Биология. Общая биология. 11 класс. Базовый уровень Сивоглазов Владислав
В процессе созревания теряют ядро эритроциты, которые функционируют не более 120 дней, а затем разрушаются в селезёнке. Безъядерные тромбоциты (кровяные пластинки) циркулируют в крови около 7 дней.
Каждое клеточное ядро окружено ядерной оболочкой, содержит ядерный сок, хроматин и одно или несколько ядрышек.
Ядерная оболочка. Эта оболочка отделяет содержимое ядра от цитоплазмы клетки и состоит из двух мембран, имеющих типичное для всех мембран строение. Наружная мембрана переходит непосредственно в эндоплазматическую сеть, образуя единую мембранную структуру клетки. Поверхность ядра пронизана порами, через которые осуществляется обмен различными материалами между ядром и цитоплазмой. Например, из ядра в цитоплазму выходят РНК и субъединицы рибосом, а в ядро поступают нуклеотиды, необходимые для сборки РНК, ферменты и другие вещества, обеспечивающие деятельность ядерных структур.
Ядерный сок. Раствор белков, нуклеиновых кислот, углеводов, в котором происходят все внутриядерные процессы.
Ядрышко. Место синтеза рибосомальной РНК (рРНК) и сборки отдельных субъединиц рибосом – важнейших органоидов клетки, обеспечивающих биосинтез белка.
Хроматин. В ядре клетки находятся молекулы ДНК, которые содержат информацию о всех признаках организма. ДНК – это двухцепочечная спираль, состоящая из сотен тысяч мономеров – нуклеотидов. Молекулы ДНК огромны, например длина отдельных молекул ДНК, выделенных из клеток человека, достигает нескольких сантиметров, а общая длина ДНК в ядре соматической клетки составляет около 1 м. Ясно, что такие гигантские структуры должны быть как-то упакованы, чтобы не перепутаться в общем ядерном пространстве. Молекулы ДНК в ядрах эукариотических клеток всегда находятся в комплексе со специальными белками – гистонами, образуя так называемый хроматин. Именно гистоны обеспечивают структурированность и упаковку ДНК. В активно функционирующей клетке, в период между клеточными делениями, молекулы ДНК находятся в расплетённом деспирализованном состоянии, и увидеть их в световой микроскоп практически невозможно. В ядре клетки, готовящейся к делению, молекулы ДНК удваиваются, сильно спирализуются, укорачиваются и приобретают компактную форму, что делает их заметными (рис. 36). В таком компактном состоянии комплекс ДНК и белков называют хромосомами, т. е., по сути, в химическом отношении хроматин и хромосомы – это одно и то же. В современной цитологии под хроматином понимают дисперсное (рассеянное) состояние хромосом во время выполнения клеткой своих функций и в период подготовки к митозу.
Рис. 36. Спирализация молекулы ДНК (А) и электронная фотография метафазной хромосомы (Б)
Рис. 37. Строение хромосомы: А – одиночная хромосома; Б – удвоенная хромосома, состоящая из двух сестринских хроматид; В – электронная фотография удвоенной хромосомы
Форма хромосомы зависит от положения так называемой первичной перетяжки, или центромеры, – области, к которой во время деления клетки прикрепляются нити веретена деления. Центромера делит хромосому на два плеча одинаковой или разной длины (рис. 37).
Количество, размеры и форма хромосом уникальны для каждого вида. Совокупность всех признаков хромосомного набора, характерного для того или иного вида, называют кариотипом. На рис. 38 представлен кариотип человека. Нашим генетическим банком данных являются 46 хромосом определённого размера и формы, несущие более 30 тыс. генов. Эти гены определяют строение десятков тысяч типов белков, различных видов РНК и белков-ферментов, образующих жиры, углеводы и другие молекулы. Любые изменения структуры или количества хромосом приводят к изменению или потере части информации и, как следствие, к нарушению нормального функционирования той клетки, в ядре которой они находятся.
Рис. 38. Кариотип человека. Набор хромосом женщины (флуоресцентная окраска)
В соматических клетках (клетках тела) число хромосом обычно в два раза больше, чем в зрелых половых клетках. Это объясняется тем, что при оплодотворении половина хромосом приходит от материнского организма (в яйцеклетке) и половина от отцовского (в сперматозоиде), т. е. в ядре соматической клетки все хромосомы парные. Причём хромосомы каждой пары отличаются от других хромосом. Такие парные, одинаковые по форме и размеру хромосомы, несущие одинаковые гены, называют гомологичными. Одна из гомологичных хромосом является копией материнской хромосомы, а другая – копией отцовской. Хромосомный набор, представленный парными хромосомами, называют двойным или диплоидным и обозначают 2n. Наличие диплоидного хромосомного набора у большинства высших организмов повышает надёжность функционирования генетического аппарата. Каждый ген, определяющий структуру того или иного белка, а в итоге влияющий на формирование того или иного признака, у таких организмов представлен в ядре каждой клетки в виде двух копий – отцовской и материнской.
При образовании половых клеток от каждой пары гомологичных хромосом в яйцеклетку или сперматозоид попадает только одна хромосома, поэтому половые клетки содержат одинарный, или гаплоидный, набор хромосом (1n).
Не существует зависимости между числом хромосом и уровнем организации данного вида: примитивные формы могут иметь большее число хромосом, чем высокоорганизованные, и наоборот. Например, у таких далёких видов, как прыткая ящерица и лисица, число хромосом одинаково и равно 38, у человека и ясеня – по 46 хромосом, у курицы 78, а у речного рака более 110!
Постоянство числа и структуры хромосом в клетках является необходимым условием существования вида и отдельного организма. При изучении хромосомных наборов разных особей были обнаружены виды-двойники, которые морфологически абсолютно не отличались друг от друга, но, имея разное число хромосом или отличия в их строении, не скрещивались и развивались независимо. Таковы, например, обитающие на одной территории два вида австралийских кузнечиков Moraba scurra и Moraba viatica, чьи хромосомы отличаются по своей структуре. Виды-двойники известны и в царстве растений. Внешне практически неразличимы кларкия двулопастная и кларкия языковидная из семейства кипрейных, растущие в Калифорнии, однако в кариотипе второго вида на одну пару хромосом больше.
Вопросы для повторения и задания
1. Опишите строение ядра эукариотической клетки.
2. Как вы считаете, может ли клетка существовать без ядра? Ответ обоснуйте.
3. Что такое ядрышко? Каковы его функции?
4. Дайте характеристику хроматина. Если хроматин и хромосомы в химическом отношении представляют собой одно и то же, зачем были введены и используются два разных термина?
5. Как соотносится число хромосом в соматических и половых клетках?
6. Что такое кариотип? Дайте определение.
7. Какие хромосомы называют гомологичными?
8. Какой хромосомный набор называют гаплоидным; диплоидным?
Подумайте! Выполните!
1. Какие особенности строения ядра клетки обеспечивают транспорт веществ из ядра и обратно?
2. Достаточно ли знать число хромосом в соматической клетке, чтобы определить, о каком виде организмов идёт речь?
3. Если вам известно, что в некой клетке в норме находится нечётное число хромосом, сможете ли вы однозначно определить, соматическая эта клетка или половая? А если чётное число хромосом? Докажите свою точку зрения.
Работа с компьютером
Обратитесь к электронному приложению. Изучите материал и выполните задания.
12. Прокариотическая клетка
Вспомните!
В чём заключаются принципиальные отличия в строении прокариотических и эукариотических клеток?
Какова роль бактерий в природе?
Разнообразие прокариот. Царство прокариот в основном представлено бактериями, наиболее древними организмами нашей планеты. Возникнув более 3,5 млрд лет тому назад, прокариоты фактически создали биосферу Земли, сформировав условия для дальнейшей эволюции организмов.
Впервые бактерии увидел под микроскопом и описал в 1683 г. голландский натуралист А. Левенгук. Размеры бактерий колеблются в пределах от 1 до 15 мкм. Отдельную бактериальную клетку можно увидеть только с помощью достаточно сложного микроскопа, поэтому их и называют микроорганизмами.
Бактерии обитают повсюду: в почве, в воде, в воздухе, на поверхности и внутри других организмов, в пищевых продуктах. Некоторые бактерии поселяются в горячих источниках, где температура воды достигает 78 °С и выше. Число бактерий на планете огромно, например в 1 г плодородной почвы содержится около 2,5 млрд бактериальных клеток.
Форма клеток бактерий чрезвычайно разнообразна (рис. 39). Выделяют палочковидные – бациллы, сферические – кокки, спиралевидные – спириллы, имеющие форму запятой – вибрионы.
Бактерии играют огромную роль в существовании современной биосферы. Многие из них вызывают процессы гниения и брожения. Существуют прокариоты, живущие в симбиозе с другими организмами, например клубеньковые бактерии на корнях бобовых растений. К группе бактерий-паразитов относятся микроорганизмы, способные вызывать заболевания растений и животных. Пневмония, ангина, тиф, холера, чума, туберкулёз, сибирская язва и многие другие тяжёлые заболевания человека вызываются патогенными бактериями.
Рис. 39. Некоторые представители современных бактерий: А – стрептококк (в процессе деления); Б – холерный вибрион; В – палочковидная бактерия клостридиум; Г – палочковидная микобактерия, вызывающая туберкулёз
Рис. 40. Образование спор у бактерий
Многие прокариоты способны к спорообразованию (рис. 40). Споры возникают, как правило, в неблагоприятных условиях и представляют собой клетки с резко сниженным уровнем метаболизма. Споры покрыты защитной оболочкой, сохраняют жизнеспособность в течение сотен и даже тысяч лет и выдерживают колебания температуры от 243 до 140 °С. При наступлении благоприятных условий споры «прорастают» и дают начало новой бактериальной клетке.
Таким образом, спорообразование у прокариот является этапом жизненного цикла, обеспечивающим переживание неблагоприятных условий окружающей среды. Кроме этого в состоянии спор микроорганизмы могут легко распространяться при помощи ветра и другими способами.
Споры болезнетворных бактерий, в покоящемся состоянии пролежавшие многие годы в земле, попадая при различных земляных работах в водоёмы, могут служить причиной возникновения вспышек инфекционных заболеваний. Так, например, споры палочки сибирской язвы сохраняют жизнеспособность в течение более 30 лет.
Учёные-микробиологи вырастили колонии микроорганизмов из спор, оказавшихся в образце льда, возраст которого превышал 10 тыс. лет.
Строение прокариотической клетки. Рассмотрим принципиальное строение бактериальной клетки (рис. 41).
Клетка окружена мембраной обычного строения, кнаружи от которой находится клеточная стенка. В центральной части цитоплазмы располагается одна кольцевая молекула ДНК, не отграниченная мембраной от остальной части цитоплазмы. Зона клетки, содержащая генетический материал, носит название нуклеоид (от лат. nucleus – ядро и греч. eidos – вид). Кроме основной кольцевой «хромосомы» бактерии обычно содержат несколько мелких молекул ДНК в форме небольших, свободно расположенных колец, так называемых плазмид, участвующих в обмене генетическим материалом между бактериями.
В бактериальных клетках нет мембранных органоидов, характерных для эукариот (эндоплазматической сети, аппарата Гольджи, митохондрий, пластид, лизосом). Функции этих органоидов выполняют впячивания клеточной мембраны.
Рис. 41. Строение прокариотической клетки
Обязательными органоидами, которые обеспечивают синтез белка в бактериальных клетках, являются рибосомы.
Поверх клеточной стенки многие бактерии выделяют слизь, образуя своеобразную капсулу, дополнительно защищающую бактерию от внешних воздействий.
Бактерии размножаются простым делением надвое. После редупликации кольцевой ДНК клетка удлиняется и в ней образуется поперечная перегородка. В дальнейшем дочерние клетки расходятся или остаются связанными в группы.
Сравнивая прокариотическую и эукариотическую клетки, можно отметить, что строение двухмембранных органоидов – митохондрий и пластид, имеющих собственную кольцевую ДНК и рибосомы, синтезирующие РНК и белки, – напоминает строение бактериальной клетки. Это сходство послужило основой гипотезы о симбиотическом происхождении эукариот. Несколько миллиардов лет назад древние прокариотические организмы внедрялись друг в друга, в результате чего возникал взаимовыгодный союз (§ 15, учебник 11 класса).
К прокариотическим организмам относят также цианобактерии, часто называемые синезелёными водорослями. Эти древние организмы, возникшие около 3 млрд лет назад, широко распространены по всему миру. Известно около 2 тыс. видов цианобактерий. Большинство из них способны синтезировать все необходимые вещества, используя энергию света.
Таблица 3. Сравнительная характеристика клеток прокариот и эукариот
Вопросы для повторения и задания
1. В чём заключаются значение и экологическая роль прокариот в биоценозах?
2. Каким образом болезнетворные микроорганизмы влияют на состояние макроорганизма (хозяина)?
3. Опишите строение бактериальной клетки. Как вы думаете, почему у бактерий ДНК не образует комплекс с белками?
4. Как размножаются бактерии?
5. В чём сущность процесса спорообразования у бактерий? Сравните споры растений и грибов. В чём их сходство и принципиальные отличия?
Подумайте! Выполните!
1. Предположите, что произойдёт, если исчезнут все бактерии на Земле.
2. Как давно люди используют микроорганизмы?
3. В чём состоит сущность процессов пастеризации и стерилизации как меры борьбы с бактериями?
4. Что такое антибиотики? С какой целью их применяют?
5. Используя знания, полченные при изучении курса «Человек и его здоровье», расскажите об особенностях бактериальных инфекций, путях заражения, мерах профилактики и способах их лечения.
6. Организуйте и проведите исследование микроорганизмов в естественных продуктах (квашеная капуста, кисломолочные продукты, чайный гриб, дрожжевое тесто).
Работа с компьютером
Обратитесь к электронному приложению. Изучите материал и выполните задания.
Для доказательства того, что данный микроорганизм вызывает конкретное заболевание, Роберт Кох сформулировал три правила. Эти правила в дальнейшем получили название «триада Коха».
• Микроб должен всегда встречаться при данной болезни, но его не должно быть у здоровых людей и при других болезнях.
• Микроб нужно выделить в «чистую» культуру – посеять на питательную среду так, чтобы в неё не попали микробы другого вида.
• Если взять микробов из чистой культуры и заразить ими лабораторных животных (мышей, кроликов и др.), то они должны заболеть той же самой болезнью.
Если все три правила выполняются, значит, исследуемый микроорганизм действительно является причиной данного заболевания.
Человек
Бактериальные болезни человека. Среди бактерий существует много болезнетворных (патогенных) видов, вызывающих заболевания у человека. Впервые доказать болезнетворную роль бактерий удалось немецкому врачу и исследователю Роберту Коху. Он открыл бактерий-возбудителей многих заболеваний. В 1882 г. Кох выделил и описал возбудителя туберкулёза, которого позже стали называть палочкой Коха.
Одним из самых быстротекущих бактериальных заболеваний является чума. От первых признаков болезни до смерти может пройти всего несколько часов. Очень опасны газовая гангрена и столбняк. Их возбудители – бактерии, живущие в почве. Заражение происходит при попадании земли в глубокие раны. Поверхностные раны и ожоги часто инфицируются стафилококками и стрептококками, вызывающими гнойные воспаления.
Через воздух можно заразиться ангиной, коклюшем, дифтерией, туберкулёзом. Другие болезнетворные микробы могут попасть в организм через сырую воду, немытые овощи и фрукты, грязную посуду и руки. Такие заболевания, как холера, брюшной тиф, дизентерия, сопровождаются расстройством работы кишечника, болями в животе, повышением температуры.
Животные
Бактериальные болезни животных. У животных бактерии вызывают такие болезни, как сап, бруцеллёз, сибирская язва и многие другие. Этими болезнями может заразиться и человек, поэтому, например, в районах, где скот болеет бруцеллёзом, нельзя пить сырое молоко. Споры сибирской язвы легко переносят высыхание и холод, поэтому даже спустя 100 лет захоронения животных, погибших от этого заболевания, представляют опасность.
Растения
Бактериальные болезни растений. Около 10–15 % урожая всех культурных растений в настоящее время теряется из-за бактериальных болезней (бактериозов). Существуют бактерии, поражающие многие виды растений. Например, корневой рак развивается у винограда и разных плодовых деревьев, от мокрой гнили страдают капуста, картофель, лук, томаты. Специализированные бактерии поражают растения только одного вида или рода, вызывая такие заболевания, как бактериоз огурцов, пятнистость фасоли, кольцевую гниль и чёрную ножку картофеля и другие.
Для борьбы с бактериозами семена, саженцы, черенки, почву в парниках и теплицах дезинфицируют; растения обрабатывают специальными препаратами или антибиотиками; заболевшие растения уничтожают, а больные побеги обрезают. Для борьбы с бактериозами важное значение имеет выведение сортов, устойчивых к заражению.
13. Реализация наследственной информации в клетке
Вспомните!
Какова структура белков и нуклеиновых кислот?
Какие типы РНК вам известны?
Где образуются субъединицы рибосом?
Какую функцию рибосомы выполняют в клетке?
Обязательным условием существования всех живых организмов является способность синтезировать белковые молекулы. Классическое определение Ф. Энгельса: «Жизнь есть способ существования белковых тел…» не потеряло своего значения в свете современных научных открытий. Белки в организме выполняют тысячи разнообразных функций, делая нас такими, какие мы есть. Мы отличаемся друг от друга ростом и цветом кожи, формой носа и цветом глаз, у каждого из нас свой темперамент и свои привычки; мы все индивидуальны и в то же время очень похожи. Наше сходство и наши различия – это сходство и различия нашего белкового состава. Каждый вид живых организмов обладает своим специфическим набором белков, который и определяет уникальность этого вида. Но при этом белки, выполняющие сходные функции в разных организмах, могут быть очень похожи, а порой практически одинаковы, кому бы они ни принадлежали. Причём меньше всего различий в белках, обеспечивающих жизненно важные физиологические функции.
В митохондриях работает фермент – цитохром С, который играет важнейшую роль в обеспечении клеток энергией. В процессе эволюции появление цитохромов позволило сформировать эффективную систему энергообеспечения клетки и в итоге привело к возникновению эукариотических организмов. Поэтому не случайно строение цитохрома С одинаково во всех эукариотических клетках – у всех животных, растений и грибов.
Итак, все свойства любого организма определяются его белковым составом. Причём структура каждого белка, в свою очередь, определяется последовательностью аминокислотных остатков.
Следовательно, в итоге наследственная информация, которая передаётся из поколения в поколение, должна содержать сведения о первичной структуре белков. Информация о строении всех белков организма заключена в молекулах ДНК и называется генетической информацией.
Генетический код. Каким же образом последовательность мономеров – нуклеотидов в цепи ДНК может определять последовательность аминокислотных остатков в молекуле белка? Четырьмя типами нуклеотидов должны быть закодированы 20 типов аминокислот, из которых состоят все белковые молекулы. Если бы одной аминокислоте соответствовал один нуклеотид, то четыре типа нуклеотидов могли бы определять только четыре типа аминокислот. Это явно не подходит. Если предположить, что каждый тип аминокислот определяется двумя нуклеотидами, то, имея исходно четыре типа оснований, можно закодировать 16 разных аминокислот (44). Этого тоже ещё недостаточно. Наконец, если каждой аминокислоте будут соответствовать три стоящие подряд нуклеотида, т. е. триплет, то таких сочетаний может быть 64 (444), и этого более чем достаточно, чтобы зашифровать 20 типов аминокислот.
Набор сочетаний из трёх нуклеотидов, кодирующих 20 типов аминокислот, входящих в состав белков, называют генетическим кодом (рис. 42). В настоящее время код ДНК полностью расшифрован, и мы можем говорить об определённых свойствах, характерных для этой уникальной биологической системы, обеспечивающей перевод информации с «языка» ДНК на «язык» белка.
Первое свойство кода – триплетность. Три стоящих подряд нуклеотида – «имя» одной аминокислоты. Один триплет не может кодировать две разные аминокислоты – код однозначен. Но при этом каждая аминокислота может определяться более чем одним триплетом, т. е. генетический код избыточен. Любой нуклеотид может входить в состав только одного триплета, следовательно, код является неперекрывающимся. Некоторые триплеты являются своеобразными «дорожными знаками», которые определяют начало и конец отдельных генов (УАА, УАГ, УГА – стоп-кодоны, не кодируют аминокислоты, АУГ – старт-кодон, кодирует аминокислоту метионин). У животных и растений, у грибов, бактерий и вирусов один и тот е триплет кодирует один и тот же тип аминокислоты, т. е. генетический код одинаков для всех живых существ. Универсальность кода ДНК подтверждает единство происхождения всего живого на нашей планете.
Рис. 42. Генетический код
Итак, последовательность триплетов в цепи ДНК определяет последовательность аминокислот в белковой молекуле. Ген – это участок молекулы ДНК, кодирующий первичную структуру одной полипептидной цепи.
Транскрипция (от лат. transcription – переписывание). Информация о структуре белков хранится в виде ДНК в ядре клетки, а синтез белков происходит на рибосомах в цитоплазме. В качестве посредника, передающего информацию о строении определённой белковой молекулы к месту её синтеза, выступает информационная РНК.
Представьте себе библиотеку с уникальным фондом, книги из которой на дом не выдают. Для вашей работы и решения некой важной задачи необходимо получить информацию, записанную в какой-то из этих книг. Вы приходите в библиотеку, и для вас делают ксерокопию нужной главы из определённого тома. Не имея возможности забрать книгу, вы получаете копию её фрагмента и, уходя из библиотеки, уносите эту копию с собой, чтобы на основе записанных в ней сведений выполнить необходимую работу: сконструировать прибор, синтезировать какое-либо вещество, испечь пирог или сшить платье, т. е. получить результат.
Такой библиотекой является клеточное ядро, в котором хранятся уникальные тома – молекулы ДНК, ксерокопия – это иРНК, а результат – синтезированная белковая молекула.
Информационная РНК является копией одного гена. Двухцепочечная молекула ДНК раскручивается на определённом участке, водородные связи между нуклеотидами, стоящими друг напротив друга, разрываются, и на одной из цепей ДНК по принципу комплементарности синтезируется иРНК. Напротив тимина молекулы ДНК встаёт аденин молекулы РНК, напротив гуанина – цитозин, цитозина – гуанин, а напротив аденина – урацил (вспомните отличительные особенности строения РНК, § 9). В итоге формируется цепочка РНК, которая является комплементарной копией определённого фрагмента ДНК и содержит информацию о строении определённого белка. Процесс синтеза РНК на ДНК называют транскрипцией (рис. 43).
Трансляция (от лат. translation – передача). Молекулы иРНК выходят через ядерные поры в цитоплазму, где начинается второй этап реализации наследственной информации – перевод информации с «языка» РНК на «язык» белка. Процесс синтеза белка называют трансляцией (см. рис. 43). Для осуществления этого процесса информации о структуре полипептидной цепи, записанной с помощью генетического кода в молекулах иРНК, явно недостаточно. Мы не получим вещественного результата, имея на руках только «листки ксерокопии». Необходимы аминокислоты, из которых, согласно имеющемуся плану, будут собираться молекулы белка. Нужны структуры, в которых непосредственно будет происходить синтез, – рибосомы. Не обойтись также без ферментов, осуществляющих эту сборку, и молекул АТФ, которые обеспечат этот процесс энергией. Только при выполнении всех этих условий белок будет синтезирован.
Молекула иРНК соединяется с рибосомой тем концом, с которого должен начаться синтез белка. Аминокислоты, необходимые для сборки белка, доставляются к рибосоме специальными транспортными РНК (тРНК). Каждая тРНК может переносить только «свою» аминокислоту, имя которой определяется триплетом нуклеотидов – антикодоном, расположенным в центральной петле молекулы тРНК (рис. 44). Если антикодон какой-либо тРНК окажется комплементарным триплету иРНК, находящемуся в данный момент в контакте с рибосомой, произойдёт узнавание и временное связывание тРНК и иРНК (рис. 45). Одновременно на рибосоме находится две тРНК с соответствующими аминокислотами. Расположенная на рисунке слева аминокислота серин (сер) отделяется от своей тРНК и образует пептидную связь с аминокислотой аспарагин (асп).
Рис. 43. Взаимосвязь между процессами транскрипции и трансляции
Рис. 44. Строение тРНК
Рис. 45. Трансляция
Освобождённая тРНК (АГА) уходит в цитоплазму, а рибосома делает «шаг», сдвигаясь на один триплет по цепи иРНК. К этому новому триплету (ЦГУ) подойдёт другая тРНК и принесёт аминокислоту аргинин (арг), которая присоединится к растущему белку. Так, шаг за шагом, рибосома пройдёт по всей иРНК, обеспечивая считывание закодированной в ней информации. Таким образом, включение аминокислот в растущую белковую цепь происходит строго последовательно в соответствии с последовательностью расположения триплетов в цепи иРНК.
Процессы удвоения ДНК (§ 9), синтеза РНК и белков в неживой природе не встречаются. Они относятся к так называемым реакциям матричного синтеза. Матрицами, т. е. теми молекулами, которые служат основой для получения множества копий, являются ДНК и РНК. Матричный тип реакций лежит в основе способности живых организмов воспроизводить себе подобных.
Образование в клетках других органических молекул, таких как жиры, углеводы, витамины и т. д., связано с действием белков-катализаторов (ферментов). Например, ферменты, обеспечивающие синтез жиров у человека, «делают» человеческие липиды, а аналогичные катализаторы у подсолнечника – подсолнечное масло. Ферменты углеводного обмена у животных образуют резервное вещество гликоген, а у растений при избытке глюкозы синтезируется крахмал.
Вопросы для повторения и задания
1. Вспомните полное определение понятия «жизнь».
2. Назовите основные свойства генетического кода и поясните их значение.
3. Какие процессы лежат в основе передачи наследственной информации из поколения в поколение и из ядра в цитоплазму, к месту синтеза белка?
4. Где синтезируются все виды рибонуклеиновых кислот?
5. Расскажите, где происходит синтез белка и как он осуществляется.
6. Рассмотрите рис. 40. Определите, в каком направлении – справа налево или слева направо – движется относительно иРНК изображённая на рисунке рибосома. Докажите свою точку зрения.
Подумайте! Выполните!
1. Почему углеводы не могут выполнять функцию хранения информации?
2. Каким образом реализуется наследственная информация о структуре и функциях небелковых молекул, синтезируемых в клетке?
3. При каком структурном состоянии молекулы ДНК могут быть источниками генетической информации?
4. Какие особенности строения молекул РНК обеспечивают их функцию переноса информации о структуре белка от хромосом к месту его синтеза?
5. Объясните, почему молекула ДНК не могла быть построена из нуклеотидов трёх типов.
6. Приведите примеры технологических процессов, в основе которых лежит матричный синтез.
7. Представьте, что в ходе некоего эксперимента для синтеза белка были взяты тРНК из клеток крокодила, аминокислоты мартышки, АТФ дрозда, иРНК белого медведя, необходимые ферменты квакши и рибосомы щуки. Чей белок был в итоге синтезирован? Объясните свою точку зрения.
Работа с компьютером
Обратитесь к электронному приложению. Изучите материал и выполните задания.
14. Неклеточная форма жизни: вирусы
Вспомните!
Чем вирусы отличаются от всех остальных живых существ?
Почему существование вирусов не противоречит основным положениям клеточной теории?
Какие вы знаете вирусные заболевания?
В 1892 г. русский ботаник Дмитрий Иосифович Ивановский, изучая мозаичную болезнь растений табака, обнаружил, что при пропускании сока, выделенного из больного растения, через фильтры, задерживающие бактерий, жидкость сохраняла способность вызывать заболевания у здоровых растений. Возбудитель болезни был столь мал, что его и подобные ему структуры, получившие в дальнейшем название вирусы (от лат. virus – яд), стало возможно изучать только после изобретения электронного микроскопа.
Вирусы – это неклеточная форма жизни. Считая признаком живого наличие клеточного строения, большинство учёных тем не менее относят вирусы к живым организмам, потому что их существование неразрывно связано с клеткой. Являясь внутриклеточными паразитами, вне клетки вирусы не способны к самовоспроизведению и осуществлению процессов обмена веществ.
Строение вирусов. Вирусы имеют очень простое строение (рис. 46). Каждый вирус состоит из нуклеиновой кислоты (или ДНК, или РНК) и белка. Нуклеиновая кислота является генетическим материалом вируса. Она окружена защитной белковой оболочкой – капсидом. Внутри капсида могут также находиться собственные вирусные ферменты. Некоторые вирусы, например вирус гриппа и ВИЧ, имеют дополнительную оболочку, которая образуется из клеточной мембраны клетки-хозяина. Капсид вируса, состоящий из многих белковых молекул, обладает высокой степенью симметрии, имея, как правило, спиральную или многогранную форму. Эта особенность строения позволяет отдельным белкам вируса объединяться в полную вирусную частицу путём самосборки.
Рис. 46. Вирусы: строение и разнообразие
Рис. 47. Жизненный цикл вирусов (А) и электронная фотография бактериофага (Б)
Размножение вирусов. Ни один из известных на сегодняшний день вирусов не способен к самостоятельному существованию. Обычно вирус сначала связывается с поверхностью клетки-хозяина, а затем или проникает внутрь целиком (путём эндоцитоза), или с помощью специальных приспособлений вводит в клетку свою нуклеиновую кислоту (рис. 47, 48). Попав в клетку, генетический материал вируса взаимодействует с ДНК хозяина таким образом, что клетка сама начинает синтезировать необходимые вирусу белки. Одновременно происходит копирование наследственного материала паразита, и в цитоплазме заражённой клетки начинается самосборка новых вирусных частиц. Готовые вирусные частицы покидают клетку или постепенно, не вызывая её гибели, но изменяя работоспособность, или одновременно в большом количестве, что приводит к разрушению клетки.
Рис. 48. Бактериофаги на поверхности клетки-хозяина (электронная фотография)
Вирусы как возбудители болезней. Вирусы способны поражать и эукариотические, и прокариотические клетки. Вирусы, инфицирующие бактерий, называют бактериофагами. Вирусы вызывают множество различных заболеваний у животных, растений и грибов, причём каждый из них имеет своего собственного специфического хозяина. Вирус табачной мозаики, например, поражает растения табака, вызывая образование на листьях характерных пятен – это места отмирания тканей. Вирус оспы поражает только эпителиальные клетки, а вирус полиомиелита – клетки нервной ткани. Вирусными заболеваниями человека являются также грипп, корь, краснуха, гепатит, ветряная оспа, бешенство, герпес, СПИД и многие другие.
СПИД. Вирус иммунодефицита человека (ВИЧ), вызывающий синдром приобретённого иммунодефицита (СПИД), впервые был выделен в США в 1981 г. К 2000 г. число инфицированных этим вирусом уже превысило 30 млн человек. В настоящее время болезнь очень быстро распространяется в Азии, Африке, а также в Центральной и Восточной Европе.
ВИЧ относят к группе ретровирусов, генетическим материалом которых является РНК (рис. 49). Обычно перенос генетической информации в клетке идёт в направлении от ДНК к РНК (транскрипция). У ретровирусов при попадании в клетку-хозяина происходит противоположный процесс, так называемая обратная транскрипция, при которой на основе вирусной РНК синтезируется ДНК, которая затем встраивается в ДНК хозяина.
Рис. 49. Вирус иммунодефицита человека (ВИЧ): А – модель вируса; Б – схема строения; В – электронная фотография
Рис. 50. Жизненный цикл вируса иммунодефицита человека (ВИЧ)
Рассмотрим жизненный цикл вируса иммунодефицита (рис. 50). ВИЧ инфицирует и уничтожает лейкоциты, в том числе так называемые лимфоциты-хелперы (от англ. help – помощь), которые обеспечивают формирование иммунитета человека. После проникновения ВИЧ в клетку путём эндоцитоза (рис. 50, 1–3) вирусная РНК выходит в цитоплазму (рис. 50, 4), где на её основе с помощью специального фермента синтезируется вирусная ДНК (рис. 50, 5). Последняя проникает через поры в клеточное ядро и встраивается в ДНК хозяина (рис. 50, 6). В дальнейшем при делении клетки одновременно с копированием клеточной ДНК происходит и копирование встроенной вирусной ДНК, в результате чего количество заражённых лимфоцитов быстро растёт. Этот процесс может продолжаться в течение многих лет. По истечении некоторого времени вирус вновь активизируется (рис. 50, 7) и «заставляет» клетку работать на себя, синтезируя вирусные РНК и белки (рис. 50, 8), из которых собираются новые вирусные частицы, покидающие клетку-хозяина (рис. 50, 9). Причины, по которым вирус спустя 5–6 лет скрытого существования переходит в активную форму, неизвестны. Новые вирусные частицы заражают ещё здоровые лимфоциты. В результате иммунная система разрушается, лимфоциты перестают узнавать чужеродные белки и болезнетворные бактерии, попадающие в организм, и человек становится уязвимым для любых инфекционных заболеваний. Ежегодно у 1–2 % ВИЧ-инфицированных развивается СПИД. Больные СПИДом подвержены различным бактериальным, вирусным и грибковым инфекциям, которые и становятся причиной их смерти. Более 60 % заболевших СПИДом погибают от пневмонии, с которой обычно успешно справляется иммунная система здорового человека. У многих носителей ВИЧ развиваются злокачественные опухоли, а при заражении токсоплазмозом[2] поражаются большие полушария головного мозга, что в дальнейшем может привести к параличу[3] и коме[4].
Обычно ВИЧ передаётся вместе с кровью или спермой. В 90 % случаев заражение происходит при половом контакте, при этом риск заражения увеличивается пропорционально увеличению числа половых партнёров. Многократное использование одного и того же шприца приводит к быстрому распространению вируса среди наркоманов. ВИЧ может попасть в организм человека при контакте с кровью больного, например при обработке ран. Существует вероятность заражения при переливании крови, не прошедшей тестирование на присутствие ВИЧ. От ВИЧ-инфицированной матери вирус может через плаценту попасть в кровь плода или передаться новорождённому при кормлении грудным молоком. Но воздушно-капельным путём и при рукопожатии этот вирус не распространяется.
ВИЧ – это вирус, поэтому антибиотики, которые используют при лечении бактериальных инфекций, в данном случае бессильны. Современная медицина разрабатывает лекарственные средства, которые подавляют репликацию ВИЧ, но их использование имеет много побочных эффектов и перспективы их применения пока неясны. Разработка вакцины против ВИЧ тоже имеет определённые сложности; это связано с особенностями строения данного вируса и тяжестью заболевания, которое он вызывает. На сегодняшний день важным направлением в лечении СПИДа является восстановление иммунной системы инфицированных.
Пока не существует эффективных способов лечения этого заболевания, лучшим способом защиты от СПИДа является соблюдение мер предосторожности:
– следует избегать случайных половых связей, а при половых контактах изолировать себя от спермы и крови партнёра при помощи презерватива;
– в больницах, стоматологических клиниках, поликлиниках и косметических салонах необходимо использовать одноразовые шприцы, а инструменты многоразового применения тщательно стерилизовать, соблюдая все необходимые условия;
– донорскую кровь следует проверять на наличие антител к ВИЧ.
Вирусы как переносчики генетической информации. Существует гипотеза, что вирусы – это генетический материал, некогда покинувший клетку, но сохранивший способность к самовоспроизведению при возвращении в неё. Следовательно, в процессе эволюции вирусы возникли позже появления клеточной формы, а любое вирусное заражение надо рассматривать как получение клеткой некой чужеродной генетической информации.
Многие вирусы способны не только привносить в организм хозяина свою наследственную информацию, но и, встраиваясь в ДНК хозяина, изменять работу клеточных генов. В процессе копирования вирусной ДНК иногда происходит частичное копирование и генетического материала хозяина. В этом случае новые собранные вирусные частицы, покидающие клетку, будут уносить с собой копию некой наследственной информации хозяина. Таким образом вирусы могут переносить гены между организмами разных видов, отрядов и даже классов, скрещивание которых в принципе невозможно. В настоящее время вирусы рассматривают не только как возбудителей инфекционных болезней, но и как переносчиков генов между организмами.
Вопросы для повторения и задания
1. Как устроены вирусы?
2. Каков принцип взаимодействия вируса и клетки?
3. Опишите процесс проникновения вируса в клетку.
4. В чём проявляется действие вирусов на клетку?
5. Используя знания о путях распространения вирусных и бактериальных инфекций, предложите пути предотвращения инфекционных заболеваний.
6. Предложите несколько разных классификаций вирусов. Какие критерии вы положили в основу этих классификаций? Сравните свои классификации и классификации, которые создали ваши одноклассники.
Подумайте! Выполните!
1. Объясните, почему вирус может проявить свойства живого организма, только внедрившись в живую клетку.
2. Почему вирусные заболевания имеют характер эпидемий? Охарактеризуйте меры борьбы с вирусными инфекциями.
3. Выскажите своё мнение о времени появления на Земле вирусов в историческом прошлом, учитывая, что вирусы могут размножаться только в живых клетках.
4. Объясните, почему в середине XX в. вирусы стали одним из главных объектов экспериментальных генетических исследований.
5. Какие сложности возникают при попытках создать вакцину против ВИЧ-инфекции?
6. Объясните, почему перенос вирусами генетического материала от одного организма к другому называют горизонтальным переносом. Как тогда, по вашему мнению, называют передачу генов от родителей детям?
7. В разные годы как минимум семь Нобелевских премий по физиологии и медицине и три Нобелевских премии по химии были вручены за исследования, непосредственно связанные с изучением вирусов. Используя дополнительную литературу и ресурсы Интернета, подготовьте сообщение или презентацию о современных достижениях в области исследования вирусов.
8. Создайте портфолио[5] по теме «Роль вирусов в жизни организмов и эволюции органического мира на Земле».
Работа с компьютером
Обратитесь к электронному приложению. Изучите материал и выполните задания.
Вироиды. В природе обнаружены инфекционные агенты гораздо меньше вирусов – вироиды. Они состоят только из молекулы кольцевой РНК и лишены каких-либо оболочек. Самые малые вироиды имеют длину всего 220 нуклеотидов. Вироиды обнаружены в клетках многих растений. Считается, что они представляют собой вырезанные участки иРНК, которые приобрели способность к репликации. При этом они не работают, как иРНК, и не кодируют белки.
Попадая в клетки растений, вироиды вмешиваются в работу генома клетки-хозяина и вызывают серьёзные заболевания растений. Так погибли миллионы кокосовых пальм на Филиппинах во второй половине XX в. Периодически от вироидов серьёзно страдают посадки картофеля, цитрусовых, огурцов, декоративных цветов и других диких и сельскохозяйственных растений. В животных клетках и у человека вироиды пока не обнаружены.
Вирусы и рак. Многие вирусы способны, проникая в клетки организма, встраивать свой геном в геном клетки, вызывая тем самым серьёзные нарушения в работе генетического аппарата нормальных клеток. В результате может произойти превращение нормальной клетки в раковую.
У многих животных (рыб, амфибий, птиц, млекопитающих) обнаружены десятки вирусов, вызывающих раковые заболевания. У человека обнаружены целые группы онковирусов. Полагают, что около 15 % опухолей человека провоцируются вирусной инфекцией.
Человек
Иммунитет. Белки или полисахариды вирусов, попадающих в организм, являются антигенами. Антигены – это любые чужеродные вещества, которые при проникновении в организм воспринимаются как генетически чужеродные и вызывают иммунную реакцию. Иммунитетом называют способность организмов защищаться от болезнетворных микроорганизмов, вирусов и иных чужеродных тел и веществ, сохраняя тем самым постоянство своего состава и свойств.
Существует несколько видов иммунитета. Если иммунитет существует или возникает у человека без каких-либо специальных воздействий, его называют естественным. Иммунитет, полученный путём использования медицинских средств, носит название искусственного.
Естественный врождённый иммунитет одинаков у всех особей вида и передаётся по наследству, т. е. генетически закреплён. Так, человек не болеет многими болезнями, которые встречаются у животных. Например, человек никогда не заболеет собачьей чумкой, так же как собака не заболеет гриппом.
Естественный приобретённый иммунитет отличается у разных людей и не передаётся по наследству, поэтому его ещё называют индивидуальным иммунитетом. Пассивный естественный иммунитет обеспечивают антитела, полученные ребёнком от матери вместе с грудным молоком. Активный естественный иммунитет формируется после перенесённого заболевания. Такой иммунитет также называют постинфекционным. Он сохраняется в организме в течение длительного времени. После некоторых заболеваний иммунитет сохраняется пожизненно, например после кори, краснухи, скарлатины и других «детских болезней».
Искусственный иммунитет может быть только приобретённым. Искусственный активный иммунитет формируется в ответ на введение в организм вакцины. Вакцина – это препарат из ослабленных или убитых возбудителей заболевания, их фрагментов или токсинов. При введении вакцины (прививке) в организме в слабой форме развивается иммунный ответ, в результате которого в крови образуются специальные клетки, способные синтезировать антитела к данному возбудителю. Антитела – это сложные белки (иммуноглобулины). Они способны связываться с антигенами и обезвреживать их. При связывании антигена образуется неактивный комплекс «антиген – антитело», который может быть уничтожен лейкоцитами.
Искусственный активный иммунитет стойкий, сохраняется годами. Впервые систематические прививки против оспы стали использовать с начала XIX в. после работ английского врача Эдварда Дженнера (1749–1823). Его дело продолжил французский микробиолог Луи Пастер (1822–1895). Он ввёл термин «вакцина» и применял вакцинацию в медицинской практике.
Искусственный пассивный иммунитет возникает при введении человеку лечебной сыворотки, которая уже содержит готовые антитела против возбудителя. Это особенно важно в том случае, если заражение уже произошло. Пассивный иммунитет нестойкий, сохраняется в течение 4–6 недель, на протяжении которых антитела постепенно разрушаются.
1. Докажите, что базовые знания о процессах, происходящих на молекулярном и клеточном уровнях организации живого, необходимы не только биологам, но и специалистам в других областях естественных наук.
2. Какие профессии в современном обществе требуют знания строения и особенностей жизнедеятельности прокариотических организмов? Подготовьте небольшое (не более 7–10 предложений) сообщение о той профессии, которая вас наиболее впечатлила. Объясните свой выбор.
3. «Эти специалисты нужны в ветеринарных и медицинских научных институтах, академических институтах, на предприятиях, связанных с биотехнологиями. Они не останутся без работы в лабораториях поликлиник и больниц, на агрономических селекционных станциях, в ветеринарных лабораториях и больницах. Порой именно они могут поставить наиболее достоверный и точный диагноз. Их исследования незаменимы для ранней диагностики онкологических заболеваний». Предположите, о людях какой специальности идёт речь в этих предложениях. Докажите свою точку зрения.
Глава 3. Организм
ТЕМЫ
• Организм – единое целое. Многообразие организмов
• Обмен веществ и превращение энергии
• Размножение
• Индивидуальное развитие (онтогенез)
• Наследственность и изменчивость
• Основы селекции. Биотехнология
Мысленно поднимаясь по лестнице уровней организации живой материи, мы приступаем к изучению нового, более высокого уровня – организменного. Организм (от лат. organisme – устраиваю, придаю стройный вид) – это биологическая система, состоящая из взаимосвязанных элементов, функционирующая как единое целое. Трактуя это определение в широком смысле, организмом можно считать не только отдельного индивидуума, но и семью, популяцию, экосистему. Мир живых существ – это мир биологических систем разного уровня сложности. Но нас с вами на данном этапе интересует более узкое определение этого понятия – организм как отдельная особь.
15. Организм – единое целое. Многообразие организмов
Вспомните!
В чём сходство и принципиальное отличие между одноклеточными и многоклеточными организмами?
Какие одноклеточные организмы вам известны?