых должно быть не просто по возможности большим, но и специально (по какой-то системе) сформированным, а не случайно подобранным, т. е. надо позаботиться о том, чтобы в него вошли учащиеся (примерно в одинаковом количественном отношении) из разных классов, параллелей и т. п.
3. Необходимо делать вывод только на основе существенных признаков. Если, допустим, во время тестирования выясняется, что ученик 10 класса не знает наизусть всю Периодическую систему химических элементов, то этот факт (признак) является несущественным для вывода о его успеваемости. Однако если тестирование показывает, что ученик 10 класса частицу НЕ с глаголом пишет слитно, то этот факт (признак) следует признать существенным (важным) для вывода об уровне его образованности и успеваемости.
Таковы основные правила неполной индукции. Теперь обратимся к ее наиболее распространенным ошибкам. Говоря о дедуктивных умозаключениях, мы рассматривали ту или иную ошибку вместе с правилом, нарушение которого ее порождает. В данном случае сначала представлены правила неполной индукции, а потом, отдельно, – ее ошибки. Это объясняется тем, что каждая из них не связана непосредственно с каким-то из вышеприведенных правил. Любую индуктивную ошибку можно рассматривать как результат одновременного нарушения всех правил, и в то же время нарушение каждого правила можно представить как причину, приводящую к любой из ошибок.
Первая ошибка, часто встречающаяся в неполной индукции, называется поспешным обобщением. Скорее всего, каждый из нас хорошо с ней знаком. Всем приходилось слышать такие высказывания, как Все мужчины черствые, Все женщины легкомысленные, и т. п. Эти расхожие стереотипные фразы представляют собой не что иное, как поспешное обобщение в неполной индукции: если некоторые объекты из какой-либо группы обладают неким признаком, то это вовсе не означает, что данным признаком характеризуется вся группа без исключения. Из истинных посылок индуктивного умозаключения может вытекать ложный вывод, если допустить поспешное обобщение. Например:
К. учится плохо.
Н. учится плохо.
С. учится плохо.
К., Н., С. – это ученики 10 «А».
=> Все ученики 10 «А» учатся плохо.
Неудивительно, что поспешное обобщение лежит в основе многих голословных утверждений, слухов и сплетен.
Вторая ошибка носит длинное и на первый взгляд странное название: после этого, значит, по причине этого (с лат. post hoc, ergo propter hoc). В данном случае речь идет о том, что если одно событие происходит после другого, то это не означает с необходимостью их причинно-следственную связь. Два события могут быть связаны всего лишь временной последовательностью (одно – раньше, другое – позже). Когда мы говорим, что одно событие обязательно является причиной другого, потому что одно из них произошло раньше другого, то допускаем логическую ошибку. Например, в следующем индуктивном умозаключении обобщающий вывод является ложным, несмотря на истинность посылок:
Позавчера двоечнику Н. перебежала дорогу черная кошка, и он получил двойку.
Вчера двоечнику Н. перебежала дорогу черная кошка, и его родителей вызвали в школу.
Сегодня двоечнику Н. перебежала дорогу черная кошка, и его исключили из школы.
=> Во всех несчастьях двоечника Н. виновата черная кошка.
Неудивительно, что эта распространенная ошибка породила множество небылиц, суеверий и мистификаций.
Третья ошибка, широко распространенная в неполной индукции, называется подмена условного безусловным. Рассмотрим индуктивное умозаключение, в котором из истинных посылок вытекает ложный вывод:
Дома вода кипит при температуре 100 °C.
На улице вода кипит при температуре 100 °C.
В лаборатории вода кипит при температуре 100 °C.
=> Вода везде кипит при температуре 100 °C.
Мы знаем, что высоко в горах вода кипит при более низкой температуре. На Марсе температура кипящей воды была бы равна примерно 45 °C. Так что вопрос Всегда ли и везде ли кипяток горяч? не является нелепым, как это может показаться на первый взгляд. И ответ на этот вопрос будет: Не всегда и не везде. То, что проявляется в одних условиях, может не проявляться в других. В посылках рассмотренного примера присутствует условное (происходящее в определенных условиях), которое подменяется безусловным (происходящим во всех условиях одинаково, не зависящим от них) в выводе.
Хороший пример подмены условного безусловным содержится в известной нам с детства сказке про вершки и корешки, в которой речь идет о том, как мужик и медведь посадили репу, договорившись поделить урожай следующим образом: мужику – корешки, медведю – вершки. Получив ботву от репы, медведь понял, что мужик его обманул, и совершил логическую ошибку подмены условного безусловным – решил, что надо всегда брать только корешки. Поэтому на следующий год, когда пришло время делить урожай пшеницы, медведь отдал мужику вершки, а себе снова взял вершки – и опять остался ни с чем.
Приведем еще несколько примеров ошибок в индуктивных умозаключениях.
1. Как известно, дед, бабка, внучка, Жучка, кошка и мышка вытащили репку. Однако дед репку не вытащил, бабка тоже ее не вытащила. Внучка, Жучка и кошка также не вытащили репку. Ее удалось вытащить только после того, как на помощь пришла мышка. Следовательно, репку вытащила мышка.
(Ошибка – «после этого», значит «по причине этого»).
2. Долгое время в математике считалось, что все уравнения можно решить в радикалах. Этот вывод был сделан на том основании, что исследованные уравнения первой, второй, третьей и четвертой степеней возможно привести к виду хn = а. Однако впоследствии оказалось, что уравнения пятой степени нельзя решить в радикалах.
(Ошибка – поспешное обобщение).
3. В классическом, или ньютоновском, естествознании считалось, что пространство и время неизменны. Это убеждение основывалось на том, что, где бы ни находились различные материальные объекты и что бы с ними ни происходило, время для каждого из них течет одинаково и пространство остается одним и тем же. Однако появившаяся в начале XX века теория относительности показала, что пространство и время вовсе не неизменны. Так, например, при движении материальных объектов со скоростями, близкими к скорости света (300 000 км/с), время для них значительно замедляется, а пространство искривляется, перестает быть евклидовым.
(Ошибка классического представления о пространстве и времени – подмена условного безусловным).
Неполная индукция бывает популярной и научной. В популярной индукции вывод делается на основе наблюдения и простого перечисления фактов, без знания их причины, а в научной индукции вывод делается не только на основе наблюдения и перечисления фактов, но еще и на основе знания их причины. Поэтому научная индукция (в отличие от популярной) характеризуется намного более точными, почти достоверными выводами.
Например, первобытные люди видят, как солнце каждый день встает на востоке, медленно движется в течение дня по небу и закатывается на западе, но они не знают, почему так происходит, им неизвестна причина этого постоянно наблюдаемого явления. Понятно, что они могут сделать умозаключение, используя только популярную индукцию и рассуждая примерно следующим образом: Позавчера солнце взошло на востоке, вчера солнце взошло на востоке, сегодня солнце взошло на востоке, следовательно, солнце всегда всходит на востоке. Мы, как и первобытные люди, наблюдаем каждодневный восход солнца на востоке, но в отличие от них знаем причину этого явления: Земля вращается вокруг своей оси в одном и том же направлении с неизменной скоростью, в силу чего Солнце появляется каждое утро в восточной стороне неба. Поэтому то умозаключение, которое делаем мы, представляет собой научную индукцию и выглядит примерно так: Позавчера Солнце взошло на востоке, вчера Солнце взошло на востоке, сегодня Солнце взошло на востоке; причем это происходит оттого, что уже несколько миллиардов лет Земля вращается вокруг своей оси и будет вращаться так же и дальше в течение многих миллиардов лет, находясь на одном и том же расстоянии от Солнца, которое родилось раньше Земли и будет существовать дольше нее; следовательно, для земного наблюдателя Солнце всегда всходило и будет всходить на востоке.
Главное отличие научной индукции от популярной заключается в знании причин происходящих событий. Поэтому одна из важных задач не только научного, но и повседневного мышления – это обнаружение причинных связей и зависимостей в окружающем нас мире.
Поиск причины (Методы установления причинных связей)
В логике рассматриваются четыре метода установления причинных связей. Впервые их выдвинул английский философ XVII века Фрэнсис Бэкон, а всесторонне разработаны они были в XIX веке – английским логиком и философом Джоном Стюартом Миллем.
Метод единственного сходства строится по следующей схеме:
При условиях ABC возникает явление х.
При условиях ADE возникает явление х.
При условиях AFG возникает явление х.
=> Вероятно, условие А – это причина явления х.
Перед нами – три ситуации, в которых действуют условия А, В, С, D, Е, F, G, причем одно из них (A) повторяется в каждой. Это повторяющееся условие – единственное, в чем схожи между собой данные ситуации. Далее надо обратить внимание на то, что во всех ситуациях возникает явление х. Из этого можно сделать вероятный вывод, что условие А представляет собой причину явления х (одно из условий все время повторяется, и явление при этом постоянно возникает, что и дает основание объединить первое и второе причинно-следственной связью). Например, требуется установить, какой продукт питания вызывает у человека аллергию. Допустим, в течение трех дней аллергическая реакция неизменно возникала. При этом в первый день человек употреблял в пищу продукты А, В, С, во второй день – продукты A, D, Е, в третий день – продукты А, Е, G, т. е. на протяжении трех дней повторно принимался в пищу только продукт А, который скорее всего и является причиной аллергии.
Продемонстрируем метод единственного сходства на примерах.
1. Объясняя структуру условного (импликативного) суждения, преподаватель привел три примера различного содержания:
• Если по проводнику проходит электрический ток, то проводник нагревается;
• Если слово стоит в начале предложения, то его надо писать с большой буквы;
• Если взлетная полоса покрыта льдом, то самолеты не могут взлететь.
2. Анализируя примеры, он обратил внимание студентов на один и тот же союз ЕСЛИ… ТО, соединяющий простые суждения в сложное, и сделал вывод о том, что это обстоятельство дает основание все три сложных суждения записать одинаковой формулой.
3. Однажды Е. Ф. Буринский налил на старое ненужное письмо красные чернила и сфотографировал его через красное стекло. Проявляя фотопластинку, он не подозревал, что делает удивительное открытие. На негативе пятно исчезло, но проступил текст, залитый чернилами. Последующие опыты с разными по цвету чернилами привели к тому же результату – текст выявлялся. Следовательно, причиной проявления текста является его фотографирование через красное стекло. Буринский первым стал применять свой метод фотографирования в криминалистике.
Метод единственного различия строится таким образом:
При условиях A BCD возникает явление х.
При условиях BCD не возникает явление х.
=> Вероятно, условие А – это причина явления х.
Как видим, две ситуации различаются между собой только в одном: в первой условие А присутствует, а во второй оно отсутствует. Причем в первой ситуации явление х возникает, а во второй – не возникает. На основании этого можно предположить, что условие А и есть причина явления х. Например, в воздушной среде металлический шарик падает на землю раньше, чем перышко, брошенное одновременно с ним с той же высоты, т. е. шарик движется к земле с большим ускорением, чем перышко. Однако если проделать данный эксперимент в безвоздушной среде (все условия – те же самые, кроме наличия воздуха), то и шарик, и перышко будут падать на землю одновременно, т. е. с одинаковым ускорением. Видя, что в воздушной среде различное ускорение падающих тел имеет место, а в безвоздушной – не имеет, можно заключить, что, по всей вероятности, сопротивление воздуха является причиной падения разных тел с различным ускорением.
Примеры применения метода единственного различия приведены ниже.
1. Листья растения, выросшего в подвале, не имеют зеленой окраски. Листья того же растения, выросшего в обычных условиях, являются зелеными. В подвале нет света. В обычных условиях растение произрастает на солнечном свету. Следовательно, он является причиной возникновения зеленого цвета растений.
2. Климат Японии является субтропическим. В лежащем почти на тех же широтах недалеко от Японии Приморье климат намного более суров. У берегов Японии проходит теплое течение. У берегов Приморья теплого течения нет. Следовательно, причина различия в климате Приморья и Японии заключается во влиянии морских течений.
Метод сопутствующих изменений построен так:
При условиях A1BCD возникает явление х1.
При условиях A2BCD возникает явление х2.
При условиях A3BCD возникает явление х3.
=> Вероятно, условие А – это причина явления х.
Изменение одного из условий (при неизменности прочих условий) сопровождается изменением происходящего явления, в силу чего можно утверждать, что данное условие и указанное явление объединены причинно-следственной связью. Например, при увеличении скорости движения в два раза пройденный путь увеличивается также вдвое; если скорость возрастает в три раза, то и пройденное расстояние становится в три раза большим. Следовательно, увеличение скорости является причиной увеличения пройденного пути (разумеется, за один и тот же промежуток времени).
Продемонстрируем метод сопутствующих изменений на примерах.
1. Еще в древности было замечено, что периодичность морских приливов и изменение их высоты соответствуют изменениям в положении Луны. Наибольшие приливы приходятся на дни новолуний и полнолуний, наименьшие – на так называемые дни квадратур (когда направления от Земли к Луне и Солнцу образуют прямой угол). На основании этих наблюдений был сделан вывод о том, что морские приливы обусловливаются действием Луны.
2. Всякий, кто сжимал в руках мяч, знает, что если увеличить внешнее давление на него, то мяч уменьшится. Если же прекратить это давление, то мяч возвращается к своим прежним размерам. Французский ученый XVII века Блез Паскаль, видимо, первым обнаружил данное явление, причем он сделал это весьма своеобразным и достаточно убедительным образом. Отправляясь со своими помощниками в гору, он захватил с собой не только барометр, но и пузырь, частично надутый воздухом. Паскаль заметил, что объем пузыря увеличивался по мере подъема, а на обратном пути стал уменьшаться. Когда же исследователи достигли подножия горы, пузырь принял первоначальные размеры. Из этого был сделан вывод о том, что высота горного подъема прямо пропорциональна изменению внешнего давления, т. е. находится с ним в причинно-следственной связи.
Метод остатков строится следующим образом:
При условиях ABC возникает явление xyz.
Известно, что часть у из явления xyz вызывается условием В.
Известно, что часть z из явления xyz вызывается условием С.
=> Вероятно, условие А – это причина явления X.
В данном случае происходящее явление разбито на составные части и известна причинная связь каждой из них, кроме одной, с каким-либо условием. Если остается только одна часть из возникающего явления и только одно условие из совокупности условий, порождающих это явление, то можно утверждать, что оставшееся условие представляет собой причину оставшейся части рассмотренного явления. Например, рукопись автора читали редакторы А, В, С, делая в ней пометки шариковыми авторучками. Причем известно, что редактор В правил рукопись синими чернилами (у), а редактор С – красными (z). Однако в рукописи имеются пометки, сделанные зелеными чернилами (х). Можно заключить, что, скорее всего, они оставлены редактором А.
Примеры применения метода остатков приведены ниже.
1. Наблюдая за движением планеты Уран, астрономы XIX века заметили, что она несколько отклоняется от своей орбиты. Было установлено, что Уран отклоняется на величины а, b, с, причем эти отклонения вызваны влиянием соседних планет А, В, С. Однако также было замечено, что Уран в своем движении отклоняется не только на величины а, b, с, но еще и на величину d. Из этого сделали предположительный вывод о наличии за орбитой Урана пока неизвестной планеты, которая вызывает данное отклонение. Французский ученый Леверье рассчитал положение этой планеты, а немецкий ученый Галле с помощью сконструированного им телескопа нашел ее на небесной сфере. Так в XIX веке была открыта планета Нептун.
2. Известно, что дельфины могут с большой скоростью передвигаться в воде. Расчеты показали, что их мускульная сила, даже при совершенно обтекаемой форме тела, не в состоянии обеспечить столь высокую скорость. Предположили, что часть причины заключается в особом строении кожи дельфинов, срывающей завихрения воды. В дальнейшем это предположение было подтверждено экспериментально.
Сходство в одном – сходство в другом (Аналогия как вид умозаключения)
В умозаключениях по аналогии на основе сходства предметов в одних признаках делается вывод об их сходстве и в других признаках. Структура аналогии может быть представлена следующей схемой:
Предмет А имеет признаки а, b, с, d.
Предмет В имеет признаки а, b, с.
=> Вероятно, предмет В имеет признак d.
В данной схеме А и В – это сравниваемые или уподобляемые друг другу предметы (объекты); а, b, с – сходные признаки; d – это переносимый признак. Рассмотрим пример умозаключения по аналогии:
Сочинения философа Секста Эмпирика, выпущенные издательством «Мысль» в серии «Философское наследие», снабжены вступительной статьей, комментариями и предметно-именным указателем.
В аннотации к книжной новинке – сочинениям философа Фрэнсиса Бэкона – говорится, что они выпущены издательством «Мысль» в серии «Философское наследие» и снабжены вступительной статьей и комментариями.
=> Скорее всего, выпущенные сочинения Фрэнсиса Бэкона так же, как и сочинения Секста Эмпирика, снабжены предметно-именным указателем.
В данном случае сравниваются (сопоставляются) два объекта: ранее изданные сочинения Секста Эмпирика и выходящие в свет сочинения Фрэнсиса Бэкона. Сходные признаки этих двух книг состоят в том, что они выпускаются одним и тем же издательством, в одной и той же серии, снабжены вступительными статьями и комментариями. На основании этого с большой степенью вероятности можно утверждать, что если сочинения Секста Эмпирика снабжены предметно-именным указателем, то им будут снабжены и сочинения Фрэнсиса Бэкона. Таким образом, наличие предметно-именного указателя является переносимым признаком в рассмотренном примере.
Умозаключения по аналогии делятся на два вида: аналогия свойств и аналогия отношений.
В аналогии свойств сравниваются два предмета, а переносимым признаком является какое-либо свойство этих предметов. Приведенный выше пример представляет собой аналогию свойств.
Приведем еще несколько примеров.
1. Жабры для рыб – это то же самое, что легкие для млекопитающих.
2. Повесть А. Конан Дойла «Знак четырех» о приключениях благородного сыщика Шерлока Холмса, отличающаяся динамичным сюжетом, мне очень понравилась. Я не читал повесть А. Конан Дойла «Собака Баскервиллей», но знаю, что она посвящена приключениям благородного сыщика Шерлока Холмса и отличается динамичным сюжетом. Скорее всего, эта повесть мне также очень понравится.
3. На Всесоюзном съезде физиологов в Ереване (1964 г.) московские ученые М. М. Бонгард и А. Л. Вызов продемонстрировали установку, которая моделировала цветовое зрение человека. При быстром включении ламп она безошибочно распознавала цвет и его интенсивность. Интересно, что эта установка имела ряд тех же самых недостатков, что и зрение человека.
Например, оранжевый свет после интенсивного красного в первое мгновение воспринимался ей как синий или зеленый.
В аналогии отношений сравниваются две группы предметов, а переносимым признаком является какое-либо отношение между предметами внутри этих групп. Пример аналогии отношений:
В математической дроби числитель и знаменатель находятся в обратном отношении: чем больше знаменатель, тем меньше числитель.
Человека можно сравнить с математической дробью: числитель ее – это то, что он собой представляет на самом деле, а знаменатель – то, что он о себе думает, как себя оценивает.
=> Вероятно, что чем выше человек себя оценивает, тем хуже он становится на самом деле.
Как видим, сравниваются две группы объектов. Одна – это числитель и знаменатель в математической дроби, а другая – реальный человек и его самооценка. Причем отношение обратной зависимости между объектами переносится из первой группы во вторую.
Приведем еще два примера.
1. Сущность планетарной модели атома Э. Резерфорда состоит в том, что в нем вокруг положительно заряженного ядра по разным орбитам движутся отрицательно заряженные электроны; так же, как и в Солнечной системе, планеты движутся по разным орбитам вокруг единого центра – Солнца.
2. Два физических тела (по закону всемирного тяготения Ньютона) притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними; так же и два неподвижных друг относительно друга точечных заряда (по закону Кулона) взаимодействуют с электростатической силой, прямо пропорциональной произведению зарядов и обратно пропорциональной квадрату расстояния между ними.
В силу вероятностного характера своих выводов аналогия, конечно же, более близка к индукции, чем к дедукции. Поэтому неудивительно, что основные правила аналогии, соблюдение которых позволяет повысить степень вероятности ее выводов, во многом напоминают уже известные нам правила неполной индукции.
Во-первых, необходимо делать вывод на основе возможно большего количества сходных признаков уподобляемых предметов.
Во-вторых, эти признаки должны быть разнообразными.
В-третьих, сходные признаки должны являться существенными для сравниваемых предметов.
В-четвертых, должна присутствовать необходимая (закономерная) связь между сходными признаками и переносимым признаком.
Первые три правила аналогии фактически повторяют правила неполной индукции. Пожалуй, наиболее важным является четвертое правило, о связи сходных признаков и переносимого признака. Вернемся к примеру аналогии, рассмотренному в начале данного параграфа. Переносимый признак – наличие предметно-именного указателя в книге – тесно связан со сходными признаками – издательство, серия, вступительная статья, комментарии (книги такого жанра обязательно снабжаются предметно-именным указателем). Если переносимый признак (например, объем книги) не связан закономерно со сходными признаками, то вывод умозаключения по аналогии может получиться ложным:
Сочинения философа Секста Эмпирика, выпущенные издательством «Мысль» в серии «Философское наследие», снабжены вступительной статьей, комментариями и имеют объем в 590 страниц.
В аннотации к книжной новинке – сочинениям философа Фрэнсиса Бэкона – говорится, что они выпущены издательством «Мысль» в серии «Философское наследие» и снабжены вступительной статьей и комментариями.
=> Скорее всего, выпущенные сочинения Фрэнсиса Бэкона, как и сочинения Секста Эмпирика, имеют объем в 590 страниц.
Несмотря на вероятностный характер выводов, умозаключения по аналогии имеют немало достоинств. Аналогия представляет собой хорошее средство иллюстрации и разъяснения какого-либо сложного материала, является способом придания ему художественной образности, часто наводит на научные и технические открытия. Так, на основе аналогии отношений построены многие выводы в бионике – науке, которая занимается изучением объектов и процессов живой природы для создания различных технических приспособлений. Например, построены машины-снегоходы, принцип передвижения которых заимствован у пингвинов. Используя особенность восприятия медузой инфразвука с частотой 8—13 колебаний в секунду (что позволяет ей заранее распознавать приближение бури по штормовым инфразвукам), ученые создали электронный аппарат, способный предсказывать наступление шторма за 15 часов. Изучая полет летучей мыши, которая испускает ультразвуковые колебания и затем улавливает их отражение от предметов, тем самым безошибочно ориентируясь в темноте, человек сконструировал радиолокаторы, обнаруживающие различные объекты и точно определяющие место их расположения независимо от погодных условий.
Как видим, умозаключения по аналогии достаточно широко используются как в повседневном, так и в научном мышлении.
Основные законы логики
Равна ли мысль самой себе (Закон тождества)
Первый и наиболее важный закон логики – это закон тождества, который был сформулирован Аристотелем в трактате «Метафизика» следующим образом: «…иметь не одно значение – значит не иметь ни одного значения; если же у слов нет (определенных) значений, тогда утрачена всякая возможность рассуждать друг с другом, а в действительности – и с самим собой; ибо невозможно ничего мыслить, если не мыслить (каждый раз) что-нибудь одно». Можно было бы добавить к этим словам Аристотеля известное утверждение о том, что мыслить (говорить) обо всем – значит не мыслить (не говорить) ни о чем.
Закон тождества утверждает, что любая мысль (любое рассуждение) обязательно должна быть равна (тождественна) самой себе, т. е. она должна быть ясной, точной, простой, определенной. Говоря иначе, этот закон запрещает путать и подменять понятия в рассуждении (т. е. употреблять одно и то же слово в разных значениях или вкладывать одно и то же значение в разные слова), создавать двусмысленность, уклоняться от темы и т. п.
Например, смысл простого на первый взгляд высказывания Ученики прослушали объяснение учителя непонятен, потому что в нем нарушен закон тождества. Ведь слово прослушали, а значит, и все высказывание можно понимать двояко: то ли ученики внимательно слушали учителя, то ли все пропустили мимо ушей (причем первое значение противоположно второму). Получается, что высказывание было одно, а возможных значений у него два, т. е. нарушается тождество: 1 2. Иначе говоря, в приведенном высказывании смешиваются (отождествляются) две различные (нетождественные) ситуации.
Точно так же непонятен смысл фразы Из-за рассеянности на турнирах шахматист неоднократно терял очки. Если не сделать в данном случае никаких комментариев, то непонятно, о чем идет речь: то ли шахматист терял очки как прибор для зрения, то ли – как спортивные баллы; две нетождественные ситуации представляются в этом высказывании как тождественные.
Итак, по причине нарушения закона тождества появляются подобного рода неясные высказывания (суждения).
Когда закон тождества нарушается непроизвольно, по незнанию, по невнимательности или по безответственности, тогда возникают просто логические ошибки; но когда этот закон нарушается преднамеренно, с целью запутать собеседника и доказать ему какую-нибудь ложную мысль, тогда появляются не просто ошибки, а софизмы – внешне правильные доказательства ложной мысли с помощью преднамренного нарушения логических законов. Приведем пример софизма: 3 и 4 – это два разных числа, 3 и 4 – это 7, следовательно, 7 – это два разных числа. В данном случае, как и в вышеприведенных примерах, происходит отождествление нетождественного: неявно или исподволь смешиваются, уравниваются, представляются как одинаковые разные, неравные, неодинаковые ситуации (простое перечисление чисел и сложение чисел), что и приводит к видимости правильного доказательства ложной мысли.
Обратите внимание, любой софизм, даже очень хитрый, строится по одной и той же схеме – неявно отождествляются нетождественные ситуации, объекты, явления, события, идеи и т. п., что и приводит к внешней правдоподобности ложных рассуждений. Поэтому алгоритм разоблачения какого угодно софизма достаточно прост: надо всего лишь найти в рассуждении два объекта, которые, будучи нетождественными, незаметно отождествляются.
Приведем еще один пример софизма: Что лучше: вечное блаженство или бутерброд? Конечно же, вечное блаженство. А что может быть лучше вечного блаженства? Конечно же, ничто! Но бутерброд ведь лучше, чем ничто, следовательно, он лучше вечного блаженства. В этом примере также нарушается закон тождества.
На нарушениях закона тождества строятся не только неясные суждения и софизмы. На них можно создать разного рода комические эффекты. Например, Н. В. Гоголь в поэме «Мертвые души», описывая помещика Ноз-древа, говорит, что тот был «историческим человеком», потому что, где бы он ни появлялся, с ним обязательно случалась какая-нибудь «история».
На нарушении закона тождества построены многие смешные афоризмы. Например: Не стой где попало, а то еще попадет.
Тот же принцип лежит в основе многих анекдотов. Например:
– Я сломал руку в двух местах.
– Больше не попадай в эти места.
Или такой анекдот:
– У вас в гостинице есть тихие номера?
– У нас все номера тихие, только вот постояльцы иногда шумят.
Как видим, во всех приведенных примерах используется один и тот же прием: в одинаковых словах смешиваются различные значения, ситуации, темы, одна из которых не равна другой.
Приведем в качестве примеров еще несколько анекдотов, построенных на нарушениях закона тождества.
1. – Ты умеешь нырять?
– Умею.
– И долго под водой находишься?
– Пока кто-нибудь не вытащит.
2. – Ах, эти детские мечты. Сбылась ли хоть одна из них?