Биология. Общая биология. 11 класс. Базовый уровень Сивоглазов Владислав
Особь, или индивидуум (от лат. individuum – неделимое), – это неделимая единица жизни. Самый главный признак любого живого организма – строгая взаимозависимость отдельных его частей. Разделение особи на части приведёт к потере её целостной уникальной индивидуальности. Человек, птица, дерево – это особи, но печень, мозг, крыло, клюв, лист или ветка не обладают признаками целого организма. Организм – это не простая сумма клеток, тканей и органов. Лишь строгое соподчинение и взаимодействие формируют новое единство и придают особи черты и свойства, отсутствующие у отдельных её компонентов.
Любой живой организм имеет клеточное строение. Исключение, как нам уже известно, составляют вирусы, но и они не способны существовать вне клеток (§ 14). Учёные до сих пор спорят, относить ли вирусы к живым существам. С одной стороны, они обладают свойствами живой материи – наследственностью и изменчивостью, но в то же время не способны к самостоятельному существованию и размножению, проявляя эти свойства только внутри про– или эукариотических клеток.
Многообразие живых существ нашей планеты, образующих единую биосферу, огромно и с трудом поддаётся описанию и подсчёту. По самым приблизительным оценкам, сейчас на Земле обитает несколько миллионов видов живых организмов. Только беспозвоночных насчитывают более 1,5 млн видов, при этом каждый год описывают сотни новых видов, и учёные считают, что большинство беспозвоночных животных, в основном пауков, насекомых и круглых червей, до сих пор неизвестны науке. Более 350 тыс. видов растений, около 100 тыс. видов грибов, огромное число видов бактерий и синезелёных водорослей населяют нашу планету, создавая то неповторимое единство, частью которого являемся и мы с вами.
Для любого организма характерны все признаки живого: обмен веществ и превращение энергии, рост, развитие и размножение, наследственность и изменчивость. Эти свойства мы рассмотрим с вами в последующих параграфах этой главы.
Все организмы разделяют на одноклеточные и многоклеточные.
Одноклеточные организмы. К этой группе относят организмы, тело которых состоит из одной клетки, т. е. для них клеточный и организменный уровни едины. Одноклеточные прокариоты – это бактерии и синезелёные водоросли (цианобактерии). Одноклеточные эукариоты встречаются во всех трёх царствах эукариот. У грибов – это одноклеточные дрожжи, в царстве растений – одноклеточные зелёные водоросли (например, хламидомонада и хлорелла), среди животных – более 40 тыс. видов простейших, например амёбы и инфузории, споровики и фораминиферы (рис. 51). Клетки одноклеточных обладают всеми признаками самостоятельных организмов и способны осуществлять все функции, необходимые для жизнедеятельности. В отличие от клеток многоклеточных организмов, у одноклеточных существуют органоиды специального назначения, помогающие им выполнять все необходимые функции. Способность к движению и захвату пищи обеспечивают ложноножки, жгутики и реснички. Для реализации выделительной функции существуют сократительные вакуоли. Свойство живых организмов – раздражимость обеспечивают специализированные внутриклеточные структуры, например светочувствительный глазок у эвглены зелёной позволяет ей определять направление движения к источнику света. Клетки одноклеточных устроены гораздо более сложно, нежели клетки, входящие в состав многоклеточного организма.
Рис. 51. Многообразие одноклеточных организмов: А – амёба; Б – зелёные водоросли; В – радиолярия; Г – солнечник
Многоклеточные организмы. В многоклеточном организме клетки специализированы, т. е. они способны выполнять только какую-то определённую функцию и не могут самостоятельно существовать вне целого организма. У представителя кишечнополостных – гидры – организм состоит из семи типов клеток, а организм человека образован клетками более ста типов. Совокупность клеток различных типов и межклеточного вещества, связанных выполнением ряда одинаковых функций, называют тканью. Ткани и органы характерны не для всех многоклеточных организмов. Так, у кишечнополостных и губок, у водорослей разные типы клеток не объединены в ткани, не образуют органы и системы органов. У высших растений и у большинства животных усложняется внутреннее строение и появляются специализированные системы органов, выполняющие отдельные функции. Специализация клеток у многоклеточных организмов повышает эффективность работы всего организма в целом, обеспечивает более сложные формы поведения и увеличивает продолжительность жизни.
Колонии одноклеточных организмов. Среди живых организмов существует группа, занимающая промежуточное положение между одноклеточными и многоклеточными организмами. Колониальные организмы – это совокупность одноклеточных особей, ведущих совместный образ жизни. Типичным представителем таких организмов является вольвокс – заполненный слизью шар, поверхность которого образована тысячами клеток (рис. 52). Двухжгутиковые клетки колонии связаны друг с другом цитоплазматическими мостиками, что позволяет вольвоксу согласованно работать жгутиками и плыть в направлении источника света. Отдельные клетки вольвокса уходят внутрь шара, образуя там «дочерние» молодые колонии. Новые колонии растут, порой образуя внутри себя уже «внучатые» колонии. Спустя некоторое время материнская колония лопается и погибает, а «дочерние» и «внучатые» колонии выходят наружу.
Рис. 52. Вольвокс
Вопрос происхождения многоклеточных организмов представляет большой интерес, так как является основой для понимания эволюции живой природы. В настоящее время наиболее серьёзно аргументированы колониальные гипотезы происхождения многоклеточности. Согласно этим гипотезам, многоклеточные организмы в процессе эволюции возникли в результате усложнения организации некоторых колоний простейших.
Вопросы для повторения и задания
1. Что такое организм? Постарайтесь дать определение этого понятия.
2. Что такое одноклеточный организм? Приведите примеры.
3. Какие особенности строения клетки могут обеспечить выполнение функций, свойственных целостному организму?
4. Объясните, какое значение для эволюции жизни на Земле имело появление многоклеточности.
5. Представьте, что перед вами – человек, незнакомый с биологией. Объясните ему преимущество многоклеточности.
Подумайте! Выполните!
1. Как вы считаете, почему до сих пор науке неизвестно точное число видов организмов, живущих на нашей планете?
2. В клетках каких организмов существуют органоиды специального назначения? Какие функции они выполняют?
3. Могут ли у многоклеточных организмов отсутствовать ткани и органы?
4. Объясните, почему появление многоклеточности привело в дальнейшем к образованию тканей и органов.
5. Сравните колонии одноклеточных организмов и колонии многоклеточных животных, например морских котиков. В чём их принципиальное отличие? Есть ли у них черты сходства? Рассмотрите вместо котиков колонию кишечнополостных – коралловых полипов.
Работа с компьютером
Обратитесь к электронному приложению. Изучите материал и выполните задания.
Происхождение многоклеточности. Первую колониальную гипотезу происхождения многоклеточных предложил в 1874 г. зоолог-эволюционист Эрнст Генрих Геккель. Его гипотеза получила название «гипотеза гастреи». Учёный считал, что предком многоклеточных была шаровидная колония жгутиковых. В ходе эволюции из этой колонии путём впячивания могли возникнуть первые двуслойные многоклеточные с кишечной полостью. Этого гипотетического предка Геккель назвал гастреей. Наружный слой жгутиковых клеток выполнял в первую очередь двигательную функцию, а внутренний слой – пищеварительную.
В 1888 г. русский биолог Илья Ильич Мечников опубликовал другую колониальную гипотезу – «гипотезу фагоцителлы». По мнению учёного, предок многоклеточных (фагоцителла) мог возникнуть из шаровидных колоний жгутиконосцев путём перемещения части клеток внутрь колонии. При этом наружные жгутиковые клетки продолжали выполнять двигательную функцию, а внутренние утрачивали жгутики, становились похожими на амёб и выполняли функцию фагоцитоза (отсюда и возникло название предковой формы).
Гипотеза фагоцителлы И. И. Мечникова завоевала широкое признание и нашла дальнейшее развитие в трудах многих современных учёных.
16. Обмен веществ и превращение энергии. Энергетический обмен
Вспомните!
Что такое метаболизм?
Из каких двух взаимосвязанных процессов он состоит?
Где в организме человека происходит расщепление большей части органических веществ, поступающих с пищей?
Обмен веществ и энергии. Главным условием жизни любого организма является обмен веществ и энергии с окружающей средой. В каждой клетке непрерывно происходят сложнейшие процессы, которые направлены на поддержание и обеспечение нормальной жизнедеятельности самой клетки и организма в целом. Синтезируются сложные высокомолекулярные соединения: из аминокислот образуются белки, из простых сахаров – полисахариды, из нуклеотидов – нуклеиновые кислоты. Клетки делятся и образуют новые органоиды, из клетки и в клетку активно транспортируются различные вещества. По нервным волокнам передаются электрические импульсы, сокращаются мышцы, поддерживается постоянная температура тела – на всё это, а также на многие другие процессы, протекающие в организме, требуется энергия. Эта энергия образуется при расщеплении органических веществ. Совокупность реакций расщепления высокомолекулярных соединений, которые сопровождаются выделением и запасанием энергии, называют энергетическим обменом или диссимиляцией. В основном энергия запасается в виде универсального энергоёмкого соединения – АТФ.
Аденозинтрифосфорная кислота (АТФ) – нуклеотид, состоящий из азотистого основания (аденина), сахара рибозы и трёх остатков фосфорной кислоты (рис. 53). АТФ является главной энергетической молекулой клетки, своего рода аккумулятором энергии. Все процессы в живых организмах, требующие затрат энергии, сопровождаются превращением молекулы АТФ в АДФ (аденозиндифосфорную кислоту). При отщеплении остатка фосфорной кислоты высвобождается большое количество энергии – 40 кДж/моль. Таких высокоэнергетических (так называемых макроэргических) связей в молекуле АТФ две. Восстановление структуры АТФ из АДФ и фосфорной кислоты происходит в митохондриях и сопровождается поглощением энергии.
Запас органических веществ, которые организм расходует для получения энергии, должен постоянно пополняться или за счёт пищи, как это происходит у животных, или путём синтеза из неорганических веществ (растения). Совокупность всех процессов биосинтеза, протекающих в живых организмах, называют пластическим обменом или ассимиляцией. Пластический обмен всегда сопровождается поглощением энергии. Основными процессами пластического обмена являются биосинтез белка (§ 13) и фотосинтез (§ 17).
Рис. 53. Строение молекулы АТФ (знаком «~» обозначена макроэргическая связь)
Итак, в процессе энергетического обмена расщепляются органические соединения и запасается энергия, а во время пластического обмена расходуется энергия и синтезируются органические вещества. Реакции энергетического и пластического обмена находятся в неразрывной связи, образуя в совокупности единый процесс – обмен веществ и энергии, или метаболизм. Метаболизм непрерывно осуществляется во всех клетках, тканях и органах, поддерживая постоянство внутренней среды организма – гомеостаз.
Энергетический обмен. Большинству организмов на нашей планете для жизнедеятельности необходим кислород. Такие организмы называют аэробными. Энергетический обмен у аэробов происходит в три этапа: подготовительный, бескислородный и кислородный. При наличии кислорода органические вещества в процессе дыхания полностью окисляются до углекислого газа и воды, в результате чего запасается большое количество энергии.
Анаэробные организмы способны обходиться без кислорода. Для некоторых из них кислород вообще губителен, поэтому они живут там, где кислорода нет совсем, как, например, возбудитель столбняка. Другие, так называемые факультативные анаэробы, могут существовать как без кислорода, так и в его присутствии. Энергетический обмен у анаэробных организмов происходит в два этапа: подготовительный и бескислородный, поэтому органические вещества окисляются не полностью и энергии запасается гораздо меньше.
Рассмотрим три этапа энергетического обмена (рис. 54).
Подготовительный этап. Этот этап осуществляется в желудочно-кишечном тракте и в лизосомах клеток. Здесь высокомолекулярные соединения под действием пищеварительных ферментов распадаются до более простых, низкомолекулярных: белки – до аминокислот, полисахариды – до моносахаридов, жиры – до глицерина и жирных кислот. Энергия, которая выделяется при этих реакциях, не запасается, а рассеивается в виде тепла. Низкомолекулярные вещества, образующиеся на подготовительном этапе, могут использоваться организмом для синтеза своих собственных органических соединений, т. е. вступать в пластический обмен или расщепляться дальше с целью запасания энергии.
Рис. 54. Этапы энергетического обмена
Бескислородный этап. Второй этап протекает в цитоплазме клеток, где происходит дальнейшее расщепление простых органических веществ. Аминокислоты, образованные на первом этапе, организм не использует на следующих этапах диссимиляции, потому что они необходимы ему в качестве материала для синтеза собственных белковых молекул. Поэтому для получения энергии белки расходуются очень редко, обычно только в том случае, когда остальные резервы (углеводы и жиры) уже исчерпаны. Обычно самым доступным источником энергии в клетке является глюкоза.
Сложный многоступенчатый процесс бескислородного расщепления глюкозы на втором этапе энергетического обмена называют гликолизом (от греч. glycos – сладкий и lysis – расщепление).
В результате гликолиза глюкоза расщепляется до более простых органических соединений (глюкоза С6Н12О6 пировиноградная кислота С3Н4О3). При этом выделяется энергия, 60 % которой рассеивается в виде тепла, а 40 % используется для синтеза АТФ. При расщеплении одной молекулы глюкозы образуется две молекулы АТФ и две молекулы пировиноградной кислоты. Таким образом, на втором этапе диссимиляции организм начинает запасать энергию.
Дальнейшая судьба пировиноградной кислоты зависит от присутствия кислорода в клетке. Если кислород есть, то пировиноградная кислота поступает в митохондрии, где происходит её полное окисление до СО2 и Н2О и осуществляется третий, кислородный этап энергетического обмена (см. ниже).
При отсутствии кислорода происходит так называемое анаэробное дыхание, которое часто называют брожением. В клетках дрожжей в процессе спиртового брожения пировиноградная кислота (ПВК) превращается в этиловый спирт (ПВК Этиловый спирт + СО2).
При молочнокислом брожении из ПВК образуется молочная кислота. Этот процесс может происходить не только у молочнокислых бактерий. При напряжённой физической работе в клетках мышечной ткани человека возникает нехватка кислорода, в результате чего образуется молочная кислота, накопление которой вызывает чувство усталости, боль и иногда даже судороги.
Кислородный этап. На третьем этапе продукты, образовавшиеся при бескислородном расщеплении глюкозы, окисляются до углекислого газа и воды. При этом освобождается большое количество энергии, значительная часть которой используется для синтеза АТФ. Этот процесс протекает в митохондриях и называется клеточным дыханием. В ходе клеточного дыхания при окислении двух молекул ПВК выделяется энергия, запасаемая организмом в виде 36 молекул АТФ.
Итак, в процессе энергетического обмена при полном окислении одной молекулы глюкозы до углекислого газа и воды образуется 38 молекул АТФ (2 молекулы – в процессе гликолиза и 36 – в процессе клеточного дыхания в митохондриях):
С6Н12О6 + 6О2 + 38АДФ + 38Ф 6СО2 6Н2О + 38АТФ.
В анаэробных условиях эффективность энергетического обмена значительно ниже – всего 2 молекулы АТФ. Продукты брожения (этиловый спирт, молочная кислота, масляная кислота) в своих химических связях сохраняют ещё много энергии, т. е. более выгодным в энергетическом отношении является кислородный путь диссимиляции. Но исторически брожение – более древний процесс. Он мог осуществляться ещё тогда, когда в атмосфере древней Земли отсутствовал свободный кислород.
Вопросы для повторения и задания
1. Что такое диссимиляция? Перечислите её этапы.
2. В чём заключается роль АТФ в обмене веществ в клетке?
3. Какие структуры клетки осуществляют синтез АТФ?
4. Расскажите об энергетическом обмене в клетке на примере расщепления глюкозы.
5. Изобразите схематично процесс диссимиляции, сведя на одной схеме все возможные его варианты, упомянутые в тексте параграфа (в том числе брожение).
6. Синонимами слов «диссимиляция» и «ассимиляция» являются термины «катаболизм» и «анаболизм». Объясните происхождение этих терминов.
Подумайте! Выполните!
1. Объясните, почему потребление избыточного количества пищи приводит к ожирению.
2. Почему энергетический обмен не может существовать без пластического обмена?
3. Как вы считаете, почему после тяжёлой физической работы, для того чтобы быстрее снять боли в мышцах, рекомендуют принять тёплую ванну?
Работа с компьютером
Обратитесь к электронному приложению. Изучите материал и выполните задания.
17. Пластический обмен. Фотосинтез
Вспомните!
Какую часть метаболизма называют пластическим обменом?
Какова роль зелёных растений в природе?
В каких органоидах клетки осуществляется фотосинтез?
Любой живой организм – открытая динамичная система, в которой постоянно осуществляются разнообразные процессы. В ходе жизнедеятельности клетки накапливают питательные вещества, образуют новые органоиды, растут, делятся, выполняют свои специфические функции, осуществляя при этом активный синтез органических веществ – пластический обмен и расходуя энергию, запасённую в процессе энергетического обмена. Особенно активно ассимиляция происходит в период роста организма. Но для осуществления процессов биосинтеза наличия одной энергии мало. Нужен ещё материал, из которого организм сможет синтезировать свои органические соединения. Самым важным элементом, необходимым всем живым организмам, является углерод.
Типы питания. В зависимости от способа получения углерода, т. е. по типу питания, все организмы делят на две большие группы: автотрофы и гетеротрофы.
Автотрофные организмы способны самостоятельно синтезировать необходимые органические соединения, используя в качестве источника углерода неорганическое вещество – углекислый газ (СО2). Для этого они используют энергию света (растения и синезелёные водоросли) или энергию, выделяющуюся при окислении неорганических соединений (серобактерии, железобактерии).
Гетеротрофные организмы используют в качестве источника углерода и одновременно источника энергии готовые органические вещества. К гетеротрофам относят всех животных, грибы и большинство бактерий.
Существуют ещё миксотрофные организмы (от греч. mixis – смешение), которые сочетают свойства автотрофов и гетеротрофов. К ним относят, например, эвглену зелёную, способную на свету самостоятельно синтезировать органические вещества, а в темноте – питаться готовыми.
Фотосинтез. Одним из наиболее важных процессов пластического обмена является фотосинтез – образование органических веществ при помощи энергии света. Эта энергия служит основным источником жизни на нашей планете. Зелёные растения и цианобактерии (синезелёные водоросли) используют солнечную энергию, синтезируя с её помощью органические соединения и аккумулируя её таким образом в виде энергии химических связей. Практически всё живое на Земле так или иначе связано с фотосинтезом. Гетеротрофные организмы полностью зависят от автотрофов, которые поставляют им углерод в виде готовых органических соединений. В процессе фотосинтеза выделяется кислород, используемый для дыхания. Все запасы горючих полезных икопаемых на нашей планете образовались органическим путём из остатков растений, живших много миллионов лет назад. Сжигая уголь и нефть, мы используем солнечную энергию, запасённую древними растениями.
Все реакции фотосинтеза осуществляются в специализированных органоидах: у высших растений – в хлоропластах, у водорослей – в хроматофорах, а у цианобактерий – на впячиваниях клеточной мембраны (рис. 55).
Рис. 55. Хлоропласт: А – расположение в клетке; Б – электронная фотография; В – схема строения
Рис. 56. Фотосинтез у высших растений
Суммарное уравнение фотосинтеза можно записать в следующем виде:
В процессе фотосинтеза при участии углекислого газа и воды образуется сахар – глюкоза. Эта реакция протекает за счёт энергии света, которая запасается в химических связях молекулы глюкозы, т. е. во время фотосинтеза происходит преобразование солнечной энергии в химическую (рис. 56). Весь этот процесс можно условно разделить на две фазы – световую и темновую. Рассмотрим, как происходит этот процесс в хлоропластах высших растений.
Световая фаза. Основной пигмент растительной клетки – хлорофилл – находится в мембране тилакоидов гран. Во время световой фазы молекулы хлорофилла поглощают кванты света – фотоны и переходят в неустойчивое возбуждённое состояние. Стремясь вернуться в исходное состояние, они отдают эту избыточную энергию, которая частично переходит в тепловую. Другая часть избыточной энергии запасается в виде АТФ, т. е. накапливается энергия, необходимая для осуществления процессов, протекающих в темновой фазе.
Внутри тилакоидов под действием энергии света происходит фотолиз воды: H2O H+ + OH–. Поэтому в водном растворе всегда присутствуют ионы водорода (Н+) и гидроксид-ионы (ОН–). Часть избыточной энергии возбуждённых молекул хлорофилла тратится на превращение ионов Н+ в атомы водорода, которые в строме хлоропласта активно соединяются со сложными органическими веществами – переносчиками водорода.
Оставшиеся ионы ОН– отдают свои электроны молекулам хлорофилла, превращаются в свободные радикалы и взаимодействуют друг с другом, образуя воду и молекулярный кислород:
По сути, кислород, образующийся во время световой фазы, является побочным продуктом фотосинтеза.
Все описанные выше реакции происходят только на свету. Реакции следующей темновой фазы могут осуществляться как на свету, так и в темноте.
Темновая фаза. Во время этой фазы происходит связывание углекислого газа и использование его атомов углерода для синтеза глюкозы. Атомы водорода, необходимые для этой реакции, приносят молекулы-переносчики, присоединившие водород во время световой фазы, а энергию предоставляют молекулы АТФ.
Обе фазы фотосинтеза неразрывно связаны между собой, образуя единый сложный процесс, важнейшим итогом которого является синтез органических соединений – сахаров и выделение молекулярного кислорода.
Большой вклад в изучение процесса фотосинтеза внёс выдающийся русский учёный Климент Аркадьевич Тимирязев. Он впервые доказал, что растения, синтезируя сахара из неорганического вещества – углекислого газа, преобразуют энергию света в энергию химических связей.
Однако ещё раньше, в 1771 г., английский учёный Джозеф Пристли на основании своих наблюдений сделал вывод, что растения улучшают воздух, делая его пригодным для дыхания. Так впервые было определено уникальное значение зелёных растений.
Вопросы для повторения и задания
1. Что такое ассимиляция?
2. Опишите известные вам типы питания. Какой критерий лежит в разделении организмов на автотрофные и гетеротрофные?
3. Какие организмы называют автотрофными?
4. Почему у зелёных растений в результате фотосинтеза выделяется в атмосферу свободный кислород?
5. Каковы признаки гетеротрофного типа питания? Приведите примеры гетеротрофных организмов.
6. Как вы думаете, почему всё живое на Земле можно назвать «детьми Солнца»?
7. Используя дополнительные источники информации, подготовьте сообщение или презентацию на тему «Хемосинтез и его значение в жизни планеты».
Подумайте! Выполните!
1. Как связаны между собой фотосинтез и проблема обеспечения продовольствием населения Земли?
2. Можно ли считать, что фотосинтез включает в себя одновременно два процесса – ассимиляцию и диссимиляцию? Объясните свою точку зрения.
3. Приведите примеры использования особенностей метаболизма живых организмов в медицине, сельском хозяйстве и других отраслях.
4. Достаточно ли знать, что организм способен выделять кислород, чтобы отнести его к автотрофам? И верно ли обратное утверждение: «Если организм является автотрофом, то он выделяет кислород»?
5. Как особенности метаболизма живых организмов используются в сельском хозяйстве, медицине, микробиологии, биотехнологии? Найдите необходимую информацию, используя дополнительные источники (литература, ресурсы Интернета). Обобщите информацию и представьте её в виде стенда.
Работа с компьютером
Обратитесь к электронному приложению. Изучите материал и выполните задания.
18. Деление клетки. Митоз
Вспомните!
Как, согласно клеточной теории, происходит увеличение числа клеток?
Как вы считаете, одинакова ли продолжительность жизни разных типов клеток в многоклеточном организме? Обоснуйте своё мнение.
В момент рождения ребёнок весит в среднем 3–3,5 кг и имеет рост около 50 см, детёныш бурого медведя, чьи родители достигают веса 200 кг и более, весит не более 500 г, а крошечный кенгурёнок – менее 1 г. Из серого невзрачного птенца вырастает прекрасный лебедь, юркий головастик превращается в степенную жабу, а из посаженного возле дома жёлудя вырастает громадный дуб, который спустя сотню лет радует своей красотой новые поколения людей. Все эти изменения возможны благодаря способности организмов к росту и развитию. Дерево не превратится в семя, рыба не вернётся в икринку – процессы роста и развития необратимы. Эти два свойства живой материи неразрывно связаны друг с другом, и в их основе лежит способность клетки к делению и специализации.
Рост инфузории или амёбы – это увеличение размеров и усложнение строения отдельной клетки за счёт процессов биосинтеза. Но рост многоклеточного организма – это не только увеличение размеров клеток, но и их активное деление – увеличение количества. Скорость роста, особенности развития, размеры, до которых может дорасти определённая особь, – всё это зависит от многих факторов, в том числе и от влияния среды. Но основным, определяющим фактором всех этих процессов служит наследственная информация, которая хранится в виде хромосом в ядре каждой клетки. Все клетки многоклеточного организма происходят из одной оплодотворённой яйцеклетки. В процессе роста каждая вновь образующаяся клетка должна получить точную копию генетического материала, чтобы, обладая общей наследственной программой организма, специализироваться и, выполняя свою определённую функцию, являться неотъемлемой частью целого.
В связи с дифференцировкой, т. е. разделением на разные типы, клетки многоклеточного организма имеют неодинаковую продолжительность жизни. Например, нервные клетки перестают делиться ещё во время внутриутробного развития, и в течение жизни организма их количество может только уменьшаться. Однажды возникнув, больше не делятся и живут столько, сколько ткань или орган, в состав которых они входят, клетки, образующие поперечно-полосатые мышечные ткани у животных и заасающие ткани у растений. Постоянно делятся клетки красного костного мозга, образуя клетки крови, продолжительность жизни которых ограничена. В процессе выполнения своих функций быстро гибнут клетки кожного эпителия, поэтому в ростковой зоне эпидермиса клетки делятся очень интенсивно. Активно делятся камбиальные клетки и клетки конусов нарастания у растений. Чем выше специализация клеток, тем ниже их способность к размножению.
В организме человека около 1014 клеток. Ежедневно погибает около 70 млрд клеток кишечного эпителия и 2 млрд эритроцитов. Самые короткоживущие – это клетки кишечного эпителия, чья продолжительность жизни составляет всего 1–2 дня.
Жизненный цикл клетки.
Период жизни клетки от момента её возникновения в процессе деления до гибели или конца последующего деления называют жизненным циклом. Клетка возникает в процессе деления материнской клетки и исчезает в ходе собственного деления или гибели. Продолжительность жизненного цикла у разных клеток очень сильно различается и зависит от типа клеток и условий внешней среды (температуры, наличия кислорода и питательных веществ). Например, жизненный цикл амёбы равен 36 часам, а бактерии могут делиться каждые 20 минут.
Жизненный цикл любой клетки представляет собой совокупность событий, протекающих в клетке с момента её возникновения в результате деления и до гибели или последующего митоза. Жизненный цикл может включать митотический цикл, состоящий из подготовки к митозу – интерфазы и самого деления, а также стадию специализации – дифференцировки, во время которой клетка выполняет свои специфические функции. Продолжительность интерфазы всегда больше, чем само деление. У клеток кишечного эпителия грызунов интерфаза длится в среднем 15 часов, а деление осуществляется за 0,5–1 час. Во время интерфазы в клетке активно идут процессы биосинтеза, клетка растёт, образует органоиды и готовится к следующему делению. Но, несомненно, самым важным процессом, происходящим во время интерфазы в ходе подготовки к делению, является удвоение ДНК (§ 9).
Две спирали молекулы ДНК расходятся и на каждой из них синтезируется новая полинуклеотидная цепь. Редупликация ДНК происходит с высочайшей точностью, что обеспечивается принципом комплементарности. Новые молекулы ДНК являются абсолютно идентичными копиями исходной, и после завершения процесса удвоения они остаются соединёнными в области центромеры. Молекулы ДНК, входящие в состав хромосомы после редупликации, называют хроматидами.
В точности процесса редупликации заключается глубокий биологический смысл: нарушение копирования привело бы к искажению наследственной информации и, как следствие, к нарушению функционирования дочерних клеток и всего организма в целом.
Если бы удвоения ДНК не происходило, то при каждом делении клетки число хромосом уменьшалось бы вдвое и довольно скоро в каждой клетке совсем не осталось бы хромосом. Однако нам известно, что во всех клетках тела многоклеточного организма число хромосом одинаково и из поколения в поколение не изменяется. Это постоянство достигается благодаря митотическому делению клеток.
Митоз. Деление, в процессе которого происходит строго одинаковое распределение точно скопированных хромосом между дочерними клетками, что обеспечивает образование генетически идентичных – одинаковых – клеток, называется митоз.
Рис. 57. Фазы митоза
Весь процесс митотического деления условно разделяют на четыре фазы разной продолжительности: профаза, метафаза, анафаза и телофаза (рис. 57).
В профазе хромосомы начинают активно спирализоваться – скручиваться и приобретают компактную форму. В результате такой упаковки считывание информации с ДНК становится невозможным и синтез РНК прекращается. Спирализация хромосом является обязательным условием успешного разделения генетического материала между дочерними клетками. Представьте себе некое небольшое помещение, весь объём которого заполнен 46 нитями, общая длина которых в сотни тысяч раз превышает размер этого помещения. Это ядро человеческой клетки. В процессе редупликации каждая хромосома удваивается, и мы имеем в том же объёме уже 92 перепутанные нити. Разделить их поровну, не запутавшись и не порвав, практически невозможно. Но смотайте эти нити в клубки, и вы легко их сможете распределить на две равные группы – по 46 клубков в каждой. Нечто аналогичное и происходит во время митотического деления.
К концу профазы ядерная оболочка распадается, и между полюсами клетки протягиваются нити веретена деления – аппарата, который обеспечивает равномерное распределение хромосом.
В метафазе спирализация хромосом становится максимальной, и компактные хромосомы располагаются в экваториальной плоскости клетки. На этой стадии отчётливо видно, что каждая хромосома состоит из двух сестринских хроматид, соединённых в области центромеры. Нити веретена деления прикрепляются к центромере.
Анафаза протекает очень быстро. Центромеры расщепляются надвое, и с этого момента сестринские хроматиды становятся самостоятельными хромосомами. Нити веретена деления, прикреплённые к центромерам, оттягивают хромосомы к полюсам клетки.
На стадии телофазы дочерние хромосомы, собравшиеся у полюсов клетки, раскручиваются и вытягиваются. Они вновь превращаются в хроматин и становятся плохо различимыми в световой микроскоп. Вокруг хромосом на обоих полюсах клетки формируются новые ядерные оболочки. Образуются два ядра, содержащие одинаковые диплоидные наборы хромосом.
Рис. 58. Деление цитоплазмы в животной (А) и растительной (Б) клетках
Завершается митоз делением цитоплазмы. Одновременно с расхождением хромосом органоиды клетки приблизительно равномерно распределяются по двум полюсам. В животных клетках клеточная мембрана начинает впячиваться внутрь, и клетка делится путём перетяжки (рис. 58). В клетках растений мембрана формируется внутри клетки в экваториальной плоскости и, распространяясь к периферии, разделяет клетку на две равные части.
Значение митоза. В результате митоза возникают две дочерние клетки, содержащие столько же хромосом, сколько их было в ядре материнской клетки, т. е. образуются клетки, идентичные родительской. В нормальных условиях никаких изменений генетической информации в процессе митоза не происходит, поэтому митотическое деление поддерживает генетическую стабильность клеток. Митоз лежит в основе роста, развития и вегетативного размножения многоклеточных организмов. Благодаря митозу осуществляются процессы регенерации и замены отмирающих клеток (рис. 59). У одноклеточных эукариот митоз обеспечивает бесполое размножение.
Рис. 59. Значение митоза: А – рост (кончик корня); Б – вегетативное размножение (почкование дрожжей); В – регенерация (хвост ящерицы)
Вопросы для повторения и задания
1. Что такое жизненный цикл клетки?
2. Каким образом в митотическом цикле происходит удвоение ДНК? Объясните, в чём заключается биологический смысл этого процесса.
3. В чём состоит подготовка клетки к митозу?
4. Опишите последовательно фазы митоза.
5. Составьте схему, иллюстрирующую биологическое значение митоза.
Подумайте! Выполните!
1. Объясните, почему завершение митоза – деление цитоплазмы происходит по – разному в животных и растительных клетках.
2. Клетки каких растительных тканей активно делятся и дают начало всем остальным тканям растения?
Работа с компьютером
Обратитесь к электронному приложению. Изучите материал и выполните задания.
Интерфаза. Стадия подготовки клетки к делению называется интерфаза Она подразделяется на несколько периодов.
Пресинтетический период (G1) – это наиболее продолжительный период клеточного цикла, наступающий после деления (митоза) клеток. Число хромосом и содержание ДНК – 2n2с. У разных видов клеток период G1 может продолжаться от нескольких часов до нескольких суток. В этот период в клетке активно синтезируются белки, нуклеотиды и все виды РНК, делятся митохондрии и пропластиды (у растений), образуются рибосомы и все одномембранные органоиды, увеличивается объём клетки, накапливается энергия, идёт подготовка к редупликации ДНК.
Синтетический период (S) – это важнейший период в жизни клетки, во время которого происходит удвоение ДНК (редупликация). Длительность S – периода – от 6 до 10 часов. В это же время идёт активный синтез белков-гистонов, входящих в состав хромосом, и их миграция в ядро. К концу периода каждая хромосома состоит из двух сестринских хроматид, соединённых друг с другом в области центромеры. Тем самым число хромосом не меняется (2n), а количество ДНК удваивается (4с).
Постсинтетический период (G2) наступает после завершения удвоения хромосом. Это период подготовки клетки к делению. Он длится 2–6 часов. В это время активно накапливается энергия для предстоящего деления, синтезируются белки микротрубочек (тубулины) и регуляторные белки, запускающие митоз.
Формы митоза. В природе встречается несколько вариантов митотического деления клеток.
Симметричный митоз. Наиболее распространённая в природе форма митоза, в результате которой получаются две одинаковые клетки.
Асимметричный митоз. Митоз, при котором происходит неравномерное распределение цитоплазмы между дочерними клетками или неравномерное распределение специальных белков – факторов дифференцировки, определяющих дальнейшую судьбу клетки после деления.
Закрытый митоз. У некоторых инфузорий, водорослей, грибов митоз проходит без разрушения ядерной оболочки. В этом случае веретено деления может располагаться внутри специального канала, который образуется в ядре. Молекулярные механизмы закрытого митоза пока изучены ещё недостаточно хорошо.
Амитоз. Амитоз, или прямое деление, – деление клетки без образования веретена деления. Интерфазное ядро разделяется перетяжкой на две части. При этом не происходит равномерное распределение генетического материала между двумя дочерними клетками. Чаще всего амитоз встречается в клетках высокоспециализированных тканей, которым уже не надо делиться дальше, при старении, дегенерации тканей и в клетках злокачественных опухолей.
Следует отметить, что в настоящее время большинство учёных считают, что все явления, относимые к амитозу, – это описания неких патологических процессов или результат неверной интерпретации недостаточно качественно приготовленных микропрепаратов. Однако всё-таки некоторые варианты деления ядер эукариотических клеток нельзя отнести ни к митозу, ни к мейозу. Таково, например, деление макронуклеусов многих инфузорий, которое происходит без образования веретена деления.
Растения
Образовательные ткани. Клетки специализированных растительных тканей (покровных, механических, проводящих) не способны к делению. Следовательно, в растении должны быть ткани, единственная функция которых заключается в новообразовании клеток. Только от них зависит возможность роста растения. Это образовательные ткани, или меристемы (от греч. meristos – делимый).
Образовательные ткани, или меристемы, состоят из мелких тонкостенных крупноядерных клеток, содержащих пропластиды, митохондрии и мелкие, практически неразличимые под световым микроскопом вакуоли. Меристемы обеспечивают рост растения и образование всех остальных типов тканей. Их клетки делятся путём митоза. После каждого деления одна из сестринских клеток сохраняет свойство материнской, а другая вскоре прекращает деление и приступает к начальным этапам дифференциации, в дальнейшем образуя клетки определённой ткани.
Образовательные ткани в теле растения располагаются в разных местах, в связи с чем их делят на несколько групп.
Верхушечные (апикальные) меристемы. Располагаются на верхушках осевых органов – стебля и корня, обеспечивая рост этих органов в длину. По мере ветвления на каждом новом боковом побеге или корне образуются свои верхушечные меристемы.
Боковые (латеральные) меристемы. Обеспечивают утолщение осевых органов. Это камбий, характерный для голосеменных и двудольных растений, и феллоген, образующий покровную ткань – пробку, или феллему.
Вставочные (интеркалярные) меристемы. Расположены в нижней части междоузлия стебля злаков и у основания молодых листьев, обеспечивая рост этих органов. По мере окончания роста листа или стеблевого участка вставочная меристема превращается в постоянные ткани.
19. Размножение: бесполое и половое
Вспомните!
Какие два основных типа размножения существуют в природе?
Что такое вегетативное размножение?
Какой набор хромосом называют гаплоидным; диплоидным?
Каждую секунду на Земле гибнут десятки тысяч организмов. Одни от старости, другие из-за болезней, третьих съедают хищники… Мы срываем в саду цветок, наступаем случайно на муравья, убиваем укусившего нас комара и ловим на озере щуку. Каждый организм смертен, поэтому любой вид должен заботиться о том, чтобы его численность не уменьшалась. Смертность одних особей компенсируется рождением других.
Способность к размножению является одним из основных свойств живой материи. Размножение, т. е. воспроизведение себе подобных, обеспечивает непрерывность и преемственность жизни. В процессе размножения происходит точное воспроизведение и передача генетической информации от родительского поколения следующему, дочернему, что обеспечивает существование вида на протяжении длительного времени, несмотря на гибель отдельных особей. В основе размножения лежит способность клетки к делению, а передача генетической информации обеспечивает материальную преемственность поколений любого вида. Для того чтобы особь смогла воспроизводить себе подобных, т. е. стать способной к размножению, она должна вырасти и достичь определённой стадии развития. Не все организмы доживают до репродуктивного периода и не все оставляют потомство, поэтому, чтобы поддержать существование вида, каждое поколение должно производить потомков больше, чем было родителей. Свойства живых организмов – рост, развитие и размножение – неразрывно связаны друг с другом.
Все виды организмов способны к размножению. Даже вирусы – неклеточная форма жизни – пусть не самостоятельно, но тоже размножаются в клетках организма-хозяина. В процессе эволюции в природе возникло несколько способов размножения, каждый из которых имеет свои преимущества и свои недостатки. Все разнообразные формы размножения можно объединить в два основных типа – бесполое и половое.
Бесполое размножение. Этот тип размножения происходит без образования специализированных половых клеток (гамет), и для его осуществления необходим только один организм. Новая особь развивается из одной или нескольких соматических (неполовых) клеток материнского организма и является его абсолютной копией. Генетически однородное потомство, происходящее от одной родительской особи, называют клоном.
Бесполое размножение является наиболее древней формой размножения, поэтому особенно широко оно распространено у одноклеточных организмов, но встречается и среди многоклеточных.
Существует несколько способов бесполого размножения.
Деление. Прокариотические организмы (бактерии и синезелёные водоросли) размножаются путём простого деления, которому предшествует удвоение единственной кольцевой молекулы ДНК.
Митотическим делением на две и более клеток размножаются простейшие (амёбы, инфузории, жгутиковые) (рис. 60) и одноклеточные зелёные водоросли.
У некоторых простейших (малярийный плазмодий) встречается особый способ бесполого размножения, так называемая шизогония. Ядро материнской особи делится несколько раз подряд без деления цитоплазмы, а затем образовавшаяся многоядерная клетка распадается на множество одноядерных клеток.
Спорообразование. Этот способ размножения характерен в основном для грибов и растений. Специализированные клетки – споры – могут образовываться в специальных органах – спорангиях (как это происходит у растений) или открыто, на поверхности организма (как, например, у некоторых плесневых грибов).
Рис. 60. Деление амёбы
Споры продуцируются в огромном количестве и обладают очень малым весом, что облегчает их распространение ветром, а также животными, в основ ном насекомыми.
Вегетативное размножение. Способ бесполого размножения, при котором дочерний организм развивается из группы родительских клеток, называют вегетативным размножением.
Широко распространено такое размножение у растений. В естественных природных условиях оно, как правило, происходит с помощью специализированных частей тела растения. Луковица тюльпана, клубнелуковица гладиолуса, растущий горизонтально подземный стебель (корневище) ириса, ползучий, стелющийся по поверхности почвы стебель ежевики, усы земляники, клубни картофеля и корневые клубни георгина – всё это органы вегетативного размножения растений.
Вегетативное размножение у животных осуществляется двумя основными способами: фрагментацией и почкованием.
Фрагментация – это разделение тела на две и более частей, каждая из которых даёт начало новой полноценной особи. Этот процесс основан на способности к регенерации. Таким способом могут размножаться кольчатые и плоские черви, иглокожие и кишечнополостные.
Фрагментация встречается и в растительном царстве. Зелёная водоросль спирогира размножается обрывками своих нитей, а низшие мхи – кусками слоевища.
Почкование – это образование на теле материнской особи группы клеток – почки, из которой развивается новая особь. В течение некоторого времени дочерняя особь развивается как часть материнского организма, а затем или отделяется от него и переходит к самостоятельному существованию (пресноводный полип гидра), или, продолжая расти, образует собственные почки, формируя колонию (коралловые полипы). Встречается почкование и у одноклеточных организмов – дрожжевых грибов (рис. 61) и некоторых инфузорий.
Половое размножение. Половое размножение – это процесс образования дочернего организма при участии половых клеток – гамет. В большинстве случаев новое поколение возникает в результате слияния двух специализированных половых клеток различных организмов. Гаметы, дающие начало дочернему организму, имеют половинный (гаплоидный) набор хромосом данного вида и у животных образуются в результате особого процесса – мейоза (§ 20). Как правило, гаметы бывают двух типов – мужские и женские, и формируются они в специальных органах – половых железах.
Рис. 61. Почкование дрожжевых грибов
Новый организм, возникающий в результате слияния гамет, получает наследственную информацию от обоих родителей: 50 % от матери и 50 % от отца. Будучи похожим на них, он тем не менее обладает собственной уникальной комбинацией генетического материала, которая может оказаться очень удачной для выживания в меняющихся условиях окружающей среды.
Виды, у которых есть и мужские, и женские особи, называют раздельнополыми; к ним относится большинство животных.
Виды, у которых одна и та же особь способна формировать и мужские, и женские гаметы, называют двуполыми или гермафродитными. К таким организмам относятся большинство покрытосеменных растений, многие кишечнополостные, плоские черви и многие кольчатые (малощетинковые и пиявки), некоторые ракообразные и моллюски и даже отдельные виды рыб и пресмыкающихся. Гермафродитизм подразумевает возможность самооплодотворения, что бывает очень важно для организмов, ведущих одиночный образ жизни (например, свиной цепень в организме человека). Правда, следует отметить, что при возможности гермафродиты предпочитают обмениваться половыми клетками друг с другом, осуществляя перекрёстное оплодотворение.
Возникшая в процессе эволюции раздельнополость имела явные преимущества. Появилась возможность объединять генетическую информацию разных особей, формируя новые сочетания и увеличивая генетическое разнообразие вида, что способствовало его приспособлению в изменяющихся условиях обитания. Кроме того, это позволило распределить функции между особями разного пола. У большинства организмов появился половой диморфизм – внешние различия между мужскими и женскими особями (рис. 62).
Значение бесполого и полового размножения. Как бесполое, так и половое размножение обладает рядом достоинств. При половом размножении часто приходится тратить время и энергию на поиски партнёра или терять огромное количество гамет, как происходит при перекрёстном оплодотворении у растений (сколько пыльцы пропадает впустую!). При бесполом размножении продолжение рода происходит проще и численность особей увеличивается гораздо быстрее, но все дочерние особи одинаковы и являются копией материнского организма. Это может быть преимуществом, если вид обитает в неизменных условиях среды. Но для многих видов, чья окружающая среда изменчива и непостоянна, бесполое размножение не обеспечит выживания. Амёба размножается только бесполым путём, а, к примеру, млекопитающие только половым, и каждого «устраивает» его форма размножения. То, что хорошо в одних условиях, может оказаться неподходящим в другой ситуации, поэтому у многих видов существует чередование разных форм размножения, что позволяет им оптимально решать задачу воспроизведения себе подобных в различных условиях обитания.
Рис. 62. Половой диморфизм
Вопросы для повторения и задания
1. Докажите, что размножение – одно из важнейших свойств живой природы.
2. Какие основные типы размножения вам известны?
3. Что такое бесполое размножение? Какой процесс лежит в его основе?
4. Перечислите способы бесполого размножения; приведите примеры.
5. Возможно ли появление генетически разнородного потомства при бесполом размножении? Аргументируйте свой ответ.
6. Чем половое размножение отличается от бесполого? Сформулируйте определение полового размножения.
7. Подумайте, какое значение для эволюции жизни на Земле имело появление полового размножения.