Экология вашего дома Голицын Артур
© Обложка «СОЛОН-Пресс», 2010
© А. Н. Голицын, 2010
Предисловие
В наше время глобального загрязнения природной среды и экологических катастроф возникла необходимость в оценке экологической ситуации и в наименьшей ячейке общества – в семье и в доме, в котором живет семья. Об экологии жилища в литературе информации недостаточно; кроме того, она приведена в различных научных изданиях и зачастую не доступна широкому читателю.
Цель книги – обобщение материалов по экологии жилища с учетом опыта продолжительной работы автора, связанной с экологическим обследованием помещений и территорий с помощью студентов, обучающихся по специальности «техник-эколог» в средних специальных образовательных учреждениях. Характер контингента учащихся, а также необходимость популяризации знаний по экологии жилища, как раздела экологической науки, определили доступность изложения материала, а также доступность предлагаемых методик и приборов экспресс-контроля жилья, которые в настоящее время можно приобрести в специализированных магазинах.
Дополнительной целью является изложение рекомендаций по обеспечению безопасности и комфортности жилища от измерения радиации до рационального размещения мебели и оборудования в нем.
Экология жилья тесно связана с экологией человека, с медициной, гигиеной, психологией и культурологией. Автор не углубляется в специальные разделы этих наук, а рассматривает их с точки зрения экологии (которой посвятил сорок лет жизни) и практического использования при оптимизации жилища человека.
В первой главе книги рассматривается характер загрязнения одной из основных сред окружающей среды применительно к жилищу – воздуха. В ней дано описание основных загрязнителей-окислов азота, серы, углерода; фенола, паров ртути, табачного дыма, запахов, бытовой пыли, а также приведены рекомендации по методам простейших измерений концентрации вредных веществ и по улучшению экологической ситуации в помещениях.
Вторая глава посвящена питьевой воде: в ней приведены перечень характеристик воды и ее основных загрязнителей, влияние их на организм человека, а также даны рекомендации по очистке воды, использованию родниковой, серебряной и освященной воды.
В третьей главе рассмотрены физические характеристики жилых помещений: радиация, магнитные и электрические поля, шум, вибрация и освещение квартиры.
Четвертая глава содержит экологические рекомендации и советы по выбору и расстановке мебели и хозяйственного оборудования с целью создания в квартире комфорта и уюта; простейшие методы контроля продуктов питания и некоторые рекомендации по содержанию домашних животных и растений; экологическому воспитанию детей.
Глава пятая является особенной частью книги. Она посвящена проблемам «параэкологии» жилища (термин автора) и представляет интерес для читателей, которые верят во влияние на их жизнь космических сил и тонких миров. В частности, рассмотрены понятия живой и мертвой воды, безопасность зеркал, установленных в квартире, обеспечение комфортности жилья с помощью пирамид, использование отвесов и биорамок для определения благоприятных зон в помещениях.
В приложении приведены перечень предельно допустимых концентраций ряда загрязняющих веществ и эзотерическая карта г. Москвы.
Автор благодарит за неоценимую информационную помощь известных специалистов – экологов: Г. Е. Назарова, В. А. Филина, А. А. Литвиненко, В. И. Хомича; за помощь в оформлении работы Е. И. Николаеву, Т. Я. Голицыну, И. Б. Тихову.
Автор с удовольствием примет замечания и пожелания читателей, которые будут использованы при дальнейшей работе в указанной области.
Введение
Есть такое твердое правило: встал поутру, умылся, привел себя в порядок и сразу же приведи в порядок свою планету.
Антуан де Сент-Экзюпери
В своем доме человек проводит большую часть жизни. Дома он занимается делами, отдыхает, ест, принимает родных и друзей, спит. В доме растут и воспитываются его дети – играют, готовят уроки, получают первые знания о жизни. В доме стареют его родители. Издавна люди стремились сделать свой дом крепче, чище, уютнее, и в этом им может помочь знание основ экологии жилища. Читателю это словосочетание может показаться тавтологией, вроде масла масленого, т. к. в переводе с греческого «экология» и является наукой о доме (вернее, месте пребывания). Однако в настоящее время значение этого термина многократно расширилось; экология жилища выделилась в отдельную часть экологии и в ряде вузов РФ читается специальный курс по этому разделу науки. Для каждого человека, и особенно горожанина, необходимо овладеть минимумом знаний в области экологии жилища.
Автор не допускает мысли, что современный воспитанный человек может в сквере срубить дерево, вырвать куст акации или сломать зеленую ветку: это табу впитывается человеком с молоком матери, но, к сожалению, он зачастую не знает, как и когда посадить дерево, как обезопасить свой дом от интенсивного вторжения в него с улицы газов, пыли и шума, как создать в своем жилище комфорт и уют. К словам известной восточной мудрости о том, что за свою жизнь человек должен родить сына, построить дом и посадить дерево сейчас следует добавить, что он еще должен обезопасить сына (а тем более дочь), обеспечить благоприятные условия для длительного проживания в доме, посадить и вырастить, как минимум, 12 деревьев (лучше – 40) для того, чтобы хоть частично компенсировать их хищническое уничтожение там, где они особенно нужны, – в городе. Если же специальность человека связана с техникой, нужно создать очистное сооружение.
В природе имеются четыре загрязняемые среды: воздух, вода, почва и биота (т. е. все живое). Однако к этому перечню сейчас нужно добавить и еще одну, чрезвычайно важную и сильно загрязняемую среду – душу человека. У каждой среды есть свои, специфические загрязнители. Людям надо знать, как с ними бороться, а чтобы бороться с врагом, его надо знать «в лицо».
Кратко рассмотрим каждую среду с ее загрязнителями применительно к экологии жилища.
Атмосфера квартиры испытывает интенсивное воздействие со стороны улицы. Основными загрязнителями воздуха в квартире являются: пыль различных видов; окислы азота, углерода, серы; пары ртути (не дай Бог, если дети в доме разбивали ртутные градусники); фенол (если на пол постелили новый линолеум или рядом с домом расположен химический завод); радиоактивное излучение; электромагнитные поля; шум и вибрация; метеорологические факторы (температура, влажность, сквозняки). Простейшие измерения концентрации или уровня перечисленных вредностей можно провести с помощью бытовых экологических приборов, а зная экологическую ситуацию в квартире, мы можем ее улучшить.
Вода в квартире – это питьевая вода; она должна соответствовать санитарным нормам. Влиять на качество водопроводной воды мы, к сожалению, не можем, но провести простейшую оценку ее качества, вскипятить, отстоять ее перед употреблением и поставить фильтр мы можем и должны. Это ни много ни мало позволит продлить жизнь нам и нашим родным.
Почва для жилища как экологическая среда не характерна, хотя растениям, украшающим наши подоконники, совсем не безразлично, на какой земле они растут. Учеными разработан прибор, с помощью которого сразу можно определить относительное плодородие почвы в цветочных горшках, а также, когда ее надо удобрять или менять.
Биота – это растения и полезные животные в вашем доме. За цветами, собаками, кошками, птицами и рыбками, естественно, надо с любовью ухаживать, а от мышей, тараканов и других носителей инфекции – избавляться (и то и другое действия экологичны).
Души обитателей квартиры являются очень важным показателем комфортности жилья. Эта среда загрязняется алкоголизмом, табакокурением, злостью, завистью, гордыней. Просто не надо нарушать библейские заповеди и совершать грехи, приведенные в Ветхом и Новом Заветах. В наших домах имеют место еще и объективные параэкологические факторы (в частности, геопатогенные поля); с некоторыми из них можно бороться, а некоторые – учитывать. «Очистные сооружения» для этой среды – храмы, музыка, поэзия, живопись, театр.
Основными характеристиками жилища являются его безопасность, комфорт и уют. Безопасность и комфорт в доме обеспечивает, как правило, мужчина. С помощью простейших приборов он может измерить уровень радиации; мощность электромагнитных полей; концентрацию паров ртути и фенола. Комфорт определяется оптимальной температурой и влажностью воздуха в помещении, отсутствием сквозняков (не надо их путать с проветриванием), минимальным уровнем шума и вибрации, удобными предметами оборудования квартиры. Уют в доме в основном создают женщины. С точки зрения экологии совсем не безразлично, как расставлена мебель в квартире, какие цветовые решения имеют интерьеры, какого цвета шторы на окнах и покрывала на кроватях, в каком состоянии кухня, ванная комната и туалет, в какой мере обеспечена чистота в доме, ухожены ли цветы и животные, чем питается семья, благополучна ли эзотерическая атмосфера жилища и, наконец, правильно ли воспитываются дети.
Учет изложенных ниже рекомендаций по экологии жилища мог бы хоть в какой-то мере облегчить наше существование.
Глава 1. Воздух в квартире
Воздух – это проматерия всего существующего.
Анаксимен из Милета
В энциклопедиях дано определение понятия «воздух». «Воздух – это естественная смесь газов, главным образом азота и кислорода, составляющая земную атмосферу». Это сухое научное определение вещества, самого важного для жизни человека. Когда мы говорим о необходимости чего-либо для нас, мы говорим: «это нужно нам как воздух». И действительно, без пищи мы можем прожить больше месяца, без воды – больше недели, без воздуха (если вы не спортсмен-подводник) – не более минуты. Люди радуются жизни, строят далеко идущие планы, совсем забывая о том, что Богу достаточно остановить поступление воздуха в их легкие всего на одну минуту, и их жизнь прекратится. Об этом великом благе, которое нам дано свыше, не следует забывать никогда.
Сухой воздух состоит на 78 % из азота, на 21 % из кислорода, а на один оставшийся процент приходится много газов: аргон, углекислый газ, водород, озон, аммиак, метан, окислы азота, серы и т. д. Кроме того, в нем всегда содержатся мелкие твердые частицы – пыль (этих частиц в одном кубометре комнатного газа – несколько миллионов). Содержание воды в воздухе может составлять от 0,00002 до 3 %, углекислого газа – от 0,03 %.
За последние два столетия человек сильно засорил и отравил созданный природой идеальный для своего дыхания воздух и главный компонент своей жизни. В воздухе больших городов сейчас уже не 2–3 миллиона пылинок, а 200–300 миллионов, углекислого газа не 0,03 %, а значительно больше, а концентрация таких «зверских» отравителей, как окислы азота и серы, фенол, хлор, аммиак, возросли во много раз.
Атмосферу нашего жилища во многом, если не во всем, определяет атмосфера улицы. Однако есть и некоторые различия между воздухом в квартире и на улице: в частности, в квартире выше содержание углекислого газа (как известно, человек и животные вдыхают кислород, а выдыхают углекислый газ); в воздухе квартиры меньше пыли (особенно у чистоплотных хозяек) и практически отсутствуют хлор и аммиак. Однако в доме, так же как в атмосфере города, воздух загрязняется одними и теми же загрязнителями: окислами азота, серы и углерода, пылью, парами ртути (они, к сожалению, имеют место и в квартирах, например, после того, как ребенок разобьет градусник), полициклическими ароматическими углеводородами, фенолом, хлором, аммиаком, суперэкотоксикантами, табачным дымом, а также запахами. Прежде чем давать характеристику «домовым» (если можно так назвать) загрязнителям, необходимо рассмотреть их основной, общий показатель – это предельнодопустимая концентрация (ПДК). Об этом показателе необходимо знать всем, и школьникам и домохозяйкам: ПДК является показателем безопасности и комфортности жизни человека. ПДК – это максимальное количество вредного вещества в единице объема (или веса), которое при ежедневном воздействии в течение неограниченно продолжительного времени не вызывает в организме человека каких-либо патологических отклонений, а также неблагоприятных наследственных отклонений. Определить значение ПДК очень сложно, и это делают ученые-медики на основании длительных биологических экспериментов.
В Приложении к книге приведены значения ПДК некоторых наиболее распространенных веществ в воздухе, воде и почве. Для оценки воздействия на человека нескольких видов вредных газов должно выполняться условие, определяемое по формуле:
где: CNOx, SO2, CO2 – соответственно реальная (измеренная) концентрация окислов азота, серы, углерода (мг/м3),
ПДКNOx, SO2, CO2 – предельно допустимые концентрации этих газов (мг/м3).
Остановимся поподробнее на этих вредностях, на способах их определения и методах борьбы с ними.
1.1. Окислы азота
В атмосфере находятся, конечно, и более вредные газы (например, хлор или цианиды), но их не так много, как окислов азота. В широком смысле окислов азота минимум четыре (N2O5 так называемый «веселящий газ»), NO, N2O3, NO2 – вместе их объединяют формулой NOx, совместно с окислами серы и углерода этот газ инициирует выпадение кислотных дождей.
Среди «кислых» газов (NОx, SO2 и СО2) окислы азота по вредности занимают «по праву» первое место. Если принять за единицу относительную вредность углекислого газа, то относительная вредность окислов азота составляет 20, а относительная вредность окислов серы – 12.
Оксиды азота обладают высокой токсичностью, но, реагируя с другими веществами, они способны образовывать еще более токсичные соединения, а также фотохимические туманы (смоги). Если переход на сжигание «чистых» с точки зрения загрязнения воздушного бассейна топлив (например, на природный газ) позволяет резко сократить, а иногда полностью устранить все прочие выбросы вредностей, то на сокращение окислов азота это не оказывает существенного влияния. Сказанное ставит этот газ в один ряд с такими мощными загрязнителями окружающей среды, как окислы серы и твердые частицы. Влияние NOx на организм человека показано в табл. 1.
Таблица 1
Раздражающее и обжигающее действие NOx на дыхательные пути приводит к раковым заболеваниям дыхательных органов человека. Уже при концентрации 15 мг/м3 отмечается раздражение глаз, а концентрация 200–300 мг/м3 даже при кратковременном воздействии может вызвать отек легкого.
Реагируя с атмосферной влагой, NOx образует азотную кислоту, которая вызывает интенсивную коррозию металлических сооружений и конструкций. NОх поглощает видимый свет и при концентрации около 0,5 мг/м3 приводит к уменьшению видимости, что может стать причиной аварий на автомобильном, морском и воздушном транспорте. При интенсивном выделении NOx уменьшается количество солнечных дней в году.
Двуокись азота – бурый газ с удушливым запахом является сильным окислителем. Концентрация окислов азота определяется в лаборатории с помощью калориметров, спектрофотометров или электрофотокалориметров. Однако для бытовых нужд для оценки концентрации NOx вполне приемлем экспресс-метод с использованием прибора УГ-2. Этот метод не такой точный, как упомянутые выше, но для того, чтобы обнаружить NОx в доме, его точности достаточно. Сам прибор представляет собой небольшую металлическую коробку с расположенными в ней мехами. Набрав пробу воздуха, меха сжимаются, и выходящий воздух с загрязнителем поступает в индикаторную трубку. По изменению окраски этой трубки судят о наличии NOx в воздухе.
Бороться с этим газом очень трудно, но все же кое-что экологи могут посоветовать; в частности, не открывать окна и двери на балкон в часы пик, когда на улице наиболее интенсивное движение автомашин и максимальная концентрация этого газа. Причем больше всего он выделяется при работе двигателей автомобилей на холостом ходу, а также в пробках и на перекрестках со светофорами или без них. Кроме того, защиту вашего организма от NOх (так же как и от SO2) обеспечит употребление в пищу йодистых соединений.
Если Вы живете у автотрассы, или возле котельных, или ТЭЦ, то летом необходимо вывозить за город детей и по возможности уезжать самим для прочистки ваших легких. Человек, правда, обладает удивительным свойством адаптации к окружающей среде, и бывает, что, выехав за город, вы первое время неважно себя чувствуете, но это быстро проходит. У Аркадия Райкина была шутка о том, что у выхлопной трубы автомобиля человек за городом лучше себя чувствует; в этой шутке есть доля правды.
1.2. Окислы серы
Эти окислы наряду с NOх относятся к наиболее опасным загрязнителям окружающей среды. Они наносят большой ущерб животному и растительному миру, а также сооружениям из металла и камня. В атмосфере образуются аэрозоли серной кислоты, которые при взаимодействии SО2 с водяными парами составляют до 20 % всех взвешенных частиц в городском воздухе. Они не только вызывают кислотные дожди, но и уменьшают видимость на дорогах. Окислы серы активно взаимодействуют с окислами азота, образуя токсические вещества, участвующие в создании фотохимического смога, и их влияние сильнее, чем влияние отдельных компонентов.
Наблюдения показывают, что содержание в воздухе SO2 от 2 до 20 мг/м3 увеличивает время высыхания красок в 2–4 раза, снижает качество и стойкость покрытия. В зависимости от времени воздействия и типа металла скорость коррозии в городской атмосфере в 2–5 раза выше, чем в сельской местности. SО2 считается самым опасным загрязнителем для металлов и различных строительных материалов (известняка, мрамора, шифера, строительных растворов). Особенно чувствительны к этому виду загрязнителя синтетические ткани, в частности нейлоновые изделия.
Наибольший ущерб SО2 наносит растительности, нарушая метаболизм растений в целом. Особенно неустойчивы к его воздействию хвойные и фруктовые деревья. Уже при концентрации 0,9 мг/м3 нарушается процесс фотосинтеза у сосны, ели, клена и по истечении 5–10 суток хвоя рыжеет и опадает.
При содержании SO2 в количестве 1 мг/м2 урожай подсолнечника, кукурузы, гороха, редиса снижается на 14 %, а при количестве 2 мг/м3 – на 26 %.
Известно пагубное влияние оксидов серы на дыхательные пути человека.
В атмосфере оксиды серы способны переходить в сульфаты и серную кислоту, воздействие которых в 5 и 10 раз, соответственно, сильнее, чем воздействие SО2.
Влияние окислов серы на организм человека показано в табл. 2.
В случае отравления окислами серы у человека появляются кашель, слезотечение, боль в груди; при острых отравлениях средней тяжести – головная боль, головокружение, общая слабость; признаки химического отека слизистых оболочек дыхательных путей. Длительное воздействие SO2 может вызвать ринит, крошение зубов, приступы удушья.
Концентрация SO2 в дымовых газах ТЭЦ и котельных полностью зависит от содержания в топливе горючей серы. Так, при сжигании угля в топках до 80 % серы переходит в SO2, а при сжигании жидкого топлива – практически вся сера.
Таблица 2
Окислы серы выделяются главным образом на предприятиях цветной металлургии и нефтепереработки, а также при сгорании дизельного топлива в грузовых автомобилях. Поэтому, выбирая место жительства, по возможности не селитесь около таких заводов и трасс. Так же, как и для определения NOx, для SO2 можно рекомендовать прибор УГ-2, только в индикаторной трубке должны быть помещены реагенты для этого газа.
Способы снижения вредного влияния SO2 такие же, что и для NOx, однако йодотерапия в этом случае более эффективна.
1.3. Окись углерода
Окись углерода (СО) – ядовитый горючий газ без цвета и запаха, легче воздуха. Окись углерода очень стабильна: в атмосферном воздухе она может находиться до четырех месяцев. Суммарное выделение СО – это в результате жизнедеятельности человека – около 300 млн т в год, что, однако, составляет всего лишь 20 % всех выбросов СО, поступающих в атмосферу. Концентрация ядовитого газа в некоторых крупных городах достигает угрожающих величин. СО может способствовать образованию смогов. Воздействие СО на организм человека общеизвестно. Гемоглобин крови имеет в 210 раз большее сходство с СО, чем с кислородом. Таким образом, СО активнее взаимодействует с гемоглобином, образуя карбоксигемоглобин крови, который снижает поступление кислорода к клеткам организма.
При концентрациях СО 11–20 мг/м3 при восьмичасовом его вдыхании у некоторых людей наблюдается ухудшение способности ориентироваться во времени. Концентрация СО в окружающем воздухе до 35 мг/м3 приводит к ухудшению выполнения психологических тестов. Более высокие концентрации СО ведут к психологическим стрессам с сердечными заболеваниями. У некурящих жителей крупных городов концентрация в крови соединений СО в среднем 2 %, у курящих – 5 %. При концентрации более 5 % наступают функциональные изменения в организме человека, вплоть до смерти (80 %).
Обычно верхним допустимым пределом для СО считают 125 мг/м3. Однако большинство людей уже при этой концентрации испытывают головокружение, головную боль и утомление.
Таким образом, концентрация соединений СО в крови должна быть ниже 2 %. При восьмичасовом вдыхании это равновесное их содержание в крови не будет достигаться, если концентрация СО в окружающем воздухе будет менее 10 мг/м3.
1.4. Пыль
Твердые частицы, выбрасываемые через дымовые трубы при сжигании угля заводами, ТЭЦ и котельными, состоят из золовых частиц, несгоревшего топлива (коксовые частицы) и сажи.
При сжигании жидкого топлива образуются нефтяной кокс и сажа; при сжигании газового топлива – сажа.
Максимальный размер золовых частиц может достигать 500 мкм, минимальный – до 1 мкм. Частицы размером до 1 мкм образуются в атмосфере в результате конденсации, размером более 1 мкм могут образовываться в топках котлов в процессе горения топлива.
Зола, обладая свойством слипания, в большинстве случаев образует довольно крупные частицы. Фазово-минералогические исследования состава золы различных топлив показали, что основой всех ее видов является стекло: кристаллическая фаза – кварц, гематит, магнетит и различные силикаты кальция. В золе почти всегда присутствуют частицы несгоревшего топлива, которые имеют более крупные размеры. В этом случае состав таких частиц более сложен. В их состав входят соединения серы, углерода, водорода.
В настоящее время в крупных городах на предприятиях сжигается газ. В крупных котельных системы золоулавливания и высотные трубы в значительной мере позволяют уменьшить выбросы частиц в атмосферу. Для отопительных и коммунально-бытовых котельных оптимальным вариантом также можно считать перевод их на газообразное топливо. В этом случае можно достичь снижения выброса частиц в 100–200 раз по сравнению с твердым топливом при отсутствии золоуловителей. При сжигании жидкого топлива образуются мелкодисперсный нефтяной кокс и сажа, обладающие высокими токсическими свойствами.
При медленном разложении из сажи выделяется бенз(а)пирен. Принято считать, что сажа в чистом виде представляет собой продукт конденсации углерода, а мелкодисперсный кокс образуется в процессе сжигания жидкого топлива путем конденсации и полимеризации в основном тяжелых углеводородных соединений и содержащихся в мазуте карбенов и карбомидов. Опасные свойства сажи объясняются, видимо, присутствием в ней (или входящих в ее состав) сложных углеводородов типа бенз(а)пирена.
Образование и рост сажевых частиц зависят прежде всего от наличия достаточного количества окислителя в зоне горения, а также способа и качества смешения топлива с окислителем (воздухом).
Несмотря на то, что частицы сажи составляют менее 10 % общей массы техногенных загрязнителей атмосферы, ущерб от этого загрязнителя существен. Твердые частицы причиняют вред здоровью человека, поражая легкие, способствуют повышению скорости химических и фотохимических реакций в атмосфере, уменьшают прозрачность воздуха, увеличивают количество осадков и туманов, изменяют температурный уровень среды, отрицательно влияют на почву и растительность.
Степень воздействия пыли во многом зависит от размера частиц и их концентрации, а также химического состава. Главным образом загрязняют атмосферу частицы размерами от 0,1 до 10 мкм. При размерах менее 0,1 мкм частица проявляет свойства молекулы, частицы размером от 1 до 20 мкм могут длительное время находиться в атмосфере, следуя потокам воздуха. При размерах более 20 мкм время витания частиц незначительно и они быстро выпадают на землю.
При исследовании атмосферы городов было обнаружено, что частицы размерами до 1 мкм составляют не более 3 % массы всех частиц, в то время как количество этих частиц очень велико.
Подобные частицы способны проникать в легкие, в связи с чем существенную роль приобретают методы подавления выделения именно таких частиц. Попадая в атмосферу, они играют роль ядер конденсации, влияющих на образование облаков, дождя, снега.
Между интенсивностью выбросов частиц и количеством дождей имеется прямая зависимость: в промышленных городах в воскресные и нерабочие дни уменьшается количество осадков.
Взвешенные частицы сами по себе могут быть химически инертными или активными. Они способны поглощать химически активные вещества или образовывать химически активные соединения и вызывать токсический эффект, если частица токсична вследствие своего химического или физического строения, препятствует физиологическим процессам очистки респираторного тракта или является носителем токсичного вещества.
Инертные частицы загрязняют территории городов, фасады зданий и сооружений, внутренние помещения, а также одежду и ткани.
Частицы пыли вызывают коррозию металлов либо непосредственно, либо за счет воздействия разъедающих химических веществ, входящих в ее состав.
В настоящее время еще недостаточно изучен вопрос о влиянии твердых частиц на растительность. Однако установлено, что цементная пыль, образуя корки на листве, приводит растения к гибели, а окислы магния, попадая в почву, замедляет рост растений.
При общем загрязнении воздушного бассейна множеством загрязнителей трудно определить влияние на окружающую среду того или иного компонента отдельно. В табл. 3 приводятся ориентировочные американские данные о влиянии взвешенных частиц на человека и среду.
Следует отметить, что большинство мелкодисперсных частиц обладает канцерогенной активностью.
К изложенному выше можно добавить, что частицы пыли накапливаются в местах интенсивного сжигания топлива, в том числе моторного в двигателях автомобилей, и наиболее опасны зимой, когда для обогрева жилища в холодных странах, к которым относится Россия, приходится сжигать больше топлива. От автомобилей до последнего времени выделялось много свинца, входящего в состав бензина. В настоящее время от этой составляющей топлива (тетраэтилсвинца) многие развитые страны отказались. В состав пыли могут входить никель, кадмий, бериллий; но они, к счастью, относительно редки; зато волокна асбеста, обладающие, как известно, канцерогенными свойствами, в городской атмосфере встречаются повсеместно. Пыль может быть и радиоактивной. Это следствие испытаний ядерного оружия и ядерных катастроф. Пыль «дарит» нам улица, но есть аэрозоли, которые характерны и для дома. Применяемые в квартире аэрозоли, растворители красок и асбестовая изоляция содержат в себе хлориды метилена, являющиеся канцерогенами.
Таблица 3
Часто так называемая «бытовая» пыль вызывает аллергию. Например, дочь автора в детстве часто испытывала боли в носоглотке, но после удаления из квартиры по требованию врача коллекции сурьмяных минералов (гордости хозяина), почувствовала себя значительно лучше. Другой пример – соседка автора очень страдала от аллергии на бытовую пыль и почувствовала себя значительно лучше только после приобретения и применения мокрого пылесоса.
Измерить содержание пыли в воздухе квартиры очень трудно, так как известно, что это величина переменная. Однако для этих целей вполне можно применить один из пылемеров, например ПРИЗ-2, выпускаемый отечественной промышленностью. По заказам населения подобную работу может, в частности, проводить фирма «Экосервис».
1.5. Табачный дым
Табачный дым в квартире является реальной угрозой здоровью людей, причем не только курящих, но и вдыхающих табачный дым «пассивных курильщиков». О вреде табака написано и рассказано очень много. Еще в 1607 году английский король Яков сказал, что «курение табака – это привычка, противная зрению, невыносимая для обоняния, вредная для мозга, опасная для легких».
Рассмотрим эту беду с точки зрения экологии жилища.
В условиях интенсивного загрязнения атмосферы на улице и воздуха в квартире курение приводит к двойной атаке на организм человека. Это воздействие не суммируется, а имеет более усиленное вредное воздействие, так как вещества, содержащиеся в табаке, и промышленные загрязнители вступают между собой во взаимодействие и продукты реакций при этом во много раз вреднее, чем взятые в отдельности. Многие цивилизованные страны объявили войну курению табака: имеются данные, что число курящих мужчин снизилось в США с 51 %(1965 г.) до 30 % (1990 г.), женщин – с 32 % до 28,5 %. Известны данные, что у нас увеличение потребления сигарет на душу населения в процентах к среднемировому уровню в 1984 году составляло 150 %.
В табачном дыму в парообразной и твердой фазах содержатся и окись углерода (CO), окислы азота, цианистый водород, акролеин, ацетальдегид, формальдегид, гидразин, хлористый винил, уретан, 2-нитропропан, хинолин, нитрозамин, карбонил никеля, бенз(а) пирен, 5-метил-хризен, полоний-210, кадмий. Автор подробно привел содержание вредностей в табачном дыму специально, чтобы обратить внимание читателей на то, что они вдыхают и когда курят, и когда находятся в табачном дыму. Дело не в том, что один грамм никотина убивает лошадь и не в том, что так ей и надо, пусть не курит, а дело в том, что весь «букет» приведенных выше вредностей действительно очень опасен для здоровья человека.
Биохимический механизм процесса восприятия никотина таков, что наш «глупый» организм охотнее воспринимает эту гадость, чем, например, запах фиалки или сирени. Окисью углерода связывается гемоглобин крови (6 % от одной пачки сигарет в день), и в крови образуется новое опасное вещество – карбоксигемоглобин (10 %). Это приводит к снижению быстроты реакции, внимания, остроты зрения, повышает утомляемость организма. Но еще хуже другое – в табачном дыму содержатся страшные враги человека: суперэкотоксиканты, мышьяк, свинец, кадмий, никель, концентрированные смолы; которые поступают в организм человека в дополнение к пище и которые являются канцерогенами и мутагенами. Каждый грамотный человек знает, что они стимулируют возникновение раковых опухолей и отрицательно влияют на потомство человека. Общеизвестно, что курение приводит к 10-кратному повышению вероятности рака легких, который уносит сотни жизней в год, он более характерен для мужчин, но разница с женщинами и здесь неуклонно сокращается.
Ученые медики считают, что восемь случаев рака легких из десяти – результат курения. По данным Национального онкологического института США, человек, выкуривающий 2 пачки сигарет в день в течение года подвергает свои легкие в 19 раз большему воздействию бенз(а)пирена, чем если бы он дышал загрязненным воздухом Лос-Анджелеса в течение года. Кроме легких, у курильщиков поражаются и другие органы и ткани и создаются условия для образования опухолей в полости рта, в глотке и гортани, а также в пищеводе, поджелудочной железе и мочевом пузыре. На втором месте стоит возникновение коронарной недостаточности: вероятность инфаркта у курильщиков в два раза выше, чем у некурящих. Это объясняется резким повышением содержания холестерина в крови и повышенного артериального давления независимо от пола «самоубийцы». У лиц, страдающих стенокардией и «грудной жабой», от окиси углерода часто увеличиваются грудные боли.
При коронарной болезни страдает кровоснабжение сердца; а следовательно, доставка к нему кислорода снижается; окись углерода усугубляет ситуацию, так как препятствует переносу кислорода из крови в ткани человека. Таким образом, воздействие окиси углерода (а возможно, и вдыхание никотина) повышает вероятность инфаркта миокарда у лиц с коронарной недостаточностью. Систематическое поступление в организм окиси углерода способствует развитию атеросклероза, а следовательно, и коронарной болезни и инфаркта миокарда. По данным вскрытий, у курящих в любом возрасте атеросклероз выражен сильнее, чем у некурящих; опытами на животных также установлено, что окись углерода повышает содержание холестерина в крови и вызывает развитие атеросклероза.
Неудивительно, что у курящих резко повышена частота заболеваний дыхательных путей, – хронического бронхита и эмфиземы. Эти болезни, ежегодно убивающие десятки тысяч и калечащие еще большее число людей в Европе и Северной Америке, только в текущем столетии были признаны проблемными. Двойная атака на легкие загрязненного воздуха и табачного дыма, безусловно, объясняет постоянно возрастающую частоту заболеваний дыхательных путей. Но главным виновником, по-видимому, остается табак. Число случаев смерти от хронического бронхита и эмфиземы среди курящих в 5 раз больше, чем среди некурящих.
Добровольное вдыхание угарного газа и канцерогенов – это одно; выброс их в воздух, которым дышат люди, – совсем другое. В накуренной комнате или машине некурящие люди вдыхают смолистые вещества, никотин и угарный газ так же, как и сами курильщики, и у тех и у других происходят изменения в крови. Таким образом, дым, выпускаемый курильщиками, влияет и на сердце некурящего. При исследовании, проведенном в одном плохо вентилируемом кафе в Кливленде, было установлено, что за восьмичасовую смену буфетчики вдохнули такое количество вредного дыма, как если бы они выкурили за то же время 36 сигарет.
Потенциально наиболее трагические жертвы сигарет – дети курящих матерей. У таких матерей чаще, чем у некурящих, рождаются дети с недостаточным весом, и они нередко погибают при рождении или в первые месяцы жизни. Если условия среды в общем благополучны, курение матери может не повлиять на здоровье ребенка. Но в сочетании с другими факторами, угрожающими новорожденному: ограниченное и однообразное питание, недостаточное количество материнского молока или его недостаточная питательность, – курение матери почти вдвое повышает вероятность смерти младенца в первый месяц жизни. Более того, независимо от веса новорожденного дети курящих матерей чаще страдают от бронхита, пневмонии и других респираторных заболеваний.
В настоящее время имеются достоверные научные данные о чрезвычайно вредном влиянии курения на женский организм и плод, особенно в предродовой и послеродовой периоды. При чтении цикла лекций «Экология женщины» автор постоянно подчеркивал, насколько опасно курение для матери. Девушке, собирающейся заводить ребенка, необходимо отказаться от этой вредной привычки за полгода до зачатия, и об этом будущая мать должна быть предупреждена.
Автор работает в колледже с подростками 16–19 лет. Подростки часто начинают курить, чтобы казаться взрослыми, а затем эта пагубная привычка остается, как привычка к наркотику. Курение так же, как алкоголизм и наркомания, относится к «химической зависимости».
Простейшие опыты, проводимые автором в аудитории, имели не столько научный, сколько воспитательный характер. Например, бытовым радиометром Белла студенты определяли радиоактивный фон на поверхности стола, затем на это место клали пачку сигарет и измерения повторялись. Во всех без исключения случаях радиоактивный фон увеличивался на 10–30 %, причем при анализе зарубежных сигарет он был выше, чем отечественных. Второй опыт – ученик укладывался горизонтально, и у него на теле в районе печени измерялся радиационный фон; всегда у курящего студента этот фон был выше, чем у некурящего. Это только косвенные доказательства вреда курения, но они очень наглядны и поучительны.
Весьма важна проблема пассивных курильщиков – людей, невольно вдыхающих дым табака. Их восприятие этой вредности несколько ниже, чем у горячих курильщиков, но и они от этого страдают.
Американский ученый Экхольм пишет: «необходимость уменьшить риск заболевания от курения для лиц, только вдыхающих табачный дым, безусловно превышает индивидуальное «право» на курение в общественных местах».
Каковы же пути снижения воздействия экологической вредности табачного дыма на чистоту атмосферы жилья?
Это – ограничение курения с использованием всех воспитательных средств (антиреклама, надписи на пачках сигарет, индивидуальная работа с подростками, выпуск сигарет с пониженным содержанием токсикантов), недопущение курения в самой квартире, проветривание помещения.
1.6. Другие загрязнители воздуха в жилых помещениях
Кроме приведенных выше загрязнителей воздуха, для дома характерны еще пары ртути, формальдегид, хлор, аммиак, радон.
Остановимся на них подробнее. Пары ртути попадают в жилище, главным образом при разбивании градусников детьми. К сожалению, отечественная медицинская промышленность выпускает в основном ртутные градусники, хотя общеизвестно, что спиртовые и датчиковые градусники значительно безопаснее. Ртуть является очень коварным загрязнителем: ее пары очень устойчивы, из организма они выводятся с большим трудом; ртуть имеет свойство накапливаться в организме человека, т. е. она обладает коммулятивными свойствами. Этот опасный враг может затаиться в щелях полового покрытия жилья и отравлять жильцов долгое время.
Вдыхание паров ртути вызывает тяжелые поражения дыхательных путей и внутренних органов. При поражении организма этим «боевым» отравляющим веществом появляются повышенная возбудимость, гипертонический синдром, отеки легких.
Концентрацию паров ртути в помещении можно определить с помощью приборов АГП-01 (анализатор газортутный переносной) или ртутнометрическим комплексом УКР-1МС (переносной комплект). Работу с этими приборами должны проводить обученные специалисты, а приборы должны быть проверены. В каждом городе имеется служба «ртутной безопасности», в которую жильцы могут обратиться в случае подозрения загрязнения дома парами ртути. В Москве такими службами являются фирмы «Экосервис» и «Радон».
Методы борьбы с ртутным загрязнением жилья могут физическими (тщательный сбор ртутных шариков с помощью магнита и тонкого совка, а также проветривания) или химическими (обработка загрязненных ртутью помещений с помощью четыреххлорного железа).
Формальдегид – это смола, постоянно выделяющая пары. Формальдегид, к сожалению, получил широкое распространение при изготовлении мебели из прессованных синтетических и древесностружечных плит. Он обладает специфическим запахом, что облегчает его распознавание. Но со временем жильцы привыкают к этому запаху и «забывают» о нем. Концентрация формальдегида в помещении со временем ослабевает, но за эти 1,5–2 года можно получить серьезное отравление.
Формальдегид вызывает головные боли, тошноту, раздражает верхние дыхательные пути. При его постоянном вдыхании возможно возникновение рака носа или горла. При интенсивном отравлении возникают слезотечение, жажда, кашель и одышка; острое отравление формальдегидом вызывает судороги, расширение зрачков, поражение почек и печени.
Определить наличие в доме этого загрязнителя не трудно: оно может быть экспертным, т. е. проводиться по интенсивности запаха.
Методы борьбы с этим газом бывают организационные (по возможности не покупать древесностружечную или синтетическую мебель) и механические (следить за состоянием поверхности мебели и постоянно покрывать лаком места отслоения ДСП, предотвращая попадание паров в воздух жилья, а также вентилировать (или проветривать) помещения).
Радон является радиоактивным газом. Он просачивается в дома из почвы и отравляет, главным образом, нижние этажи зданий (первый и второй); в каждом доме содержится радон в составе воздуха. Наиболее характерен радон для домов, построенных на грунтах, под которыми находились свалки или «чеки» полей аэрации. Такие места в Москве находятся, например, в Люблино и Марьино, а за городом – в Люберцах. Этот газ не имеет ни запаха ни цвета. Естественно, его выделения зависят от температуры почвы, т. е. наиболее интенсивно он выделяется летом.
Радон является сильным канцерогеном и мутагеном.
Выявление загрязнения жилья радоном – сложный процесс, проведение которого под силу только опытным специалистам, вооруженным современными прецезионными радиометрическими приборами. Причем для этих измерений необходимо герметизировать помещения на нижних этажах не менее чем на месяц. Эту работу можно заказать фирме «Радон» и ее филиалам.
Несмотря на сложность и дороговизну определения наличия радона в помещении, эти измерения необходимо проделывать в нижних этажах домов, построенных на опасных грунтах.
Основной метод борьбы с радоном – проветривание (и проживание летом на даче). К сожалению, местожительство в городе человек зачастую не выбирает, а селится там, где ему дают квартиру.
Хлор – чаще всего «гость» с улицы, но возможно и внутренняя генерация этого газа в квартире (при чистке помещений общего пользования хлорсодержащими препаратами, при отбеливании белья и т. д.).
При вдыхании хлора появляются резь в глазах, слезотечение приступообразный кашель, боль в груди, головная боль; – в легких – хрип, тяжелая одышка, поражение слизистых оболочек. Возможна тяжелая бронхопневмония с повышением температуры и развитием токсических отеков легких. Именно хлор был применен в первую мировую войну в качестве боевого отравляющего вещества.
Этот газ имеет резкий запах, и его определение не представляет труда, тем более что загрязнение им помещений, как правило, носит временный характер в силу его летучести. Регулярное попадание хлора в квартиру, например, если она расположена рядом с заводом (особенно при аварийных выбросах) – это уже беда.
Борьба с хлором может быть пассивной (отказ от хлорсодержащих моющих веществ) и активной (интенсивное проветривание, если этот газ находится внутри помещения).
Аммиак появляется в доме при использовании в нем едких щелочей, а также при разложении органических веществ из пищевых отходов.
Так же как и хлор, «наружный» аммиак очень опасен. Постоянное вдыхание аммиака приводит к реактивному перитониту и сужению пищевода, а также к кровотечениям и пневмонии.
Аммиак обладает резким запахом, и его наличие в воздухе жилья нельзя спутать ни с чем.
Защита от аммиака может состоять как в отказе от применения в хозяйстве едких щелочей, так и в выполнении гигиенических правил на кухне, а также в проветривании помещений.
1.7. Суперэкотоксиканты
Суперэкотоксиканты являются новой химической опасностью для человека. Эти вещества отличают очень высокие токсические свойства и установленные для ПДК – очень малы, т. е. они вредно воздействуют на человека даже на молекулярном уровне. Само название говорит об их необычайной опасности.
Источниками суперэкотоксикантов являются природные явления (пожары, вулканическая деятельность) и антропогенное загрязнение (производственные процессы сжигания органики при недостатке кислорода, применение пестицидов и гербицидов, автотранспорт, химическое, металлургическое, целлюлозно-бумажное производства, утилизация, в том числе неграмотное сжигание отходов, использование полимеров, красителей, минеральных удобрений, моющих средств, недоброкачественные пищевые продукты и радионуклиды). Мощным источником суперэкотоксикантов является табачный дым.
Суперэкотоксиканты весьма разнообразны, но основными из них являются полициклические ароматические углеводороды (ПАУ), различного типа диоксины и бифинилы, хлорорганические пестициды (ХОП), нитрозоамины и афиотоксины, радионуклиды и тяжелые металлы.
В рамках этой книги, по-видимому, не следует рассматривать химизм процессов возникновения и вредного воздействия на человека этих суперзагрязнителей, но представление о них с точки зрения экологии жилья все-таки каждый житель города (да и деревни) должен иметь.
ПАУ выбрасываются в атмосферу, главным образом, автотранспортом и поэтому распространены повсеместно. Наиболее опасные из них: бенз(а)атрацен, дибенз(а)пирен и бенз(а)пирен. Их сравнительная канцерогенная активность в десятки раз превышает активность сажи или асбеста. Ультрафиолетовое излучение солнца усиливает их активность; они взаимодействуют с озоном, NOх и другими оксидантами, интенсивно мигрируют в природных водах и донных отложениях; они поступают в организм человека не только с вдыхаемым им воздухом, но и с пищевыми растительными и мясомолочными продуктами и рыбой.
Суперэкотоксикантом условно является также фенол, который обладает психотропным воздействием на человека.
Диоксины – полихлорированные вещества (дибензо-п-диоксины, дифензофураны, бифенилы). Даже небольшое их количество в воздухе может быть опасным для человека: они остро токсичны, отрицательно влияют на генетический аппарат человека, участвуют в биохимических процессах на клеточном уровне, подавляют иммунную систему человека. Особенно опасны диоксины, содержащиеся в грудном молоке кормящих матерей. Эти вещества аномально устойчивы к температуре и в организме человека чаще всего концентрируются в подкожном жире. При постоянном воздействии диоксинов человек может заболеть редкой болезнью – хлорокне.
ХОП обладают такими физико-химическими свойствами, что в организме человека и животных они накапливаются в сверхвысоких концентрациях, т. е. из организма их вывести очень трудно. А виной всему – постоянное стремление к повышению урожайности сельскохозяйственных культур. Пестициды накапливаются в водных объектах, илистых отложениях, почве и лесной подстилке. Причиной повышения воздействия ХОП является зачастую эрозия почв, и страдают от пестицидов жители сельских поселков еще в большей степени, чем горожане.
Нитрозамины и афлотоксины возникают главным образом при длительном (и неправильном) хранении и переработке продуктов питания. Нитраты и нитриты в продуктах превращаются в N-нитрозосоединения, которые являются канцерогенами, и, что особенно опасно для человека, обладают эмбриотоксическими свойствами, вызывая у зародышей т. н. хромосомные аберрации. Дополнительными источниками нитрозаминов являются предприятия по изготовлению лекарственных препаратов и антибиотиков. Афиотоксины выделяются микроскопическими плесневыми грибами, являясь гепатропными ядами, вызывающими рак печени.
Тяжелые металлы в небольших количествах даже полезны для здоровья человека. Но если их (или их солей) в природных средах накапливается слишком много, то они становятся ядовитыми.
К тяжелым металлам относятся: свинец, кобальт, сурьма, ванадий, хром, олово, медь, цинк, никель, кадмий, марганец и др.
Об одном из них, наиболее характерном для жилища (ртути), речь шла выше. В живых организмах тяжелые металлы могут подвергаться детоксикации, но некоторые металлы (например, свинец) обладают коммулятивными свойствами и из организма человека выводятся с трудом.
Тяжелые металлы генерируются, главным образом на производстве, а затем в газообразной форме и в виде аэрозолей концентрируются в атмосферных осадках, в природных водах, в почвах и в биоте. Определить их концентрацию в воздухе жилого помещения практически невозможно.
Все перечисленные выше виды суперэкотоксикантов, к счастью, находятся в атмосфере улицы, как правило, в незначительных количествах. Исключение составляет воздух около мусоросжигающих заводов, строительство которых без принятия гарантированных мер безопасности запрещено, и в местах захоронения промышленных и бытовых отходов. Измерить концентрацию суперэкотоксикантов в бытовых условиях не представляется возможным, а из методов борьбы с ним и можно рекомендовать следующее: жить подальше от их источников, проветривать помещения, применять кондиционеры, озонаторы и люстры Чижевского (см. ниже).
1.8. Запахи в квартире
Для квартиры характерны два экологических аспекта: безопасность и комфорт. Запахи определяют именно комфорт, или удобство жилья. На основании результатов обследования городского жилья химики определили место запахов в жилых зданиях. Основные бытовые запахи приведены в таблице 4.
Таблица 4
Из таблицы видно, что в квартирах с газовыми плитами почти все пахнущие выбросы выше, чем в квартирах с электроплитами.
Кроме описанных выше аммиака и формальдегида, неприятные бытовые запахи определяются выделением в первую очередь сероводорода, который пахнет тухлыми яйцами; метилмеркаптана, диэтилсульфида и диметиламина (туалет); пропиламина (ванна); аммиака (кухня). Значительная концентрация сероводорода помимо неприятных ощущений может у человека вызывать кашель, резь в глазах, тошноту, возбуждение, а в тяжелых случаях токсический отек легких. В ванной и на кухне появляются неприятные запахи от применения синтетических поверхностно-активных моющих средств. Кроме того, давно замоченное белье выделяет запах метилмеркаптана.
Общепринятыми и эффективными средствами от дурных запахов являются проветривание помещений и применение кондиционеров, озонаторов и люстр Чижевского.
Работа газовых плит не должна длиться более двух часов подряд. Очень плохо, что у некоторых хозяек горелки на кухне горят непрерывно, как для тепла, так и для сушки белья. Если горелка дает желтое пламя, то надо вызывать специалиста газовика. Конфорки с высокими ребрами лучше, чем обычные. Не следует перегружать плиту кастрюлями, нельзя допускать перелива содержимого кастрюль через край. Кухню, естественно, следует проветривать чаще, чем другие комнаты в квартире. Следует помнить, что сажа от сгоревших продуктов является канцерогеном.
1.9. Микроклимат в жилых помещениях
Как известно, экология и метеорология связаны между собой теснейшим образом, поэтому микроклимат квартиры, безусловно, влияет на ее экологическую ситуацию и на здоровье ее обитателей.
Основными метеорологическими параметрами в помещении являются температура, влажность и давление воздуха в нем; скорость воздушных потоков (сквозняки) и уровень инсоляции (солнечного света). Давление в помещении такое же, что и на улице, и влиять на него люди не могут; инсоляция как вид излучения будет рассмотрена в 3-й главе, а остальные три параметра стоят того, чтобы на них остановиться подробнее.
По определению, приведенному в ГОСТ 12.1.005–76, микроклимат помещений – это климат внутренней среды этих помещений, который определяется действующими на организм человека сочетаниями температуры воздуха t(°С), относительной влажности В (%) и скорости движения воздуха на рабочем мосте v (м/с), а также температурой окружающих поверхностей.
Человек постоянно находится в процессе теплового взаимодействия с окружающей средой. Для того чтобы человек чувствовал себя хорошо, необходимо, чтобы выделяемое организмом тепло отводилось в окружающую среду. Соответствие между количеством этого тепла и охлаждающей способностью среды характеризует ее как комфортную. При благоприятных сочетаниях параметров микроклимата человек испытывает состояние теплового комфорта, что является важным условием высокой производительности труда и предупреждения заболеваний.
Организм человека обладает способностью сохранять постоянство температуры тела в зависимости от изменения метеорологических условий внешней среды и тепла, выделяемого телом человека в процессе работы. Эта способность получила название терморегуляции организма.
Отдача тепла организмом человека в окружающую среду происходит в результате теплопроводности через одежду, конвекции у поверхности тела, излучения на окружающие поверхности, испарения влаги с поверхности кожи.
Количество тепла, отдаваемое организмом человека различными путями, зависит от величины того или иного параметра микроклимата. Отдача тепла с поверхности тела путем конвекции и излучения зависит от температуры окружающего воздуха и скорости его движения, а отдача тепла за счет испарения – от относительной влажности и скорости движения воздуха.
Высокая температура воздуха в помещении (26–30 °C) способствует расширению кровеносных сосудов кожи; при этом происходит повышенный приток крови к поверхности тела, теплоотдача в окружающую среду значительно увеличивается и осуществляется в основном за счет конвекции и излучения. Суммарная отдача тепла излучением и конвекцией при температуре воздуха 30 °C становится равной отдаче его испарением. В нормальных условиях с потом организм теряет в сутки около 0,6 л жидкости.
При тяжелой физической работе и температуре воздуха более 30 °C количество теряемой организмом жидкости может достичь 10–12 л. В этом случае наступает нарушение терморегуляции организма, что может привести к его перегреву, особенно если потеря влаги с потом в день составляет 5 л или более. При этом наблюдаются нарастающая слабость в организме, головная боль, шум в ушах, искажение цветного восприятия (окраска всего в красный или зеленый цвет), тошнота, рвота, повышается температура тела. Дыхание и пульс учащаются, артериальное давление вначале возрастает, затем падает. В тяжелых случаях может наступить тепловой удар. В этих условиях тело теряет вместе с влагой большое количество соли, играющей важную роль в жизнедеятельности организма.
Перегрев организма сильно сказывается на состоянии нервной системы и работоспособности человека. Особенно неблагоприятные условия возникают в том случае, когда наряду с высокой температурой в помещении наблюдается повышенная влажность, ускоряющая возникновение перегрева организма. Установлено, что к концу 5-часового пребывания в доме с температурой воздуха около 31 °C и влажностью более 80 % работоспособность снижается на 60 %.
При понижении температуры окружающего воздуха реакция человеческого организма иная: кровеносные сосуды кожи сужаются, приток крови к поверхности тела замедляется и отдача тепла конвекцией и излучением уменьшается. Наблюдается местное и общее охлаждение организма, которое является причиной многих заболеваний (невриты, радикулиты и др.), особенно простудных. Любая степень охлаждения характеризуется снижением частоты сердечных сокращений и развитием процессов торможения в коре головного мозга, что ведет к уменьшению работоспособности.
Влажность воздуха также оказывает большое влияние на организм человека. Различают абсолютную, максимальную и относительную влажность воздуха. Абсолютная влажность А – это масса водяных паров, содержащихся в данный момент в объеме воздуха какого-либо помещения, максимальная М – максимально возможное содержание водяных паров в воздухе при данной температуре. Относительная влажность В определяется отношением абсолютной влажности А к максимальной М и выражается в процентах:
В = (А /М) 100.
Повышенная относительная влажность воздуха в помещении (более 85 %) затрудняет терморегуляцию организма, так как отдача тепла путем испарения пота с поверхности тела будет крайне затруднена. Особенно неблагоприятные условия для терморегуляции организма наступают в том случае, когда наряду с повышенной влажностью в помещении отмечается также и высокая температура (более 30 °C); при этом наступают быстрое утомление, расслабление организма и сокращение потовыделения. Нарушение терморегуляции ведет к тяжелым последствиям: головокружению, тошноте, потере сознания, тепловому удару.
Повышенная относительная влажность воздуха в сочетании с низкими температурами приводит к охлаждению организма, что отрицательно влияет на общее состояние человека и его работоспособность. Относительная влажность менее 25 % также неблагоприятна для человека, так как приводит к высыханию слизистых оболочек и снижению защитной деятельности дыхательных путей.
Движение воздуха в помещении является важным фактором, влияющим на тепловое самочувствие человека. В жарком помещении движение воздуха способствует увеличению отдачи тепла организмом и улучшает его состояние. В то же время большая скорость движения воздуха, особенно в условиях низких температур, вызывает увеличение тепловых потерь конвекцией и испарением и ведет к сильному охлаждению организма. Особенно неблагоприятно действует сильное движение воздуха при работах на открытом воздухе в зимних условиях. Минимальная скорость движения воздуха, ощущаемая человеком, составляет 0,2 м/с. В зимнее время года скорость движения воздуха не должна превышать 0,2–0,5, а летом 0,2–1,0 м/с.
Кондиционирование воздуха в жилых помещениях предназначено для придания ему комфортных температурно-влажностных характеристик. Оно позволяет нагреть или охладить воздух, осушить или увлажнить его и обеспечивает автоматическое поддержание требуемых параметров.
К вентиляции помещений предъявляются следующие требования:
1. Система вентиляции должна обеспечивать необходимый воздухообмен и поддерживать правильное соотношение между количеством удаляемого и подаваемого воздуха.
2. Вентиляция не должна вызывать перегрев или переохлаждение работающих и должна обеспечивать необходимый качественный состав воздуха. Это достигается правильной организацией подачи и удаления воздуха.
3. Вентиляция сама не должна являться дополнительным источником опасных и вредных факторов, т. е. должны быть обеспечены необходимые меры электробезопасности; шум и вибрация вентилятора и кондиционера не должны превышать допустимых уровней.
4. В квартире должны быть обеспечены надежность и долговечность работы системы вентиляции и простота ее обслуживания.
1.10. Люстра Чижевского
Люстра Чижевского должна быть в каждом доме. Это великолепное достижение человеческого ума, способное во многом снизить вредное влияние на человека окружающей среды, улучшить воздух в квартире, вылечить от заболеваний и продлить срок жизни обитателей дома.
Выдающегося русского биофизика Александра Леонидовича Чижевского американцы называли «Леонардо да Винчи ХХ века»; его выдвигали кандидатом на Нобелевскую премию, но на родине он был репрессирован и на 16 лет сослан в сталинские лагеря («нет пророка в своем отечестве»). Чижевскому англичане предлагали огромные деньги за патент на его знаменитую люстру, но он передал ее в безвозмездное пользование СССР.
Воздух в помещении не только загрязнен пылью и загазован, он еще и содержит большое количество положительных ионов. Источником положительных ионов являются телевизоры, компьютеры, (что особенно актуально) и кондиционеры. Эти приборы притягивают к себе отрицательные ионы и поглощают их. А клетки человеческого организма очень нуждаются в отрицательных ионах, которые быстрее утрачивают свой электрический заряд, что приводит к «аэроинному голоду» и в конечном счете к различным болезням.
По нормам Санэпиднадзора (СНИП № 2153–80) в кубическом сантиметре воздуха должно быть не менее 3000 отрицательных аэроионов. Допустимый для нормальной жизни минимум – 600 аэроионов. Но, как показали недавние исследования ученых Института имени Н. В. Склифосовского, в кубическом сантиметре воздуха наших квартир и офисов их намного меньше – 20–80. Такая ситуация близка к катастрофе. Открытие окон не поможет, т. к. за окном полезных аэроионов ненамного больше; смог автомобилей уничтожает их. Чижевский предложил средство против «аэроионного голода», которое до сих пор считается идеальным. Он изобрел люстру, которая за несколько минут гарантированно насыщает воздух огромным количеством целебных аэроионов. В каждом кубическом сантиметре их образуется не менее 20 тысяч.
Люстра Чижевского представляет собой чаще всего шаровидную конструкцию, состоящую из узких полосок со множеством иголок на них. На иголки подается ток высокого напряжения, но малой силы (люстра электробезопасна, студенты-экологи не раз проверяли это на себе). Кислород воздуха заряжается от этих ионов отрицательными зарядами, и в помещении образуется «горный воздух». Автор занимается альпинизмом и не раз на себе испытывал воздействие горного воздуха, который вызывает эйфорию.
В Московском политехническом колледже проводились простейшие испытания люстры Чижевского. К сожалению, из-за отсутствия специального аэроиономера количество отрицательных аэроионов не измерялось, но приборами оценивались «качество» кислорода, уровень радиации, электромагнитные поля и количество вредностей в аудитории до и после включения люстры Чижевского. Это позволило в дисциплину «Мониторинг загрязнения природной среды» ввести новую лабораторную работу. Учащиеся и преподаватели оценили пользу этого великолепного прибора, его включение во время экзаменов повышало уровень оценок студентов.
Панацеей от всех болезней люстра Чижевского не является, но она очень рекомендуется для лечения десятков массовых заболеваний, в том числе: органов дыхания, сердечно-сосудистой и нервной систем; с ее помощью можно лечить гипертонию, органы дыхания, органы пищеварения, эндокринные патологии, ОРЗ, заболевания кожи, глаз, а также травмы и раны. Люстра восстанавливает утраченный электрический заряд мембран клетки и тем самым увеличивает срок жизни человека. Как известно, в горах живет рекордное количество долгожителей. Ученые установили, что за счет аэроионов в организме вырабатывается супероксиддиализтаза, которая сдерживает старение: в опытах на крысах их жизнь за счет этого вещества продлевалась в 1,5 раза при применении люстры Чижевского.
Теперь следует дать несколько практических рекомендаций:
• люстра Чижевского не модный аппарат, а насущная необходимость; в Москве их сейчас более 200000, но она должна быть в каждой семье;
• наиболее эффективной является люстра Чижевского типа «Элион 132», разработанная московским заводом «Диод». Во избежание подделок люстру желательно покупать только со штампом этого завода и лучше всего в магазинах «Мир природы»;
• люстру следует включать на 3–4 часа в день, лучше всего перед сном;
• через 5 лет службы ее эффективность снижается, после длительного срока эксплуатации люстру целесообразно менять.
Таким образом, обеспечение чистоты воздуха в квартире является одним из важнейших условий экологичности жилья.
Глава 2. Питьевая вода в доме
Вода! У тебя нет ни запаха, ни вкуса, тебя невозможно описать, тобой наслаждаться, не ведая, что ты такое. Нельзя сказать, что ты необходима для жизни: ты сама жизнь. Ты наполняешь нас радостью, которую не объяснишь нашими чувствами. С тобой возвращаются силы, с которыми мы уже простились. По твоей милости в нас вновь начинают бурлить высохшие родники нашего сердца. Ты самое большое богатство на свете.
Антуан де Сент-Экзюпери
Вода необходима для нашей жизни: без пищи можно прожить до двух месяцев, без воды не проживешь больше трех дней. Химики говорят, что вода является самым ценным минералом на земле. Ее качество в доме почти не зависит от его жителей, т. к. воду мы получаем из водопровода и эта вода должна соответствовать требованиям ГОСТа на питьевую воду (ГОСТ 2874–82).
Надо отметить, что эти требования, как ни странно, несколько жестче, чем за рубежом, но все равно пить ее из-под крана у нас нежелательно.
Процесс доведения питьевой воды до кондиции весьма сложен: это и забор ее из чистых охраняемых рек или из артезианских скважин, и ее отстаивание, и механическая фильтрация, и обеззараживание химическими веществами. Эти вещества не такие уж и безобидные: например, хлор и хлорфенолы, которые сами по себе являются вредностями; и озон, который хорош только в озоновом слое атмосферы на большой высоте.
Однажды автор, будучи на экскурсии в музее Воды со студентами экологического колледжа, спросил у экскурсовода, а можно ли при очистке воды обойтись без хлорирования. он получил лаконичный ответ, что можно, но тогда мы, горожане, все умрем от отравления.
Первой линией защиты потребителя воды является правильный выбор ее источника. Москву, например, снабжают водой чистые реки и речушки, текущие к северу от города (до 80 %), и артезианские скважины (20 %). Раньше Москва снабжалась по специальному акведуку чистой и вкусной водой из родников, расположенных в Мытищах. Вода из рек естественно, мягче, чем из скважин, – она менее минерализованна. Источник водоснабжения выбирается с учетом удовлетворения потребности в ней по пикам водоснабжения.
Вторая линия защиты – это охрана источников воды. Воду проще и дешевле охранять, чем очищать от внесенных загрязняющих веществ. Площадь водосбора защищают от результатов человеческой деятельности: здесь запрещены сбросы опасных отходов, размещение свалок, ведение горных работ открытым способом, использование удобрений и пестицидов, посещение охраняемой зоны отдыхающими. Кроме того, на этой площади отсутствуют стоялые водоемы и животноводческие хозяйства. К сожалению, эффективная защита района забора чистой воды не всегда возможна, поэтому без очистки воды обойтись нельзя. При очистке питьевой воды используются следующие методы: отстаивание, предварительное обеззараживание, коагуляция, осаждение, фильтрация через гравий и песок и окончательное обеззараживание. Очистка воды обычно проводится в несколько стадий. Целью очистки является в первую очередь защита воды от патогенных (биологических) загрязнений. Для этого воду очищают от бактериальных и вирусных патогенов и гельминтов, вызывающих кишечные и другие инфекционные заболевания. Наибольшему риску таких заболеваний подвержены маленькие дети, люди, живущие в антисанитарных условиях, а также больные и престарелые люди. Для них опасная доза инфекции значительно ниже, чем для большинства взрослого населения. Самый высокий риск связан с употреблением воды, загрязненной экскрементами людей и животных. Болезни, передаваемые через воду, наиболее опасны, так как они могут одновременно заразить значительную часть населения.
Во вторую очередь воду загрязняют химические вещества, но их вредное влияние не столь значительно, как микробиологическое загрязнение. Присутствие в источнике водоснабжения большого количества разнообразных химических вредностей маловероятно, и современные методы очистки от них весьма эффективны. Кроме того, наличие химических вредностей приводит, как правило, к такому изменению качества воды (вкуса, запаха, вида), что люди сами отказываются от ее употребления.
Третьим загрязнителем (а кое-где, к сожалению, и первым) являются радионуклиды. Их наличие в воде определяется современными приборами достаточно легко и точно.
Рассмотрим подробнее с точки зрения экологического риска указанные выше загрязнители, поговорим о мониторинге загрязнения питьевой воды, определим ее альтернативы (родниковая и колодезная вода) и дадим некоторые рекомендации по доочистке воды в условиях городского жилья.