Логика. Учебное пособие Гусев Дмитрий

Введение, Или что такое логика и зачем она нужна?

Начиная знакомиться с какой-либо наукой, мы прежде всего отвечаем на вопрос о том, что она изучает, чему посвящена, чем занимается. Логика – это наука о мышлении. Но ведь мышлением занимаются и психология, и педагогика, и многие другие науки. Значит, логика занимается не всеми вопросами и проблемами, связанными с мышлением, не всеми его областями или сторонами, а только какими-то из них. Что же интересует логику в мышлении?

Каждый из нас хорошо знает, что по содержанию человеческое мышление бесконечно многообразно, ведь мыслить (думать) можно о чем угодно, например, – об устройстве мира и происхождении жизни на Земле, о прошлом человечества и его будущем, о прочитанных книгах и просмотренных фильмах, о сегодняшних занятиях и завтрашнем отдыхе и т. д. и т. п.

Но самое главное заключается в том, что наши мысли возникают и строятся по одним и тем же законам, подчиняются одним и тем же принципам, укладываются в одни и те же схемы или формы. Причем, если содержание нашего мышления, как уже было сказано, бесконечно разнообразно, то форм, в которых выражается это разнообразие совсем немного.

Для пояснения этой мысли приведем простой пример. Рассмотрим три совершенно различных по содержанию высказывания:

1. Все караси – это рыбы;

2. Все треугольники – это геометрические фигуры;

3. Все стулья – это предметы мебели.

Несмотря на различное содержание, у этих трех высказываний есть нечто общее, что-то их объединяет. Что? Их объединяет не содержание, а форма. Отличаясь по содержанию, они сходны по форме: ведь каждое из этих трех высказываний строится по схеме или по форме – «Все А – это В», где А и В – это какие-либо предметы. Понятно, что само высказывание «Все А – это В» лишено всякого содержания (О чем конкретно оно говорит? Ни о чем!). Это высказывание представляет собой чистую форму, которую, как вы догадываетесь, можно наполнить любым содержанием, например: Все сосны – это деревья; Все города – это населенные пункты; Все школы – это учебные заведения; Все тигры – это хищники и т. д. и т. п.

Приведем другой пример. Возьмем три различных по содержанию высказывания:

1. Если наступает осень, то опадают листья;

2. Если завтра будет дождь, то на улице будут стоять лужи;

3. Если вещество – металл, то оно электропроводно.

Будучи непохожими друг на друга по содержанию, эти три высказывания сходны между собой тем, что строятся по одной и той же форме: «Если А, то В». Понятно, что к этой форме можно подобрать огромное количество различных содержательных высказываний, например: Если не подготовиться к контрольной работе, то можно получить двойку; Если взлетная полоса покрыта льдом, то самолеты не могут взлетать; Если слово стоит в начале предложения, то его надо писать с большой буквы и т. д. и т. п.

Итак, мы заметили, что по содержанию наше мышление бесконечно разнообразно, но все это разнообразие укладывается всего в несколько форм. Так вот логика не интересуется содержанием мышления (им занимаются другие науки), она изучает только формы мышления, ее интересует не то, что мы мыслим, а то, как мы мыслим, поэтому она также часто называется формальной логикой. Так, например, если по содержанию высказывание Все комары – это насекомые является нормальным, понятным, осмысленным, а высказывание Все Чебурашки – это инопланетяне является бессмысленным, нелепым, абсурдным, то для логики эти два высказывания равноценны: ведь она занимается формами мышления, а форма у этих двух высказываний была одной и той же – «Все А – это В».

Таким образом, форма мышления – это способ, которым мы выражаем наши мысли, или схема, по которой они строятся. Существует три формы мышления.

1. Понятие – это форма мышления, которая обозначает какой-либо объект или признак объекта (примеры понятий: карандаш, растение, небесное тело, химический элемент, мужество, глупость, нерадивость и т. п.).

2. Суждение – это форма мышления, которая состоит из понятий, связанных между собой и что-либо утверждает или отрицает (примеры суждений: Все планеты являются небесными телами; Некоторые школьники – это двоечники; Все треугольники не являются квадратами и т. п.).

3. Умозаключение – это форма мышления, в которой из двух или нескольких исходных суждений вытекает новое суждение или вывод. Примеры умозаключений:

Все планеты движутся.

Юпитер – это планета.

Юпитер движется.

или

Железо электропроводно.

Медь электропроводна.

Ртуть электропроводна.

Железо, медь, ртуть – это металлы.

Все металлы электропроводны.

Весь бесконечный мир наших мыслей выражается в понятиях, суждениях и умозаключениях. Об этих трех формах мышления мы будем подробно говорить на других страницах книги.

Помимо форм мышления логика также занимается законами мышления, то есть – такими правилами, соблюдение которых всегда приводит рассуждение, независимо от его содержания, к истинным выводам и предохраняет от ложных (при условии истинности исходных суждений). Основных законов мышления (или законов логики) четыре. Здесь только перечислим (назовем) их, а подробно рассмотрим каждый из них после того, как рассмотрим все формы мышления.

1. Закон тождества.

2. Закон противоречия.

3. Закон исключенного третьего.

4. Закон достаточного основания.

Нарушение этих законов приводит к различным логическим ошибкам, как правило, – к ложным выводам. Иногда эти законы нарушают непроизвольно, не нарочно, по незнанию. Возникающие при этом ошибки называются паралогизмами. Однако иногда это делают преднамеренно, с целью запутать собеседника, сбить его с толка и доказать ему какую-нибудь ложную мысль. Такие преднамеренные нарушения логических законов для внешне правильного доказательства ложных мыслей называются софизмами, о которых речь впереди.

Итак, логика – это наука о формах и законах правильного мышления.

Логика появилась приблизительно в V в. до н. э. в Древней Греции. Ее создателем считается знаменитый древнегреческий философ и ученый Аристотель (384–322 гг. до н. э.). Как видим, логике 2,5 тысячи лет, однако она до сих пор сохраняет свое практическое значение. Многие науки и искусства Древнего мира навсегда ушли в прошлое и представляют для нас только «музейное» значение, интересны нам исключительно как памятники старины. Но некоторые немногие создания древних пережили века, и в настоящее время мы продолжаем ими пользоваться. К их числу относится геометрия Евклида (в школе мы изучаем именно ее) и логика Аристотеля, которая также часто называется традиционной логикой.

В XIX веке появилась и стала быстро развиваться символическая или математическая, или современная логика, в основе которой лежат идеи, выдвинутые задолго до ХІХ в. немецким математиком и философом Готфридом Лейбницем (1646–1716 гг.), об осуществлении полного перехода к идеальной (т. е. совершенно освобожденной от содержания) логической форме при помощи универсального символического языка, аналогичного языку алгебры. Лейбниц говорил о возможности представить доказательство как математическое вычисление. Ирландский логик и математик Джордж Буль (1815–1864 гг.) истолковал умозаключение как результат решения логических равенств, в результате чего теория умозаключений приняла вид своеобразной алгебры, отличающейся от обычной алгебры лишь отсутствием численных коэффициентов и степеней. Таким образом, одно из основных отличий символической логики от традиционной заключается в том, что в последней при описании правильного мышления используется обычный, или естественный язык; а символическая логика исследует тот же предмет (правильное мышление) с помощью построения искусственных, специальных, формализованных языков, или, как их еще называют, исчислений.

Традиционная и смволическая логика не являются, как может показаться, различными науками, а представляют собой два последовательных периода в развитии одной и той же науки: основное содержание традиционной логики вошло в символическую, было в ней уточнено и расширено, хотя многое при этом оказалось переосмысленным.

Теперь ответим на вопрос, зачем нам нужна логика, какую роль она играет в нашей жизни. Логика помогает нам правильно строить свои мысли и верно их выражать, убеждать других людей и лучше их понимать, объяснять и отстаивать свою точку зрения, избегать ошибок в рассуждениях. Конечно же, без логики вполне можно обойтись: одного здравого смысла и жизненного опыта часто бывает достаточно для решения каких-либо задач. Например, любой человек, не знакомый с логикой, сможет найти подвох в следующем рассуждении:

Движение вечно.

Хождение в школу – это движение.

Следовательно, хождение в школу вечно.

Каждый заметит, что ложный вывод получается из-за употребления слова «движение» в разных смыслах (в первом исходном суждении оно употребляется в широком, философском смысле, а во втором – в узком, механическом смысле). Однако найти ошибку в рассуждении не всегда просто. Рассмотрим такой пример:

Все мои друзья знают английский язык.

Нынешний президент Америки тоже знает английский язык.

Следовательно, нынешний президент Америки – мой друг.

Любой человек увидит, что в этом рассуждении есть какой-то подвох, что-то в нем не то или не так. Но что? Тот, кто не знаком с логикой, скорее всего, не сможет точно определить, какая ошибка здесь допущена. Тот, кто знаком с логикой сразу же скажет, что в данном случае допущена ошибка – «нераспределенность среднего термина в простом силлогизме». Или такой пример:

Во всех городах за полярным кругом бывают белые ночи.

Петербург не находится за полярным кругом.

Следовательно, в Петербурге не бывает белых ночей.

Как видим, из двух истинных суждений вытекает ложный вывод. Понятно, что в этом рассуждении тоже что-то не то, есть некая ошибка. Но какая? Вряд ли не знакомый с логикой человек сможет сразу же ее найти. А тот, кто владеет логической культурой, немедленно установит данную ошибку – «расширение большего термина в простом силлогизме».

Прочитав эту книгу, вы узнаете, не только то, как нарушаются логические законы в подобных рассуждениях, но и много другой интересной и полезной информации.

Итак, здравого смысла и жизненного опыта, как правило, достаточно для того, чтобы ориентироваться в различных затруднительных ситуациях. Но если к нашему здравому смыслу и жизненному опыту добавить еще и логическую культуру, то мы от этого нисколько не проиграем, а даже, наоборот, выиграем. Конечно же, логика никогда не решит всех проблем, но помочь в жизни она, несомненно, может.

Здравый смысл часто называют практической, или интуитивной логикой. Она формируется стихийно в процессе жизненного опыта, примерно к 6–7 годам, т. е. к школьному возрасту или даже раньше, и все мы ей владеем. Так, например, само слово «логика», скорее всего, было знакомо вам задолго до того, как вы начали читать эту книгу. В жизни мы часто сталкиваемся с такими выражениями, как «логичное рассуждение», «нелогичный поступок», «железная логика» и т. п. Даже если мы никогда не изучали логику, то все равно вполне понимаем, о чем идет речь, когда говорят о логике, логичном или нелогичном.

Рассмотрим такой пример: любой человек, не знакомый с логикой, заметит логическую некорректность и даже нелепость высказывания: Я иду в новых брюках, а ты идешь в гимназию. И каждый скажет, что корректным и осмысленным было бы такое высказывание: Я иду в брюках, а ты идешь в шортах или: Я иду в гимназию, а ты идешь в лицей. Когда мы изучаем логику, то узнаем, что в приведенном примере нарушается логический закон тождества, так как в нем смешиваются две различные (неравные или нетождественные друг другу) ситуации: идти в какой-то одежде и идти куда-то. Получается, что еще до знакомства с законом тождества мы уже им практически пользуемся, знаем о нем, только неявно, интуитивно. Точно так же закон тождества нарушается в высказывании: Сегодня будем копать траншею от этого столба и до обеда. Даже если человек ничего не знает о законе тождества и о его разнообразных и многочисленных нарушениях, он, тем не менее, обязательно обратит внимание на то, что в данном высказывании присутствует какая-то логическая ошибка (хотя бы он и не мог определить, какая именно).

Точно так же любой человек, скорее всего, не сможет не заметить некое логическое нарушение в следующих высказываниях: Он не взял устного разрешения в письменной форме; Поедем завтра вечером на рассвете; Она была юной девушкой преклонного возраста и т. п. Далеко не каждый сможет квалифицировать данную ошибку как нарушение логического закона противоречия. Однако, даже если мы ничего не знаем об этом законе, мы чувствуем, или ощущаем его нарушение.

Наконец, в повседневной жизни каждый из нас часто слышит и сам употребляет такие выражения, как: Почему я должен тебе верить? Чем ты это докажешь? На каком основании? Обоснуй! Мотивируй! и т. п. Когда мы так говорим, то используем логический закон достаточного основания. Тот, кто не изучал логику, скорее всего, не знаком с этим законом и ничего о нем не слышал. Однако, как видим, незнание данного логического закона не мешает нам практически, или интуитивно им пользоваться.

Данные примеры свидетельствуют в пользу того, что все люди владеют логикой, независимо от того, изучали они ее или нет. Таким образом, мы практически используем логику задолго до того, как начинаем ее теоретически изучать Возникает вопрос: зачем нужно изучать логику, если мы и так ей владеем?

Отвечая на этот вопрос, можно отметить, что то же самое происходит с родным языком: практически мы начинаем им пользоваться в 2,5–3 года своей жизни, а изучать его начинаем только со школьного возраста. Для чего же мы изучаем родной язык в школе, если задолго до нее и так хорошо им владеем? В 2,5–3 года мы пользуемся языком интуитивно, или бессознательно: практически владея им, мы ничего не знаем не только о склонениях и спряжениях, но также – о словах и буквах и даже – о самом факте того, что в жизни мы постоянно используем язык. Обо всем этом мы узнаем только тогда, когда начинаем изучать его в школьном (или старшем дошкольном) возрасте, в результате чего наше интуитивное использование языка постепенно превращается в осознанное – мы начинаем владеть им намного лучше.

Так и с логикой: владея ей интуитивно и практически повседневно ее используя, мы изучаем ее как науку для того, чтобы превратить стихийное использование логики в осознанное, владеть ей еще лучше и пользоваться более эффективно.

Глава 1

Понятие

1.1. Что такое понятие?

Первая и наиболее простая форма мышления – это понятие. В качестве составной части оно входит в другие, более сложные формы мышления – суждение и умозаключение. Понятием называется форма мышления, которая обозначает собой какой-либо объект или его свойство. В окружающем нас мире существует бесконечное множество различных объектов и свойств, а в нашем сознании они отражаются в виде понятий. Так, например, мы называем один предмет горой, другой – небесным телом, третий – растением; одно свойство или признак мы называем мужеством, другой – хитростью и т. д. и т. п. Поэтому можно сказать, что понятия – это мысленные названия объектов или, говоря условно, «имена вещей».

Любое понятие выражается в слове или словосочетании, например: дом, осенний лист, первый президент Америки и т. п. Каждое понятие имеет содержание и объем. Содержание понятия – это наиболее важный признак (или признаки) того объекта, который обозначен (выражен) этим понятием. Например, чтобы установить содержание понятия человек надо указать такой признак, который является наиболее важным, главным, основным для человека, признак, который отличает его от всех других существ, объектов, предметов и вещей. Таким признаком является наличие у человека разума. Следовательно, в содержание понятия человек входит только один важный признак – наличие разума. А в содержание понятия мужчина входит уже два важных признака:

1. наличие разума (этот признак мы автоматически повторяем, потому что любой мужчина – это человек),

2. принадлежность к определенному полу или – к одному из полов (к одной из половин человечества, слово «пол» происходит как раз от слова «половина»).

А если надо установить содержание понятия русский мужчина, то следует указать три важных признака:

1. наличие разума,

2. принадлежность к определенному полу,

3. принадлежность к определенной национальности.

Таким образом, содержание понятия может включать в себя как один признак какого-либо объекта (или объектов), так и два, и множество признаков, причем их количество, как мы увидели, зависит от того объекта, который выражается или обозначается данным понятием. Но почему в одном случае содержание понятия состоит из единственного признака, а в другом – из множества признаков? На этот вопрос ответить несложно, если знать, что такое объем понятия.

Объем понятия – это количество объектов, охватываемых этим понятием. Например, объем понятия человек гораздо шире, чем объем понятия мужчина, потому что людей существует больше, чем мужчин. А объем понятия русский мужчина гораздо меньше, чем объем понятия мужчина, потому что русских мужчин на свете намного меньше, чем вообще всех мужчин. И, наконец, объем понятия первый президент России равен единице, потому что включает в себя только одного человека. Точно так же объем понятия город является очень широким, в силу того, что это понятие охватывает собой все множество городов, какие только существуют на свете, а объем понятия столица меньше объема понятия город, так как это понятие охватывает собой только столицы (которых намного меньше, чем городов). Объем же понятия столица России равен единице, потому что включает в себя один единственный город.

Давайте еще раз вернемся к содержанию и объему понятия и вспомним приведенные выше примеры. Какое понятие – человек или мужчина – больше или шире (будьте внимательны!) по содержанию? Конечно же, понятие мужчина, потому что его содержание включает в себя два признака:

1. наличие разума,

2. принадлежность к определенному полу,

а в содержание понятия человек входит только один признак (наличие разума). А теперь ответим на вопрос: какое понятие – человек или мужчина – больше или шире по объему? Конечно же, понятие человек, потому что оно охватывает собой гораздо больше объектов, чем понятие мужчина. Таким образом, между объемом и содержанием понятия существует обратное отношение: чем больше содержание понятия, тем меньше его объем и наоборот. Например, содержание понятия небесное тело является узким, так как включает в себя только один признак – находиться вне пределов Земли, однако по объему это понятие очень широкое, потому что оно охватывает собой огромное количество объектов (любая звезда, планета, метеорит, комета, галактика – это небесное тело). А понятие Солнце, наоборот, очень маленькое, узкое по объему, так как включает в себя только один объект, но очень широкое, богатое по содержанию, которое складывается из множества признаков (размер Солнца, его масса, плотность, химический состав, температура, возраст т. д.).

1.2. Виды понятий

Все понятия по объему и содержанию делятся на несколько видов. По объему они бывают единичными (в объем понятия входит только один объект, например: Солнце, город Москва, первый президент России, писатель Лев Толстой), общими (в объем понятия входит много объектов, например: небесное тело, город, президент, писатель) и нулевыми (в объем понятия не входит ни одного объекта, например: Баба Яга, Кащей Бессмертный, Дед Мороз, вечный двигатель, марсианский житель, т. е. понятие существует, а объект, который оно обозначает, не существует). По объему понятия также бывают собирательными (понятие обозначает объект, который состоит, собирается из какого-то ограниченного набора элементов, делится, распадается на какие-то составные части, например: 10 класс «А», рота солдат, музыкальный коллектив, волчья стая, созвездие) и несобирательными (понятие обозначает объект, который не состоит, не собирается из какого-то ограниченного набора элементов, не делится, не распадается на какие-то составные части, являясь чем-то единым, целым, например: человек, растение, звезда, океан, карандаш).

По содержанию понятия бывают конкретными (понятие обозначает какой-либо объект, например: стол, гора, дерево, планета) и абстрактными (понятие обозначает не объект, а признак, свойство, например: мужество, глупость, неряшливость, темнота). Также по содержанию понятия бывают положительными (понятие обозначает наличие чего-либо, например: животное, школа, небоскреб, комета) и отрицательными (понятие обозначает отсутствие чего-либо, например: не животное, не школа, неправда, бестактность). Легко заметить, что понятие является отрицательным, когда слово, которым оно выражено, употребляется с частицей не или без, однако, если эта частица входит в состав слова, которое без нее не употребляется (неряха, неряшливость, ненастье, нерадивость, невежество), то понятие, выраженное таким словом, является положительным.

Любому понятию можно дать логическую характеристику. Это значит – разобрать его по объему и содержанию. Сначала надо определить единичным, общим или нулевым оно является, потом установить собирательное оно или несобирательное, затем выяснить конкретное оно или абстрактное и, наконец, ответить на вопрос – положительное оно или отрицательное. Например, понятие Солнце – единичное (потому что в его объем входит только один объект, одно небесное тело), несобирательное (так как Солнце не состоит ни из каких частей, не делится на них), конкретное (ведь Солнце это объект, а не признак или свойство), положительное (потому что этим понятием обозначается наличие, а не отсутствие объекта). Точно так же растение – это понятие общее, несобирательное, конкретное, положительное, а понятие созвездие Ориона – единичное, собирательное, конкретное, положительное.

Наиболее частые ошибки, которые допускаются при составлении логической характеристики понятий, заключаются в том, что такие понятия как темнота, красота, правда, нерадивость и т. п. часто называют нулевыми, потому что эти понятия обозначают не какой-либо объект, а некий признак объекта. Данные понятия абстрактные, но не нулевые, а общие, так как, хотя они и обозначают не объекты, а признаки, эти признаки являются существующими (а нулевые понятия обозначают то, чего не существует вообще – ни как предмета, ни как признака: Змей Горыныч, бессмертный президент, сухая вода, холодный огонь, яркая темнота, черная белизна и т. п.).

Также часто говорят, что понятие, например, темнота – единичное. Оно общее, так как охватывает собой множество однородных явлений (темнота в этой комнате и в той, и еще в какой-то, и на улице, и в лесу и т. д. и т. п.). А вот понятие темнота в этой конкретной комнате будет единичным. Еще одна распространенная ошибка состоит в том, что характеризуя такие понятия, как Илья Муромец, богиня Афродита, Кащей Бессмертный, вечный двигатель, говорят, что они абстрактные, потому что этих объектов не существует. Данные понятия нулевые, но не абстрактные, а конкретные, так как они обозначают, пусть не существующие, но объекты, а не признаки (Кащей Бессмертный – это фантастическое существо, объект, но не признак или свойство). Также иногда характеризуют понятия человек, животное, растение, небесное тело и т. п. как собирательные, мотивируя это тем, что объекты, обозначаемые данными понятиями, состоят из частей (например, руки, ноги, туловище и т. д. человека). Понятие является собирательным в том случае, когда объект, обозначаемый им, представляет собой механическую, а не органическую сумму частей (например: набор фломастеров, футбольная команда, созвездие Большой Медведицы, букет роз, фруктовый сад и т. п.). Если же понятие обозначает объект, не сводимый к механическому набору частей, а представляющий собой их органическое, неразрывное единство, то такое понятие будет несобирательным. Поэтому понятия человек, животное, растение, небесное тело и т. п. являются несобирательными.

1.3. Определенные и неопределенные понятия

Одним из существенных аспектов интеллектуально-речевой практики является различение определенных и неопределенных понятий. Понятие считается определенным в том случае, когда у него ясное содержание и резкий объем. Как мы уже знаем, содержание понятия – это наиболее важные признаки того объекта, который оно выражает, а объем – это количество охватываемых им объектов. Таким образом, понятие имеет ясное содержание в том случае, если можно точно указать набор важных признаков выражаемого им объекта, а также – точно установить границу между теми объектами, которые это понятие охватывает и теми, которые не принадлежат к его объему. Например, понятие мастер спорта является определенным. Оно имеет ясное содержание, т. к. можно точно указать наиболее важный отличительный признак мастера спорта – официально обладать этим спортивным разрядом. Также понятие мастер спорта имеет резкий объем – относительно любого человека можно точно сказать, является он мастером спорта или нет, т. е. попадает или не попадает в объем этого понятия; говоря иначе, возможно провести резкую границу между всеми мастерами спорта и всеми, кто ими не является, точно отделить одних от других.

Понятие является неопределенным тогда, когда оно имеет неясное содержание и нерезкий объем. Если понятие характеризуется неясным содержанием, то это значит, что невозможно точно указать наиболее важные отличительные признаки того объекта, который оно выражает; а нерезкий объем понятия свидетельствует о невозможности провести точную границу между теми объектами, которые входят в объем этого понятия и теми, которые не входят в него. Например, понятие хороший спортсмен является неопределенным. Оно имеет неясное содержание, т. к. невозможно с точностью указать существенные признаки хорошего спортсмена: нельзя однозначно ответить на вопрос – кто это такой, кого следует считать хорошим спортсменом? То ли это тот, кто имеет разряд не ниже мастера спорта, то ли тот, кто установил не менее одного мирового рекорда, то ли – многократный олимпийский чемпион, то ли хороший спортсмен – это тот, кто сам себя таковым считает… Понятно, что и мнения различных людей по поводу того, кого надо относить к хорошим спортсменам, будут значительно различаться: одни будут утверждать одно, другие – другое. Также понятие хороший спортсмен имеет нерезкий объем – относительно любого человека невозможно точно сказать, является он хорошим спортсменом или нет, т. е. попадает или не попадает в объем этого понятия, говоря иначе, нельзя провести резкую границу между множеством хороших спортсменов и всеми, кто ими не является, точно отделить одних от других.

Объем и содержание понятия, как уже говорилось, тесно связаны друг с другом. Только, если в количественном отношении связь между ними обратная (чем больше объем понятия, тем меньше его содержание и наоборот), то в качественном отношении эта связь прямая: ясное содержание понятия обусловливает его резкий объем, а неясному содержанию обязательно соответствует нерезкий объем и, разумеется, наоборот.

1.4. Роль неопределенных понятий в мышлении

Конечно же, намного удобнее и проще обращаться с определенными понятиями, чем с неопределенными, однако последние занимают значительное место и играют важную роль в мышлении и языке. Основные причины появления и существования неопределенных понятий таковы.

Во-первых, многие объекты, свойства и явления окружающего мира многогранны и сложны. Они, как правило, и выражаются в мышлении неопределенными понятиями. Например, понятие любовь, отличаясь в высшей степени неясным содержанием и, соответственно, нерезким объемом, – неопределенное, потому что обозначает явление настолько сложное, что за всю историю человечества никто так и не смог окончательно и исчерпывающе ответить на вопрос о том, что же такое любовь.

Во-вторых, как верно заметили еще древние греки, все в мире вечно меняется. Многообразие и плавность переходов из одного состояния в другое трудно точно и однозначно выразить в виде определенных понятий. Неудивительно, что эти переходы обычно обозначаются неопределенными понятиями. Можем ли мы точно сказать, когда человек является юным, когда молодым, когда зрелым, когда он – в возрасте так называемых «средних лет» и, наконец, когда он становится старым? Разумеется, понятия юный, молодой, зрелый, старый и многие другие, им подобные, являются неопределенными.

В-третьих, существование неопределенных понятий во многом связано с тем, что люди зачастую по-разному оценивают одни и те же объекты, свойства, явления и события. Одному человеку некая книга покажется интересной, другому – скучной. Один и тот же поступок может вызвать у одного восхищение, у другого – негодование, третьего оставит равнодушным. Различия в оценках окружающей нас действительности воплощаются в неопределенности многих понятий, например: интересный фильм, модная одежда, способный ученик, скучная книга, трудная задача, недостойное поведение, симпатичная девушка, вкусное блюдо и т. д. и т. п.

Необходимо отметить, что три названные причины появления и существования неопределенных понятий не изолированы, а тесно связаны между собой. Они «действуют» всегда сообща, и, скорее всего, в любом неопределенном понятии можно усмотреть одновременное «участие» этих причин.

Несмотря на неясность содержания и нерезкость объема неопределенных понятий, мы обычно пользуемся ими без особенных затруднений, как правило, интуитивно понимая, о чем идет речь, когда говорят о скучной книге, неинтересном фильме, умном человеке, бессовестной выходке, удобном кресле, высокой зарплате и т. п. Конечно же, если бы в мышлении и языке существовали только определенные понятия, то они (мышление и язык) были бы более точными. В этом случае исчезли бы разночтения, двусмысленность, неясность, и в человеческом общении было бы намного меньше трудностей и барьеров в виде взаимного непонимания и разногласий. Однако, большая точность языка и мышления сделала бы их более бедными и менее выразительными.

Вспомним описание Чичикова из «Мертвых душ» Н. В. Гоголя: «В бричке сидел господин не красавец, но и не дурной наружности, не слишком толст, не слишком тонок; нельзя сказать, чтобы стар, однако ж и не так чтобы слишком молод». Как видим, описание внешности героя целиком состоит из неопределенных понятий. Но ведь можно было бы составить это описание из определенных понятий, и тогда оно выглядело бы, например, так: «В бричке сидел господин 45 лет, ростом 175 см, в ботинках 41 размера, объем головы – 60 см, груди – 80 см…». Однако в данном случае перед нами было бы не художественное произведение, а что-то вроде милицейского протокола. Как видим, в некоторых областях интеллектуально-речевой практики невозможно обойтись без неопределенных понятий (например, в художественной литературе, которая без них перестанет быть самою собой). Но и в повседневном общении часто более уместны неопределенные понятия, чем определенные. Скорее всего, мы скажем, характеризуя кого-то, просто высокий человек, а не человек ростом 187 см.

Стремясь сделать мышление и язык более точными, пытаясь изгнать из них неопределенные понятия, мы рискуем остаться вообще без мышления и языка. Точно так же, затачивая лезвие ножа, пытаясь достичь его максимальной остроты, можно точить его до тех пор, пока от лезвия ничего не останется.

Кроме того, надо сказать, что неопределенные понятия являются источником неточности и разногласий не сами по себе, а в зависимости от той ситуации, в которой они употребляются. Как мы увидели, в художественной литературе они даже необходимы. К различного рода трудностям неопределенные понятия могут привести, если они употребляются, например, в официальных документах. Неопределенные понятия, попавшие в тексты законов, могут создать основу для разночтений и неверных решений. Так, например, понятие нарушение общественного порядка является неопределенным и, присутствуя в тексте какого-либо законодательства без поясняющих комментариев, может стать причиной оправдания виновного и наказания невиновного.

Для того, чтобы предотвратить возможные негативные последствия употребления неопределенных понятий, в их содержание вводятся дополнительные признаки, благодаря чему оно (содержание) становится ясным, а объем понятия – резким. Например, желая преодолеть неопределенность понятия молодая семья, можно ввести в его содержание признак – «супругам не более 30 лет». Так же неопределенное понятие опытный специалист возможно превратить в определенное, добавляя к его содержанию признак – «стаж работы в данной области не менее 10 лет». Однако, в этом случае дополнительный признак выбирается произвольно: почему бы не считать молодой ту семью, в которой супругам не более 25 лет или же не более 35 лет, точно так же возможно утверждать, что опытный специалист – это тот, кто проработал в данной области не менее 5 лет или же не менее 15 лет, или даже – 20 лет. Таким образом, проясняющий признак для содержания неопределенного понятия всегда относителен, т. к. зависит от договоренности между людьми в каждой конкретной ситуации, в силу чего превратить неопределенное понятие в определенное, по крупному счету, невозможно: неопределенное понятие, в конечном итоге, остается неопределенным.

1.5. В каких отношениях могут быть понятия?

Между понятиями, а вернее между их объемами, существуют определенные отношения, знание которых является в логике одним из наиболее важных (можно сказать, что виды отношений между понятиями в логике – это примерно то же самое, что в математике таблица умножения). Обычно понятия делят на сравнимые (например, Москва и столица России, писатель и россиянин, город и населенный пункт, лев и тигр, горячая вода и холодная вода, высокий человек и невысокий человек) и несравнимые (например, пингвин и кирпич, треугольник и президент, учебное заведение и небесное тело, спортсмен и город, книга и небоскреб, растение и государство).

Сравнимые понятия бывают совместимыми и несовместимыми. Совместимыми называются понятия, объемы которых имеют общие элементы, каким-либо образом соприкасаются. Например, понятия спортсмен и американец совместимые, т. к. их объемы имеют общие элементы, или объекты: есть такие спортсмены, которые являются американцами и, наоборот, есть такие американцы, которые являются спортсменами. Несовместимыми называются понятия, объемы которых не имеют общих элементов, никаким образом не соприкасаются. Например, понятия треугольник и квадрат являются несовместимыми, потому что их объемы не имеют общих элементов: ни один треугольник не может быть квадратом и наоборот.

Совместимые понятия могут быть в отношениях равнозначности, пересечения и подчинения.

Понятия находятся в отношении равнозначности в том случае, если их объемы полностью совпадают. Например, равнозначными будут понятия квадрат и равносторонний прямоугольник, т. к. любой квадрат – это равносторонний прямоугольник, а любой равносторонний прямоугольник – это квадрат. В логике принято изображать отношения между понятиями с помощью круговых схем Эйлера (известный математик XVIII века): одно понятие, а вернее его объем, изображается одним кругом, а второе, т. е. его объем – другим. Взаимное расположение этих кругов на схеме (они могут полностью совпадать или пересекаться, или не соприкасаться, или один круг располагается внутри другого) и показывает то или иное отношение между понятиями. Так отношение равнозначности между понятиями квадрат и равносторонний прямоугольник изображается схемой, на которой два круга, обозначающие два равных объема, полностью совпадают:

Понятия находятся в отношении пересечения тогда, когда их объемы совпадают только частично. Например, пересекающимися будут понятия школьник и спортсмен: есть такие школьники, которые являются спортсменами, и есть такие спортсмены, которые являются школьниками; но в то же время школьник может не быть спортсменом, так же, как и спортсмен может не быть школьником. На схеме Эйлера отношение пересечения изображается двумя пересекающимися кругами (заштрихованная часть показывает частично совпадающие объемы двух понятий):

Понятия находятся в отношении подчинения в том случае, когда объем одного из них обязательно больше объема другого и полностью его в себя включает (один объем как бы подчиняется другому). Например, в отношении подчинения находятся понятия карась и рыба, т. к. все караси – это обязательно рыбы, но рыбами являются не только караси, есть и другие виды рыб. Таким образом, объем понятия карась является меньшим по отношению к объему понятия рыба и полностью в него включается (подчиняется ему). В отношении подчинения понятия с меньшим объемом называются видовыми, а с большим – родовыми. На схеме Эйлера отношение подчинения изображается двумя кругами, один из которых располагается внутри другого:

Отношениями равнозначности, пересечения и подчинения исчерпываются все случаи совместимости между понятиями.

Несовместимые понятия могут быть в отношениях соподчинения, противоположности и противоречия.

Понятия находятся в отношении соподчинения тогда, когда их объемы не имеют общих элементов, но в то же время входят в объем какого-то третьего понятия, родового для них (совместно ему подчиняются). Например, понятия сосна и береза являются соподчиненными: ни одна сосна не может быть березой и наоборот, но и множество всех сосен, и множество всех берез включается в более широкий объем понятия дерево. На схеме Эйлера отношение соподчинения изображается двумя несоприкасающимися кругами:

Понятия находятся в отношении противоположности в том случае, если они обозначают какие-то взаимоисключающие признаки, крайние состояния чего-либо, между которыми, однако, всегда есть некий средний, переходный вариант. Например, противоположными являются понятия высокий человек и низкий человек (третьим или переходным вариантом между ними будет понятие человек среднего роста). На схеме Эйлера отношение противоположности изображается двумя несоприкасающимся кругами, которые находятся как бы на разных «полюсах»:

Поскольку объемы противоположных понятий не соприкасаются, это отношение отчасти похоже на соподчинение. Однако понятия, находящиеся в отношении соподчинения, обозначают просто различные объекты разных видов и одного рода, но не противоположные друг другу. Не можем же мы утверждать, что сосна является противоположностью березы, а береза – противоположностью сосны: это просто разные деревья, и не более того. В то же время высокий человек представляет собой противоположность низкого человека и наоборот. Так же противоположными будут понятия темная комната и светлая комната, горячая вода и холодная вода, белый лист и черный лист, глубокая речка и мелкая речка и т. п.

Понятия находятся в отношении противоречия, если одно из них представляет собой отрицание другого, причем в отличие от противоположных понятий, между противоречащими понятиями никак не может быть третьего или среднего варианта. Например, в отношении противоречия находятся понятия высокий человек и невысокий человек. В том случае, когда одно понятие является отрицанием другого, третий вариант автоматически исключается: и низкий человек, и человек среднего роста – это невысокий человек. На схеме Эйлера отношение противоречия изображается одним кругом, поделенным на две части, которые обозначают противоречащие понятия:

Отношениями соподчинения, противоположности и противоречия исчерпываются все случаи несовместимости между понятиями.

1.6. Круговые схемы Эйлера

Как мы уже знаем, в логике выделяется шесть вариантов отношений между понятиями. Два любых сравнимых понятия обязательно находятся в одном из этих отношений. Например, понятия писатель и россиянин находятся в отношении пересечения, писатель и человек – подчинения, Москва и столица России – равнозначности, Москва и Петербург – соподчинения, мокрая дорога и сухая дорога – противоположности, Антарктида и материк – подчинения, Антарктида и Африка – соподчинения и т. д. и т. п.

Надо обратить внимание на то, что если два понятия обозначают часть и целое, например месяц и год, то они находятся в отношении соподчинения, хотя может показаться, что между ними отношение подчинения, ведь месяц входит в год. Однако, если бы понятия месяц и год были подчиненными, то тогда надо было бы утверждать, что месяц – это обязательно год, а год – это не обязательно месяц (вспомним отношение подчинения на примере понятий карась и рыба: карась – это обязательно рыба, но рыба – это не обязательно карась). Месяц – это не год, а год – это не месяц, но и то, и другое – отрезок времени, следовательно, понятия месяц и год, так же, как и понятия книга и страница книги, автомобиль и колесо автомобиля, молекула и атом и т. п., находятся в отношении соподчинения, т. к. часть и целое – не то же самое, что вид и род.

В начале говорилось о том, что понятия бывают сравнимыми и несравнимыми. Считается, что рассмотренные шесть вариантов отношений применимы только к сравнимым понятиям. Однако возможно утверждать, что все несравнимые понятия находятся между собой в отношении соподчинения. Например, такие несравнимые понятия, как пингвин и небесное тело возможно рассматривать как соподчиненные, ведь пингвин – это не небесное тело и наоборот, но в то же время объемы понятий пингвин и небесное тело входят в более широкий объем третьего понятия, родового по отношению к ним: это может быть понятие объект окружающего мира или форма материи (ведь и пингвин и небесное тело – это различные объекты окружающего мира или различные формы материи). Если же одно понятие обозначает что-то материальное, а другое – нематериальное (например, дерево и мысль), то родовым для этих (как возможно утверждать) соподчиненных понятий является понятие форма бытия, т. к. и дерево, и мысль, и что угодно еще – это различные формы бытия.

Как нам уже известно, отношения между понятиями изображаются круговыми схемами Эйлера. Причем до сих пор мы изображали схематично отношения между двумя понятиями, а это можно сделать и с большим количеством понятий. Например, отношения между понятиями боксер, негр и человек изображаются следующей схемой:

Взаимное расположение кругов показывает, что понятия боксер и негр находятся в отношении пересечения (боксер может быть негром и может им не быть, а также негр может быть боксером и может им не быть), а понятия боксер и человек, так же как и понятия негр и человек находятся в отношении подчинения (ведь любой боксер и любой негр – это обязательно человек, но человек может не быть ни боксером, ни негром).

Рассмотрим отношения между понятиями дедушка, отец, мужчина, человек с помощью круговой схемы:

Как видим, указанные четыре понятия находятся в отношении последовательного подчинения: дедушка – это обязательно отец, а отец – не обязательно дедушка; любой отец – это обязательно мужчина, однако не всякий мужчина является отцом; и, наконец, мужчина – это обязательно человек, но человеком может быть не только мужчина. Отношения между понятиями хищник, рыба, акула, пиранья, щука, живое существо изображаются следующей схемой:

Попробуйте самостоятельно прокомментировать эту схему, установив все имеющиеся на ней виды отношений между понятиями.

Подытоживая сказанное, отметим, что отношения между понятиями – это отношения между их объемами. Значит, для того, чтобы было возможно установить отношения между понятиями, их объем должен быть резким, а содержание, соответственно, ясным, т. е. эти понятия должны быть определенными. Что касается неопределенных понятий, о которых шла речь выше, то установить точные отношения между ними достаточно сложно, фактически невозможно, ведь из-за неясности их содержания и нерезкости объема два каких-нибудь неопределенных понятия можно будет характеризовать как равнозначные или как пересекающиеся, или как подчиняющиеся и т. д. Например, возможно ли установить отношения между неопределенными понятиями неаккуратность и небрежность? То ли это будет равнозначность, то ли подчинение – точно сказать невозможно. Таким образом, отношения между неопределенными понятиями являются так же неопределенными. Понятно поэтому, что в тех ситуациях интеллектуально-речевой практики, где требуется точность и однозначность в определении отношений между понятиями, использование неопределенных понятий является нежелательным.

1.7. Как ограничивать и обобщать понятия?

Среди различных видов отношений между понятиями следует обратить особенное внимание на отношение подчинения. Как уже говорилось, понятия с меньшим объемом называются видовыми, а понятия с большим объемом – родовыми, причем объем видового понятия всегда полностью включается в объем родового. Видовые и родовые понятия тесно связаны между собой логическими операциями ограничения и обобщения.

Ограничение понятия – это логическая операция перехода от родового понятия к видовому с помощью прибавления к его содержанию какого-либо признака. Вспомним об обратном отношении между объемом и содержанием понятия: чем больше объем, тем меньше содержание и наоборот. Ограничение понятия или переход от родового понятия к видовому – это уменьшение его объема, а значит – увеличение содержания. Вот почему при добавлении каких-то признаков к содержанию понятия автоматически уменьшается его объем. Например, если к содержанию понятия физический прибор прибавить признак «измерять напряжение электрического тока», то оно превратится в понятие вольтметр, которое будет видовым по отношению к исходному родовому понятию физический прибор:

Так же, если к содержанию понятия геометрическая фигура прибавить признак «иметь равные стороны и прямые углы», то оно превратится в понятие квадрат, которое будет видовым по отношению к исходному родовому понятию геометрическая фигура:

Обобщение понятия – это логическая операция, которая противоположна ограничению и представляет собой переход от видового понятия к родовому с помощью отбрасывания от его содержания какого-либо признака. (Понятно, что содержание понятия, лишенное каких-то признаков, уменьшается, но при этом автоматически увеличивается объем понятия, которое из видового становится родовым или обобщается). Например, если от содержания понятия биология отбросить признак «изучать различные формы жизни», то оно превратится в понятие наука, которое будет родовым по отношению к исходному видовому понятию биология:

Так же, если от содержания понятия атом водорода отбросить признак «иметь один электрон», то оно превратится в понятие атом химического элемента, которое будет родовым по отношению к исходному видовому понятию атом водорода:

1.8. Цепочки ограничений и обобщений понятий

Ограничения и обобщения понятий складываются в логические цепочки, в которых каждое понятие (за исключением начального и конечного) является видовым по отношению к одному соседнему понятию и родовым по отношению к другому. Например, если последовательно обобщать понятие Солнце, то получится следующая цепочка:

Солнце звезда небесное тело физическое тело форма материи

В этой цепочке, как видим, понятие звезда является родовым по отношению к понятию Солнце, но видовым по отношению к понятию небесное тело; так же понятие небесное тело является родовым по отношению к понятию звезда, но видовым по отношению к понятию физическое тело и т. д. Понятно, что движение по нашей цепочке от понятия Солнце к понятию форма материи представляет собой серию последовательных обобщений, а движение в обратном направлении – ограничений. (Если изобразить отношения между понятиями из указанной цепочки на схеме Эйлера, то получатся круги, последовательно располагающиеся один в другом: самый маленький обозначает понятие Солнце, а самый большой – форма материи).

Пределом цепочки ограничения любого понятия всегда будет какое-либо единичное понятие, а пределом цепочки обобщения, как правило, будет какое-либо широкое, философское понятие (например, объект мироздания, форма материи или форма бытия).

Наиболее частые ошибки, которые допускают при ограничении и обобщении понятий, заключаются в том, что вместо вида для какого-то рода называют часть из некого целого, и вместо рода для какого-то вида называют целое по отношению к какой-либо части. Например, в качестве ограничения понятия цветок предлагают понятие стебель. Стебель, конечно же, является частью цветка, но ограничить понятие – это значит подобрать не часть для целого, а вид для рода, т. е. правильным ограничением понятия цветок будет понятие ромашка или тюльпан, или хризантема и т. п. Так же, например, в качестве обобщения понятия дерево нередко предлагают понятие лес. Конечно же, лес является неким целым по отношению к деревьям, из которых он состоит, но обобщить понятие – это значит подобрать не целое для части, а род для вида, т. е. правильным обобщением понятия дерево будет понятие растение или объект флоры, или живой организм и т. п.

Итак, почти любое понятие можно как ограничить, так и обобщить. Это значит подобрать для него как видовое понятие, так и родовое. Например, ограничением понятия человек будет понятие спортсмен (или писатель, или мужчина, или молодой человек и т. п.), а его обобщением будет понятие живое существо:

Выше было сказано, что ограничить и обобщить можно почти любое понятие. Правильнее было бы утверждать, что подавляющее большинство понятий можно подвергнуть логическим операциям ограничения и обобщения. Какие же понятия невозможно ограничить или обобщить? Мы их уже упоминали – это единичные понятия или широкие, философские понятия, на которых заканчивается любая логическая цепочка ограничения или обобщения. Единичные понятия невозможно ограничить (однако их можно последовательно, поэтапно обобщать вплоть до какого-то широкого, философского понятия), а философские, предельно широкие по объему понятия невозможно обобщить (но их можно последовательно ограничивать вплоть до какого-то единичного понятия).

1.9. Определение понятия

Одной из важных логических операций с понятиями, которая постоянно используется как в научном, так и в повседневном мышлении, является операция определения понятия. В жизни мы часто встречаемся с такими выражениями, как «начнем с определения…», «дайте определение…», «запомните определение…», «это неверное определение…» и т. п. Что же такое определение? Давайте дадим определение определению.

В обыденном смысле определение – это ответ на вопрос, что собой представляет какой-то объект, свойство, явление. Если говорить более точно и научно, то определение понятия – это логическая операция, которая раскрывает его содержание.

Определения бывают явными и неявными. Явное определение ставит своей целью непосредственное раскрытие содержания некого понятия, прямой ответ на вопрос, чем является объект, который оно обозначает. Например, определение: Термометр – это физический прибор, предназначенный для измерения температуры – явное. Неявное определение раскрывает содержание понятия не прямо, а косвенно, с помощью того контекста, в котором это понятие употребляется. Например, из следующей фразы: Во время этого грандиозного эксперимента сверхточные термометры зафиксировали температуру в 1000 градусов по Цельсию косвенно следует ответ на вопрос, что такое термометр, вытекает неявное определение этого понятия. Неявные определения называются также контекстуальными. Понятно, что определениями в полном смысле этого слова надо считать явные определения. В дальнейшем речь пойдет именно о них.

Определения также бывают реальными и номинальными. Реальное определение раскрывает содержание понятия, обозначающего какой-то объект, а номинальное (от лат. nomen – имя) раскрывает значение термина, в котором выражено какое-либо понятие. Говоря проще, реальные определения посвящены объектам, а номинальные – терминам (словам). Например, определение: Термометр – это физический прибор, предназначенный для измерения температуры – реальное, а определение: Слово «термометр» обозначает физический прибор, предназначенный для измерения температуры – номинальное. Как видим, принципиальной разницы между реальными и номинальными определениями не существует Они различаются, как правило, по форме, но не по сути.

Существует несколько способов определения понятия, но среди них выделяется классический способ определения, который заключается в том, что определяемое понятие подводится под ближайшее к нему родовое понятие, после чего следует указание на его видовое отличие. Например, определение: Астрономия – это наука о небесных телах построено по классическому способу. В нем определяемое понятие астрономия сначала подводится под ближайшее к нему родовое понятие нака (астрономия – это обязательно наука, но наука – это не обязательно астрономия), а потом указывается на видовое отличие астрономии от других наук (…о небесных телах). Пользуясь классическим способом, вы сможете дать точное и правильное определение любому понятию (если, конечно же, определяемый объект или термин вам хорошо знаком, и вы знаете, что он собой представляет или что соответственно означает). Например, нам требуется дать определение понятию квадрат. Следуя классическому способу, сначала подведем его под родовое понятие: квадрат – это геометрическая фигура…, а затем укажем не его видовое отличие от других геометрических фигур, которое заключается в наличии равных сторон и прямых углов. Итак, квадрат – это геометрическая фигура, у которой все стороны равны и углы прямые. (Давая определение понятию квадрат, мы могли бы подвести его под более близкое

родовое понятие прямоугольник, и тогда определение получилось бы следующим: Квадрат – это прямоугольник, у которого все стороны равны, однако и приведенное выше определение квадрата раскрывает содержание соответствующего понятия и является верным). Обратите внимание на то, что фактически все определения, встречающиеся в научной, учебной и справочной литературе (в толковых словарях, например) построены по классическому способу, который также часто называется определением через род и вид.

1.10. Правила определения

Существует несколько логических правил определения. Нарушение хотя бы одного из них приводит к тому, что содержание понятия не раскрывается, и определение не достигает своей цели, являясь неверным. Рассмотрим эти правила и ошибки, возникающие при их нарушении.

1. Определение не должно быть широким, т. е. определение не должно превышать своим объемом определяемое понятие. Например, определение: Солнце – это небесное тело является широким: определение – небесное тело – по объему намного больше определяемого понятия – Солнце. Из приведенного в качестве примера определения далеко не вполне понятно, что такое Солнце, ведь небесное тело – это и любая планета, и любая галактика и т. д. и т. п. В данном случае можно также сказать, что пользуясь классическим способом определения, мы подвели определяемое понятие Солнце под родовое понятие небесное тело, но не сделали второй шаг – не указали на его видовое отличие.

2. Определение не должно быть узким, т. е. определение не должно быть по своему объему меньше определяемого понятия. Например, определение: Геометрия – это наука о треугольниках является узким. Геометрия действительно наука о треугольниках, но не только о них, а в нашем примере она сведена только к треугольникам, т. е. определение получилось по объему меньше определяемого понятия, в результате чего из приведенного определения не совсем понятно, что такое геометрия, содержание понятия в данном случае не раскрывается. Как видим, ошибка узкого определения противоположна ошибке широкого определения. Если определение не должно быть широким и не должно быть узким, то каким же тогда оно должно быть? Оно должно быть соразмерным, т. е. определяемое понятие и определение должны быть равны друг другу. Вернемся к определению: Астрономия – это наука о небесных телах, которое является соразмерным. В этом примере определяемое понятие астрономия и определение наука о небесных телах находятся в отношении равнозначности (астрономия – это именно наука о небесных телах, а наука о небесных телах – это только астрономия). Определение является соразмерным тогда, когда между его первой частью (определяемым понятием) и второй (определением) можно поставить знак равенства или тождества. Если же вместо этого между первой и второй частью определения ставится знак «больше» или «меньше», то оно является ошибочным – широким или узким соответственно. В данном случае мы видим проявление одного из основных законов логики – закона тождества, который упоминался во введении к этой книге.

3. В определении не должно быть круга, т. е. в определении нельзя употреблять понятия, которые являются определяемыми. Например, в определении: Клеветник – это человек, который занимается клеветой присутствует круг, поскольку понятие клеветник определяется через понятие клевета, т. е. фактически – через самое себя. (Если бы, выслушав приведенное только что определение, мы спросили бы, что такое клевета, нам вполне могли бы ответить, что клевета – это то, чем занимается клеветник). Присутствующий в определении круг (или, по-гречески, тавтология – повтор) приводит к тому, что содержание понятия не раскрывается, и определение является ошибочным. Только на первый взгляд круг в определении может не показаться ошибкой. Наверняка найдутся люди, которые скажут, что из определения: Клеветник – это человек, который занимается клеветой вполне понятно и кто такой клеветник, и что такое клевета. Однако они могут так утверждать только потому, что им ранее было известно значение терминов клеветник и клевета. Станет ли понятно, что такое экзистенциализм из следующего кругового определения: Экзистенциализм – это философское направление XX века, в котором ставятся и всесторонне рассматриваются различные экзистенциальные вопросы и проблемы? Узнаем ли мы, что такое синергетика, благодаря такому круговому определению: Синергетика – это раздел современного естествознания, который изучает разнообразные синергетические явления и процессы?

4. Определение не должно быть двусмысленным, т. е. в нем нельзя употреблять термины в переносном значении. Вспомним всем хорошо знакомое с детства определение: Лев – это царь зверей. В данном определении термин царь используется в переносном смысле, но кроме этого, у него есть еще и прямой смысл. Получается, что в определении употребляется один термин, а возможных смыслов у него два, т. е. определение является двусмысленным (вновь нарушается логический закон тождества: одно слово, два смысла – 1 = 2). Двусмысленность вполне уместна в качестве художественного приема, но в определении она недопустима, поскольку содержание понятия в данном случае не раскрывается. Так, например, если наша задача заключается не в том, чтобы создать запоминающуюся метафору или удачный афоризм, а в том, чтобы действительно ответить на вопрос, кто такой лев или что такое краткость, то определения: Лев – это царь зверей, Краткость – это сестра таланта являются логически неправильными, т. к. не отвечают на поставленный вопрос.

5. Определение не должно быть сложным и непонятным, или оно должно быть коммуникабельным. Рассмотрим следующее определение: Энтропия – это термодинамическая функция, характеризующая часть внутренней энергии замкнутой системы, которая не может быть преобразована в механическую работу. Это определение взято не из научного доклада и не из докторской диссертации, а из учебника для студентов гуманитарных специальностей (Концепции современного естествознания. Под ред. В. Н. Лавриненко и В. П. Ратникова. М.: ЮНИТИ, 1997. С. 264). Данное определение не широкое и не узкое, в нем нет круга и двусмысленности, оно верно и с научной точки зрения. Это определение кажется безупречным за тем только исключением, что оно является сложным и непонятным для людей, которые не занимаются специально естественными науками, т. е. для большинства людей. Определение должно быть понятным для того, кому оно адресовано, иначе при всей своей формальной правильности оно не будет раскрывать содержание понятия для своего адресата. Непонятные определения также называют некоммуникабельными, т. е. создающими преграды для общения между людьми.

6. Определение не должно быть только отрицательным. Например, определение: Квадрат – это не треугольник является только отрицательным. Квадрат – это действительно не треугольник, но данное определение не раскрывает содержание понятия квадрат, ведь указав на то, чем не является объект, обозначенный определяемым понятием, мы не указали на то, чем он является (окружность, трапеция, пятиугольник и т. п. – это тоже не квадрат). Определение может быть отрицательным в том случае, когда оно дополнено положительной частью. Например, определение: Квадрат – это не треугольник, а прямоугольник, у которого все стороны равны – правильное. Важно, чтобы определение не было только отрицательным.

Приведем еще несколько примеров правильных определений, а также – определений, в которых нарушены рассмотренные правила и допущены различные ошибки.

а) Сутки – это отрезок времени, в течение которого Земля делает полный оборот вокруг своей оси (правильное определение).

б) Жанр – это устойчивая форма какого-либо произведения искусства (правильное определение).

в) Собака – это друг человека (двусмысленное определение).

г) Творческое мышление – это мышление, которое обеспечивает решение творческих задач (круг в определении).

д) Революция – это крупное историческое событие, в результате которого в обществе меняется политическая власть (узкое определение).

е) Бесхозное имущество – это имущество, не имеющее собственника или собственник которого неизвестен (правильное определение).

ж) Лошадь – это млекопитающее позвоночное животное (широкое определение).

з) Суффикс – это выделяющаяся в составе словоформы послекорневая аффиксальная морфема (некоммуникабельное определение).

Итак, основные ошибки, возникающие при нарушении правил определения понятия – это широкое определение, узкое определение, круг в определении, двусмысленное определение, сложное и непонятное определение, только отрицательное определение. Наша задача – не допускать этих ошибок и уметь находить их в различных определениях, которые часто встречаются не только в повседневной жизни и обыденном мышлении, но даже, как то ни удивительно, – в научной и учебной литературе. Последнее обстоятельство зачастую является одним из мотивов негативного отношения учащихся (студентов и школьников) к учебе, которую они нередко воспринимают как скучное, тяжелое и утомительное занятие.

1.11. Деление понятия

Еще одной важной логической операцией с понятиями, наряду с определением, является деление. Определение понятия, как мы уже знаем, раскрывает его содержание, а деление понятия – это логическая операция, которая раскрывает его объем.

Деление понятия состоит из трех частей:

1. делимое понятие,

2. результаты деления,

3. основание деления (признак, по которому производится деление).

Например, в следующем делении: Люди бывают мужчинами и женщинами (или, что то же самое: Люди делятся на мужчин и женщин) делимым является понятие люди, результаты деления – это понятия мужчины и женщины, а основание данного деления – пол, т. к. люди в нем разделены по половому признаку. В зависимости от основания деление может быть различным.

Например: Люди бывают высокими, низкими и среднего роста (основание деления – рост); Люди бывают монголоидами, европеоидами и негроидами (основание деления – раса); Люди бывают учителями, врачами, инженерами и т. д. (основание деления – профессия). Иногда понятие делится дихотомически, т. е., в переводе с греческого, пополам, по типу А и не-А, например: Люди бывают спортсменами и не спортсменами. Дихотомическое деление всегда правильное, т. е. в нем автоматически исключаются все возможные в делении ошибки, о которых речь пойдет далее.

Мы хорошо знаем, зачем нам нужна операция определения понятия: любое знакомство с каким-либо новым предметом начинается с определения. Теперь ответим на вопрос, какую роль в мышлении и языке выполняет операция деления понятия. Изучая разные науки, вы заметили, что ни одна из них не обходится без различных классификаций, т. е. разделений каких-то областей действительности на группы, части, виды и т. п. (классификация растений в ботанике, животных – в зоологии, химических элементов – в химии и т. д.). Однако любая классификация – это не что иное, как логическая операция деления понятия. Только классификации могут быть обширными, подробными, научными, но также могут быть простыми, обыденными, повседневными. Когда мы говорим: Люди делятся на мужчин и женщин или Учебные заведения бывают начальными, средними и высшими, то в этом случае уже создаем пусть маленькую и простую, но – классификацию. Итак, логическая операция деления понятия лежит в основе любой классификации, без которой не обходится ни научное, ни повседневное мышление.

1.12. Правила деления

Существует несколько логических правил деления понятия. Нарушение хотя бы одного из них приводит к тому, что объем понятия не раскрывается, и деление не достигает своей цели, являясь неверным. Рассмотрим эти правила и ошибки, возникающие при их нарушении.

1. Деление должно проводиться по одному основанию, т. е. при делении понятия следует придерживаться только одного выбранного признака. Например, в делении: Люди бывают мужчинами, женщинами и учителями используются два разных основания – пол и профессия, что недопустимо. Ошибка, возникающая при нарушении этого правила, называется подменой основания. В делении с подменой основания может использоваться не только два разных основания, как в приведенном выше примере, но и больше. Например, в делении: Люди бывают мужчинами, женщинами, китайцами и блондинами, как видим, используются три различных основания – пол, национальность и цвет волос, что, конечно же, тоже является ошибкой.

2. Деление должно быть полным, т. е. надо перечислить все возможные результаты деления (суммарный объем всех результатов деления должен быть равен объему исходного делимого понятия). Например, деление: Учебные заведения бывают начальными и средними является неполным, т. к. не указан еще один результат деления – высшие учебные заведения. Но как быть, если надо перечислять не два или три, а десятки или сотни результатов деления. В этом случае можно употреблять понятия: и другие, и прочие, и так далее, и тому подобное, которые будут включать в себя не перечисленные результаты деления. Например: Люди бывают русскими, немцами, китайцами, японцами и представителями других национальностей.

3. Результаты деления не должны пересекаться, т. е. понятиям, представляющим собой результаты деления, следует быть несовместимыми, их объемы не должны иметь общих элементов (на схеме Эйлера круги, обозначающие результаты деления, не должны соприкасаться, располагаясь отдельно друг от друга). Например, в делении: Страны мира делятся на северные, южные, восточные и западные допущена ошибка – пересечение результатов деления. На первый взгляд приведенное в качестве примера деление кажется безошибочным: оно проведено по одному основанию (сторона света) и является полным (все стороны света перечислены). Чтобы увидеть ошибку в данном делении надо рассуждать так. Возьмем какую-нибудь страну, например, Канаду и ответим на вопрос – является ли она северной? Конечно, является, т. к. расположена в северном полушарии Земли. Теперь ответим на вопрос, является ли Канада западной страной? Да, потому что она расположена в западном полушарии Земли. Таким образом, получается, что Канада – одновременно и северная, и западная страна, т. е. она является общим элементом объемов понятий северные страны и западные страны, а значит, эти понятия, а вернее их объемы, пересекаются. То же самое можно сказать и относительно понятий южные страны и восточные страны. На схеме Эйлера результаты деления из нашего примера будут располагаться так:

Вспомним, каждая классификация построена таким образом, что любой элемент, попадающий в одну ее группу (часть, вид), ни в коем случае не попадает в другие. Это и есть следствие непересечения результатов деления или их взаимоисключения при составлении какой угодно классификации.

4. Деление должно быть последовательным, т. е. не допускающим пропусков и скачков. Рассмотрим следующее деление: Леса бывают хвойными, лиственными, смешанными и сосновыми. Явно лишним здесь выглядит понятие сосновые леса, в силу чего допущенная в делении ошибка напоминает подмену основания (см. первое правило). Однако основание в данном случае не менялось: деление было проведено по одному и тому же основанию – тип древесных листьев. Подмена основания присутствует в таком, например, делении: Леса бывают хвойными, лиственными, смешанными, подмосковными и таежными. (Деление проведено по двум разным основаниям – тип древесных листьев и географическое местонахождение леса). Вернемся к нашему первому примеру. Правильно было бы разделить леса на хвойные, лиственные и смешанные, а потом произвести второе деление – разделить хвойные леса на сосновые и еловые. Таким образом, надо было совершить два последовательных деления, а в приведенном примере второе деление пропущено, через него как бы перескочили, в результате чего два деления смешались в одно. Такая ошибка называется скачком в делении. Еще раз отметим, что скачок в делении не следует путать с подменой основания. Например, в делении: Учебные заведения бывают начальными, средними, высшими и университетами присутствует скачок, а в делении: Учебные заведения бывают начальными, средними, высшими и коммерческими допущена подмена основания.

Приведем еще несколько примеров правильного деления, а также – деления, в котором нарушены рассмотренные правила и допущены различные ошибки.

а) Транспорт бывает наземным, подземным, водным, воздушным, общественным и личным (подмена основания).

б) По темпераменту люди делятся на сангвиников, меланхоликов, флегматиков и холериков (пересечение результатов деления).

в) Геометрические фигуры делятся на плоские, объемные, треугольники и квадраты (скачок в делении).

г) Отбор в живой природе бывает искусственным или естественным (правильное деление).

д) Художественные романы бывают приключенческими, детективными, фантастическими, историческими, любовными и другими (пересечение результатов деления).

е) Запоминания бывают произвольными и непроизвольными (правильное деление – дихотомическое).

ж) Математические действия делятся на сложение, вычитание, умножение, деление, возведение в степень, извлечение корня и нахождение логарифма (правильное деление).

з) Животные делятся на хищников, травоядных, всеядных и млекопитающих (подмена основания).

и) Энергия бывает механической и химической (неполное деление).

1.13. Как складываются и умножаются понятия?

Помимо ограничения, обобщения, определения и деления понятий существуют еще две логические операции – сложение и умножение понятий.

Сложение понятий – это логическая операция объединения двух и большего количества понятий, в результате которой образуется новое понятие с объемом, охватывающим собой все элементы объемов исходных понятий. Например, при сложении понятий школьник и спортсмен образуется новое понятие, в объем которого входят как все школьники, так и все спортсмены. Результат сложения понятий, часто называемый логической суммой, на схеме Эйлера изображается штриховкой:

Умножение понятий – это логическая операция объединения двух и большего количества понятий, в результате которой образуется новое понятие с объемом, охватывающим собой только совпадающие элементы объемов исходных понятий. Например, при умножении понятий школьник и спортсмен образуется новое понятие, в объем которого входят только школьники, являющиеся спортсменами и спортсмены, являющиеся школьниками. Результат умножения понятий, часто называемый логическим произведением, на схеме Эйлера изображается штриховкой (так же, как и результат сложения):

Мы привели примеры сложения и умножения понятий, которые находятся между собой в отношении пересечения (школьник и спортсмен). В других случаях отношений между понятиями результаты сложения и умножения (логическая сумма и логическое произведение), разумеется, будут иными. Читатель без труда сможет определить их для всех случаев отношений между понятиями с помощью круговых схем. Так, если два понятия находятся в отношении подчинения, например, карась и рыба, то результатом их сложения является родовое понятие рыба (т. е. логической суммой понятий карась и рыба будет множество всех рыб):

Результатом умножения понятий карась и рыба, находящихся в отношении родовидового подчинения, будет видовое понятие карась (т. е. логическим произведением понятий карась и рыба является множество всех карасей):

Так же, если два понятия находятся в отношении соподчинения, например, береза и сосна, то результат их сложения – это два объема данных понятий (т. е. логической суммой понятий береза и сосна будет как множество всех берез, так и множество всех сосен):

Результатом умножения соподчиненных понятий береза и сосна является нулевое понятие (т. е. логическое произведение понятий береза и сосна представляет собой пустое множество – не существует ни одной березы, которая могла бы быть сосной и наоборот):

Точно так же устанавливаются результаты сложения и умножения объемов двух понятий, которые находятся в отношениях равнозначности, противоположности и противоречия (см. 1.5.). Так, например, нетрудно догадаться, что если два понятия находятся в отношении равнозначности, то результат их сложения будет полностью совпадать с результатом их умножения (логическая сумма равнозначных понятий равна их логическому произведению). Так же понятно, что результатом умножения противоположных и противоречащих понятий является нулевое понятие и т. п.

Как правило, в естественном языке (т. е. том, на котором мы общаемся) результат сложения понятий выражается союзом или, а умножения – союзом и. В результате сложения понятий школьник и спортсмен образуется новое понятие, в объем которого входит любой человек, если он является или школьником, или спортсменом, а в результате умножения этих понятий в объем нового понятия входит любой человек, если он является и школьником, и спортсменом одновременно.

Относительно употребления союзов или и и в естественном языке в качестве выражения результатов логических операций сложения и умножения понятий удачный пример приводит в своем учебнике по логике известный отечественный автор В. И. Свинцов (Логика. Элементарный курс для гуманитарных специальностей. М.: Скорина, 1998. С. 60–61), отрывок из которого приводится ниже. «Что касается союзов «или» и «и», то нужно отметить их многозначность, способную в известных ситуациях создавать достаточно неопределенное представление о характере связи между некоторыми исходными понятиями. Удачна ли, например, следующая формулировка одного из правил пользования городским транспортом: «Безбилетный проезд и бесплатный провоз багажа наказывается штрафом»? Представим себе два подмножества, которые могут быть выделены во множестве пассажиров-нарушителей. В одно из них войдут пассажиры, не взявшие билета, в другое – не оплатившие провоз багажа. Если союз «и» рассматривать как показатель логического умножения, то придется признать, что штраф должен быть наложен только на тех пассажиров, которые совершили сразу два проступка (но не какой-то один из них). Разумеется, житейский смысл ситуации, предусмотренной данным правилом, настолько ясен, что всякие разночтения этой формулировки, вероятно, были бы признаны казуистикой, но все же использование союза «или» здесь следует признать предпочтительным».

Здесь следует отметить неоднозначность разделительного союза или, который может употребляться в нестрогом (неисключающем) значении и в строгом (исключающем). Например, в высказывании: Можно изучать английский язык или немецкий союз или употребляется в нестрогом значении, т. к. можно изучать и тот, и другой язык одновременно, одно другое не исключает. В данном случае разделительный союз или очень близок к соединительному союзу и. С другой стороны, в высказывании: Он родился в 1987 году или в 1989 году союз или употребляется в строгом значении, т. к. если он родился в 1987 году, то – никак не в 1989 году и наоборот, два варианта здесь друг друга исключают. (О различных значениях союза или мы еще будем говорить далее). Если в рассмотренное выше правило пользования городским транспортом поставить союз или вместо союза и, как предлагает В. И. Свинцов, то получится следующее: «Безбилетный проезд или бесплатный провоз багажа наказываются штрафом». В данном случае союз или, являющийся показателем логического сложения, надо воспринимать в его нестрогом, неисключающем значении. Но ведь в указанной фразе этот союз можно истолковать и в строгом, исключающем значении. Тогда получится, что штраф накладывается или только на тех пассажиров, которые не оплатили проезд, или же только на тех, которые бесплатно провозят багаж. Правда, в этом случае не совсем понятно, кто же наказывается штрафом – те или другие. Поразмыслив, можно прийти к выводу, что штрафу подвергаются то те, то другие – на усмотрение контролера и в зависимости от ситуации.

Страницы: 12345678 ... »»

Читать бесплатно другие книги:

Курс МСФО поможет предпринимателям, бухгалтерам и студентам легко понять суть происходящих перемен, ...
Потребительское кредитование в России – один из самых быстроразвивающихся рынков в банковском сектор...
Автокредит – это современная и удобная услуга для клиентов, предоставляющая возможность приобрести а...
В захолустном городишке Колдубинске кто-то убивает магов. Разных рас и профессиональной ориентации. ...
Вампир принцессе не товарищ?! Все верно, вампир принцессе – конкурент. А когда речь заходит о мирово...
Скучно мы живем, господа-товарищи, скучно. Ни тебе драконов, ни единорогов, а уж про эльфов и гномов...