Логика. Учебное пособие Гусев Дмитрий
В силу всего сказанного надо отметить, что употребление союза или всякий раз нуждается в комментарии относительно того, в строгом или нестрогом значении он используется. Понятно, что без этого комментария вполне возможны разночтения, которые нередко приводят к различным и существенным недоразумениям.
Вопросы и задания к главе 1
1. Что такое логика? Чем она отличается от многих наук, которые занимаются мышлением? Что такое содержание и форма мышления? Почему логика часто называется формальной логикой? Какие существуют формы мышления? Приведите несколько примеров понятий, суждений и умозаключений. Что такое законы логики? Какую роль они играют в нашем мышлении? Что такое софизмы?
2. Когда и где появилась логика? Кто считается ее создателем? Что такое традиционная логика? Когда появилась символическая, или математическая логика? Какие идеи лежат в ее основе? Чем отличается традиционная логика от символической, и в чем заключается их сходство? Являются ли традиционная логика и символическая логика различными науками? Что называется «исчислениями» в символической логике?
3. Как вы думаете, зачем нужна человеку логика? Какую роль она играет в его жизни? Можно ли, на ваш взгляд, без нее обойтись? Что такое интуитивная логика? Попытайтесь привести примеры, иллюстрирующие тот факт, что даже никогда не изучавшие логику люди все равно интуитивно ей пользуются.
4. Что такое понятие? Как соотносятся понятие и слово? Можно ли утверждать, что понятие и слово – это одно и то же? Что такое содержание и объем понятия? Как они соотносятся? Что представляет собой принцип обратного отношения между содержанием и объемом понятия? Приведите примеры понятий, иллюстрирующие этот принцип.
5. Какими бывают понятия по объему и содержанию? Приведите по 10 примеров для понятий единичных, общих, нулевых, собирательных, несобирательных, конкретных, абстрактных, положительных, отрицательных. Что такое логическая характеристика понятия? Как она составляется? Какие ошибки часто допускаются при составлении логической характеристики понятий?
6. Дайте логическую характеристику следующим понятиям: 1. Луна, 2. растение, 3. столица государства, 4. музыкальный коллектив, 5. знаменитый художник, 6. кентавр, 7. датский физик Нильс Бор, 8. древний философ, 9. Антарктида, 10. Атлантида, 11. сборная России, 12. лист бумаги, 13. молекула воды, 14. преступное сообщество, 15. уровень преступности, 16. невежество, 17. глупость, 18. умный человек, 19. драгоценный камень, 20. пьяная компания, 21. неправда, 22. водород, 23. геометрия, 24. рота солдат, 25. несправедливость, 26. эксплуатация, 27. воздух, 28. философы милетской школы, 29. знаменитое произведение искусства, 30. тишина.
7. Придумайте понятия, соответствующие следующим логическим характеристикам:
а) общее, несобирательное, конкретное, положительное.
б) единичное, несобирательное, конкретное, положительное.
в) единичное, собирательное, конкретное, положительное.
г) общее, собирательное, конкретное, положительное.
д) общее, несобирательное, абстрактное, отрицательное.
е) нулевое, несобирательное, абстрактное, положительное.
ж) нулевое, собирательное, конкретное, положительное.
з) общее, собирательное, конкретное, отрицательное.
е) единичное, несобирательное, абстрактное, положительное.
и) нулевое, несобирательное, конкретное, отрицательное.
8. Что такое определенное понятие? В каком случае можно говорить, что понятие имеет ясное содержание и резкий объем? Что представляют собой неопределенные понятия? Объясните, что такое неясное содержание и нерезкий объем понятия? Каковы основные причины появления и существования неопределенных понятий? Можно ли без них обойтись, вообще исключив их из мышления и языка? Если невозможно, то почему?
9. Представляют ли неопределенные понятия сами по себе, вне зависимости от ситуации, в которой они употребляются, коммуникативные помехи? Почему, на ваш взгляд, употребление неопределенных понятий в повседневном общении не приводит нас к коммуникативным затруднениям? В каких случаях неопределенные понятия могут стать причиной различных затруднений и сыграть негативную роль? Каким образом возможно бороться с ними в этих ситуациях?
10. Почему процедура превращения неопределенного понятия в определенное всегда условна и относительна, в силу чего неопределенное понятие, в конечном итоге, остается неопределенным?
Приведите по десять примеров для определенных и неопределенных понятий.
11. Какие из следующих понятий являются определенными, а какие неопределенными: 1. карась, 2. млекопитающее животное, 3. большая собака, 4. дикая кошка, 5. престижное учебное заведение, 6. московское учебное заведение, 7.планета Нептун, 8. яркая звезда, 9. талантливый человек, 10. богач, 11. бездарный преподаватель, 12. кандидат физико-математических наук, 13. хулиган, 14. известный писатель,
15. высокие горы, 16. учебник по химии, 17. хорошая музыка, 18. скучная лекция, 19. добротная одежда, 20. скромная пища, 21. сборная России по футболу, 22. крупный город, 23. столица государства?
12. Путем прибавления к содержанию следующих понятий каких-либо признаков превратите их из неопределенных в условно-определенные: высокий человек, старик, богач, лысый, толстая книга, современная музыка, плохая погода, высокая зарплата, хорошие соседи, двоечник, известный писатель, крупное военное сражение, большой стадион, плохой учитель, несвежие продукты, редкая удача, безрассудный поступок.
13. Что такое сравнимые и несравнимые понятия? Приведите по пять примеров для сравнимых и несравнимых понятий. Какие понятия называются в логике совместимыми, а какие – несовместимыми? Приведите по пять примеров для совместимых и несовместимых понятий.
14. В каких отношениях могут быть совместимые понятия? Что представляют собой отношения равнозначности, пересечения и подчинения между понятиями? Что такое видовые и родовые понятия? В каких отношениях могут быть несовместимые понятия? Что представляют собой отношения соподчинения, противоположности и противоречия между понятиями? Чем отличается противоположность от соподчинения и противоречие от противоположности?
15. Каким образом изображаются отношения между понятиями? В каком отношении находятся понятия, обозначающие часть и целое? Почему между этими понятиями не может быть отношения подчинения?
Почему возможно утверждать, что несравнимые понятия находятся в отношении соподчинения? Приведите пять примеров несравнимых понятий для иллюстрации своего ответа, прокомментировав каждый из них.
16. Почему невозможно точно установить отношения между неопределенными понятиями? Приведите примеры, иллюстрирующие ваш ответ. Приведите по три примера для каждого случая отношений между понятиями: равнозначности, пересечения, подчинения, соподчинения, противоположности и противоречия.
17. В каких отношениях находятся следующие понятия: 1. двоечник и студент, 2. композитор и человек, 3. город и деревня, 4. Антарктида и ледовый материк, 5. небесное тело и звезда, 6. треугольник и сторона треугольника, 7. школа № 5 и учебное заведение, 8. майор и россиянин, 9. знаменитый человек и немецкий писатель, 10. дом и крыша дома, 11. собака и кошка, 12. умный человек и неумный человек, 13. монарх и самодержец, 14. физика и химия, 15. геометрия и тригонометрия, 16. столица и населенный пункт, 17. книга и интересная книга, 18. телевизор и планета солнечной системы, 19. растение и крапива, 20. окружность и круг, 21. Николай II и последний русский царь, 22. олимпийские игры и спортивные состязания?
18. С помощью круговых схем Эйлера изобразите отношения между следующими группами понятий:
19. Подберите понятия, соответствующие следующим схемам:
20. Что такое ограничение понятия? Почему для уменьшения объема понятия надо прибавлять какие-либо признаки к его содержанию? Что представляет собой логическая операция обобщения понятия? Каким образом ограничения и обобщения понятий складываются в логические цепочки? Каковы пределы цепочек ограничений и обобщений?
21. Какие ошибки часто допускают при ограничении и обобщении понятий? Продемонстрируйте на самостоятельно подобранных примерах, что целое и часть нельзя путать с видом и родом. Всякое ли понятие можно подвергнуть ограничению и обобщению? Какие понятия не поддаются этим логическим операциям?
22. Подберите десять любых понятий и сделайте с каждым из них ограничение и обобщение, т. е. подберите для каждого из них как видовое, так и родовое понятие, иллюстрируя эти операции круговыми схемами Эйлера. Возьмите какое-либо понятие и постройте логическую цепочку его ограничения до предела. Возьмите какое-либо понятие и постройте цепочку его обобщения до предела.
23. Совершите ограничение и обобщение со следующими понятиями: 1. школа, 2. знаменитый писатель, 3. математическое действие, 4. картина, 5. предмет мебели, 6. университет, 7. планета, 8. американский президент, 9. актер, 10. химический элемент, 11. древнегреческий ученый, 12. балет, 13. уровень преступности, 14. музей, историческое событие, 15. яблоня, 16. всемирно известный спортсмен, 17. материк, 18. книга, 19. хищник, 20. высотное здание, 21. молодой человек, 22. музыкальный коллектив, 23. сборная России, 24. ураган, 25. электричество, 26. стихотворение.
24. Какие из приведенных ниже понятий невозможно подвергнуть ограничению или обобщению: 1. тетрадь, 2. МГУ, 3. галактика, 4. русский писатель XIX века, 5. первый космонавт земли, 6. Вселенная, 7. химический элемент, 8. Россия, 9. древнее государство, 10. Солнце, 11. современный автомобиль, 12. млекопитающее животное, 13. небоскреб, 14. атомная электростанция, 15. столица Франции, 16. нечто существующее, 17. планета Юпитер, 18. Третьяковская галерея, 19. московский кинотеатр, 20. толстая книга, 21. бытие?
25. Что представляет собой логическая операция определения понятия? Чем отличаются явные определения от неявных? Придумайте по три примера явных и неявных определений. Что такое реальные и номинальные определения? Как вы думаете, почему возможно утверждать, что любое реальное определение можно свести к номинальному и наоборот?
26. Что представляет собой классический способ определения понятия? Дайте определения каким-нибудь трем понятиям, пользуясь классическим способом определения. Каковы основные правила определения понятия? Какие ошибки возникают при их нарушении? Приведите, подобрав самостоятельно, по три примера для каждой ошибки в определении понятия.
27. Допущены ли ошибки в определениях, приведенных ниже? Если допущены, то какие?
а) Фильтрование – это процесс разделения какого-либо вещества с помощью специального приспособления – фильтра.
б) Кость – это орган, обладающий сложным строением.
в) Бескорыстие – это отсутствие личной заинтересованности при оказании какой-либо помощи.
г) Гравитация – это явление, которое выражается во взаимодействии двух физических тел.
д) Барометр – это метеорологический измерительный прибор.
е) Математика – это гимнастика ума.
ж) Сверхпроводник – это вещество, обнаруживающее явление сверхпроводимости.
з) Логика – это наука о формах и законах правильного мышления.
и) Извлечение квадратного корня – это математическое действие, которое не является ни умножением, ни делением, ни возведением в степень.
28. Что представляет собой логическая операция деления понятия? Чем она отличается от операции определения? Какова структура деления? Что такое основание деления? Какое деление называется дихотомическим? Попробуйте отметить достоинства и недостатки дихотомического деления. Какую роль в научном и повседневном мышлении играет логическая операция деления понятия?
29. Каковы основные логические правила деления понятия? Какие ошибки возникают при их нарушении? Придумайте по три примера для каждой ошибки в делении понятия. Почему дихотомическое деление понятия всегда является безошибочным? Каким образом оно исключает все возможные в делении ошибки?
30. Допущены ли ошибки в приведенных ниже примерах деления? Если допущены, то какие?
а) Воды земного шара бывают пресными и солеными.
б) Учащиеся бывают успевающими, отстающими и отличниками.
в) Речь бывает устной, письменной, путанной и заумной.
г) Спортивные состязания бывают мировыми, международными, олимпийскими и другими.
д) Треугольники бывают тупоугольными и прямоугольными.
е) Жиры бывают растительными, животными и твердыми.
ж) Люди бывают высокими и невысокими.
з) Оружие бывает холодным, огнестрельным и старинным. и) Высшие учебные заведения делятся на университеты, институты, академии и высшие училища.
31. Что представляют собой логические операции сложения и умножения понятий? Что такое логическая сумма и логическое произведение? Возьмите три пары каких-нибудь понятий и сделайте с ними логические операции сложения и умножения, иллюстрируя их результаты с помощью круговых схем Эйлера.
32. Каковы результаты сложения и умножения понятий во всех случаях отношений между ними? Могут ли эти результаты полностью совпадать? Может ли логическая сумма или логическое произведение быть нулевым понятием?
33. Какие союзы естественного языка являются, как правило, выражением результатов сложения и умножения понятий? Проиллюстрируйте свой ответ самостоятельно подобранными примерами. В чем заключается неоднозначность употребления союза или как показателя логического сложения понятий?
34. Произведите сложение и умножение следующих понятий, изобразив результаты этих операций с помощью круговых схем Эйлера: 1. майор и военнослужащий, 2. атом и молекула, 3. квадрат и ромб с прямым углом, 4. известный актер и россиянин, 5. млекопитающее животное и лошадь.
Глава 2
Суждение
2.1. Что такое суждение?
Суждение – это вторая после понятия форма мышления. Суждением называется форма мышления, в которой что-либо утверждается или отрицается. Примеры суждений: Все сосны являются деревьями; Некоторые люди – это спортсмены; Ни один кит – не рыба; Некоторые животные не являются хищниками и т. п. Суждение также называется высказыванием.
Рассмотрим несколько важных свойств суждения, которые также являются его отличиями от понятия.
1. Любое суждение состоит из понятий, связанных между собой. Например, если связать между собой понятия карась и рыба, то может получиться суждение: Все караси являются рыбами или Некоторые рыбы являются карасями.
2. Любое суждение выражается в форме предложения (вспомним, понятие выражается в слове или словосочетании). Однако не всякое предложение может выражать суждение. Как известно, предложения бывают повествовательными, вопросительными и восклицательными. Суждение – это форма мышления, в которой что-либо утверждается или отрицается. В вопросительных и восклицательных предложениях ничего не утверждается и не отрицается, поэтому они не могут выражать собой суждение. Повествовательное предложение, наоборот, всегда представляет какое-то утверждение или отрицание, в силу чего суждение выражается в форме повествовательного предложения. Тем не менее, есть такие вопросительные и восклицательные предложения, которые только по форме являются вопросами и восклицаниями, а по смыслу что-то утверждают или отрицают. Они называются риторическими. Например, известное высказывание: И какой же русский не любит быстрой езды? представляет собой риторическое вопросительное предложение (или риторический вопрос), т. к. в нем в форме вопроса утверждается, что всякий русский любит быструю езду. Такой вопрос, конечно же, выражает собой суждение. То же самое можно сказать о риторических восклицаниях. Например, в высказывании: Попробуй найти черную кошку в темной комнате, если ее там нет! в форме восклицательного предложения утверждается мысль о невозможности предложенного действия, в силу чего данное восклицание выражает собой суждение. Понятно, что не риторический, а настоящий вопрос, например: Как тебя зовут? не выражает собой суждение, точно так же, как не выражает его настоящее, а не риторическое восклицание, например: Прощай, свободная стихия! Приведем еще несколько примеров.
а) Неужели ты не знал, что Земля вращается вокруг Солнца? (риторический вопрос – является суждением).
б) Прощай, немытая Россия! (восклицание – суждением не является).
в) Кто написал философский трактат «Критика чистого разума»? (вопрос – суждением не является).
г) Логика появилась примерно в V в. до н. э. в Древней Греции (повествование – является суждением).
д) первый президент Америки (понятие – суждением не является).
е) Разворачивайтесь в марше! (восклицание – суждением не является).
3. Любое суждение является истинным или ложным. Если суждение соответствует действительности или реальности, оно истинное, а если не соответствует, – ложное. Например, суждение: Все розы – это цветы является истинным, а суждение: Все мухи – это птицы – ложным. Надо отметить, что понятия, в отличие от суждений, не могут быть истинными или ложными. Невозможно, например, утверждать, что понятие школа – истинное, а понятие институт – ложное, понятие звезда – истинное, а понятие планета – ложное и т. п. Но разве понятия Змей Горыныч или Кащей Бессмертный, или вечный двигатель не ложные? Нет, не ложные, эти понятия являются нулевыми или пустыми, но не истинными и не ложными. Вспомним, понятие – это форма мышления, которая обозначает собой какой-либо объект, – и именно поэтому не может быть истинным или ложным. Истинность или ложность – это всегда характеристика какого-то высказывания, утверждения или отрицания, в силу чего она применима только к суждениям, но не к понятиям. Поскольку любое суждение принимает одно из двух значений – истины или лжи, – то аристотелевская формальная логика также часто называется двузначной логикой.
4. Суждения бывают простыми и сложными. Сложные суждения состоят из простых, соединенных каким-либо союзом. О простых и сложных суждениях речь пойдет далее.
2.2. Структура суждения
Суждение – это более сложная форма мышления по сравнению с понятием. Неудивительно поэтому, что суждение имеет определенную структуру, в которой можно выделить четыре части.
1. Субъект (обычно обозначается латинской буквой S) – это то, о чем идет речь в суждении. Например, в суждении: Все учебники являются книгами речь идет об учебниках, поэтому субъектом данного суждения выступает понятие учебники.
2. Предикат (обычно обозначается латинской буквой Р) – это то, что говорится о субъекте. Например, в том же суждении:
Все учебники являются книгами о субъекте (т. е. об учебниках) говорится, что они – книги, поэтому предикатом данного суждения выступает понятие книги.
3. Связка – это то, что соединяет субъект и предикат. В роли связки могут быть слова есть, является, это и т. п.
4. Квантор – это указатель на объем субъекта. В роли квантора могут быть слова все, некоторые, ни один и т. п. Рассмотрим суждение: Некоторые люди являются спортсменами. В нем субъектом выступает понятие люди, предикатом – понятие спортсмены, роль связки играет слово являются, а слово некоторые представляет собой квантор. Если даже в каком-то суждении (выраженном в форме предложения) отсутствует связка или квантор, то они все равно там подразумеваются. Например, в суждении: Тигры – это хищники квантор отсутствует, но он подразумевается – это слово все. С помощью условных обозначений субъекта и предиката у любого суждения можно отбросить его содержание и оставить только его логическую форму. Например, если у суждения: Все прямоугольники – это геометрические фигуры отбросить содержание и оставить форму, то получится: Все S есть Р. Точно так же логическая форма суждения: Некоторые животные не являются млекопитающими – Некоторые S не есть Р.
Субъект и предикат любого суждения всегда представляют собой какие-либо понятия, которые, как мы уже знаем, могут находиться в различных отношениях между собой. Между субъектом и предикатом суждения могут быть следующие отношения.
1. Равнозначность. В суждении: Все квадраты – это равносторонние прямоугольники субъект (квадраты) и предикат (равносторонние прямоугольники) находятся в отношении равнозначности, потому что представляют собой равнозначные понятия (квадрат – это обязательно равносторонний прямоугольник, а равносторонний прямоугольник – это обязательно квадрат).
2. Пересечение. В суждении: Некоторые писатели – это американцы субъект (писатели) и предикат (американцы) находятся в отношении пересечения, т. к. являются пересекающимися понятиями (писатель может быть американцем и может им не быть, и американец может быть писателем, но также может им не быть).
3. Подчинение. В суждении: Все тигры – это хищники субъект (тигры) и предикат (хищники) находятся в отношении подчинения, потому что представляют собой видовое и родовое понятия (тигр – это обязательно хищник, но хищник – не обязательно тигр). Также в суждении: Некоторые хищники являются тиграми субъект (хищники) и предикат (тигры) находятся в отношении подчинения, будучи родовым и видовым понятиями. Понятно, почему в случае подчинения между субъектом и предикатом суждения возможны два варианта отношений: объем субъекта полностью включается в объем предиката или наоборот.
4. Несовместимость. В суждении: Все планеты не являются звездами субъект (планеты) и предикат (звезды) находятся в отношении несовместимости, т. к. являются несовместимыми (соподчиненными) понятиями (ни одна планета не может быть звездой, и ни одна звезда не может быть планетой).
Чтобы установить, в каком отношении находятся субъект и предикат того или иного суждения, надо сначала установить какое понятие данного суждения является субъектом, а какое – предикатом, после чего определить вид отношения между ними. Например, надо определить отношение между субъектом и предикатом в суждении: Некоторые военнослужащие являются россиянами. Сначала находим субъект суждения, – это понятие военнослужащие; затем устанавливаем его предикат, – это понятие россияне. Понятия военнослужащие и россияне находятся в отношении пересечения (военнослужащий может быть россиянином и может им не быть, и россиянин может как быть, так и не быть военнослужащим), следовательно в указанном суждении субъект и предикат пересекаются. Точно так же в суждении: Все планеты – это небесные тела субъект и предикат находятся в отношении подчинения, а в суждении: Ни один кит не является рыбой субъект и предикат несовместимы. Приведем еще несколько примеров, иллюстрирующих различные отношения между субъектом и предикатом в суждениях.
а) Все бактерии являются живыми организмами (подчинение).
б) Некоторые русские писатели – это всемирно известные люди (пересечение).
в) Учебники не могут быть развлекательными книгами (несовместимость).
г) Антарктида представляет собой ледовый материк (равнозначность).
2.3. Виды суждений
Обычно суждения подразделяют на три вида.
1. Атрибутивные суждения – это суждения, в которых предикат представляет собой какой-либо существенный, неотъемлемый признак или атрибут (лат. аttributum) субъекта. Например, суждение: Все воробьи – это птицы – атрибутивное, потому что его предикат является неотъемлемым признаком субъекта: быть птицей – это главный, неотъемлемый признак воробья, его атрибут, без которого он не будет самим собой, т. е. воробьем (если некий объект не птица, то он обязательно и не воробей). Надо отметить, что в атрибутивном суждении не обязательно предикат является атрибутом субъекта, может быть и наоборот – субъект представляет собой атрибут предиката. Например, в суждении: Некоторые птицы – это воробьи (как видим, по сравнению с вышеприведенным примером, субъект и предикат поменялись местами) субъект является неотъемлемым признаком или атрибутом предиката. Однако эти суждения всегда можно формально изменить таким образом (как мы только что увидели), что предикат станет атрибутом субъекта. Поэтому обычно атрибутивными называются те суждения, в которых предикат является атрибутом субъекта.
2. Экзистенциальные суждения – это суждения, в которых предикат указывает на существование (лат. еxistentia – существование) или несуществование субъекта. Например, суждение: Вечных двигателей не бывает является экзистенциальным, т. к. его предикат (выраженный здесь не совсем обычно – глаголом с частицей «не») свидетельствует о несуществовании субъекта (вернее – о несуществовании предмета, который обозначен субъектом).
3. Релятивные суждения – это суждения, в которых предикат выражает собой какое-то отношение к субъекту (лат. relativus – относительный). Например, рассмотрим суждение Москва основана раньше Санкт-Петербурга является релятивным, потому что его предикат (основана раньше Санкт-Петербурга) указывает на временное (возрастное) отношение одного города и соответствующего понятия к другому городу и соответствующему понятию, представляющему собой субъект суждения.
Приведем несколько примеров атрибутивных, экзистенциальных и релятивных суждений.
а) Все люди – это разумные живые существа (атрибутивное суждение).
б) Некоторые школьники являются двоечниками (атрибутивное суждение).
в) Технических приспособлений, способных двигаться со скоростью света, нет (экзистенциальное суждение).
г) Галактики представляют собой гигантские скопления звезд (атрибутивное суждение).
д) Человек появился намного позже животных и растений (релятивное суждение).
В мышлении и языке большую часть составляют атрибутивные суждения. Они встречаются чаще, чем экзистенциальные и релятивные. Кроме того, последние, в принципе, можно представить как атрибутивные. Вернемся к примеру экзистенциального суждения: Вечных двигателей не бывает. Его предикат (не быть или не существовать) вполне можно рассматривать как атрибут субъекта (вечные двигатели), ведь не существовать – это действительно неотъемлемый признак вечных двигателей, следовательно, данное суждение возможно расценивать как атрибутивное. Теперь обратимся к примеру релятивного суждения: Москва основана раньше Санкт-Петербурга, предикат которого (быть основанным раньше Санкт-Петербурга) вполне можно рассматривать как атрибут субъекта (Москва), ведь быть старше Санкт-Петербурга (ранее основанным городом) – это действительно неотъемлемый признак Москвы. Таким образом, это суждение также возможно характеризовать как атрибутивное.
В силу вышесказанного неудивительно, что под суждениями обычно подразумеваются атрибутивные суждения. В дальнейшем, говоря о суждениях, мы будем иметь ввиду именно их.
2.4. Простые суждения
Если в состав суждения входит один субъект и один предикат, то такое суждение является простым. Простые суждения по объему субъекта и качеству связки делятся на 4 вида. Объем субъекта может быть общим (все) и частным (некоторые), а связка может быть утвердительной (есть, или является) и отрицательной (не есть, или не является). Это наглядно представлено в следующей простой таблице.
Как видим, на основе объема субъекта и качества связки можно выделить только четыре комбинации, которыми исчерпываются все виды простых суждений (все – есть, некоторые – есть, все – не есть, некоторые – не есть). Каждый из этих видов имеет свое название и условное обозначение.
1. Общеутвердительные суждения. Как явствует из названия, это суждения с общим объемом субъекта и утвердительной связкой: Все S есть Р, например: Все школьники являются учащимися. Эти суждения обозначаются в логике латинской буквой А.
2. Частноутвердительные суждения. Название данного вида свидетельствует о том, что он представляет собой суждения с частным объемом субъекта и утвердительной связкой: Некоторые S есть Р, например: Некоторые животные являются хищниками. Эти суждения обозначаются латинской буквой I.
3. Общеотрицательные суждения – это суждения с общим объемом субъекта и отрицательной связкой: Все S не есть Р (или Ни одно S не есть Р), например: Все планеты не являются звездами (или Ни одна планета не является звездой). Такие суждения обозначаются латинской буквой Е.
4. Частноотрицательные суждения – это суждения с частным объемом субъекта и отрицательной связкой: Некоторые S не есть Р, например: Некоторые грибы не являются съедобными. Эти суждения обозначаются латинской буквой О.
Далее следует ответить на вопрос, к каким суждениям, – общим или частным, – следует относить суждения с единичным объемом субъекта (т. е. те суждения, в которых субъект представляет собой единичное понятие), например: Солнце – это небесное тело; Москва основана в 1147 году; Антарктида – это один из материков Земли. Суждение является общим, если речь в нем идет обо всем объеме субъекта и частным, если речь идет о части объема субъекта. В суждениях с единичным объемом субъекта речь идет обо всем объеме субъекта (т. е., в приведенных выше примерах, – обо всем Солнце, обо всей Москве, обо всей Антарктиде). Таким образом, суждения, в которых субъект является единичным понятием, считаются общими (общеутвердительными или общеотрицательными). Так три приведенных выше суждения – общеутвердительные, а суждение: Известный итальянский ученый эпохи Возрождения Галилео Галилей не является автором теории электромагнитного поля – общеотрицательное.
В дальнейшем будем говорить о видах простых суждений, не употребляя их длинных названий, с помощью условных обозначений – латинских букв А, I, Е, О. Эти буквы, взятые из двух латинских слов: AFFIRMO – утверждать и NEGO – отрицать, были предложены в качестве обозначения видов простых суждений еще в Средние века.
Важно отметить, что в каждом из видов простых суждений субъект и предикат находятся в определенных отношениях. Так общий объем субъекта и утвердительная связка суждений вида А приводят к тому, что в них субъект и предикат могут быть в отношениях равнозначности или подчинения (других отношений между субъектом и предикатом в суждениях вида А быть не может). Например, в суждении: Все квадраты (S) – это равносторонние прямоугольники (Р) субъект и предикат находятся в отношении равнозначности, а в суждении: Все киты (S) – это млекопитающие животные (Р) они находятся в отношении подчинения.
Частный объем субъекта и утвердительная связка суждений вида I обусловливают то, что в них субъект и предикат могут быть в отношениях пересечения и подчинения (но не в других). Например, в суждении: Некоторые спортсмены (S) – это негры (Р) субъект и предикат находятся в отношении пересечения, а в суждении: Некоторые деревья (S) – это сосны (Р) – они находятся в отношении подчинения.
Общий объем субъекта и отрицательная связка суждений вида Е приводят к тому, что в них субъект и предикат находятся только в отношении несовместимости. Например, в суждениях: Все киты (S) – это не рыбы (Р); Все планеты (S) не являются звездами (Р); Все треугольники (S) – это не квадраты (Р) и т. п. субъект и предикат несовместимы.
Частный объем субъекта и отрицательная связка суждений вида О обуславливают то, что в них субъект и предикат, так же, как и в суждениях вида I, могут быть только в отношениях пересечения и подчинения. Например, в суждении: Некоторые студенты (S) не являются спортсменами (P) субъект и предикат находятся в отношении пересечения, а в суждении: Некоторые геометрические фигуры (S) не являются треугольниками (P) субъект и предикат находятся в отношении подчинения.
Приведем еще несколько примеров различных видов простых суждений и отношений между их субъектами и предикатами.
а) Все города являются населенными пунктами (суждение вида А, субъект и предикат находятся в отношении подчинения).
б) Некоторые знаменитые спортсмены – это россияне (суждение вида I, субъект и предикат находятся в отношении пересечения).
в) Некоторые числа не являются натуральными (суждение вида О, субъект и предикат находятся в отношении подчинения).
г) Ни одна комета – не звезда (суждение вида Е, субъект и предикат находятся в отношении несовместимости).
Таким образом, мы видим, что во всех четырех видах простых суждений возможно семь случаев отношений между субъектом и предикатом (два случая для суждений вида А, два случая для суждений вида I, один случай для суждений вида Е и два случая для суждений вида О).
2.5. Распределенные и нераспределенные термины в простых суждениях
Основные структурные элементы простого суждения – субъект и предикат – называются терминами суждения. В любом суждении каждый термин является распределенным или нераспределенным.
Термин считается распределенным (т. е. развернутым, исчерпанным, взятым в полном объеме), если в суждении речь идет обо всех объектах, входящих в объем этого термина, и обозначается знаком «+», а на круговых схемах Эйлера изображается полным кругом (т. е. кругом, который не содержит в себе другого круга и не пересекается с другим кругом):
Термин считается нераспределенным (т. е. неразвернутым, неисчерпанным, взятым не в полном объеме), если в суждении речь идет не обо всех объектах, входящих в объем этого термина, и обозначается знаком «—», а на круговых схемах Эйлера изображается неполным кругом (т. е. кругом, который содержит в себе другой круг или пересекается с другим кругом):
Например, в суждении: Все акулы (S) являются хищниками (Р) речь идет обо всех акулах, значит субъект этого суждения распределен. Однако, в данном суждении речь идет не обо всех хищниках, а только о части хищников (именно – о тех, которые являются акулами), следовательно, предикат указанного суждения нераспределен. Изобразив отношения между субъектом и предикатом (которые находятся в отношении подчинения) рассмотренного суждения круговыми схемами Эйлера, увидим, что распределенному термину (субъекту акулы) соответствует полный круг, а нераспределенному (предикату хищники) – неполный (попадающий в него круг субъекта как бы вырезает из него какую-то часть):
Распределенность терминов в простых суждениях может быть различной в зависимости от вида суждения и характера отношений между его субъектом и предикатом. Рассмотрим все случаи распределенности терминов в простых суждениях.
1. Если в суждении вида А субъект и предикат находятся в отношении равнозначности, то они оба являются распределенными (S+, P+), например: Все квадраты (S) – это равносторонние прямоугольники (P).
2. Если в суждении вида А субъект и предикат находятся в отношении подчинения (других отношений между субъектом и предикатом в суждениях вида А, кроме равнозначности и подчинения, как мы знаем, быть не может), то субъект распределен, а предикат нераспределен (S+, P—), например: Все розы (S) являются цветами (P).
3. Если в суждении вида I субъект и предикат находятся в отношении пересечения, то они оба являются нераспределенными (S—, P—), например: Некоторые школьники (S) – это спортсмены (P).
4. Если в суждениях вида I субъект и предикат находятся в отношении подчинения (других отношений между субъектом и предикатом в суждениях вида I, кроме пересечения и подчинения, быть не может), то субъект нераспределен, а предикат распределен (S—, P+), например: Некоторые животные (S) являются хищниками (P).
5. В суждениях вида Е субъект и предикат находятся только в отношении несовместимости. Поэтому в этих суждениях они всегда оба распределены (S+, P+), например: Все киты (S) не являются рыбами (P).
6. Если в суждениях вида О субъект и предикат находятся в отношении пересечения, то, в отличие от их распределенности в суждениях вида I, субъект нераспределен, а предикат распределен (S—, P+), например: Некоторые школьники (S) не являются спортсменами (P).
Несмотря на пересекающиеся круги на схеме Эйлера, субъект данного суждения нераспределен, а предикат распределен. Почему так получается? (Выше мы говорили о том, что пересекающиеся на схеме круги обозначают нераспределенные термины). На схеме штриховкой показана та часть субъекта, о которой идет речь в суждении, а речь в нем идет о тех школьниках, которые спортсменами не являются, в силу чего круг, обозначающий на схеме предикат, остался полным (т. е. круг, обозначающий субъект, не отрезает от него какую-то часть, как это происходит в суждении вида I, где субъект и предикат находятся в отношении пересечения).
7. Если в суждении вида О субъект и предикат находятся в отношении подчинения, то субъект нераспределен, а предикат распределен (S—, P+), например: Некоторые животные (S) не являются хищниками (P).
Итак, cубъект всегда распределен в суждениях вида А и Е и всегда нераспределен в суждениях вида I и О, а предикат всегда распределен в суждениях вида Е и О, но в суждениях вида А и I он может быть как распределенным, так и нераспределенным в зависимости от характера отношений между ним и субъектом в этих суждениях.
2.6. Как устанавливать распределенность терминов в простых суждениях
Наиболее простой способ установления распределенности терминов в простых суждениях предполагает использование круговых схем Эйлера. Достаточно уметь определять вид отношений между субъектом и предикатом в предложенном суждении и изображать их круговыми схемами.
Далее еще проще – полный круг, как уже говорилось, соответствует распределенному термину, а неполный – нераспределенному. Например, требуется установить распределенность терминов в суждении: Некоторые русские писатели – это всемирно известные люди. Сначала найдем в этом суждении субъект и предикат: русские писатели – субъект, всемирно известные люди – предикат. Теперь установим, в каком они отношении. Русский писатель может как быть, так и не быть всемирно известным человеком, и всемирно известный человек может как быть, так и не быть русским писателем, следовательно субъект и предикат указанного суждения находятся в отношении пересечения. Изобразим это отношение на схеме, заштриховав ту часть, о которой идет речь в суждении:
Как видим, и субъект и предикат изображаются неполными кругами (у каждого из них как бы отрезана какая-то часть), следовательно оба термина предложенного суждения нераспределены (S—, P—). Рассмотрим еще один пример. Надо установить распределенность терминов в суждении: Некоторые люди – это спортсмены. Найдя в этом суждении субъект и предикат (люди – субъект, спортсмены – предикат) и установив отношение между ними (подчинение), изобразим его на схеме, заштриховав ту часть, о которой идет речь в суждении:
Круг, обозначающий предикат, является полным, а круг, соответствующий субъекту, – неполным (круг предиката как бы вырезает из него какую-то часть). Таким образом, в данном суждении субъект нераспределен, а предикат распределен (S—, P+).
Установление распределенности терминов в простых суждениях может показаться, на первый взгляд, надуманной и бессмысленной процедурой. Поэтому, забегая вперед, скажем, что умение устанавливать распределенность теминов необходимо для безошибочного преобразования простых суждений и установления правильности простых силлогизмов – разновидности дедуктивных умозаключений. Об операциях преобразования простых суждений пойдет речь в следующем параграфе, а о правильности простых силлогизмов будет говориться в третьей главе, посвященной третьей, после понятия и суждения, форме мышления – умозаключению.
2.7. Преобразование простых суждений
Логическая операция преобразования простого суждения предполагает изменение его формы, или структуры, но не содержания. В результате преобразования простого суждения его содержание должно оставаться неизменным. Распределенность терминов в исходном суждении и в новом суждении должна оставаться одной и той же (термин, который был распределен в исходном суждении, должен быть распределен и в новом суждении, то же самое и с нераспределенным термином). Существует три способа преобразования простых суждений: обращение, превращение и противопоставление предикату.
Обращение (также часто называемое конверсией) – это преобразование простого суждения, при котором его субъект и предикат меняются местами. Например, суждение: Все акулы являются рыбами преобразуется путем обращения в суждение: Некоторые рыбы являются акулами. Здесь может возникнуть вопрос, почему исходное суждение начинается с квантора все, а новое – с квантора некоторые? Этот вопрос, на первый взгляд, кажется странным, ведь нельзя же сказать: Все рыбы являются акулами, следовательно, единственное, что остается, это: Некоторые рыбы являются акулами. Однако, в данном случае, мы обратились к содержанию суждения и по смыслу поменяли квантор все на квантор некоторые; а логика, как уже говорилось, отвлекается от содержания мышления и занимается только его формой, будучи формальной логикой. Поэтому обращение суждения: Все акулы являются рыбами можно выполнить формально, не обращаясь к его содержанию (смыслу). Для этого установим распределенность терминов в этом суждении с помощью круговой схемы. Термины суждения, т. е. субъект (акулы) и предикат (рыбы) находятся в данном случае в отношении подчинения:
На схеме видно, что субъект распределен (полный круг), а предикат нераспределен (неполный круг). Вспомнив, что термин распределен, когда речь идет обо всех предметах, входящих в него и нераспределен, когда – не обо всех (см. предыдущий параграф), мы автоматически мысленно ставим перед термином акулы квантор все, а перед термином рыбы квантор некоторые. Делая обращение указанного суждения, т. е. меняя местами его субъект и предикат и начиная новое суждение с термина рыбы, мы опять же автоматически снабжаем его квантором некоторые, не задумываясь о содержании исходного и нового суждений, и получаем безошибочный вариант: Некоторые рыбы являются акулами. Возможно, все это покажется чрезмерным усложнением элементарной операции, однако, как увидим далее, в иных случаях преобразование суждений сделать непросто без использования распределенности терминов и круговых схем.
Обратим внимание на то, что в рассмотренном выше примере исходное суждение было вида А, а новое – вида I, т. е. операция обращения привела к смене вида простого суждения. При этом, конечно же, поменялась его форма, но не поменялось содержание, ведь в суждениях: Все акулы являются рыбами и Некоторые рыбы являются акулами речь идет об одном и том же.
Рассмотрим все случаи обращения в зависимости от вида простого суждения и характера отношений между его субъектом и предикатом.
1. Суждение вида А, в котором субъект и предикат находятся в отношении равнозначности, обращается в суждение вида А: Все квадраты (S) – это равносторонние прямоугольники (P) Все равносторонние прямоугольники – это квадраты.
2. Суждение вида А, в котором субъект и предикат находятся в отношении подчинения, обращается в суждение вида I: Все сосны (S) являются деревьями (S) Некоторые деревья являются соснами.
3. Суждение вида I, в котором субъект и предикат находятся в отношении пересечения, обращается в суждение вида I: Некоторые школьники (S) – это спортсмены (P) Некоторые спортсмены – это школьники.
4. Суждение вида I, в котором субъект и предикат находятся в отношении подчинения, обращается в суждение вида А: Некоторые книги (S) являются учебниками (P) Все учебники являются книгами.
5. Суждение вида Е, в котором субъект и предикат находятся только в отношении несовместимости, всегда обращается в суждение вида Е: Все планеты (S) не являются звездами (Р) Все звезды не являются планетами.
6. Если попытаться подвергнуть обращению суждение вида О, то вместе с изменением его формы изменится и его содержание, которое, как мы помним, меняться не должно; т. е. суждения вида О не поддаются обращению: Некоторые школьники (S) не являются спортсменами (Р) Все спортсмены не являются школьниками. В данном случае новое суждение имеет квантор «все», потому что предикат исходного суждения представляет собой распределенный термин:
Приведем еще один пример, иллюстрирующий невозможность преобразования суждений вида О путем обращения: Некоторые книги (S) не являются учебниками (Р) Все учебники не являются книгами.
Итак, суждение вида А обращается или в суждение вида А, или в суждение вида I. Суждение вида I обращается или в суждение вида I, или в суждение вида А. Суждение вида Е всегда обращается в суждение вида Е, а суждение вида О не поддается обращению.
Второй способ преобразования простых суждений, называемый превращением (или обверсией), заключается в том, что у суждения меняется связка: положительная на отрицательную или наоборот. При этом предикат суждения заменяется противоречащим понятием. Например, то же самое суждение, которое мы рассматривали в качестве примера для обращения: Все акулы являются рыбами преобразуется путем превращения в суждение Все акулы не являются не рыбами. Это суждение может показаться странным, ведь обычно так не говорят, хотя на самом деле перед нами более короткая формулировка той мысли, что ни одна акула не может быть таким существом, которое не является рыбой, или что множество всех акул исключается из множества всех существ, которые не являются рыбами. Субъект (акулы) и предикат (не рыбы) суждения, получившегося в результате превращения, находятся в отношении несовместимости:
Приведенный пример превращения демонстрирует важную логическую закономерность, которая заключается в том, что любое утверждение равно двойному отрицанию (и наоборот). Как видим, исходное суждение вида А в результате превращения стало суждением вида Е. В отличие от обращения превращение не зависит от характера отношений между субъектом и предикатом простого суждения. Поэтому суждение вида А всегда превращается в суждение вида Е, а суждение вида Е всегда превращается в суждение вида А. Суждение вида I всегда превращается в суждение вида О, а суждение вида О всегда превращается в суждение вида I.
Третий способ преобразования простых суждений – противопоставление предикату – состоит в том, что сначала суждение подвергается превращению, а потом обращению. Например, чтобы преобразовать путем противопоставления предикату суждение: Все акулы являются рыбами надо сначала подвергнуть его превращению. Получится: Все акулы не являются не рыбами. Теперь надо совершить обращение с этим получившимся суждением, т. е. поменять местами его субъект (акулы) и предикат (не рыбы). В данном случае, чтобы не ошибиться, вновь прибегнем к установлению распределенности терминов с помощью круговой схемы. Субъект и предикат в этом суждении находятся в отношении несовместимости:
На схеме видим, что и субъект, и предикат распределены (и тому, и другому термину соответствует полный круг), следовательно мы должны сопроводить как субъект, так и предикат квантором все. После этого совершим обращение с суждением: Все акулы не являются не рыбами. Получится: Все не рыбы не являются акулами. Суждение звучит непривычно, потому что оно представляет собой более короткую формулировку той мысли, что если какое-то существо не является рыбой, то оно никак не может быть акулой, или что все существа, которые не являются рыбами, автоматически не могут быть и акулами в том числе. Обращение можно было сделать и проще: вспомнив, что суждение вида Е всегда обращается в суждение вида Е, мы могли, не используя круговой схемы и не устанавливая распределенности терминов, сразу поставить перед предикатом (не рыбы) квантор все. Однако, в данном случае был предложен другой способ, чтобы показать, что вполне можно обойтись без запоминания рассмотренных выше алгоритмов для обращения. (Здесь происходит примерно то же самое, что в математике: можно запоминать различные формулы, но также возможно обойтись и без запоминания, т. к. любую формулу нетрудно вывести самостоятельно).
Проще всего совершать все три операции преобразования простых суждений с помощью круговых схем. Для этого надо изобразить кругами Эйлера три термина: субъект, предикат и понятие, противоречащее предикату (не – предикат). Потом следует установить их распределенность, и из получившейся схемы будут вытекать четыре суждения: одно исходное и три результата преобразований. Главное, помнить, что распределенный термин соответствует квантору все, а нераспределенный – квантору некоторые, и также, что соприкасающиеся на схеме круги соответствуют связке является, а несоприкасающиеся – связке не является. Например, требуется совершить три операции преобразования с суждением: Все учебники являются книгами. Изобразим субъект (учебники), предикат (книги) и не – предикат (не книги) кругами Эйлера и установим распределенность этих терминов:
Получившуюся схему можно прочитать четырьмя способами:
1. Все учебники являются книгами (исходное суждение).
2. Некоторые книги являются учебниками (обращение).
3. Все учебники не являются не книгами (превращение).
4. Все не книги не являются учебниками (противопоставление предикату).
Рассмотрим еще один пример. Надо преобразовать тремя способами суждение: Все планеты не являются звездами. Изобразим кругами Эйлера субъект (планеты), предикат (звезды) и не – предикат (не звезды). Обратите внимание на то, что понятия планеты и не звезды находятся в отношении подчинения: планета – это обязательно не звезда, но небесное тело, которое не является звездой – это не обязательно планета. Установим распределенность этих терминов:
Получившуюся схему можно прочитать четырьмя разными способами:
1. Все планеты не являются звездами (исходное суждение).
2. Все звезды не являются планетами (обращение).
3. Все планеты являются не звездами (превращение).
4. Некоторые не звезды являются планетами (противопоставление предикату).
В заключение еще раз отметим, что частноотрицательные суждения (О) не поддаются обращению. Из этого следует, что частноутвердительные суждения (I) не поддаются операции противопоставления предикату, которая состоит из последовательно проведенных превращения и обращения. Частноутвердительное суждение (I) в результате превращения становится частноотрицательным суждением (О), которое следует подвергнуть обращению, что сделать невозможно по причине необращаемости суждений вида О.
2.8. Отношения между суждениями
Простые суждения видов А, I, Е, О делятся на сравнимые и несравнимые. Сравнимые суждения имеют одинаковые субъекты и предикаты, но могут отличаться кванторами и связками, а несравнимые суждения имеют различные субъекты и предикаты. Например, суждения: Все школьники изучают математику и Некоторые школьники не изучают математику являются сравнимыми: у них совпадают субъекты и предикаты, а кванторы и связки различаются. Суждения: Все школьники изучают математику и Некоторые спртсмены – это олимпийские чемпионы являются несравнимыми: субъекты и предикаты у них не совпадают. Сравнимые суждения также называются идентичными по материалу. Они бывают, как и понятия, совместимыми и несовместимыми и могут находиться в различных отношениях между собой. Совместимыми называются суждения, которые могут быть одновременно истинными. Например, суждения: Некоторые люди – это спортсмены и Некоторые люди – это не спортсмены являются одновременно истинными и представляют собой совместимые суждения. Несовместимыми называются суждения, которые не могут быть одновременно истинными: истинность одного из них обязательно означает ложность другого. Например, суждения: Все школьники изучают математику и Некоторые школьники не изучают математику не могут быть одновременно истинными и являются несовместимыми (истинность первого суждения с неизбежностью приводит к ложности второго).
Совместимые суждения могут находиться в следующих отношениях.
1. Равнозначность – это отношение между двумя суждениями, у которых и субъекты, и предикаты, и связки, и кванторы совпадают. Например, суждения: Москва является древним городом и Столица России является древним городом находятся в отношении равнозначности.
2. Подчинение – это отношение между двумя суждениями, у которых предикаты и связки совпадают, а субъекты находятся в отношении вида и рода. Например, суждения: Все растения являются живыми организмами и Все цветы (некоторые растения) являются живыми организмами находятся в отношении подчинения.
3. Частичное совпадение (или субконтрарность) – это отношение между двумя суждениями, у которых субъекты и предикаты совпадают, а связки различаются. Например, суждения: Некоторые грибы являются съедобными и Некоторые грибы не являются съедобными находятся в отношении частичного совпадения. Необходимо отметить, что в этом отношении находятся только частные суждения – частноутвердительные (I) и частноотрицательные (О).
Несовместимые суждения могут находиться в следующих отношениях.
1. Противоположность (или контрарность) – это отношение между двумя суждениями, у которых субъекты и предикаты совпадают, а связки различаются. Например, суждения: Все люди являются правдивыми и Все люди не являются правдивыми находятся в отношении противоположности. В этом отношении могут быть только общие суждения – общеутвердительные (А) и общеотрицательные (Е). Важным признаком противоположных суждений является то, что они не могут быть одновременно истинными, но могут быть одновременно ложным. Так два приведенных выше в качестве примера противоположных суждения не могут быть одновременно истинными, но могут быть одновременно ложными: неправда, что все люди являются правдивыми, но также неправда, что все люди не являются правдивыми. Противоположные суждения могут быть одновременно ложными, потому что между ними, обозначающими какие-то крайние варианты, всегда есть третий, средний, промежуточный вариант. Если этот средний вариант будет истинным, то два крайних окажутся ложными. Между противоположными (крайними) суждениями: Все люди являются правдивыми и Все люди не являются правдивыми есть третий, средний вариант: Некоторые люди являются правдивыми, а некоторые не являются таковыми, который, будучи истинным суждением, обусловливает одновременную ложность двух вышеуказанных крайних, противоположных суждений.
2. Противоречие (или контрадикторность) – это отношение между двумя суждениями, у которых предикаты совпадают, связки являются различными, а субъекты отличаются своими объемами, т. е. находятся в отношении подчинения (вида и рода). Например, суждения: Все люди являются правдивыми и Некоторые люди не являются правдивыми находятся в отношении противоречия. Важным признаком противоречащих суждений, в отличие от противоположных, является то, что между ними не может быть третьего, среднего, промежуточного варианта. В силу этого два противоречащих суждения не могут быть одновременно истинными и не могут быть одновременно ложными: истинность одного из них обязательно означает ложность другого и наоборот – ложность одного обусловливает истинность другого. (К противоположным и противоречащим суждениям мы еще вернемся, когда речь пойдет о логических законах противоречия и исключенного третьего).
2.9. Логический квадрат
Отношения между простыми сравнимыми суждениями изображаются схематически с помощью логического квадрата, который был разработан еще средневековыми логиками.
Как видим, вершины квадрата обозначают четыре вида простых суждений, а его стороны и диагонали – отношения между ними. Так суждения вида А и вида I, а также суждения вида Е и вида О находятся в отношении подчинения. Суждения вида А и вида Е находятся в отношении противоположности, а суждения вида I и вида О – частичного совпадения. Суждения вида А и вида О, а также суждения вида Е и вида I находятся в отношении противоречия. Неудивительно, что логический квадрат не изображает отношение равнозначности, потому что в этом отношении находятся одинаковые по виду суждения, т. е. равнозначность – это отношение между суждениями А и А, I и I, Е и Е, О и О. Чтобы установить отношение между двумя суждениями, достаточно определить, к какому виду относится каждое из них. Например, надо выяснить, в каком отношении находятся суждения: Все люди изучали логику и Некоторые люди не изучали логику. Видя, что первое суждение является общеутвердительным (А), а второе частноотрицательным (О), мы без труда устанавливаем отношение между ними с помощью логического квадрата – противоречие. Также суждения: Все люди изучали логику (А) и Некоторые люди изучали логику (I) находятся в отношении подчинения, а суждения: Все люди изучали логику (А) и Все люди не изучали логику (Е) находятся в отношении противоположности.
Как уже говорилось, важным свойством суждений, в отличие от понятий, является то, что они могут быть истинными или ложными. Что касается сравнимых суждений, о которых идет речь в данном параграфе, то истинностные значения каждого из них определенным образом связаны с истинностными значениями остальных. Так если суждение вида А является истинным или ложным, то три других (I, Е, О) сравнимых с ним суждения (т. е. имеющих сходные с ним субъекты и предикаты) в зависимости от этого (т. е. от истинности или ложности суждения вида А) тоже являются истинными или ложными. Например, если суждение вида А: Все тигры – это хищники является истинным, то суждение вида I: Некоторые тигры – это хищники также является истинным (если все тигры – хищники, то и часть из них, т. е. некоторые тигры – это тоже хищники), суждение вида Е: Все тигры – это не хищники является ложным, и суждение вида О: Некоторые тигры – это не хищники также является ложным. Таким образом, в данном случае из истинности суждения вида А вытекает истинность суждения вида I и ложность суждений вида Е и вида О (разумеется, речь идет о сравнимых суждениях, т. е. имеющих одинаковые субъекты и предикаты).
Далее представлены все случаи отношений между истинностными значениями простых сравнимых суждений.
1. Если суждение вида А является истинным, то суждение вида I также является истинным, а суждения вида Е и О являются ложными.
2. Если суждение вида А является ложным, то суждение вида I является неопределенным по истинности (т. е. может быть как истинным, так и ложным, в зависимости от того, о чем будет идти в нем речь), суждение вида Е является также неопределенным по истинности, а суждение вида О является истинным. (Далее будем применять сокращения, например, вместо выражения «суждение вида А» будем говорить «А», а вместо «является истинным» – просто «истинно»).
3. Если Е истинно, то А ложно, I ложно, О истинно.
4. Если Е ложно, то А неопределенно по истинности, I истинно, О неопределенно по истинности.