Ìèêðîáû õîðîøèå è ïëîõèå. Íàøå çäîðîâüå è âûæèâàíèå â ìèðå áàêòåðèé Ñàêñ Äæåññèêà
46 R. Maldonado-Lopez et al., “CD8 Subclasses of Dendritic Cells Direct the Development of Distinct T Helper Cells In Vivo”, Journal of Experimental Medicine 189 (1999), 587–592.
47 Akiko Iwasaki, Ruslan Medzhitov, “Toll-like Receptor Control of the Adaptive Immune Responses”, Nature Immunology 5 (2004), 987–995.
48 Daniel Hawiger et al., “Dendritic Cells Induce Peripheral T-cell Unresponsiveness Under Steady State Conditions In Vivo”, Journal of Experimental Medicine 194 (2001), 769–779.
49 Ralph Steinman et al., “Tolerogenic Dendritic Cells”, Annual Review of Immunology 21 (2003), 685–711.
50 Ralph Steinman et al., “Dendritic Cells Function In Vivo During the Steady-State: A Role in Peripheral Tolerance”, Annals of the New York Academy of Sciences 987 (2003), 15–27.
51 Stock et al., “Induction of T Helper Type 1-like Regulatory Cells”.
52 Holden Maecker et al., “Vaccination with Allergin-IL-18 Fusion DNA Protects Against, and Reverses Established, Airway Hyperreactivity in a Murine Asthma Model”, Journal of Immunology 166 (2001), 959–965.
53 Braun-Fahrlnder et al., “Environmental Exposure to Endotoxin”.
54 Waltraud Eder et al., “Toll-like Receptor 2 as a Major Gene for Asthma in Children of European Farmers”, Journal of Allergy and Clinical Immunology 113 (2004), 482–488.
55 John M. Grange, “Effective Vaccination Against Tuberculosis – A New Ray of Hope”, Clinical and Experimental Immunology 120 (2000), 232–234.
56 Christian Lienhardt, Alimuddin Zumla, “BCG: The Story Continues”, Lancet 366 (2005), 1414–1416.
57 G. M. Bahr et al., “Two Potential Improvements to BCG and Their Effect on Skin Test Reactivity in the Lebanon”, Tubercle 67 (1986), 205–216; John Stanford, “Improving on BCG”, Acta Pathologica, Microbiologica et Immunologica 99 (1991), 103–113.
58 G. D. Prema et al., “A Preliminary Report on the Immunotherapy of Psoriasis”, Indian Medical Gazette 124 (1990), 381–382.
59 G. B. Marks et al., “The Effect of Neonatal BCG Vaccination on Atopy and Asthma at Age 7 to 14 Years: An Historical Cohort Study in a Community with a Very Low Prevalence of Tuberculosis Infection and a High Prevalence of Atopic Disease”, Journal of Allergy and Clinical Immunology 111 (2003), 541–549; C. B. Saanjeevi et al., “BCG Vaccination and GAD65 and IA-2 Autoantibodies in Auto-immune Diabetes in Southern India”, Annals of the New York Academy of Sciences 958 (2002), 293–296; Ramesh Bhonde and Pradeep Prab, “Can We Say Bye to BCG?” Current Science 77 (1999), 1283.
60 A. B. Alexandroff et al., “BCG Immunotherapy of Bladder Cancer: 20 Years On”, Lancet 9165 (1999), 1689–1694.
61 Ñóäÿ ïî îáçîðó ìåäèöèíñêîé ëèòåðàòóðû ïî ñîñòîÿíèþ íà 1999 ã., èñïîëüçîâàíèå âàêöèíû Êîóëè îáåñïå÷èâàëî óðîâåíü êîýôôèöèåíòà âûæèâàåìîñòè, ñðàâíèìûé ñ òåì, êîòîðîãî äîáèâàëèñü îíêîëîãè, ëå÷èâøèå òå æå ðàçíîâèäíîñòè îïóõîëåé ñîâðåìåííûìè ìåòîäàìè. Stephen Hoption Cann et al., “Dr. William Coley and Tumour Regression, a Place in History or in the Future”, Postgraduate Medicine 79 (2003), 672–680.
62 Mary Ann Richardson et al, “Coley Toxins Immunotherapy, a Retrospective Review”, Alternative Therapies in Health and Medicine 5 (1999), 42–47.
63 Àëëåðãèÿ è àñòìà: L. Camporota et al., “Effects of Intradermal Injection of SRL 172 on Allergen-Induced Airway Responses and IL-5 Generation by PBMC in Asthma”, Respiratory and Critical Care Medicine 161 (2000); Peter Arkwright et al., “Intradermal Administration of a Killed Mycobacterium vaccae Suspension (SRL 172) Is Associated with Improvement in Atopic Dermatitis in Children with Moderate-to-Severe Disease”, Journal of Allergy and Clinical Immunology 107 (2001), 531–534; L. Camporota et al., “The Effects of Mycobacterium vaccae on Allergen-Induced Airway Responses in Atopic Asthma”, European Respiratory Journal 21 (2003), 287293. Ðàê: L. Assersohn et al, “A Randomised Pilot Study of SRL 172 (Mycobacterium vaccae) in Patients with Small Cell Lung Cancer Treated with Chemotherapy”, Clinical Oncology 14 (2002), 23–27; R. Mendes et al., “Clinical and Immunological Assessment of Mycobacterium vaccae (SRL 172) with Chemotherapy in Patients with Malignant Mesethelioma”, British Journal of Cancer 86 (2002), 336–341; S. Nicholson et al., “A Randomized Phase II Trials of SRL 172 (Mycobacterium vaccae) +/– Low-Dose Interleukin-2 in the Treatment of Metastatic Malignant Melanoma”, Melanoma Research 13 (2003), 389–393; A. Maraveyas et al., “Possible Improved Survival of Patients with Stage IV AJCC Melanoma Receiving SRL 172 Immunotherapy: Correlation with Induction of Increased Levels of Intracellular Interleukin-2 in Peripheral Blood Lymphocytes”, Annals of Oncology 10 (1999), 817–824; P. M. Patel et al., “An Evaluation of a Preparation of Mycobacterium vaccae (SRL172) as an Immunotherapeutic Agent in Renal Cancer”, European Journal of Cancer 44 (2008), 216–223.
64 The Dirt Vaccine (äîêóìåíòàëüíûé ôèëüì, ïîêàçàííûé Áè-áè-ñè â 2002 ã.), ñåðèÿ The Edge Series: Health and Medicine, Eco Services Film; Garry Hamilton, “Let Them Eat Dirt”, New Scientist, July 18, 1998; Susan McCarthy, “Talking Dirty and Bring on the Germs”, salon.com, April 2000.
65 Mary O’Brien et al., “SRL172 (Killed Mycobacterium vaccae) in Addition to Standard Chemotherapy Improves Quality of Life Without Affecting Survival, in Patients with Advanced Non-small-cell Lung Cancer: Phase III Results”, Annals of Oncology 15 (2004), 906–914.
66 John Stanford et al., “Successful Immunotheapy with Mycobacterium vaccae in the Treatment of Adenocarcinoma of the Lung”, European Journal of Cancer 44 (2008), 224–227.
67 11 àïðåëÿ 2001 ã. ñòîèìîñòü àêöèé SR Pharma óïàëà íà 76,9 %. Ýòî áûëî ñàìîå ñèëüíîå ïàäåíèå çà ýòîò äåíü ïî äàííûì èíäåêñà FTSE 100.
68 National Sweet Itch Centre, “Studies on the Prevention and Treatment of Sweet-Itch”, www.sweet-itch.co.uk/ trials.html.
69 Íåîïóáëèêîâàííûå äàííûå: John Stanford, Graham McIntyre (Centre for Infectious Diseases and International Health, University College London), 2006.
70 Claudia Zuany-Amorin et al., “Suppression of Airway Eosinophilia by Killed Mycobacterium vaccae-lnduced Allergen-Specific Regulatory T-cells”, Nature Medicine 8 (2002), 625–629; Victoria Adams et al., “Mycobacterium vaccae Induces a Population of Pulmonary CDiic (+) Cells with Regulatory Potential in Allergic Mice”, European Journal of Immunology 34 (2004), 631–638.
71 Íåîïóáëèêîâàííûå äàííûå: Graham Rook, 2006.
72 Fawziah Marra et al., “Does Antibiotic Exposure During Infancy Lead to Development of Asthma? A Systematic Review and Meta-analysis (of Seven Studies)”, Chest 129 (2006), 610–618.
73 Mairi Noverr et al., “Development of Allergic Airway Disease in Mice Following Antibiotic Therapy and Fungal Microbiota Increase: Role of Host Genetics, Antigen, and Interleukin-13”, Infection and Immunity 73 (2005), 30–38; Mairi Noverr, Gary Huffnagle, “Does the Microbiota Regulate Immune Responses Outside the Gut?” Trends in Microbiology 12 (2004), 562–568; Mairi Noverr, Gary Huffnagle, “Role of Antibiotics and Fungal Microbiota in Driving Pulmonary Allergic Responses”, Infection and Immunity 72 (2004), 4996–5003.
74 B. Laubereau et al., “Caesarean Section and Gastrointestinal Symptoms, Atopic Dermatitis, and Sensitisation During the First Year of Life”, Archives of Diseases of Children 89 (2004), 993–997.
75 A. C. Ouwehand et al., “Differences in Bifidobacterium Flora Composition in Allergic and Healthy Infants”, Journal of Allergy and Clinical Immunology 108 (2001), 144–145.
76 B. Bjrksten et al., “The Intestinal Microflora in Allergic Estonian and Swedish Infants”, Clinical and Experimental Allergy 29 (1999), 342346; E. Sepp et al., “Intestinal Microflora of Estonian and Swedish Infants”, Acta Paediatrica 86 (1997), 956–961.
77 Anita van den Biggelaar et al., “Long-Term Treatment of Intestinal Helminths In creases Mite Skin-Test Reactivity in Gabonese Schoolchildren”, Journal of Infectious Diseases 189 (2004), 892–900.
78 R. W. Summers et al., “Trichuris suis Therapy in Crohn’s Disease”, Gut 54 (2005), 87–90.
79 Charlotte Schubert, “The Worm Has Turned”, Nature Medicine 10 (2004), 1204–1271.
80 Christopher Lowry, “Functional Subsets of Serotonergic Neurones”, Journal of Neuroendocrinology 14 (2002), 911–923; Christopher
Lowry et al., “Modulation of Anxiety Circuits by Serotonergic Systems”, Stress 8 (2005), 233–246.
81 Rose-Marie Bluthe et al., “Central Injection of IL-10 Antagonizes the Behavioral Effects of Lipopolysaccharide in Rats”, Psychoneuroendocrinology 24 (1999), 301–311.
82 Marianne Wamboldt et al., “Familial Association Between Allergic Disorders and Depression in Adult Finnish Twins”, American Journal of Medical Genetics 96 (2000), 146–153.
83 M. Maes et al., “In Vitro Immunoregulatory Effects of Lithium in Healthy Volunteers”, Psychopharmacology 143 (1999), 401; Marta Kubera et al., “Anti-inflammatory Effects of Antidepressants Through Suppression of the Interferon-gamma / Interleukin-10 Production Ratio”, Journal of Clinical Psychopharmacology 21 (2001), 199–206; Brian Leonard, “The Immune System, Depression and the Action of Antidepressants”, Progress in Neuro-Psychopharmacology and Biological Psychiatry 25 (2001), 767–780; Sinead O’Brien et al.,
“Cytokines: Abnormalities in Major Depression and Implications for Pharmacological Treatment”, Human Psychopharmacology: Clinical and Experimental 19 (2004), 397–403; Nathalie Castanon et al., “Chronic Administration of Tianeptine Balances Lipopolysaccharide-Induced Expression of Cytokines in the Spleen and Hypothalamus of Rats”, Psychoneuroendocrinology 29 (2004), 778–790.
1 Ýïèãðàô: Tom Nugent, “Resistance Fighter”, Pennsylvania Gazette, September – October 2000.
2 “New Germ Strain Takes Heavy Toll”, New York Times, March 22, 1958, 19.
3 Èññëåäîâàíèÿ ïîêàçûâàþò, ÷òî 20–30 % èç íàñ – ïîñòîÿííûå íîñèòåëè îäíîãî èç øòàììîâ çîëîòèñòîãî ñòàôèëîêîêêà, æèâóùåãî ó íàñ â íîñîãëîòêå. Åùå 50–60 % ïåðèîäè÷åñêè ïîäõâàòûâàþò è âíîâü òåðÿþò òî îäèí, òî äðóãîé øòàìì ýòîãî ìèêðîáà. È ëèøü 10–20 % ñ÷àñòëèâöåâ îáõîäÿòñÿ ñîâñåì áåç íåãî. Èìåþòñÿ òàêæå äàííûå, óêàçûâàþùèå íà òî, ÷òî ýòà èçìåí÷èâîñòü ñâÿçàíà ñ âðîæäåííûìè ðàçëè÷èÿìè â èììóííûõ âåùåñòâàõ, ñîäåðæàùèõñÿ â âûäåëåíèÿõ íàøåãî íîñà. Ñì.: J. Kluytmans et al., “Nasal Carriage of Staphylococcus aureus: Epidemiology, Underlying Mechanisms, and Associated Risks”, Clinical Microbiology Reviews 10 (1997), 505–520.
4  1957 è 1958 ãã. ìëàäåí÷åñêàÿ ñìåðòíîñòü â ÑØÀ âïåðâûå ñ 1936 ã. âîçðîñëà: ñî 108 000 ñìåðòåé (26,0 íà òûñÿ÷ó æèâûõ íîâîðîæäåííûõ) â 1956 ã. äî 112 000 (26,3 íà òûñÿ÷ó íîâîðîæäåííûõ) â 1957 ã. è 114 000 (27,1 íà òûñÿ÷ó) â 1958 ã. Çàòåì ýòîò ïîêàçàòåëü âíîâü íà÷àë ïîñòåïåííî ñíèæàòüñÿ è ñòàë íèæå, ÷åì áûë â 1956 ã., â 1961 ã. (25,3 íà òûñÿ÷ó). U. S. Census Bureau, Live Births, Deaths, Infant Deaths, and Maternal Deaths: 1900 to 2001, Statistical Abstract No. HS-13. (Ïî ñìåðòíîñòè, ñâÿçàííîé ñ îòäåëüíûìè ìèêðîáàìè, ñòàòèñòèêà îòñóòñòâóåò.)
5 M. Barber, “Methicillin-Resistant Staphylococci”, Journal of Clinical Pathology 1 (1963), 308–311.
6 Èíòåðâüþ, âçÿòûå àâòîðîì ó Õàéíöà Àéõåíâàëüäà â ÿíâàðå 2005 ã. è â àâãóñòå 2006 ã.
7 Âñå áàêòåðèè, çà íåñêîëüêèìè íåîáû÷íûìè èñêëþ÷åíèÿìè, èìåþò êëåòî÷íóþ ñòåíêó îäíîãî èç äâóõ ãëàâíûõ òèïîâ. Êàêîãî èìåííî, ìîæíî îïðåäåëèòü ñ ïîìîùüþ ìèêðîñêîïà è ñïåöèàëüíîãî ìåòîäà îêðàøèâàíèÿ, êîòîðûé ðàçðàáîòàë äàòñêèé ôèçèîëîã XIX âåêà Ãàíñ Êðèñòèàí Ãðàì. Òàê íàçûâàåìûå ãðàìïîëîæèòåëüíûå áàêòåðèè, ïî ñóòè, îêðóæåíû òîëñòûì ñëîåì ÿ÷åèñòîãî âåùåñòâà ïåïòèäîãëèêàíà. Ó ãðàìîòðèöàòåëüíûõ áàêòåðèé òîæå åñòü ñòåíêà èç ïåïòèäîãëèêàíà, íî îíà íàìíîãî òîíüøå è îêðóæåíà äîïîëíèòåëüíîé íàðóæíîé ìåìáðàíîé èç ëèïîïîëèñàõàðèäîâ è ôîñôîëèïèäîâ.
8 Joshua Lederberg, Esther Lederberg, “Replica Plating and Indirect Selection of Bacterial Mutants”, Journal of Bacteriology 83 (1952), 399–406.
9 Edward Tatum, “Gene Recombination in Escherichia coli”, Cold Spring Harbor Symposia, June 1946; Edward latum and Joshua Lederberg, “Gene Recombination in the Bacterium Escherichia coli”, Journal of Bacteriology 53 (1947), 673–684.
10 Joshua Lederberg, Luigi Cavalli, Esther Lederberg, “Sexual Compatibility in Escherichia coli”, Genetics 37 (1952), 720–730.
11 Ââåäåííûé Ëåäåðáåðãîì òåðìèí “ïëàçìèäà”, îçíà÷àþùèé íàáîð âíåõðîìîñîìíûõ áàêòåðèàëüíûõ ãåíîâ, ïåðåêëèêàëñÿ ñ ââåäåííûì ðàíåå òåðìèíîì “ïëàçìàãåí”, îçíà÷àâøèì âíåõðîìîñîìíûå ãåíû, íàõîäÿùèåñÿ âíå ÿäðà, òî åñòü â öèòîïëàçìå, êëåòîê æèâîòíûõ è ðàñòåíèé. Ñì.: Joshua Lederberg, “Cell Genetics and Hereditary Symbiosis”, Physiological Review 32 (1952), 403–426.
12 Esther Lederberg, Joshua Lederberg, “Genetic Studies of Lysongenicity in Escherichia coli”, Genetics 38 (1953), 51–64.
13 Ôàã ëÿìáäà âïîñëåäñòâèè ñòàë “ðàáî÷åé ëîøàäüþ” ãííîé èíæåíåðèè. Åãî èñïîëüçóþò äëÿ ñîçäàíèÿ òðàíñãåííûõ ôîðì æèçíè, âûðåçàÿ ãåíû ó îäíîãî îðãàíèçìà è âñòðàèâàÿ èõ ñ ïîìîùüþ ýòîãî âèðóñà â äðóãîé.
14 Norton Zinder, Joshua Lederberg, “Infective Heredity in Bacteria”, Journal of Bacteriology 64 (1952), 679–699.
15 F. Griffith, “The Significance of Pneumococcal Types”, Journal of Hygiene. 27 (1928), 113–159.
16 Oswald Avery et al., “Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types”, Journal of Experimental Medicine 83 (1944), 89–96.
17  1958 ã. Äæîøóà Ëåäåðáåðã ðàçäåëèë ñ Äæîðäæåì Áèäëîì è Ýäóàðäîì Òåéòåìîì Íîáåëåâñêóþ ïðåìèþ çà ñâîè îòêðûòèÿ, ñâÿçàííûå ñ ãåíåòè÷åñêîé ðåêîìáèíàöèåé (òî åñòü “ïîëîâîé æèçíüþ”) áàêòåðèé.  1968 ã. Äæîøóà è Ýñòåð ðàçâåëèñü.  1978 ã. Äæîøóà ñòàë ïðåçèäåíòîì Ðîêôåëëåðîâñêîãî óíèâåðñèòåòà â Íüþ-Éîðêå. Ýñòåð îñòàëàñü ïðîôåññîðîì Ñòýíôîðäñêîãî óíèâåðñèòåòà, ãäå ïîääåðæèâàëà êðóïíåéøóþ â ìèðå êîëëåêöèþ áàêòåðèàëüíûõ ïëàçìèä, âïëîòü äî 1999 ã., êîãäà ó íåå ñëó÷èëñÿ ñåðäå÷íûé ïðèñòóï, ñèëüíî ïîøàòíóâøèé åå çäîðîâüå. Ê ñîæàëåíèþ, â ðàáîòàõ ïî èñòîðèè íàóêè âî ìíîãîì óìàë÷èâàåòñÿ òà íåìàëàÿ ðîëü, êîòîðóþ Ýñòåð ñûãðàëà â ýïîõàëüíûõ îòêðûòèÿõ ýòîé ñóïðóæåñêîé ïàðû. È Ýñòåð è Äæîøóà ëþáåçíî ñîãëàñèëèñü äàòü ìíå èíòåðâüþ äëÿ ýòîé êíèãè.
18 T. Watanabe, T. Eukasawa, “Episome-Mediated Transfer of Drug Resistance in Enterobacteriacea”, Journal of Bacteriology 81 (1961), 669–678.
19 K. Ochiai et al., “Studies on Inheritance of Drug Resistance Between Shigella Strains and Escherichia coli Strains”, Nihon Iji Shimpo 1861 (1959), 34–46 (íà ÿïîíñêîì ÿçûêå) è K. Ochiai et al., “Studies on the Mechanism of Development of Multiple Drug Resistant Shigella Strains”, Nihon Iji Shimpo 1866 (1960), 45–50 (íà ÿïîíñêîì ÿçûêå) öèòèðóþòñÿ ïî: Watanabe, Eukasawa, “Episome-Mediated Transfer”.
20  2011 ã. èññëåäîâàòåëè îòêðûëè ãðóïïó ãåíîâ óñòîé÷èâîñòè ê àíòèáèîòèêàì, ðàñïîëîæåííóþ ïîñðåäè òàê íàçûâàåìîãî “îñòðîâà ïàòîãåííîñòè” – îáøèðíîãî òðàíñïîçîíà, ïåðåäàþùåãî öåëûé ðÿä ïàòîãåííûõ ñâîéñòâ, òàêèõ êàê ðåçêî óñèëåííûé ñèíòåç òîêñèíîâ. Ñì.: S. N. Luck et al., “Ferric Dicitrate Transport System of Shigella flexneri 2a YSH6000 Is Encoded in a Novel Pathogenicity
Island Carrying Multiple Antibiotic Resistance Genes”, Infection and Immunology 69 (2001), 6012–6021.
21 L. M. Mundy et al., “Relationship Between Enterococcal Virulence and Antimicrobial Resistance”, Clinical Microbiology Reviews (October 2000), 513–522.
22 Robert Weinstein, “Nosocomial Infection Update”, Emerging Infectious Diseases 4 (1998), 416–420.
23 ASM News, June 2004 (American Society for Microbiology).
24 R. Leclercq et al., “Plasmid-Mediated Resistance to Vancomycin and Teicoplanin in Enterococcus faecium”, New England Journal of Medicine 319 (1988), 157–161.
25 “Nosocomial Enterococci Resistant to Vancomycin – United States, 1989–1993”, Morbidity and Mortality Weekly Report 42 (1993), 597–599.
26 “Staphylococcus aureus Resistant to Vancomycin – United States
2002”, Morbidity and Mortality Weekly Report, July 5, 2002.
27 “Brief Report: Vancomycin-Resistant Staphylococcus aureus – New York 2004”, Morbidity and Mortality Weekly Report, April 23, 2004.
28 Îêñàçîëèäèíîíû íå ïîçâîëÿþò áàêòåðèàëüíûì ðèáîñîìàì çàïóñêàòü ñèíòåç áåëêà, áëîêèðóÿ ïðèñîåäèíåíèå ê íèì ìîëåêóë ìàòðè÷íîé ÐÍÊ, â êîòîðûõ ñîäåðæàòñÿ èíñòðóêöèè, îïðåäåëÿþùèå ïîðÿäîê ïðèñîåäèíåíèÿ ðàçíûõ àìèíîêèñëîò äðóã ê äðóãó ïðè ñèíòåçå áåëêîâîé ìîëåêóëû.
29 Neil Woodford et al., “Detection of Oxazolidinone-Resistant Enterococcus faecalis and Enterococcus faecium Strains by Real-Time PCR and PCR-Restriction Fragment Length Polymorphism Analysis”, Journal of Clinical Microbiology 40 (2002), 4298–4300.
30 R. Devasia et al., “The First Reported Hospital Outbreak of Linezolid-Resistant Enterococcus: An Infection Control Problem Has Emerged”, Infectious Disease Society of America Meeting 2005, abstract 1079.
31 Curtis Donskey et al., “Effect of Parenteral Antibiotic Administration on Persistence of Vancomycin-Resistant Enterococcus faecium in the Mouse Gastrointestinal Tract”, Clinical Infectious Disease 180 (1999),
384-390.
32 Curtis Donskey et al., “Effect of Antibiotic Therapy on the Density of Vancomycin-Resistant Enterococci in the Stool of Colonized Patients”, New England Journal of Medicine 343 (2000), 1925–1932.
33 Michelle Hecker et al., “Unnecessary Use of Antimicrobials in Hospitalized Patients: Current Patterns of Misuse with an Emphasis on the Antianaerobic Spectrum of Activity”, Archives of Internal Medicine 163 (2003), 972–978.
34 “Severe Clostridium difficile – Associated Disease in Populations Previously at Low Risk – Four States, 2005”, Morbidity and Mortality Weekly, December 2, 2005.
35 R. Viscidi et al., “Isolation Rates and Toxigenic Potential of Clostridium difficile Isolates from Various Patient Populations”, Gastroenterology 81 (1981), 5–9; L. V. McFarland et al., “Nosocomial Acquisition of Clostridium difficile Infection”, New England Journal of Medicine 320 (1989), 204–210.
36 Paul Byrne, “Toenail Surgery Nearly Killed Me, Jamie-Lee, 15, One of Youngest Victims”, Mirror [U. K.], August 30, 2005; “Hospital Blamed for Mum’s Horrible Death”, Windsor Express [U. K.], March 31, 2006.
37 Vivian Loo et al., “A Predominantly Clonal Multi-Institutional Outbreak of Clostridium difficile – Associated Diarrhea with High Morbidity and Mortality”, New England Journal of Medicine 353 (2005), 2442–2449.
38 L. Clifford McDonald et al., “An Epidemic, Toxin Gene-Variant Strain of Clostridium difficile”, New England Journal of Medicine 353 (2005), 2433–2441.
39 Carlene Muto et al., “A Large Outbreak of Clostridium difficile – Associated Disease with an Unexpected Proportion of Deaths and Colectomies at a Teaching Hospital Following Increased Fluoroquinolone Use”, Infection Control Hospital Epidemiology 3 (2005), 273–280.
40 Luis Fabregas, “Superbug Infecting Area Patients”, Pittsburgh Tribune-Review, October 29, 2005.
41 “Severe Clostridium difficile Associated Disease in Populations Previously at Low Risk – Four States, 2005”, Morbidity and Mortality Weekly Report, December 2, 2005.
42 Yves Gillet et al., “Association Between Staphylococcus aureus Strains Carrying Gene for Panton-Valentine Leukocidin and Highly Lethal Necrotising Pneumonia in Young Immunocompetent Patients”, Lancet 359 (2002), 753–759.
43 Àéçåê Ñòàðð (Isaac Starr), â 1918 ã. – ñòóäåíò-ìåäèê òðåòüåãî êóðñà Ïåíñèëüâàíñêîãî óíèâåðñèòåòà, öèòèðóåòñÿ ïî ñòàòüå: “Influenza in 1918: Recollection of the Epidemic in Philadelphia”, Annals of Internal Medicine 145 (2006), 138–140.
44 Betsy Herold et al., “Community-Acquired Methicillin-Resistant Staphylococcus aureus in Children with No Identified Predisposing Risk”, Journal of the American Medical Association 279 (1998), 593–598.
45 “Four Pediatric Deaths from Community-Acquired Methicillin-Resistant Staphylococcus aureus – Minnesota and North Dakota, 1997–1999”, Morbidity and Mortality Weekly Report, August 20, 1999, 707–710.
46 Carlos Sattler et al., “Prospective Comparison of Risk Factors and Demographic and Clinical Characteristics of Community-Acquired, Methicillin-Resistant versus Methicillin-Susceptible Staphylococcus aureus Infection in Children”, Pediatric Infectious Disease Journal 21 (2002), 910–916.
47 Sophia Kazakova et al., “A Clone of Methicillin-Resistant Staphylococcus aureus Among Professional Football Players”, New England Journal of Medicine 352 (2005), 468–475.
48 D. A. Robinson et al., “Re-emergence of Early Pandemic Staphylococcus aureus as a Community-Acquired Methicillin-Resistant Clone”, Lancet 365 (2005), 1256–1258.
49 Sheldon Kaplan et al., “Three-year Surveillance of Community-Acquired Staphylococcus aureus Infections in Children”, Clinical Infectious Diseases 40 (2005), 1785–1791; M. D. King et al., “Emergence of Community-Acquired Methicillin-Resistant Staphylococcus aureus USA 30 °Clone as the Predominant Cause of Skin and Soft-Tissue Infections”, Annals of Internal Medicine 144 (2006), 309–317; Gregory Moran et al, “Methicillin-Resistant S. aureus Infections Among Patients in the Emergency Department”, New England Journal of Medicine 355 (2006), 666–674.
50 Tsutomu Watanabe et al., “Episome-Mediated Transfer of Drug Resistance in Enterobacteriaceae X”, Journal of Bacteriology 92 (1966), 477–486.
51 Ellen C. Moorhouse, “Transferable Drug Resistance in Enterobacteria Isolated from Urban Infants”, British Medical Journal 2 (1969), 405.
52 K. B. Linton et al., “Antibiotic Resistance and Transmissible R-factors in the Intestinal Coliform Flora of Healthy Adults and Children in an Urban and Rural Community”, Journal of Hygiene 70 (1972), 99-104.
53 D. V. Sompolinsky et al., “Microbiological Changes in the Human Fecal Flora Following the Administration of Tetracyclines and Chloramphenicol”, American Journal ofProctology 18 (1967), 471–478.
54 Stuart Levy et al., “High Frequency of Antimicrobial Resistance in Human Fecal Flora”, Antimicrobial Agents and Chemotherapy 32 (1988), 1801–1806.
55 Èíòåðâüþ, âçÿòîå àâòîðîì ó Ñòþàðòà Ëèâè â èþíå 2006 ã.
56 N. B. Shoemaker, H. Hayes, A. A. Salvers, “Evidence for Extensive Resistance Gene Transfer Among Bacteroides spp. and Among Bacteroides and Other Genera in the Human Colon”, Applied and Environmental Microbiology 67 (February 2001), 561–568.
57 Âèäîâîå íàçâàíèå thetaiotaomicron, êîòîðîå ìíîãèå áàêòåðèîëîãè ñ÷èòàþò îäíèì èç ñàìûõ óæàñíûõ, ïðåäñòàâëÿåò ñîáîé êîìáèíàöèþ òðåõ ãðå÷åñêèõ áóêâ (òåòà, éîòà è îìèêðîí), êîòîðûå ïðèâèäåëèñü ðóìûíñêîìó áàêòåðèîëîãó Àðêàíäæåëî Äèñòàçî â 1912 ã., êîãäà îí, ãëÿäÿ â ìèêðîñêîï, óâèäåë íàãðîìîæäåíèå êîðîòêèõ è äëèííûõ ïàëî÷åê, âûðîñøèõ â êóëüòóðå îòêðûòîãî èì âèäà. Ñì.: A. Distaso, Zentralblatt fr Bakteriologie, Parasitenkunde, Infektionskrankheiten, und Hygiene. Abteilung I. 62 (1912) 433468. “Î ÷åì èñòîðèÿ óìàë÷èâàåò, – äîáàâëÿåò Àáèãàéëü Ñýëüåðñ, – ýòî íå áûëî ëè ïðèäóìàííîå èì íàçâàíèå âäîõíîâëåíî ïîñåùåíèåì áëèæàéøåé ïèâíîé”. Áîëüøèíñòâî ìèêðîáèîëîãîâ, ðàáîòàþùèõ ñ ýòèì âèäîì, íå áåç îñíîâàíèé íàçûâàþò åãî òàê ëèøü â ñâîèõ íàó÷íûõ òðóäàõ, à âî âñåõ îñòàëüíûõ ñëó÷àÿõ èñïîëüçóþò ñîêðàùåííîå íàèìåíîâàíèå B. theta.
58 Laura McMurry et al., “Triclosan Targets Lipid Synthesis”, Nature 394 (1998), 531-5-32; S. P. Cohen, H. Hachler, S. B. Levy, “Genetic and Functional Analysis of the Multiple Antibiotic Resistant (mar) Locus in Escherichia coli”, Journal of Bacteriology 175 (1993), 14841492; M. C. Moken, L. M. McMurry, S. B. Levy, “Selection of Multiple Antibiotic Resistant (mar) Mutants of Escherichia coli by Using the Disinfectant Pine Oil”, Antimicrobial Agents and Chemotherapy 41 (1997), 2770–2772; L. M. McMurry, M. Oethmger, S. B. Levy, “Overexpression of marA, soxS, or acrAB Produces Resistance to Triclosan in Esherichia coli”, FEMS Microbiology Letters 166 (1998), 305–309.
59 Rolf Halden et al., “Co-occurrence of Triclocarban and Triclosan in U. S. Water Resources”, Environmental Science and Technology 39 (2005), 1420–1426; Jochen Heidler et al., “Partitioning, Persistence and Accumulation in Digested Sludge of the Topical Antiseptic Triclocarban During Wastewater Treatment”, Environmental Science and Technology 40 (2006), 3634–3639.
60 Holli Lancaster et al., “Prevalence and Identification of Tetracycline-Resistant Oral Bacteria in Children Not Receiving Antibiotic Therapy”, FEMS Microbiology Letters 228 (2003), 99-104.
61 Èäåÿ, ÷òî àíòèáèîòèêè âîçíèêëè â õîäå ýâîëþöèè, ïî êðàéíåé ìåðå îò÷àñòè êàê ñèãíàëüíûå âåùåñòâà, ïðèíàäëåæèò ìèêðîáèîëîãó Äæóëèàíó Äýâèñó (Julian Davies) èç Óíèâåðñèòåòà Áðèòàíñêîé Êîëóìáèè â Âàíêóâåðå. Îñíîâîïîëàãàþùàÿ ðàáîòà åãî ëàáîðàòîðèè íà ýòó òåìó: Been Goh et al., “Transcriptional Modulation of Bacterial Gene Expression by Subinhibitory Concentrations of Antibiotics”, Proceedings of the National Academy of Sciences 99 (2002), 17025-17030.
62 C. G. Marshall et al., “Glycopeptide Antibiotic Resistance Genes in Glycopeptide-Producing Organisms”, Antimicrobial Agents and Chemotherapy 42 (1998), 2215–2220.
63 Õèìè÷åñêîå íàçâàíèå ñèíåðöèäà – õèíóïðèñòèí-äàëüôîïðèñòèí, òèãàöèëà – òèãåöèêëèí, êóáèöèíà – äàïòîìèöèí.
64 Òåëèòðîìèöèí èçâåñòåí òàêæå ïîä ôèðìåííûì íàçâàíèåì “êåòåê” (Ketek), à ëèíåçîëèä – ïîä íàçâàíèåì “çèâîêñ” (Zyvox).
65 Vanessa D’Costa et al., “Sampling the Antibiotic Resistome”, Science 311 (2006), 374–377.
66 “Superbugs Abound in Soil”, www.nature.com / news / 2006/ 060119/full / news060116-10.html.
67 William Laurence, “Wonder Drug Aureomycin Found to Spur Growth 50 Percent”, New York Times, April 10, 1950, 1.
68 Notes on Science, New York Times, May 20, 1950, E9.
69 Animal Health Institute, “Antibiotic Use in Animals Rises in 2004”, ïðåññ-ðåëèç îò 27 èþíÿ 2005 ã.
70 “Hogging It! Estimates of Antimicrobial Abuse in Livestock”, Union of Concerned Scientists, January 2001, executive summary, xiii, www.ucsusa.org/food_and_agriculture/science_and_impacts/impacts _industrial_agriculture / hogging-it-estimates-of.html.
71 Animal Health Institute, “Antibiotic Use in Animals Rises in 2004”, ïðåññ-ðåëèç îò 27 èþíÿ 2005 ã.
72 Animal Health Institute, Active Antibacterial Ingredients Sold byAHI Members, îáçîð çà 2002–2004 ãã., 27 èþíÿ 2005 ã.
73 Amy Chapin et al., “Airborne Multidrug-Resistant Bacteria Isolated from a Concentrated Swine Feeding Operation”, Environmental Health Perspectives 113 (2005), 137; M. P. Schlusener, K. Bester,
“Persistence of Antibiotics Such As Macrolides, Tiamulin and Salinomycin in Soil”, Environmental Pollution 143 (2006), 565–571; J. M. Cha et al., “Rapid Analysis of Trace Levels of Antibiotic Polyether Ionophores in Surface Water by Solid-Phase Extraction”, Journal of Chromatography 1065 (2005), 187–198.
74 Morten Helms et al., “Excess Mortality Associated with Antimicrobial Drug-Resistant Salmonella typhimurium”, Emerging Infectious Diseases 8 (2002), 490–495; J. K. Varma et al., “Antimicrobial Resistance in Salmonella Is Associated with Increased Hospitalizations”, National Antibiotic Resistance Monitoring System 1996–2000, International Conference on Emerging Infectious Diseases, 2002.
75 H. A. Elder et al., “Human Studies to Measure the Effect of Antibiotic Residues”, Veterinary and Human Toxicology 35 (1996), suppl. 1, 31–36.
76 Jeffrey Lejeune, Nicholas Christie, “Microbiological Quality of Ground Beef from Conventionally Reared Cattle and ‘Raised Without Antibiotics’ Label Claims”, Journal of Food Protection, 67 (2004), 1433–1437.
77 M. Meyer et al., “Occurrence of Antibiotics in Surface and Ground Water near Confined Anial Feeding Operations and Waste Water Treatment Plants Using Radioimmunoassay and Liquid Chromatography / Electrospray Mass Spectrometry”, U. S. Geological Survey, Raleigh, N. C.
78 Amee Manges et al., “Widespread Distribution of Urinary Tract Infections Caused by a Multidrug-Resistant Escerichia coli Clonal Group”, New England Journal of Medicine 345 (2001), 1007–1013;
“An Epidemic of Urinary Tract Infections?” New England Journal of Medicine 345 (2001), 1055–1057.
79 M. M. Swann, Report of the Joint Committee on the Use of Antibiotics in Animal Husbandry and Veterinary Medicine (London: Her Majesty’s Stationery Office, 1969).
80 Henrick Wegener, “Ending the Use of Antimicrobial Growth Promoters Is Making a Difference: In Denmark Antibiotic Resistance Levels Fell While Food Productivity Remains Strong”, American Society of Microbiology News 69 (2003), 443–448.
81 Ingo Klare et al., “Occurrence and Spread of Antibiotic Resistances in Enterococcus faecium”, International Journal of Food Microbiology 88 (2003), 269–290.
82 F. Angulo et al., “Isolation of Quinupristin / Dalfopristin-Resistant Enterococcus faecium from Human Stool Specimens and Retail Chicken Products in the United States”, First International Conference on Enterococci, Banff, Canada, February 2000.
83 Amy Kieke et al., “Use of Streptogramin Growth Promoters in Poultry and Isolation of Streptogramin-Resistant Enterococcus faecium from Humans”, Journal of Infectious Diseases 194 (2006), 1200–1208.
1 Aging of Veterans of the Union Army: Military, Pension and Medical Records, 1820–1940 (ICPSR 6837); A. J. Bollet, “Rheumatic Diseases Among Civil War Troops”, Arthritis and Rheumatism 34 (1991), 11971203; Gina Kolata, “So Big and Healthy Nowadays, Grandpa Wouldn’t Know You”, New York Times, July 30, 2006, A1.
2 Robert Fogel, Dora Costa, “A Theory of Technophysio Evolution, with Some Implications for Forecasting Population, Health Care Costs, and Pension Costs”, Demography 34 (1997), 49–66; Dora Costa, “Understanding the 20th-Century Decline in Chronic Conditions Among Older Men”, Demography 37 (2000) 53–72; Dora Costa, “Why Were Older Men in the Past in Such Poor Health”, web.mit.edu / costa / www / papers.html.
3 Jianhui Zhu et al., “Prospective Study of Pathogen Burden and Risk of Myocardial Infarction or Death”, Circulation 103 (2001), 45–51; Jean-Louis Georges et al., “Impact of Pathogen Burden in Patients with Coronary Artery Disease in Relation to Systemic Inflammation and Variation in Genes Encoding Cytokines”, American Journal of Cardiology 92 (2003), 515–521.
4 Caleb Finch, Eileen Crimmins, “Inflammatory Exposure and Historic Changes in Human Life-Spans”, Science 305 (2004), 1736–1739; Eileen Crimmi, Caleb Finch, “Infection, Inflammation, Height and Longevity”, Proceedings of the National Academy of Sciences 103 (2006), 498–503.
5 R. Montenegro, C. Stephens, “Indigenous Health in Latin America and the Caribbean”, Lancet 367 (2006), 1859–1869.
6 Rudi Westendorp et al., “Optimizing Human Fertility and Survival”, Nature Medicine 7 (2001), 873; G. Doblhammer, J. Oeppen, “Reproduction and Longevity: The Effect of Frailty and Health Selection”, Proceedings of the Royal Society of London 270 (2003), 1541–1547; D. Lio et al., “Inflammation, Genetics, and Longevity”, Journal of Medical Genetics 40 (2003), 296–299.
7 Rudi Westendorp, “Are We Becoming Less Disposable?” EMBO Reports 5 (2004), 2–6.
8 Y. W. Miller et al., “Sequential Antibiotic Therapy for Acne Promotes the Carriage of Resistant Staphylococci on the Skin of Contacts”, Journal of Antimicrobial Chemotherapy 38 (1996), 829–837; David Margolis et al., “Antibiotic Treatment of Acne May Be Associated with Upper Respiratory Tract Infections”, Archives of Dermatology 141 (2005), 1132–1136; Ross Levy et al., “Effect of Antibiotics on the Oropharyngeal Flora in Patients with Acne”, Archives of Dermatology 139 (2003), 467–471.
9 K. G. Naber, “Treatment Options for Acute Uncomplicated Cystitis in Adults”, Journal of Antimicrobial Chemotherapy 46 (2000), S23 – S277.
10 Susan Swedo et al., “Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections: Clinical Description of the First 5 °Cases”, American Journal of Psychiatry 155 (1998), 264–271; F. Breedveld et al., “Minocycline Treatment for Rheumatoid Arthritis: An Open Dose Study”, Journal ofRheumatology 17 (1990), 43–46.
11 Marie-Therese Labro, “Antibiotics as Anti-inflammatory Agents”, Current Opinions in Investigational Drugs 3 (2002), 61–68; P. N. Black,
“Anti-inflammatory Effects of Macrolide Antibiotics”, European Respiratory Journal 10 (1997), 971–972.
12 J. Thomas Grayston, “Does Chlamydia pneumoniae Cause Atherosclerosis?” Archives of Surgery 134 (1999), 930–934; J. D. Beck et al., “Dental Infections and Atherosclerosis”, American Heart Journal 138 (1999), S528 – S533.
13 Francisco Gimenez-Sanchez et al., “Treating Cardiovascular Disease with Antimicrobial Agents: A Survey of Knowledge, Attitudes, and Practices Among Physicians in the United States”, Clinical Infectious Diseases 33 (2001), 171–176.
14 Christopher Cannon et al., “Antibiotic Treatment of Chlamydia pneumoniae After Acute Coronary Syndrome”, New England Journal of Medicine 352 (2005), 2545–2554; Thomas Grayston et al., “Azithromycin for the Secondary Prevention of Coronary Events”, New England Journal of Medicine 352 (2005), 1637–1645.
15 Jeffrey Anderson, “Infection, Antibiotics and Atherothrombosis – End of the Road or New Beginnings”, New England Journal of Medicine 352 (April 21, 2005), 1706–1709.
16 WHO Annual Report on Infectious Disease: Overcoming Antimicrobial Resistance (Geneva: World Health Organization, 2000), èìååòñÿ â ñåòè ïî àäðåñó: www.who.int / infectious-disease-report / 2000/.
17 Amy Pruden et al., “Antibiotic Resistance Genes as Emerging Contaminants: Studies in Northern Colorado”, Environmental Science and Technology 40 (2006), 7445–7450.
18 Elissa Ladd, “The Use of Antibiotics for Viral Upper Respiratory Tract Infections: An Analysis of Nurse Practitioner and Physician Prescribing Practices in Ambulatory Care, 1997–2001”, Journal of the American Academy of Nurse Practitioners 17 (2005), 416–424; Arch Mainous III et al., “Trends in Antimicrobial Prescribing for Bronchitis and Upper Respiratory Infections Among Adults and Children”, American Journal of Public Health 93 (2003), 1910–1914.
19 H. Bauchner et al., “Parents, Physicians, and Antibiotic Use”, Pediatrics 103 (1999), 395–398; R. L. Watson et al., “Antimicrobial Use for Pediatric Upper Respiratory Infections: Reported Practice, Actual Practice, and Parent Beliefs”, Pediatrics 104 (1999), 12511257; R. L. Watson et al., “Inappropriateness and Variability of Antibiotic Prescription Among French Office-Based Physicians”, Journal of Clinical Epidemiology 51 (1998), 61–68; E. E. L. Wang et al., “Antibiotic Prescribing for Canadian Preschool Children: Evidence of Overprescribing for Viral Respiratory Infections”, Clinical Infectious Diseases 29 (1999), 155–160; L. F. McCaig, J. M. Hughes, “Trends in Antimicrobial Drug Prescribing Among Office Based Physicians in the United States”, Journal of the American Medical Association 273 (1995), 214–219.
20 Rachida el Moussaoui et al., “Effectiveness of Discontinuing Antibiotic Treatment After Three Days Versus Eight Days in Mild to Moderate-Severe Community Acquired Pneumonia: Randomised, Double-Blind Study”, British Medical Journal 332 (2006), 1355–1362.
21 Christopher Stille et al., “Increased Use of Second-Generation Macrolide Antibiotics for Children in Nine Health Plans in the United States”, Pediatrics 114 (2004), 1206–1211; Mainous et al., “Trends in Antimicrobial Prescribing”.
22 William Check, “Real-Time PCR for the Rest of Us”, College of American Pathologists/CAP Today, June 2006.
23 Didier Guillemot et al., “Reduction of Antibiotic Use in the Community Reduces the Rate of Colonization with Penicillin G-nonsusceptible Streptococcus pneumoniae”, Clinical Infectious Diseases 41 (2005), 930–938.
24 W. Michael Dunne et al., “Clinical Microbiology in the Year 2025”, Journal of Clinical Microbiology 40 (2002), 3889–3893.
25 W. J. Wilson et al., “Sequence-Specific Identification of 18 Pathogenic Microorganisms Using Microarray Technology”, Molecular and Cellular Probes 16 (2002), 119–127.
26 Ïèñüìî Òîìà Ñëåçàêà (Tom Slezak) àâòîðó îò íîÿáðÿ 2006 ã.
27 Daniel Sinsimer et al., “Use of Multiplex Molecular Beacon Platform for Rapid Detection of Methicillin and Vancomycin Resistance in Staphylococcus aureus”, Journal of Clinical Microbiology 43 (2005), 4585–4591.
28 J. T. McLure et al., “Performance of an Investigational Commercial Real-Time PCR Assay for Direct Detection of Staphylococcus aureus and MRSA on Clinical Samples”, poster 357, 44th annual meeting of the Infectious Disease Society of America, Toronto, October 10, 2006.
29 Òàì æå.
30 Ïèñüìî Ëîðè Õåíäåðñîíà (Lori Henderson, çàìåñòèòåëü äèðåêòîðà ïî ìàðêåòèíãó êîìïàíèè GeneOhm) àâòîðó îò íîÿáðÿ 2006 ã.
31 Jaana Harmoinen et al., “Orally Administered Targeted Recombinant Beta-lactamase Prevents Ampicillin-Induced Selective Pressure on the Gut Microbiota: A Novel Approach to Reducing Antimicrobial Resistance”, Antimicrobial Agents and Chemotherapy 48 (2004), 75–79; “Ipsat Therapies Announces Positive Phase II Results for Lead Product Against Antibiotic Resistance and Hospital Acquired Infection”, 15th European Congress of Clinical Microbiology and Infectious Diseases, Copenhagen, April5, 2005.
32 Klaus Stoeckel et al., “Stability of Cephalosporin Prodrug Esters in Human Intestinal Juice: Implications for Oral Bioavailability”, Antimicrobial Agents and Chemotherapy 42 (1998), 2602–2606.
33 W. Graninger, “Pivmecillinam – Therapy of Choice for Lower Urinary Tract Infection”, International Journal of Antimicrobial Agents 22 (2003), suppl. 2, 73–78; George Zhanel et al., “A Canadian National Surveillance Study of Urinary Tract Isolates from Outpatients: Comparison of the Activities of TrimethoprimSulfamethoxazole, Ampicillin, Mecillinam, Nitrofurantoin, and Ciprofloxacin”, Antimicrobial Agents and Chemotherapy 44 (2000), 1089–1092.
34 A. Sullivan et al., “Effect of Perorally Administered Pivmecillinam on the Normal Oropharyngeal, Intestinal and Skin Microflora”, Journal of Chemotherapy (2001), 299–308; A. Heimdahl et al., “Effect of Bacampicillin on Human Mouth, Throat and Colon Microflora”, Infection 7 (1979), S446 – S451.
35 Carolos Amabile-Cuevas, Jack Heinemann, “Shooting the Messenger of Antibiotic Resistance: Plasmid Elimination as a Potential CounterEvolutionary Tactic”, Drug Discover Today 9 (2004), 465–467.
36 Johna DeNap, Paul Hergenrother, “Bacterial Death Comes Full Circle: Targeting Plasmid Replication in Drug-Resistant Bacteria”, Organic Biomolecular Chemistry 3 (2005), 959–966.
37 Johna DeNap et al., “Combating Drug-Resistant Bacteria: Small Molecule Mimics of Plasmid Incompatibility as Antiplasmid Compounds”, Journal of the American Chemical Society 126 (2004), 15402-15404.
38 Virve Enne et al., “Evidence of Antibiotic Resistance Gene Silencing in Escherichia coli”, Antimicrobial Agents and Chemotherapy 50 (2006), 3003-10.
39 Òåîðåòè÷åñêè áëàãîäàðÿ ñîðòó “Ôëàâð-Ñàâð” ïîëêè ïðîäóêòîâûõ ìàãàçèíîâ äîëæíû áûëè íàïîëíèòüñÿ áîëåå àðîìàòíûìè ïîìèäîðàìè, ïîòîìó ÷òî ôåðìåðû ìîãëè áû ñîáèðàòü èõ äîçðåâøèìè (à íå çåëåíûìè), íå áîÿñü, ÷òî îíè ñãíèþò ïî äîðîãå ê ïîêóïàòåëþ. Íà äåëå æå íåáîëüøîãî óñèëåíèÿ àðîìàòà îêàçàëîñü íåäîñòàòî÷íî, ÷òîáû ïðåîäîëåòü òîò ìàíäðàæ, êîòîðûé âûçûâàþò ó ïîêóïàòåëåé ãåíåòè÷åñêè ìîäèôèöèðîâàííûå ïðîäóêòû.
40 D. G. White et al., “Inhibition of the Multiple Antibiotic Resistance (mar) Operon in Escherichia coli by Antisense DNA Analogues”, Antimicrobial Agents and Chemotherapy 41 (1997), 2699–2704.
41 C. Torres Viera et al., “Restoration of Vancomycin Susceptibility in Enterococcus faecalis by Antiresistance Determinant Gene Transfer”, Antimicrobial Agents and Chemotherapy 45 (2001), 973–975.
42 Rene Sarno et al., “Inhibition of Aminoglycoside 6’ – N acetyltransferase Type Ib-Mediated Amikacin Resistance by Antisense Oligodeoxynucleotides”, Antimicrobial Agents and Chemotherapy 47 (2003), 3296–3304.
43 WHO International Review Panel, “Impacts of Antimicrobial Growth Promoter Termination in Denmark: The WHO International Review Panel’s Evaluation of the Termination of the Use of Antimicrobial Growth Promoters in Denmark”, www.who.int / gfn / links / gssamrgro wthreportstory / en /.
44 McDonald’s Global Policy on Antibiotic Use in Food Animals, June 2003, www.aboutmcdonalds.com / etc / medialib / aboutMcDonalds / socialresponsiblity.Par.33574. File.dat / antibiotics_policy.pdf.
45 Richard Martin, “How Ravenous Soviet Viruses Will Save the World”, Wired, October 2003.
46 Peter Radetsky, “The Good Virus”, Discover 17 (November 1996); Thomas Hausler, Viruses vs. Superbugs (New York: Macmillan Science, 2006).
47 Èíòåðâüþ, âçÿòûå àâòîðîì ó Àëåêñàíäðà (Ñàíäðî) Ñóëàêâåëèäçå â íîÿáðå 2006 ã.
48 Richard Stone, “Stalin’s Forgotten Cure”, Science 298 (2002), 728–731.
49 Amy Ellis Nutt, “Germs That Fight Germs: How Killer Bacteria Have Defeated Our Last Antibiotic”, Star-Ledger, December 9, 2003.
50 Ïèñüìî Êåâèíà Ñìèëëè (Kevin Smeallie) àâòîðó îò íîÿáðÿ 2006 ã.
51 Anne Bruttin, Harald Brssow, “Human Volunteers Receiving Escherichia coli Phage T4 Orally: A Safety Test of Phage Therapy”, Antimicrobial Agents and Chemotherapy 49 (2005), 2874–2878.
52 Thomas Broudy, Vincent Fischetti, “In Vivo Lysogenic Conversion of Tox- Streptococcus pyogenes to Tox+ with Lysogenic Streptococci or Free Phage”, Infection and Immunity 71 (2003), 3782–3786; Thomas Broudy et al., “Induction of Lysogenic Bacteriophage and Phage-Associated Toxin from Group A Streptococci During Coculture with Human Pharyngeal Cells”, Infection and Immunity 69 (2001), 1440–1443.
53 Steven Projan, “Phage-Inspired Antibiotics”, Nature Biotechnology 22 (2004), 167–168.
54 Phage Therapy Center, www.phagetherapycenter.com.
55 Jmg Liu et al., “Antimicrobial Drug Discovery Through Bacteriophage Genomics”, Nature Biotechnology 22 (2004), 185–191.
56 Qui Cheng et al., “Removal of Group B Steptococci Colonize the Vagina and Oropharynx of Mice with a Bacteriophage Lytic Eenzyme”, Antimicrobial Agents and Chemotherapy 49 (2005), 111117; J. M. Loeffler et al, “Rapid Killing of Streptococcus pneumoniae with a Bacteriophage Cell Wall Hydrolase”, Science 294 (2001), 2170–2172; R. Schuch et al., “A Bacterioytic Agent That Detects and Kills Bacillus anthracis”, Nature 418 (2002), 884–889; D. Nelson et al., “Prevention and Elimination of Upper Respiratory Colonization of Mice by Group A Streptococci by Using a Bacteriophage Lytic Enzyme”, Proceedings of the National Academy of Sciences 98 (2001), 4107–4112.
57 Èíòåðâüþ, âçÿòûå àâòîðîì ó Âèíñåíòà Ôèñêåòòè â îêòÿáðå – íîÿáðå 2006 ã.
58 Britta Leverentz et al., “Biocontrol of Listeria monocytogenes on Fresh-Cut Pro duce by Treatment with Lytic Bacteriophages and a Bacteriocin”, Applied and Environmental Microbiology 69 (2003), 4519–4526; Britta Leverentz et al., “Exami nation of Bacteriophage as a Biocontrol Method for Salmonella on Fresh-Cut Fruit: A Model Study”, Journal of Food Protection 64 (2001), 1116–1121.
59 Harald Brssow, “Phage Therapy: The Escherichia coli Experience”, Microbiology 151 (2005), 2133–2140; T. R. Calloway et al., “What Are We Doing About Escherichia coli 0157: H7 in Cattle”, Journal ofAnimal Science 82 (2004), E93 – E99.
60 H. Steiner et al., “Sequence and Specificity of Two Antibacterial Proteins Involved in Insect Immunity”, Nature 292 (1981), 246–248.
61 T. Ganz et al., “Defensins, Natural Peptide Antibiotic of Human Neutrophils”, Journal of Clinical Investigation 76 (1985), 1427–1435.
62 Michael Zasloff, “Magainins, a Class of Antimicrobial Peptides from Xenopus Skin: Isolation, Characterization of Two Active Forms, and Partial cDNA Sequence of a Precursor”, Proceedings of the National Academy of Sciences 84 (1987), 5449–5453.
63 “Magainin, Shield Against Disease”, New York Times, August 9, 1987,
E24; ñì. òàêæå: Lawrence Altman, “Staying Ahead of Microbes: New Progress”, New York Times, August 4, 1987, C3.
64 Michael Zasloff, “Antimicrobial Peptides of Multicellular Organisms”, Nature 415 (2002), 389–395.
65 Y. Ge et al., “In Vitro Antibacterial Properties of Pexiganan, an Analog of Magainin”, Antimicrobial Agents and Chemotherapy 43 (1999), 782–788.
66 M. J. Goldman et al., “Human Beta-defensm-1 Is a Salt-Sensitive Antibiotic in Lung That Is Inactivated in Cystic Fibrosis”, Cell 88 (1997), 553–560.
67 L. Jacob, M. Zasloff, “Potential Therapeutic Applications of Magainins and Other Antimicrobial Agents of Animal Origin”, Ciba Foundation Symposia 186 (1994X197-223; Y. Ge et al., “In Vitro Susceptibility to Pexiganan of Bacteria Isolated from Infected Diabetic Foot Ulcers”, Diagnostic Microbiology and Infectious Disease 35 (1999), 45–53.
68 Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Anti-infective Drugs Advisory Committee, 66th meeting, March 4, 1999 (ñòåíîãðàììà).
69 Rexford Ahima et al., “Appetite Suppression and Weight Reduction by a Centrally Active Aminosterol”, Diabetes 51 (2002), 2099–2104.
70 Graham Bell, Pierre-Henri Gouyon, “Arming the Enemy: The Evolution of Resistance to Self-Proteins”, Microbiology 149 (2003), 1367–1375.