Квантовая вселенная. Как устроено то, что мы не можем увидеть Кокс Брайан

Научные редакторы Вячеслав Марача и Михаил Павлов

Издано с разрешения Apollo’s Children Ltd and Jeff Forshow и литературного агентства Diane Banks Associates Ltd.

Книга рекомендована к изданию Романом Петренко

Правовую поддержку издательства обеспечивает юридическая фирма «Вегас-Лекс».

© Brian Cox and Jeff Forshaw, 2011

© Перевод на русский язык, издание на русском языке, оформление. ООО «Манн, Иванов и Фербер», 2016

* * *

1. Что-то странное грядет

Квант. Это слово одновременно взывает к чувствам, сбивает с толку и завораживает. В зависимости от точки зрения это либо свидетельство обширных успехов науки, либо символ ограниченности человеческой интуиции, которая вынуждена бороться с неотвратимой странностью субатомной сферы. Для физика квантовая механика – одна из трех великих опор, на которых покоится понимание природы (две другие – это общая и специальная теории относительности Эйнштейна). Теории Эйнштейна имеют дело с природой пространства и времени и силой притяжения. Квантовая механика занимается всем остальным, и можно сказать, что, как бы она ни взывала к чувствам, сбивала с толку или завораживала, это всего лишь физическая теория, описывающая то, как природа ведет себя в действительности. Но даже если мерить ее по этому весьма прагматичному критерию, она поражает своей точностью и объяснительной силой. Есть один эксперимент из области квантовой электродинамики, старейшей и лучше всего осмысленной из современных квантовых теорий. В нем измеряется, как электрон ведет себя вблизи магнита. Физики-теоретики много лет упорно работали с ручкой и бумагой, а позже с компьютерами, чтобы предсказать, что именно покажут такие исследования. Практики придумывали и ставили эксперименты, чтобы выведать побольше подробностей у природы. Оба лагеря независимо друг от друга выдавали результаты с точностью, подобной измерению расстояния между Манчестером и Нью-Йорком с погрешностью в несколько сантиметров. Примечательно, что цифры, получавшиеся у экспериментаторов, полностью соответствовали результатам вычислений теоретиков; измерения и вычисления полностью согласовывались.

Это не только впечатляюще, но и удивительно, и, если бы построение моделей было единственной заботой квантовой теории, вы могли бы с полным правом спросить, в чем же вообще проблема. Наука, разумеется, не обязана быть полезной, но многие технологические и общественные изменения, совершившие революцию в нашей жизни, вышли из фундаментальных исследований, проводимых современными учеными, которые руководствуются лишь желанием лучше понять окружающий мир. Благодаря этим, вызванным только любопытством, открытиям во всех отраслях науки мы имеем увеличенную продолжительность жизни, международные авиаперевозки, свободу от необходимости заниматься сельским хозяйством ради собственного выживания, а также широкую, вдохновляющую и открывающую глаза картину нашего места в бесконечном звездном море. Но все это в каком-то смысле побочные результаты. Мы исследуем из любопытства, а не потому, что хотим добиться лучшего понимания реальности или разработать более эффективные безделушки.

Квантовая теория – возможно, наилучший пример, как бесконечно сложное для понимания большинства людей становится крайне полезным. Она сложна для понимания, поскольку описывает мир, в котором частица может реально находиться в нескольких местах одновременно и перемещается из одного места в другое, исследуя тем самым всю Вселенную. Она полезна, потому что понимание поведения малейших кирпичиков мироздания укрепляет понимание всего остального. Она кладет предел нашему высокомерию, потому что мир намного сложнее и разнообразнее, чем казалось. Несмотря на всю эту сложность, мы обнаружили, что все состоит из множества мельчайших частиц, которые двигаются в соответствии с законами квантовой теории. Законы эти настолько просты, что их можно записать на обратной стороне конверта. А то, что для объяснения глубинной природы вещей не требуется целая библиотека, уже само по себе одна из величайших тайн мира.

Итак, чем больше мы узнаём об элементарной природе мироздания, тем проще оно нам кажется. Постепенно мы придем к пониманию всех законов и того, как эти маленькие кирпичики взаимодействуют, формируя мир. Но как бы мы ни увлекались простотой, лежащей в основе Вселенной, нужно обязательно помнить: хотя основные правила игры просты, их последствия не всегда легко вычислить. Наш повседневный опыт познания мира определяется отношениями многих миллиардов атомов, и пытаться вывести принципы поведения людей, животных и растений из нюансов поведения этих атомов было бы просто глупо. Признав это, мы не принижаем его важности: за всеми явлениями в итоге скрывается квантовая физика микроскопических частиц.

Представьте мир вокруг нас. Вы держите в руках книгу, сделанную из бумаги – перемолотой древесной массы[1]. Деревья – это машины, способные получать атомы и молекулы, расщеплять их и реорганизовывать в колонии, состоящие из миллиардов отдельных частей. Они делают это благодаря молекуле, известной под названием хлорофилл и состоящей из ста с лишним атомов углерода, водорода и кислорода, которые имеют изогнутую особым образом форму и скреплены еще с некоторым количеством атомов магния и водорода. Такое соединение частиц способно улавливать свет, пролетевший 150 000 000 км от нашей звезды – ядерного очага объемом в миллион таких планет, как Земля, – и переправлять эту энергию вглубь клеток, где с ее помощью создаются новые молекулы из двуокиси углерода и воды и выделяется дающий нам жизнь кислород.

Именно эти молекулярные цепи формируют суперструктуру, объединяющую и деревья, и бумагу в этой книге, и все живое. Вы способны читать книгу и понимать слова, потому что у вас есть глаза и они могут превращать рассеянный свет от страниц в электрические импульсы, интерпретируемые мозгом – самой сложной структурой Вселенной, о которой мы вообще знаем. Мы обнаружили, что все вещи в мире – не более чем скопища атомов, а широчайшее многообразие атомов состоит всего из трех частиц – электронов, протонов и нейтронов. Мы знаем также, что сами протоны и нейтроны состоят из более мелких сущностей, именуемых кварками, и на них уже все заканчивается – по крайней мере, так мы думаем сейчас. Основанием для всего этого служит квантовая теория.

Таким образом, картину Вселенной, в которой обитаем мы, современная физика рисует с исключительной простотой; элегантные явления происходят где-то там, где их нельзя увидеть, порождая разнообразие макромира. Возможно, это самое выдающееся достижение современной науки – сведение невероятной сложности мира, включая и самих людей, к описанию поведения горстки мельчайших субатомных частиц и четырех сил, действующих между ними. Лучшие описания трех из четырех этих сил – сильного и слабого ядерных взаимодействий, существующих внутри атомного ядра, и электромагнитного взаимодействия, которое склеивает атомы и молекулы, – предоставляет квантовая теория. Лишь сила тяжести – самая слабая, но, возможно, самая знакомая нам сила из всех – в настоящий момент не имеет удовлетворительного квантового описания.

Стоит признать, что квантовая теория имеет несколько странную репутацию, и ее именем прикрывается множество настоящей ахинеи. Коты могут быть одновременно живыми и мертвыми; частицы находятся в двух местах одновременно; Гейзенберг утверждает, что все неопределенно. Все это действительно верно, но выводы, которые часто из этого следуют – раз в микромире происходит нечто странное, то мы окутаны дымкой тумана, – точно неверны. Экстрасенсорное восприятие, мистические исцеления, вибрирующие браслеты, которые защищают от радиации, и черт знает что еще регулярно прокрадывается в пантеон возможного под личиной слова «квант». Эту чепуху порождают неумение ясно мыслить, самообман, подлинное или притворное недопонимание либо какая-то особенно неудачная комбинация всего вышеперечисленного. Квантовая теория точно описывает мир с помощью математических законов, настолько же конкретных, как и те, что использовали Ньютон или Галилей. Вот почему мы можем с невероятной точностью рассчитать магнитное поле электрона. Квантовая теория предлагает такое описание природы, которое, как мы узнаем, имеет огромную предсказательную и объяснительную силу и распространяется на множество явлений – от кремниевых микросхем до звезд.

Цель этой книги – сорвать покровы таинственности с квантовой теории – теоретической конструкции, в которой путаются слишком многие, включая даже самих первопроходцев в этой отрасли. Мы намерены использовать современную перспективу, пользуясь наработанными за век уроками непредусмотрительности и развития теории. Однако на старте путешествия мы перенесемся в начало XX века и исследуем некоторые проблемы, заставившие физиков радикально отклониться от того, что ранее считалось магистральным направлением науки.

Как часто бывает, появление квантовой теории спровоцировали открытия природных явлений, которые нельзя было описать научными парадигмами того времени. Для квантовой теории таких открытий было много, притом разнообразного характера. Ряд необъяснимых результатов порождал ажиотаж и смятение и в итоге вызвал период экспериментальных и теоретических инноваций, который действительно заслуживает расхожего определения «золотой век». Имена главных героев навсегда укоренились в сознании любого студента-физика и чаще других упоминаются в университетских курсах и по сей день: Резерфорд, Бор, Планк, Эйнштейн, Паули, Гейзенберг, Шрёдингер, Дирак. Возможно, в истории больше не случится периода, когда столько имен будут ассоциироваться с величием науки при движении к единой цели – созданию новой теории атомов и сил, управляющих физическим миром. В 1924 году, оглядываясь на предшествующие десятилетия квантовой теории, Эрнест Резерфорд, физик новозеландского происхождения, открывший атомное ядро, писал: «1896 год… ознаменовал начало того, что было довольно точно названо героическим веком физической науки. Никогда до этого в истории физики не наблюдалось такого периода лихорадочной активности, в течение которого одни фундаментально значимые открытия с бешеной скоростью сменяли другие».

Но прежде чем переместиться в Париж XIX века, к рождению квантовой теории, давайте рассмотрим само слово «квант». Этот термин появился в физике в 1900 году благодаря работам Макса Планка. Он пытался теоретически описать излучение, испускаемое нагретыми телами, – так называемое «излучение абсолютно черного тела». Кстати, ученого наняла для этой цели компания, занимавшаяся электрическим освещением: так двери Вселенной порой открываются по самым прозаическим причинам. Гениальные прозрения Планка мы обсудим в этой книге позже, а для введения достаточно сказать: он выяснил, что свойства излучения абсолютно черного тела можно объяснить, только если предположить, что свет испускается небольшими порциями энергии, которые он и назвал квантами. Само это слово означает «пакеты», или «дискретные». Изначально он считал, что это лишь математическая уловка, но вышедшая в 1905 году работа Альберта Эйнштейна о фотоэлектрическом эффекте поддержала квантовую гипотезу. Результаты были убедительными, потому что небольшие порции энергии могли быть синонимичны частицам.

Идея того, что свет состоит из потока маленьких пулек, имеет долгую и славную историю, начавшуюся с Исаака Ньютона и рождения современной физики. Однако в 1864 году шотландский физик Джеймс Кларк Максвелл, казалось, окончательно рассеял все существовавшие сомнения в ряде работ, которые Альберт Эйнштейн позднее охарактеризовал как «самые глубокие и плодотворные из всех, что знала физика со времен Ньютона». Максвелл показал, что свет – это электромагнитная волна, распространяющаяся в пространстве, так что идея света как волны имела безукоризненное и, казалось бы, неоспоримое происхождение. Однако в серии экспериментов, которые Артур Комптон и его коллеги провели в Университете Вашингтона в Сент-Луисе, им удалось отделить световые кванты от электронов. Те и другие вели себя скорее как бильярдные шары, что явно подтвердило: теоретические предположения Планка имели прочное основание в реальном мире. В 1926 году световые кванты получили название фотонов. Свидетельство было неопровержимым: свет ведет себя одновременно как волна и как частица. Это означало конец классической физики – и завершение периода становления квантовой теории.

2. В двух местах одновременно

Эрнест Резерфорд называл началом квантовой революции 1896 год, потому что именно тогда Анри Беккерель в своей парижской лаборатории открыл радиоактивность. Беккерель пытался с помощью соединения урана получить рентгеновские лучи, которые буквально за несколько месяцев до этого открыл в Вюрцбурге Вильгельм Рентген. Вместо этого оказалось, что соединения урана испускают les rayons uraniques[2], которые способны засвечивать фотографические пластины, даже если те завернуты в толстый слой бумаги, через который не проникает свет. Важность лучей Беккереля великий ученый Анри Пуанкаре подчеркнул в своей статье еще в 1897 году. Он прозорливо писал об открытии: «…уже сегодня можно считать, что оно дает доступ в совершенно новый мир, о существовании которого мы даже не подозревали». В радиоактивном распаде, объяснявшем открытый эффект, самым загадочным было то, что лучи, казалось, испускаются самопроизвольно и непредсказуемо, без какого-либо внешнего воздействия.

В 1900 году Резерфорд писал об этом: «Все атомы, сформировавшиеся в одно и то же время, должны существовать в течение определенного интервала. Это, однако, противоречит наблюдаемым законам трансформации, согласно которым жизнь атома может иметь любую продолжительность – от нуля до бесконечности». Такое хаотическое поведение элементов микромира стало шоком, потому что до того наука была полностью детерминистской. Если в определенный момент вы знали все, что возможно знать о каком-либо предмете, то считалось, что вы сможете с уверенностью предсказать будущее этого предмета. Отмена этого вида предсказательности – ключевая черта квантовой теории, имеющей дело с возможностью, а не с уверенностью, и не потому, что нам не хватает абсолютного знания, но потому, что некоторые аспекты природы, по сути, управляются законами случая. Поэтому сегодня мы понимаем, что просто невозможно предсказать, когда же именно конкретный атом постигнет распад. Радиоактивный распад – это первая встреча науки с игрой природы в кости, поэтому он много лет смущал умы физиков.

Конечно, много интересного происходило и в самих атомах, хотя их внутренняя структура была в то время совершенно неизвестной. Ключевое открытие совершил Резерфорд в 1911 году. Он с помощью радиоактивного источника бомбардировал тончайший золотой лист так называемыми альфа-частицами (сейчас мы знаем, что это ядра атомов гелия). Резерфорд вместе с помощниками Гансом Гейгером и Эрнестом Марсденом, к своему немалому удивлению, обнаружил, что примерно одна из 8000 альфа-частиц не пролетает через золотой лист, как ожидалось, а отскакивает прямо назад. Впоследствии Резерфорд описывал этот момент с характерной образностью: «Это было, пожалуй, самое невероятное событие, которое случалось в моей жизни. Оно было настолько же невероятно, как если бы вы выстрелили из пятнадцатидюймовой пушки в кусок туалетной бумаги, а ядро отскочило бы и поразило вас». Резерфорда все считали харизматичным и прямолинейным человеком: однажды он назвал самодовольного чиновника евклидовой точкой: «У него есть положение, но нет величины».

Резерфорд посчитал, что его экспериментальные результаты можно объяснить только тем, что атом состоит из очень маленького ядра и вращающихся вокруг него по орбитам электронов. В то время он, возможно, имел в виду примерно ту же схему, по которой планеты вращаются по орбитам вокруг Солнца. Ядро имеет почти всю массу атома, почему и способно останавливать свои «15-дюймовые» альфа-частицы и отражать их. У водорода, простейшего элемента, ядро состоит из единственного протона радиусом около 1,75 10–15 м. Если вы не знакомы с этой записью, переведем: 0,000 000 000 000 001 75 м, или примерно  тысячемиллионмиллионных метра.

Насколько мы можем судить сейчас, одиночный электрон похож на того самодовольного чиновника по Резерфорду, то есть на точку, и вращается по орбите вокруг ядра атома водорода по радиусу примерно в 100 000 раз больше диаметра ядра.

Ядро имеет положительный электрический заряд, а электрон – отрицательный, и это значит, что между ними есть сила притяжения, которая аналогична силе гравитации, удерживающей Землю на солнечной орбите. Это, в свою очередь, означает, что атомы – это в основном пустое пространство. Если представить себе атомное ядро размером с теннисный мяч, то электрон будет меньше пылинки, летящей за километр от этого мяча. Такие цифры весьма удивляют, потому что твердая материя явно не кажется нам такой уж пустой.

Резерфордовские атомные ядра поставили перед физиками того времени ряд проблем. Например, было хорошо известно, что электрон должен терять энергию при движении по орбите вокруг ядра, поскольку все объекты с электрическим зарядом отдают энергию, двигаясь по искривленным траекториям. Эта идея лежит в основе работы радиопередатчиков: электроны колеблются, в результате чего создаются электромагнитные радиоволны. Генрих Герц изобрел радиопередатчик в 1887 году, и ко времени открытия Резерфордом атомного ядра уже существовала коммерческая радиостанция, отправлявшая сообщения через Атлантический океан – из Ирландии в Канаду. Таким образом, уже никто не удивлялся теории вращающихся по орбите зарядов и излучения радиоволн, но это смущало тех, кто пытался объяснить, как же электроны остаются на орбите вокруг ядра.

Столь же необъяснимый феномен представлял собой свет, который испускали разогреваемые атомы. Еще в 1853 году шведский ученый Андерс Ангстрем пропустил искру через трубку, наполненную водородом, и проанализировал полученный свет. Можно было предположить, что газ будет светиться всеми цветами радуги; в конце концов, что такое Солнце, как не светящийся газовый шар? Вместо этого Ангстрем обнаружил, что водород светится тремя отчетливыми цветами: красным, сине-зеленым и фиолетовым, давая три чистые узкие дуги, как у радуги. Вскоре было выявлено, что так ведут себя все химические элементы. У каждого из них есть уникальный цветовой штрихкод. К тому времени как Резерфорд выступил по поводу атомного ядра, ученый Генрих Кайзер завершил работу над шеститомным справочником из 5000 страниц, озаглавленным Handbuch der Spectroscopie («Справочник по спектроскопии»): он описывал все цветные светящиеся линии известных элементов. Вопрос, конечно, зачем? И не только «Зачем, профессор Кайзер?» (наверное, за обедом над его фамилией нередко шутили), но и «Почему так много цветных линий?». Более 60 лет наука, получившая название спектроскопии, была эмпирическим триумфом и теоретическим провалом.

В марте 1912 года датский физик Нильс Бор, очарованный проблемой строения атома, отправился в Манчестер для встречи с Резерфордом. Позже он отмечал, что попытки расшифровать внутреннее строение атома по данным спектроскопии были чем-то сродни выведению базовых постулатов биологии из раскраски крыла бабочки. Атом Резерфорда с его моделью в духе Солнечной системы дал Бору необходимую подсказку, и в 1913 году он уже опубликовал первую квантовую теорию строения атома. У этой гипотезы, конечно, были свои проблемы, но она содержала несколько важнейших идей, подстегнувших развитие современной квантовой теории. Бор заключил, что электроны могут занимать лишь определенные орбиты вокруг ядра, а орбитой с самой низкой энергией будет ближайшая. Он утверждал также, что электроны способны перепрыгивать с орбиты на орбиту. Они переходят на более отдаленную орбиту, когда получают энергию (например, от искры в трубке), а затем продвигаются ближе к центру, одновременно излучая свет. Цвет этого излучения непосредственно определяется разностью энергий электрона на этих двух орбитах. Рис. 2.1 иллюстрирует основную идею; стрелка показывает, как электрон перепрыгивает с третьего энергетического уровня на второй, испуская свет (представленный волнистой линией). В модели Бора электрон может двигаться вокруг протона (ядра атома водорода) лишь по одной из особых, «квантованных» орбит; движение по спирали просто запрещено. Таким образом, модель Бора позволила ему вычислить длины волн (то есть цвета) света, который наблюдался Ангстремом: они соответствовали прыжку электрона с пятой орбиты на вторую (фиолетовый цвет), с четвертой орбиты на вторую (сине-зеленый цвет) и с третьей на вторую (красный цвет). Модель Бора к тому же корректно предсказывала существование света, который должен испускаться при переходе электрона на первую орбиту. Этот свет – ультрафиолетовая часть спектра, невидимая человеческому глазу. Поэтому не видел ее и Ангстрем. Однако в 1906 году ее зафиксировал гарвардский физик Теодор Лайман, и эти данные замечательно описывались моделью Бора.

Рис. 2.1. Модель атома Бора, иллюстрирующая испускание фотона (волнистая линия) в результате перехода электрона с одной орбиты на другую (обозначен стрелкой)

Хотя Бор не сумел распространить свою модель дальше атома водорода, выдвинутые идеи можно было применить и к другим атомам. Например, если предположить, что у атомов каждого элемента набор орбит уникален, они будут испускать световые лучи лишь определенного цвета. Таким образом, эти цвета служат своего рода «отпечатками пальцев» атома, и астрономы, разумеется, немедленно воспользовались уникальностью спектральных линий атомов для определения физического состава звезд.

Модель Бора – неплохое начало, но всем была ясна ее недостаточность: например, почему электроны не могут двигаться по спирали, когда известно, что они должны терять энергию, испуская электромагнитные волны (идея, получившая реальное подтверждение с появлением радио)? И почему орбиты электрона изначально квантуются? И как насчет более тяжелых, чем водород, элементов: что делать для понимания их строения?

Но какой бы несовершенной ни казалась теория Бора, это был критически важный шаг и пример того, как порой учеными достигается прогресс. Нет никакой причины складывать оружие перед лицом озадачивающих и порой ставящих в тупик фактов. В подобных случаях ученые часто делают так называемый анзац – прикидку, или, если угодно, правдоподобное допущение, а затем переходят к вычислению его последствий. Если предположение работает, то есть получающаяся теория согласуется с экспериментальными данными, то можно с большей уверенностью вернуться к изначальной гипотезе и пытаться более детально в ней разобраться. Анзац Бора 13 лет оставался успешным, но не до конца объясненным.

Мы вернемся к истории этих ранних квантовых идей на последующих страницах книги, но сейчас перед нами лишь множество странных результатов и вопросы с неполными ответами – как и перед основоположниками квантовой теории. Если резюмировать, то Эйнштейн, следуя за Планком, предположил, что свет состоит из частиц, но Максвелл уже показал, что свет ведет себя как волна. Резерфорд и Бор прокладывали путь к пониманию строения атома, но поведение электрона внутри атома не согласовывалось ни с одной из известных в то время теорий. А разнообразные явления, носящие общее название радиоактивности, при которой атомы спонтанно делятся на части по невыясненным причинам, оставались загадкой – во многом потому, что вносили в физику волнующий элемент случайности. Сомнений не оставалось: в субатомном мире грядет что-то странное.

Совершение первого шага к общему, согласованному ответу на эти вопросы большинство приписывают немецкому физику Вернеру Гейзенбергу. То, что он сделал, стало совершенно новым подходом к теории материи и физических сил. В июле 1925 года Гейзенберг опубликовал статью, в которой рассматривал старые добрые идеи и гипотезы, в том числе модель атома Бора, но под углом зрения совершенно нового подхода к физике. Он начал так: «В этой работе делается попытка получить основы квантовой теоретической механики, которые базируются исключительно на соотношениях между принципиально наблюдаемыми величинами». Это важный шаг, потому что Гейзенберг таким образом подчеркивает: лежащая в основе квантовой теории математика не обязана согласовываться с чем-то уже известным. Задачей квантовой теории должно стать непосредственное предсказание поведения наблюдаемых объектов – например, цвета световых лучей, испускаемых атомами водорода. Нельзя ожидать от нее сколь-либо удовлетворительного мысленного представления внутреннего механизма поведения атома, потому что это и не нужно, и, может быть, даже нереально. Одним ударом Гейзенберг развеял идею о том, что действия природы непременно согласуются со здравым смыслом. Это не значит, что теория микромира не может согласовываться с нашим повседневным опытом описания движения крупных объектов – например, самолетов или теннисных мячей. Но нужно быть готовым отбросить заблуждение о том, что мелкие предметы оказываются всего лишь маленькими разновидностями крупных, а именно подобное заблуждение и может выработаться в ходе экспериментальных наблюдений.

Нет никаких сомнений, что квантовая теория – вещь хитрая, и уж тем более несомненно, что чрезвычайно хитер и сам подход Гейзенберга. Нобелевский лауреат Стивен Вайнберг, один из величайших современных физиков, так писал о статье Гейзенберга 1925 года:

«Если для читателя остается тайной то, что делал Гейзенберг, он в этом не одинок. Я несколько раз пытался прочитать статью, которую он написал по возвращении с острова Гельголанд, и, хотя я полагаю, что разбираюсь в квантовой механике, так до конца и не уловил обоснования математических действий автора в этой работе. Физики-теоретики в своих самых успешных трудах часто играют одну из двух ролей: они либо мудрецы, либо волшебники… Обычно не так сложно понять работы физиков-мудрецов, но работы физиков-волшебников порой совершенно непостижимы. В этом смысле статья Гейзенберга 1925 года – настоящее волшебство».

Философия Гейзенберга, впрочем, ничего магического собой не представляет. Она проста, и именно она лежит в основе того подхода, которым мы пользуемся в книге: задача объясняющей природу теории – делать количественные предсказания, которые будут сопоставимы с экспериментальными результатами. Мы не имеем возможности разработать теорию, имеющую какое-то отношение к нашему восприятию мира в целом. К счастью, хотя мы и берем на вооружение философию Гейзенберга, будем следовать более понятному подходу к квантовому миру, разработанному Ричардом Фейнманом.

На последних нескольких страницах этой книги мы неоднократно слишком вольно использовали слово «теория», так что, прежде чем продолжить разрабатывать квантовую теорию, будет полезно подробнее взглянуть на более простую. Хорошая научная теория содержит набор правил, определяющих, что может и чего не может случиться в определенной части мироздания. Теория должна позволять делать предсказания, которые впоследствии пройдут проверку наблюдениями. Если предсказания окажутся ложными, то эта теория неверна и подлежит замене. Если предсказания согласуются с наблюдениями, теория жизнеспособна. Ни одна теория не может считаться «истинной», в том смысле что всегда должна быть возможность ее фальсифицировать, то есть доказать ее ложность. Как писал биолог Томас Гексли, «наука – это упорядоченный здравый смысл, в котором множество прекрасных теорий было убито уродливыми фактами». Любая теория, которая не может быть фальсифицирована, не считается научной; более того, можно даже сказать, что она вообще не содержит никакой достоверной информации. Критерий фальсифицируемости отличает научные теории от обычных мнений. Такое научное понимание термина «теория», кстати, отличается от обиходного употребления, при котором под этим словом часто подразумеваются умозрительные рассуждения. Научные теории могут быть умозрительными, пока они не столкнулись с эмпирическими свидетельствами, но утвердившаяся в науке теория всегда подкреплена большим количеством доказательств. Ученые стараются разрабатывать теории, призванные объяснить как можно больше явлений, а физики, в частности, приходят в восторг от перспективы описать все, что вообще может случиться в материальном мире, с помощью небольшого количества правил.

Один из примеров хорошей теории, применимой во множестве случаев, – это теория Исаака Ньютона о всемирном тяготении, опубликованная 5 июля 1687 года в его «Математических началах натуральной философии». Это была первая современная научная теория, и, хотя впоследствии было доказано, что в некоторых случаях она неточна, в целом эта теория оказалась настолько хороша, что используется и сегодня. Более точную теорию тяготения – общую теорию относительности – разработал Эйнштейн в 1915 году.

Ньютоново описание гравитации можно уложить в одно математическое уравнение:

Эта формула может показаться простой или сложной – в зависимости от ваших математических познаний. В этой книге мы порой будем прибегать к математике. Тем читателям, которым она дается непросто, советуем пропускать уравнения и не особенно беспокоиться. Мы всегда будем стараться изложить ключевые идеи, не прибегая к математике. Добавили ее в основном из-за того, что она позволяет объяснить, почему вещи таковы, какие они есть. Без этого мы выглядели бы какими-то гуру физики, извлекающими глубокие истины прямо из воздуха, а ни один приличный автор этого не хочет.

Но вернемся к уравнению Ньютона. Представьте, что яблоко ненадежно держится на ветке. Мысли о силе притяжения, которые летним днем заставили конкретное спелое яблоко свалиться Ньютону на голову, согласно научному фольклору, стали источником его теории. Ньютон говорил, что на яблоко действует гравитация, которая тянет его к земле, и эта сила в уравнении представлена буквой F. Так что в первую очередь уравнение позволяет высчитать силу, действующую на яблоко, если вы знаете, что значат символы в правой части формулы.

Буква r обозначает расстояние между центром яблока и центром Земли. Оно возведено в квадрат, потому что Ньютон обнаружил, что сила зависит от квадрата расстояния между объектами. Если обойтись без математики, то это значит, что при увеличении расстояния между яблоком и центром Земли вдвое гравитация уменьшится в 4 раза. Если расстояние утроить, сила притяжения упадет в 9 раз. И так далее. Физики называют такое поведение законом обратных квадратов. Буквы m1 и m2 обозначают массу яблока и массу Земли, и их появление свидетельствует о понимании Ньютоном закономерности: сила гравитационного притяжения между двумя объектами зависит от произведения их масс. Но возникает вопрос: что такое масса? Этот вопрос интересен сам по себе, и, чтобы получить наиболее исчерпывающий ответ, придется подождать, пока мы не заведем разговор о квантовой частице, известной как бозон Хиггса. Грубо говоря, масса – это мера количества «материала» в чем-то; Земля массивнее яблока. Впрочем, такое определение недостаточно удачно. К счастью, Ньютон привел и способ измерения массы объекта независимо от закона гравитации, и этот способ выводится с помощью второго из трех законов движения, столь любимых каждым современным студентом-физиком:

1. Каждый предмет пребывает в состоянии покоя или равномерного прямолинейного движения, если на него не воздействует сила.

2. Предмет массой m подвергается ускорению a при воздействии на него силы F. В форме уравнения это записывается как F = ma.

3. Сила действия равна силе противодействия.

Три закона Ньютона – основа для описания движения предметов под воздействием силы. Первый закон описывает то, что происходит с предметом без воздействия сил: предмет либо пребывает в покое, либо двигается по прямой линии с постоянной скоростью. Мы поищем эквивалентное утверждение для квантовых частиц чуть позже и не слишком забежим вперед, если скажем, что квантовые частицы никогда не находятся в покое – они прыгают повсюду, даже если никакие силы на них не действуют. Собственно, само понятие силы в квантовой теории отсутствует, поэтому в ней в корзину для бумаг отправлен и второй закон Ньютона. Да-да, именно так: законы Ньютона выброшены в мусорное ведро, потому что оказались лишь приблизительно верными. Они хорошо работают во многих случаях, но полностью неприменимы, когда дело доходит до описания квантовых феноменов. Законы квантовой теории заменяют законы Ньютона, обеспечивая более точное описание мира. Физика Ньютона становится производной квантового описания, так что важно понять: дело обстоит не так, что «ньютоновская механика для крупных предметов, а квантовая – для мелких», – квантовая теория действует всегда.

Хотя нас не очень-то будет интересовать третий закон Ньютона, он заслуживает некоторых комментариев для любителей. Третий закон сообщает, что силы появляются парами: если я стою на Земле и оказываю на нее давление ногами, Земля противодействует в ответ. Таким образом, для «закрытой» системы сумма сил равна нулю, из чего, в свою очередь, следует, что общий импульс системы сохраняется. Мы будем использовать понятие импульса на протяжении всей книги. Для частицы импульс определяется как произведение массы частицы на ее скорость, что записывается как p = mv. Интересно, что сохранение импульса действительно имеет некоторый смысл в квантовой теории, даже несмотря на отсутствие в ней понятия силы.

Но сейчас нас интересует второй закон Ньютона.

F = ma означает, что если вы приложите известную силу к предмету и вычислите его ускорение, то отношение силы к ускорению и будет массой предмета. Тут, в свою очередь, предполагается, что мы знаем, как определить силу, но это не так уж сложно. Простой, хотя не очень точный и не очень практичный способ измерения силы, – потянуть предмет чем-то стандартным: допустим, средняя черепаха движется по прямой линии и с помощью ремня тянет за собой какой-то предмет. Назовем ее «Черепаха СИ», запечатаем в коробку и отправим в Международное бюро мер и весов, находящееся в городе Севр, Франция. Две тянущие черепахи будут прикладывать двойную силу, три – тройную и так далее. Таким образом, любые толкающие или тянущие усилия мы можем оценить в количестве средних черепах, которые требуются для их приложения.

Пользуясь этой системой, которая достаточно смехотворна, чтобы ее принял любой международный комитет по стандартам[3], мы можем просто заставить черепаху тянуть предмет и вычислить его ускорение, что позволит узнать его массу по второму закону Ньютона. После этого можно повторить процесс для второго предмета, вычислить его массу, а затем обе массы подставить в уравнение гравитации, чтобы определить существующую между массами силу притяжения. Но чтобы с помощью количества «черепашьих эквивалентов» узнать силу притяжения между двумя массами, нужно откалибровать всю систему под саму силу гравитации, для чего и требуется новый символ – G.

G – это очень важное число, которое называется гравитационной постоянной Ньютона и служит параметром гравитационной силы. Если мы удваиваем G, то мы удваиваем и эту силу, так что яблоко, направляясь к земле, ускоряется в два раза. Таким образом, это число описывает одно из фундаментальных свойств нашей Вселенной, и будь оно иным, мы жили бы в совершенно другой Вселенной. Сейчас полагают, что G имеет одно и то же значение во всей Вселенной и имело это значение во все времена (это число есть и в теории гравитации Эйнштейна, где тоже выступает в роли константы). В этой книге мы встретим и другие универсальные константы Вселенной. В квантовой механике наиболее важной считается постоянная Планка, названная в честь пионера квантовой физики Макса Планка и обозначаемая буквой h. Нам понадобится и скорость света (c), ведь это не только скорость, с которой свет распространяется в вакууме, но и универсальный предел скорости. Вуди Аллен однажды сказал: «Двигаться быстрее скорости света невозможно, да и нежелательно, ведь все время будет слетать шляпа».

Три закона Ньютона и закон притяжения – это все, что нужно для понимания движения в присутствии гравитации. Нет никаких других скрытых законов, которые мы не упоминали: этих четырех вполне достаточно, и они позволяют нам, например, понять орбиты планет Солнечной системы. Вместе эти законы серьезно ограничивают типы траекторий, по которым предметы могут перемещаться под воздействием притяжения. С помощью одних только законов Ньютона можно доказать, что все планеты, кометы, астероиды и метеоры в нашей Солнечной системе могут двигаться лишь по траекториям, известным как конические сечения. Самая простая из них – та, по которой с очень хорошей точностью двигается Земля в своем перемещении вокруг Солнца: это окружность. Но чаще планеты и их спутники двигаются по эллиптическим орбитам (эллипсы – это вытянутые окружности). Два других известных конических сечения – парабола и гипербола. Парабола – это траектория движения пушечного ядра при выстреле. Последнее коническое сечение, гипербола, – это траектория, по которой сейчас от нас удаляется по направлению к звездам самый далекий от Земли рукотворный объект в истории. Когда писалась эта книга, «Вояджер-1» находился на расстоянии около 17 610 000 000 км от Земли и удалялся от Солнечной системы со скоростью 538 000 000 км в год. Это прекраснейшее достижение инженерной мысли было запущено в 1977 году и продолжает поддерживать связь с Землей, записывая результаты измерений солнечного ветра на магнитофон и передавая их на Землю с мощностью 20 ватт. «Вояджер-1» и его побратим «Вояджер-2» – вдохновляющие примеры человеческой мечты об исследовании Вселенной. Оба космических корабля посетили Юпитер и Сатурн, а «Вояджер-2» – еще и Уран и Нептун. По Вселенной они передвигались с точным расчетом, используя гравитацию для резких ускорений при проходе между планетами и вылете в межзвездное пространство. При расчете курса на Земле использовались только законы Ньютона, которых оказалось достаточно, чтобы проложить оптимальный путь между внутренними и внешними планетами и далее к звездам. «Вояджер-2» отправится в сторону Сириуса, самой яркой звезды на небе, и окажется там всего через каких-то 300 000 лет. Все это мы сделали, все это мы узнали благодаря теории тяготения Ньютона и его законам движения.

Законы Ньютона обеспечивают интуитивно понятную картину мира. Как мы уже могли заметить, они принимают форму уравнений (математических соотношений между измеримыми величинами), которые позволяют с достаточной точностью предсказывать, как перемещаются объекты. Вся эта система предполагает, что объекты в любой миг где-то находятся и со временем плавно (без скачков) перемещаются с места на место. Это кажется настолько самоочевидной истиной, что можно бы ее и не комментировать, но на самом деле нужно понять, что это лишь предрассудок. Можно ли быть уверенными, что предметы действительно находятся тут или там и не пребывают в двух разных местах одновременно? Конечно, садовый сарай никак не может находиться в двух совершенно разных местах, это очевидно – но как насчет электрона в атоме? Не может ли он быть одновременно «здесь» и «там»? Прямо сейчас подобное предположение звучит безумно, во многом потому, что мы не можем представить такую картину своему мысленному взору, но со временем вы увидите, что так оно на самом деле и есть. На этой же стадии повествования, делая настолько странное замечание, мы ограничимся указанием на то, что законы Ньютона основаны на интуиции, поэтому, когда дело доходит до фундаментальной физики, они напоминают дом, построенный на песке.

Известен простейший эксперимент, который впервые провели в американской Bell Laboratories Клинтон Дэвиссон и Лестер Джермер и результаты которого были опубликованы в 1927 году. Он доказывает, что интуитивная картина мира Ньютона неверна. Хотя яблоки, планеты и люди действительно ведут себя «по-ньютоновски», перемещаясь с места на место размеренным и предсказуемым образом с течением времени, этот эксперимент показал, что все фундаментальные строительные кирпичики материи действуют совершенно не так.

Работа Дэвиссона и Джермера начинается так: «Интенсивность рассеивания однородного пучка электронов с регулируемой скоростью при прохождении через монокристалл никеля измеряется как функция направления». К счастью, есть способ оценить основное содержание их выводов благодаря упрощенной версии того же эксперимента – так называемому двухщелевому эксперименту. В нем источник испускает электроны в направлении препятствия с двумя маленькими щелями (дырками). С другой стороны препятствия расположен экран, который загорается, когда до него доходит электрон. Каков источник электронов, не так важно, но с практической точки зрения можно представить вытянутый вдоль препятствия провод под напряжением[4]. Мы изобразили двухщелевой эксперимент на рис. 2.2.

Рис. 2.2. Электронная пушка выстреливает электронами в сторону двух щелей, и если бы электроны вели себя как «обычные» частицы, то можно было бы ожидать, что на экране появится пара полосок, как показано на рисунке. Удивительно, что этого не происходит

Представьте, как на экран направляется камера, затвор которой оставляется открытым, чтобы обеспечить долгую выдержку для коротких вспышек света, одна за другой возникающих при попадании электронов на экран. Обязательно формируется некая система, и уместно поинтересоваться, что же это за система. Допустим, электроны – это просто частицы, которые ведут себя так же, как яблоки или планеты. Тогда можно ожидать, что система будет выглядеть примерно так, как на рис. 2.2. Некоторые электроны пройдут сквозь щели, большинству это не удастся. Те, которые проникнут в щель, немного оттолкнутся от ее кромки, что вызовет их рассеяние, но большая часть прошедших электронов, разумеется, появится сразу за двумя щелями – следовательно, это и будет самая яркая часть фотографии.

Этого не происходит. Напротив, получается картина, похожая на рис. 2.3. Полученная структура именно такая, как была представлена Дэвиссоном и Джермером в статье 1927 года. В 1937 году Дэвиссон получил Нобелевскую премию за «экспериментальное открытие электронной дифракции на кристаллах». Премию он разделил не с Джермером, а с Джорджем Томсоном, который также наблюдал эту структуру, проводя эксперименты в Абердинском университете. Чередующиеся светлые и темные полосы известны как интерференционная картина, а интерференция чаще связана с волнами. Чтобы понять это, давайте мысленно проведем двухщелевой эксперимент не с электронами, а с волнами воды.

Рис. 2.3. В реальности удары электронов по экрану не связаны со щелями. Вместо этого формируется структура из полосок, которая выстраивается постепенно, электрон за электроном

Представьте цистерну с водой, у которой наполовину опущена стенка с вырезанными в ней двумя щелями. Экран и камеру можно заменить детектором высоты волн, а провод под напряжением – чем-то, создающим волны, например, деревянной доской, положенной вдоль цистерны и снабженной мотором, который заставляет ее погружаться в воду и выныривать. Созданные таким образом волны будут двигаться по поверхности воды, пока не достигнут стенки. Когда волна ударится о стенку, большая ее часть откатится, но два небольших фрагмента пройдут сквозь щели. Эти две образовавшиеся волны расходятся от щелей по направлению к детектору высоты волн. Заметьте, мы говорим здесь «расходятся», потому что волны отходят от щелей не по прямой. Щели становятся двумя источниками новых волн, каждая из которых расходится увеличивающимися полукругами. Рис. 2.4 показывает, что же происходит.

Рис. 2.4. Вид сверху на волны, возникающие из двух точек в цистерне (в верхней части рисунка). Две расходящиеся кругами волны перекрываются и интерферируют. «Спицы» – это те области, где две волны погасили друг друга, и вода осталась спокойной

Этот рисунок – отличная визуальная демонстрация поведения волн воды. Есть области, где волны не возникают вовсе, и кажется, что они отходят от щелей, как спицы от центра колеса, в то время как другие области покрыты взлетами и падениями волн. Параллели со структурой, которую наблюдали Дэвиссон, Джермер и Томсон, поразительны. Вернувшись к электронам, ударяющим в экран, мы видим, что те области, где обнаруживается мало электронов, соответствуют местам в цистерне, где поверхность воды остается спокойной, то есть тем самым спицам, которые отходят от щелей на рисунке.

Довольно легко объяснить, почему такие спицы появляются в цистерне: дело в смешении и слиянии волн, распространяющихся из щелей. Поскольку волны имеют свои взлеты и падения, то две волны при встрече могут «складываться» или «вычитаться». Если встреча двух волн происходит на взлете одной волны и падении другой, происходит взаимное погашение, и волны в этой точке не будет. В иных случаях волны могут соединяться друг с другом на взлете – в этом случае они образуют более крупную волну. В каждой точке цистерны расстояние между ней и двумя щелями немного разнится, а следовательно, в каких-то местах две волны будут соединяться на своих пиках, в других одна будет на взлете, а другая на спаде, а в большинстве точек соединение будет происходить в каких-то сочетаниях между этими двумя крайними точками. В результате получится чередование – интерференционная картина, или фигура.

При всей наглядности картины понять, что электроны тоже образуют интерференционную фигуру – а это экспериментально наблюдаемый факт, – очень трудно. Согласно Ньютону, а также здравому смыслу, электроны испускаются из источника, направляются по прямым линиям в сторону щелей (поскольку на них не действуют никакие силы – вспомните первый закон Ньютона), проходят сквозь щели с небольшими искривлениями (если цепляют кромку) и продолжают двигаться по прямой вплоть до экрана. Но в таком случае интерференционная фигура не появится – получится пара полосок, как показано на рис. 2.2.

Можно предположить, что существует какой-то хитрый механизм, посредством которого электроны оказывают друг на друга некое воздействие, в результате чего отклоняются от прямых линий, пройдя через щели. Но это легко проверить: можно поставить эксперимент, посылая из источника на экран всего один электрон зараз. Придется подождать – и медленно, но верно, когда электроны один за другим будут врезаться в экран, выработается система полосок. Это крайне удивительно, потому что структура полосок весьма характерна для интерферирующих друг с другом волн, но ведь наш источник испускает зараз по одному электрону – точку за точкой. Хорошее упражнение для ума: попытаться представить, как такое может быть и почему частица за частицей формируют интерференционную фигуру при выстреле в сторону двух щелей в экране. Упражнение тем лучше, что оно совершенно бесплодно: несколько часов ломания головы должны убедить вас, что представить появление структуры полосок совершенно невозможно. Какими бы ни были испускаемые частицы, они точно не «обычные» частицы. Электроны словно бы «интерферируют сами с собой». Наша задача – создать теорию, которая может объяснить происходящее.

У этой истории есть интереснейшее историческое завершение, которое показывает, какие проблемы интеллектуального плана ставит двухщелевой эксперимент. Джозеф Томсон, получивший Нобелевскую премию за открытие электрона в 1899 году, показал, что электрон – это частица с определенным электрическим зарядом и определенной массой, маленькая песчинка материи. Его сын Джордж Томсон 40 лет спустя получил Нобелевскую премию за доказательство того, что электрон ведет себя не так, как ожидал его отец. Томсон-старший не был неправ: у электрона действительно есть четко определенная масса и электрический заряд, и каждый раз, когда мы его видим, он кажется нам крупинкой материи. Однако он не ведет себя в точности как крупинка материи, что обнаружили Дэвиссон, Джермер и Томсон-младший. Важно заметить, что не ведет он себя и в точности как волна, потому что интерференционная фигура не формируется каким-то плавным добавлением энергии; скорее, она состоит из множества мельчайших точек. Мы всегда можем обнаружить точечные электроны, какими представлял их Томсон-старший.

Возможно, вы уже видите необходимость прибегнуть к предложенному Гейзенбергом способу мышления. То, что мы наблюдаем, – это частицы, поэтому нужно создавать теорию частиц. Наша теория должна к тому же уметь предсказывать появление интерференционных фигур, получающихся, когда электроны один за другим проходят сквозь щели и врезаются в экран. Подробностей того, как электроны движутся от источника к щелям и затем к экрану, мы наблюдать не можем, поэтому им необязательно согласовываться с тем, с чем мы имеем дело в повседневной жизни. И действительно, о «путешествии» электрона можно даже вообще не вести речь. Все, что нам нужно, – выработать теорию, способную предсказать, что электроны при контакте с экраном образуют фигуру, которая получается в ходе двухщелевого эксперимента. Это мы и сделаем в следующей главе.

Чтобы вы не думали, что это просто увлекательный образчик физики микромира, который имеет мало отношения к миру в целом, нужно сказать, что квантовая теория частиц, которую мы разрабатываем для объяснения двухщелевого эксперимента, окажется способной объяснить и стабильность атомов, и цвет лучей, испускаемых химическими элементами, и радиоактивный распад, да, собственно, и все великие тайны, волновавшие ученых в начале XX века. То, что наша система описывает способ поведения электронов, заключенных внутрь материи, позволит понять и то, как работает едва ли не самое важное изобретение XX века – транзистор.

В самой последней главе этой книги мы увидим поразительное применение квантовой теории, демонстрирующее силу научной аргументации. Самые необычные предсказания квантовой теории обычно проявляются в поведении малых объектов. Но поскольку большие объекты состоят из малых, при определенных обстоятельствах квантовая физика требуется для объяснения свойств одних из самых крупных объектов во Вселенной – звезд. Наше Солнце ведет постоянную борьбу с силой притяжения. Этот газовый шар, в три миллиона раз более массивный, чем наша планета, обладает силой притяжения почти в 28 раз больше, чем Земля, что ставит его под постоянную угрозу коллапса. Ситуация предотвращается направленным вовне давлением, которое создают реакции ядерного синтеза в самом солнечном ядре, где ежесекундно 600 000 000 т водорода превращаются в гелий. Но как бы ни была велика наша звезда, столь интенсивное сжигание топлива должно иметь свои последствия, и в один прекрасный день источник топлива на Солнце прекратит свое существование. Давление, направленное вовне, прекратится, и железной хватке гравитации нечего будет противопоставить. И тогда, кажется, ничто во Вселенной не сможет предотвратить катастрофу.

На самом же деле в игру вступит квантовая физика и решит проблему. Звездам придут на помощь квантовые эффекты: они станут так называемыми белыми карликами – таков и будет финал нашего Солнца. В конце этой книги мы применим понимание квантовой механики для расчета максимальной массы звезды – белого карлика. Впервые ее рассчитал в 1930 году индийский астрофизик Субраманьян Чандрасекар, и выяснилось, что эта масса составляет примерно 1,4 массы Солнца. Как ни удивительно, это число можно получить, зная лишь массу протона и значения трех уже известных нам констант природы – гравитационной постоянной Ньютона, скорости света и постоянной Планка.

Развитие самой квантовой теории и измерение этих четырех величин, разумеется, никак не зависит от наблюдений за звездами. Можно представить себе цивилизацию агорафобов, живущих в глубоких пещерах под поверхностью своей планеты. Они не имеют никакого представления о небе, но могут разработать квантовую теорию. Просто для собственного удовольствия в один прекрасный день они могут решить вычислить максимальную массу гигантского газового шара. Представьте, как однажды отважный исследователь решает в первый раз выбраться на поверхность и в восторге смотрит на небо, полное огней; галактики из сотен миллиардов звезд, протянувшихся от горизонта до горизонта. Этот исследователь обнаружит, как обнаружили мы с нашего наблюдательного пункта на Земле, что среди множества затухающих останков умирающих звезд нет ни одной, чья масса превышала бы предел Чандрасекара.

3. Что такое частица?

Пионером нашего подхода к квантовой теории считается Ричард Фейнман, лауреат Нобелевской премии и нью-йоркский барабанщик, которого его друг и соавтор Фримен Дайсон охарактеризовал как «наполовину гений, наполовину шут». Впоследствии Дайсон изменил свое мнение: более точно было бы назвать Фейнмана «полным гением и полным шутом». Мы будем придерживаться в книге именно его подхода, потому что, во-первых, это весело, а во-вторых, это едва ли не простейший способ понять нашу квантовую Вселенную.

Помимо авторства самой простой формулировки квантовой механики, Ричард Фейнман был также прекрасным педагогом, способным перенести свое глубокое понимание физики на страницы или в лекционную аудиторию с несравненной ясностью и минимумом суеты. Его стиль изложения совершенно не походил на стиль тех, кто хотел бы сделать физику сложнее, чем она должна быть. И все же в самом начале своей классической серии вузовских учебников «Фейнмановские лекции по физике» он посчитал важным сразу же честно предупредить, что квантовая теория противоречит человеческой интуиции. Фейнман писал, что субатомные частицы «не ведут себя как волны, как частицы, как бильярдные шары, как пружинные весы, как то, что вы могли видеть». Что ж, попытаемся построить модель того, как они все-таки себя ведут.

Для начала предположим, что элементарные строительные кирпичики природы – это частицы. Это подтверждается не только двухщелевым экспериментом, в котором электроны всегда прибывают в конкретные места экрана, но и множеством других исследований. И действительно, «физика частиц» не зря так называется. Нужно решить следующий вопрос: как перемещаются частицы? Конечно, проще всего предположить, что они двигаются по идеально прямым линиям или же по кривым, если на них действуют силы согласно законам Ньютона. Однако это не может быть верным, потому что любое объяснение двухщелевого эксперимента предполагает, что электроны «интерферируют друг с другом», проходя через щели, а для этого они должны каким-то образом рассеиваться. Итак, проблема – создать такую теорию точечных частиц, чтобы эти частицы еще и рассеивались. Но задача не так нереальна, как кажется: это можно сделать, если «позволить» каждой частице находиться одновременно в нескольких местах. Конечно, это опять-таки кажется невозможным, но предположение о том, что частица может находиться в нескольких местах одновременно, по крайней мере, довольно ясное, даже если звучит весьма глупо. С этого момента мы будем называть такие частицы – противоречащие интуиции, рассеянные, но при этом точечные – квантовыми.

Высказав предположение, что «частица может одновременно находиться более чем в одном месте», мы отрываемся от повседневного опыта и вступаем на неизведанную территорию. Одно из главных препятствий для развития понимания квантовой физики – смятение, порождаемое таким способом мышления. Чтобы его избежать, нужно следовать за Гейзенбергом и учиться спокойно мириться с взглядами на мир, идущими вразрез с житейским опытом. «Неудобство» теории часто ошибочно принимается за смятение, и нередко изучающие квантовую физику продолжают пытаться понять происходящее с точки зрения повседневного опыта. Но к смятению ведет сопротивление новым идеям, а не внутренняя сложность самих идей, потому что реальный мир попросту устроен не так, как подсказывает нам повседневный опыт. И поэтому нужно подходить к делу с непредубежденным умом и не смущаться кажущейся странностью. Это понимал даже Шекспир – его Гамлет говорит: «Как к чудесам, вы к ним и отнеситесь. Гораций, много в мире есть того, что вашей философии не снилось»[5].

Хороший способ начать – тщательно поразмыслить над версией двухщелевого эксперимента для волн воды. Наша цель – выяснить, что же в волнах вызывает появление интерференционной фигуры. Мы должны убедиться, что теория квантовых частиц включает такое же поведение и мы сможем попытаться объяснить двухщелевой эксперимент и для электронов.

Волны, проходящие через две щели, могут интерферировать друг с другом по двум причинам. Первая: волна проходит через обе щели одновременно, создавая две новые волны, которые отклоняются и смешиваются. Очевидно, что волна может себя так вести. У нас нет ни малейших проблем с тем, чтобы представить себе одну длинную океанскую волну, которая накатывает на берег и разбивается о пляж. Это стена воды – распростертая, не стоящая на месте. Таким образом, надо понять, как сделать такой же «распростертой, не стоящей на месте» нашу частицу. Вторая причина в том, что две новые волны, отходящие от щелей, могут при смешивании либо добавляться друг к другу, либо ослаблять действие друг друга. Эта способность двух волн интерферировать, очевидно, и будет ключевой для объяснения появления интерференционной фигуры. Крайний случай – совпадение максимума одной волны с минимумом другой. В этом случае они полностью погасят друг друга. Поэтому мы сталкиваемся с необходимостью заставить нашу квантовую частицу каким-то образом интерферировать саму с собой.

Двухщелевой эксперимент связывает поведение электронов с поведением волн, поэтому давайте посмотрим, насколько далеко может зайти это соответствие. Посмотрим на рис. 3.1, сначала проигнорировав линии, соединяющие точки А с Е и B с F, и соcредоточимся на волнах.

Рис. 3.1. Как волна, описывающая поведение электрона, движется от источника к экрану и как ее нужно интерпретировать в качестве представления всех вариантов траекторий электрона. Пути от A до C и E и от B до D и F иллюстрируют всего лишь две из бесконечного множества траекторий, по которым может двигаться одиночный электрон

Наш рисунок может описывать цистерну с водой. Тогда волнистые линии представляют – слева направо – то, как водяная волна катится через цистерну. Допустим, мы сфотографировали цистерну сразу после того, как деревянная доска слева ударила по воде, вызвав волну. На фотографии будет видна новообразованная волна, простирающаяся сверху вниз. Вся остальная вода в цистерне остается спокойной. На второй фотографии, сделанной чуть позже, видно, как водяная волна двигается к щелям, оставляя за собой ровную поверхность. Еще позже волна проходит через пару щелей и создает полосатую интерференционную фигуру, которую иллюстрируют волнистые линии в правом углу.

А сейчас давайте перечитаем последний абзац, только вместо «водяной волны» подставим «электронную волну», что бы это ни значило. Электронная волна, если ее интерпретировать должным образом, может объяснить ту полосатую фигуру, которую мы хотим понять, потому что в эксперименте она ведет себя так же, как волна воды. Но осталось объяснить, почему же электронная фигура получается из точек, когда электроны попадают на экран один за другим. На первый взгляд, это противоречит идее гладкой волны, но на самом деле это не так. Нужно догадаться, что мы можем предложить следующее объяснение: электронную волну следует интерпретировать не как реальное материальное возмущение (как в случае с волной воды), а как некий способ информирования нас о том, где, вероятно, электрон будет обнаружен. Заметьте, мы говорим «электрон», а не «электроны», потому что волна должна описать поведение одиночного электрона – таким образом мы получим возможность объяснить, откуда же берутся эти точки. Это электронная волна, а не волна электронов, и тут нельзя ошибаться. Если мы представим себе снимок волны в какой-то момент времени, то возникнет мысль интерпретировать его следующим образом: там, где волна наибольшая, существует наибольшая вероятность найти электрон, а там, где волна меньше всего, вероятность встретить наш электрон наименьшая. Когда волна наконец достигает экрана, там появляется маленькая точка, которая и сообщает о его местонахождении. Единственная задача электронной волны – дать нам возможность вычислить шансы на то, что электрон попадет в определенную точку экрана. Если же не беспокоиться, чем в действительности «является» электронная волна, то все сразу становится ясным, потому что как только мы рассчитаем волну, то сразу сможем сказать, где, скорее всего, располагается электрон. Самое интересное начинается позже, когда мы пытаемся понять, как связано наше предположение по поводу электронной волны с путешествием электрона от щели к экрану.

Но прежде чем мы приступим, полезно будет еще раз перечитать предыдущий абзац, потому что он очень важен. То, что в нем излагается, совершенно не очевидно и уж точно не соответствует интуиции. У предположения об «электронной волне» есть все необходимые свойства, чтобы объяснить появление наблюдаемой при эксперименте интерференционной фигуры, но в целом это типичная догадка о том, как это может происходить на самом деле. Как хорошие физики, мы должны рассмотреть последствия и выяснить, насколько эта догадка согласуется с природой.

Вернемся к рис. 3.1. Мы предположили, что в каждый момент времени электрон описывается волной – такой же, как водяная. В первый момент электронная волна находится слева от щелей. Это значит, что наш электрон в каком-то смысле где-то внутри волны. Позднее волна продвигается к щелям, так же как водяная, и электрон оказывается где-то в составе новой волны. Мы говорим, что электрон «может быть сначала в А, а потом в С», или «сначала в В, а потом в D», или же «сначала в А, а потом в D» и т. д. Зафиксируйте ненадолго эту мысль и подумайте теперь о еще более позднем времени после того, как волна прошла через щели и достигла экрана. Сейчас электрон можно обнаружить в Е или, возможно, в F. Кривые, которые мы изобразили на диаграмме, отображают две возможные траектории, по которым электрон мог двигаться от своего источника через щели в сторону экрана. Он мог отправиться от А через С в Е или от В через D в F. И это всего две траектории из бесконечного числа возможных для этого электрона.

Важно, что нет никакого смысла говорить: «Электрон мог проследовать любым из этих маршрутов, но на самом деле он двигался только одним из них». Если решить, что электрон действительно шел по одной конкретной траектории, то у нас будет не больше шансов на объяснение появления интерференционной фигуры, чем если бы мы закрыли одну из щелей в эксперименте с водой. Нам нужно, чтобы волна могла пройти через обе щели – только так мы получим интерференционную фигуру. Значит, нужно разрешить все возможные траектории движения электрона от источника к экрану. Иными словами, под выражением «электрон где-то в волне» мы имели в виду, что он одновременно находится во всей волне! Именно так мы и должны думать, потому что, если мы считаем, что электрон действительно находится в каком-то конкретном месте, волна утрачивает распределенность в пространстве, и мы теряем аналогию с водяной волной. В результате интерференционная фигура остается без объяснения.

Здесь, возможно, снова имеет смысл перечитать приведенные выше рассуждения, потому что из них следует многое из того, что говорится ниже. И это не какая-то ловкость рук: мы утверждаем, что нам нужно описать распространяющуюся волну, которая при этом считается также точечным электроном, и единственный способ сделать это – заявить, что электрон перемещается от источника к экрану всеми возможными траекториями сразу.

Соответственно, мы должны описывать одиночный электрон, движущийся от источника к экрану по бесконечному разнообразию маршрутов, как электронную волну. Иными словами, правильный ответ на вопрос «Как этот электрон добрался до экрана?» звучит так: «Он попал туда бесконечно возможными способами, некоторые из них предполагают прохождение через верхнюю щель, а некоторые – через нижнюю». Определенно, этот электрон – не обычная частица. Это квантовая частица.

Определившись с тем, что описание электрона во многих отношениях подражает поведению волн, мы должны выработать более точные понятия о самих волнах. Начнем с описания того, что происходит в цистерне с водой, когда две волны встречаются, смешиваются и интерферируют друг с другом. Для этого необходимо найти удобный способ представления положений взлетов и падений каждой волны. На техническом жаргоне эти положения называются фазами. Обычно говорят, что волны «в фазе», если они усиливают друг друга, или «в противофазе», если они отменяют друг друга. То же слово применяется по отношению к Луне: в течение примерно 28 дней Луна проходит путь от новолуния до полнолуния и обратно в непрерывном цикле возрастания и убывания. Этимология слова «фаза» восходит к греческому phasis, которое означает появление и исчезновение астрономического феномена, а регулярное появление и исчезновение яркой лунной поверхности за 20 веков привело к тому, что слово «фаза» стало использоваться при обозначении всего циклического.

И это подсказывает нам возможность графического отображения положения взлетов и падений водяных волн.

Взгляните на рис. 3.2. Один из способов отобразить фазу – представить ее в виде циферблата с единственной стрелкой. Это позволяет нам визуально представить 360-градусный круг возможностей: стрелка часов может указывать на 12 часов, на 3 часа, на 9 часов и на все промежуточные стадии. В случае с Луной можно представить, что новолунию соответствует стрелка на 12 часах, неомении – на 1:30, первой четверти – на 3, растущей Луне – на 4:30, полной Луне – на 6 и т. д. Здесь мы используем нечто абстрактное для описания чего-то конкретного, то есть циферблат для фаз Луны. Таким образом, при изображении циферблата со стрелкой на 12 часах вы сразу поймете, что на рисунке представлено новолуние. И даже если это специально не оговорено, увидев стрелку на 5 часах, вы догадаетесь, что приближается полнолуние. Применение абстрактных рисунков, или символов, для отражения реальных вещей очень характерно для физики: собственно, для того физики и используют математику. Сила такого подхода в том, что, оперируя абстрактными рисунками с помощью простых правил, можно делать уверенные предсказания о реальном мире. Как мы сейчас увидим, циферблаты как раз дают такую возможность, потому что могут фиксировать относительные положения взлетов и падений волн. Это, в свою очередь, позволит вычислить, будут волны усиливать или отменять друг друга при наложении.

Рис. 3.2. Фазы Луны

На рис. 3.3 изображены две водяные волны в определенный момент времени. Представим максимумы волн в виде циферблатов со стрелкой на 12 часов, а минимумы – в виде циферблатов со стрелкой на 6. Мы можем отобразить и промежуточные между минимумом и максимумом положения волн, нарисовав циферблаты с промежуточным временем, как и в случае с фазами между новой и полной Луной. Расстояние между последовательными взлетами и падениями – важная величина; она известна как длина волны.

.

Рис. 3.3. Две волны расположены так, что полностью нейтрализуют друг друга. Верхняя и нижняя волна находятся в противофазе, то есть максимумы одной соответствуют минимумам другой. Когда эти волны складываются, они гасят друг друга, что и показывает «волна» внизу в виде прямой линии

Две волны на рис. 3.3 находятся в противофазе, то есть максимумам верхней волны соответствуют минимумы нижней волны, и наоборот. В результате, разумеется, они при сложении полностью погасят друг друга. Это показано в нижней части рисунка, где волна становится совершенно прямолинейной. Если говорить о циферблатах, то все 12-часовые циферблаты верхней волны, отображающие ее пики, соответствуют 6-часовым циферблатам нижней волны, отображающим ее минимумы. Собственно, везде стрелки на циферблатах верхней волны указывают в сторону, противоположную циферблатам нижней волны.

На этом этапе кажется, что ввод циферблатов для описания волн – излишнее усложнение.

Конечно, если мы хотим сложить две волны воды, то все, что нужно, – сложить высоты каждой из волн, для чего никаких циферблатов не требуется. Да, для обычных водяных волн это верно, но мы не сумасшедшие и ввели циферблаты, имея на то свои основания. Очень скоро обнаружится, что гибкость, достигнутая с их помощью, совершенно необходима, когда дело дойдет до квантовых частиц.

Держа это в уме, ненадолго остановимся и попробуем сформулировать точное правило сложения циферблатов. В случае на рис. 3.3 правило должно выглядеть так, что все циферблаты «взаимно отменяются», так что ничего не остается: 12 часов отменяет 6 часов, 3 часа отменяет 9 часов и т. д. Такая совершенная взаимная нейтрализация, разумеется, отражает тот особый случай, когда волны находятся в идеальной противофазе. Попробуем найти общее правило, работающее для сложения волн любого расположения и любой формы.

На рис. 3.4 показаны еще две волны, на этот раз соединяющиеся по-другому: одна немного смещена относительно другой. Мы вновь отметили максимумы, минимумы и промежуточные точки циферблатами. Сейчас 12-часовой циферблат верхней волны соответствует трехчасовому циферблату нижней. Мы попытаемся сформулировать правило, которое позволит складывать эти циферблаты. Оно состоит в том, что нужно взять две стрелки и соединить их головкой и хвостом. После этого достраиваем треугольник, рисуя новую стрелку, которая сводит вместе две предыдущие. Пример приведен на рис. 3.5. Новая стрелка отличается по длине от двух других и указывает в другом направлении; это новый циферблат, отображающий сумму двух предыдущих.

Рис. 3.4. Две волны смещены относительно друг друга. Верхняя и средняя волны складываются, образуя нижнюю волну

Теперь можно добиться большей точности и с помощью простой тригонометрии вычислить результаты сложения любой конкретной пары циферблатов. На рис. 3.5 мы складываем 12-часовой и 3-часовой циферблаты. Допустим, длина стрелок двух первых циферблатов – 1 см (что соответствует максимальной высоте волны – 1 см). Когда мы сводим стрелки головкой к хвосту, получается прямоугольный треугольник, две стороны которого имеют длину 1 см каждая. Стрелка нового циферблата будет иметь длину третьей стороны треугольника – гипотенузы. Теорема Пифагора гласит, что квадрат гипотенузы равен сумме квадратов катетов: h = x + y. Подставляем числа: h = 1 + 1 = 2. Итак, длина новой стрелки циферблата h будет равняться квадратному корню из 2, то есть примерно 1,414 см. В каком направлении будет указывать эта новая стрелка? Для этого нужно узнать величину угла треугольника, отмеченного на рисунке буквой . В нашем примере, когда две стрелки одинаковой длины, одна из которых указывает на 12, а другая на 3, можно найти ответ и без всякой тригонометрии. Очевидно, что гипотенуза образует угол 45°, так что новое «время» будет находиться между 12 и 3 часами – это половина второго. Конечно, такой пример – особенный случай. Мы выбрали такие циферблаты, чтобы их стрелки располагались под прямыми углами и имели одинаковую длину, а это упрощает математику. Но очевидно, что можно вычислить длину стрелки и получающееся время при сложении любой пары циферблатов.

Рис. 3.5. Правило сложения циферблатов

Теперь вернемся вновь к рис. 3.4. Для любой точки на маршруте новой волны мы можем вычислить высоту волны, сложив циферблаты по приведенному выше правилу и задавшись вопросом, насколько стрелка нового циферблата близка к 12-часовому направлению. Когда стрелка указывает на 12, все очевидно: высота волны попросту равна длине стрелки. Точно так же, когда стрелка направлена на 6, все очевидно: волна находится на минимуме, и ее глубина равна длине стрелки. Все понятно и в том случае, когда на часах 3 или 9, потому что высота волны равна нулю, ведь стрелка часов находится под прямым углом к 12-часовому направлению. Чтобы вычислить высоту волны, которую описывает тот или иной циферблат, нужно умножить длину стрелки h на косинус угла, который эта стрелка образует с направлением на 12 часов. Например, угол, который образуют направления на 3 и на 12 часов, равен 90°, а cos 90° равен нулю, так что высота волны тоже равна нулю. Половина второго соответствует углу в 45°, а cos 45° – примерно 0,707, так что высота волны составляет 0,707 от длины стрелки (заметьте, что 0,707 – это 1 / 2!). Если ваших познанй в тригонометрии недостаточно, чтобы понять несколько последних предложений, можно смело игнорировать эти подробности. Важен принцип: зная длину стрелки часов и ее направление, вы можете вычислить высоту волны – и даже если не понимаете тригонометрию, легко справитесь, тщательно нарисовав стрелки часов и спроецировав их на 12-часовое направление с помощью чертежной линейки. (Здесь мы хотели бы уточнить, что всем читающим эту книгу студентам такой способ действий не рекомендуется: синусы и косинусы знать полезно.)

Таково правило сложения циферблатов, и оно прекрасно работает, как показывает нижняя из трех картинок на рис. 3.4, где мы систематически применяли это правило для различных точек на волнах. В этом описании водяных волн все, что имеет значение, – проекция «времени» на 12-часовое направление, связанная с единственным параметром – высотой волны.

Вот почему использование циферблатов не так уж необходимо при описании водяных волн. Взгляните на три циферблата на рис. 3.6: все они соответствуют одной и той же высоте волны и дают эквивалентные способы представления одной и той же высоты воды. Но циферблаты эти, разумеется, различны, и, как мы увидим, эти различия имеют значение, если использовать их для описания квантовых частиц, потому что в этом случае длина стрелки циферблата (или размер циферблата, что одно и то же) имеют очень важное истолкование.

.

Рис. 3.6. Три разных циферблата с одной и той же проекцией на 12-часовое направление

В некоторых местах этой книги, и особенно в этом, мы будем иметь дело с абстракциями. Чтобы не поддаться головокружительному беспорядку, нужно помнить об общей картине. Экспериментальные результаты Дэвиссона, Джермера и Томсона и сходство полученных данных с поведением водяных волн вдохновили нас на следующий анзац: частицу следует представить в виде волны, а сама волна может быть изображена в виде множества циферблатов. Мы представляем, как электрон распространяется «подобно водяной волне», но пока не дали подробного объяснения, что же происходит. Пока нам важна только сама аналогия с водяными волнами и понимание того, что электрон в любой момент может быть описан как волна, которая распространяется и интерферирует подобно водяным волнам. В следующей главе постараемся с большей точностью описать, как перемещается электрон с течением времени. Помогать нам в этом будут различные бесценные идеи, включая знаменитый принцип неопределенности Гейзенберга.

Но прежде потратим немного времени на обсуждение циферблатов, с помощью которых мы представляем электронную волну. Подчеркиваем, что эти циферблаты ни в коем смысле нельзя считать реальными, а часовая стрелка не имеет никакого отношения ко времени суток. Идея использовать множество микроскопических циферблатов для описания реального физического феномена не так уж нелепа, как это может показаться. Подобные технические приемы для описания природных явлений используют многие физики, и мы уже видели, как это работает при описании водяных волн.

Еще один пример подобного абстрагирования – описание температуры в комнате, которое может быть представлено в виде числового множества. Числа не существуют как физические объекты, и это роднит их с нашими циферблатами. Множество чисел и их связь с точками в комнате – просто удобный способ представления температуры. Физики называют такую математическую структуру полем. Температурное поле – просто числовое множество, одно число для одной точки. В случае с квантовыми частицами поле обладает большей сложностью, потому что для каждой точки требуется не просто число, а целый циферблат. Такое поле обычно называется волновой функцией частицы. То, что нам для создания волновой функции требуется ряд циферблатов, хотя для температурного поля или волн воды достаточно числа, демонстрирует существенную разницу. На физическом жаргоне циферблаты появляются потому, что волновая функция – это «комплексное» поле, а температура или высота водяной волны – «действительное» поле. Но нам подобный язык не пригодится, потому что мы можем работать с циферблатами[6].

Не стоит беспокоиться по поводу отсутствия непосредственных способов почувствовать волновую функцию, в отличие от температурного поля. То, что мы не можем ее осязать, нюхать или видеть непосредственно, никакого значения не имеет. Честно говоря, мы бы немногого добились в физике, если бы решили ограничить себя описанием тех вещей во Вселенной, которые можем воспринимать непосредственно.

При обсуждении двухщелевого эксперимента с электронами мы говорили, что электронная волна будет самой большой там, где электрон находится с наибольшей вероятностью. Эта интерпретация позволила осознать, как полосатая интерференционная фигура может создаваться постепенно, точка за точкой, по мере прибытия электронов. Но сейчас это утверждение для наших целей уже недостаточно точное. Мы хотим знать, какова вероятность обнаружить электрон в конкретной точке; мы хотим измерить эту вероятность каким-либо числом. Здесь-то и возникает потребность в циферблатах, потому что та вероятность, которую мы хотим найти, не просто высота волны. Правильно будет интерпретировать квадрат длины стрелки как вероятность найти частицу в конкретном месте циферблата. Вот почему необходима та дополнительная гибкость, которую и дают циферблаты по сравнению с обычными числами. Эта интерпретация, разумеется, не совсем очевидна, и у нас нет хорошего объяснения ее правильности. Мы знаем, что она правильна, потому что ведет к предсказаниям, согласующимся с экспериментальными данными. Такая интерпретация волновой функции – один из самых трудных вопросов, с которыми сталкивались первопроходцы в области квантовой теории.

Волновая функция (то есть наш набор циферблатов) была введена в квантовую теорию серией работ, опубликованных в 1926 году австрийским физиком Эрвином Шрёдингером. Его статья, вышедшая 21 июня, содержит уравнение, которое должно накрепко засесть в голове у каждого студента-физика. Совершенно логично, что оно получило название уравнения Шрёдингера:

Греческая буква  (произносится «пси») обозначает волновую функцию, и уравнение Шрёдингера показывает, как эта функция изменяется с течением времени. Детали уравнения не нужны для наших целей, потому что мы не собираемся использовать в книге подход Шрёдингера. Интересно, что, хотя Шрёдингер и записал правильное уравнение волновой функции, вначале он дал ему неверное толкование. Лишь Макс Борн, один из старейших на 1926 год физиков, работавших в области квантовой теории (он находился в почтенном возрасте 43 лет), дал верную интерпретацию уравнения в статье, вышедшей спустя всего четыре дня после работы Шрёдингера. О возрасте мы заговорили потому, что в середине 1920-х годов квантовая теория имела прозвище Knabenphysik – «мальчишеская физика», потому что многие из ее ключевых деятелей были молоды. В 1925 году Гейзенбергу было 23, Вольфгангу Паули, со знаменитым принципом которого мы встретимся позже, исполнилось 22, как и Полю Дираку, британскому физику, который первым вывел уравнение, верно описывающее электрон. Часто говорят, что молодость освободила их от старых способов мышления и позволила полностью отдаться радикально новой картине мира, которую предоставляла квантовая теория. В этой компании 38-летний Шрёдингер был стариком, и он действительно так до конца и не освоился с той теорией, в разработке которой сыграл ключевую роль.

Радикальная интерпретация волновой функции, за которую Борн получил Нобелевскую премию по физике в 1954 году, выглядела так: квадрат длины стрелки часов в определенной точке соответствует вероятности нахождения в ней частицы. Например, если длина часовой стрелки, находящейся в определенном месте, равна 0,1, то ее квадрат будет равняться 0,01. Это значит, что вероятность найти в этом месте частицу будет составлять 0,01, то есть одну сотую. Вы можете спросить, почему Борн просто не возвел в квадрат размеры циферблатов, чтобы в последнем примере длина стрелки часов сама приняла значение 0,01? Но это не сработало б из-за необходимости расчета интерференции: если сложить значения циферблатов, то 0,01 плюс 0,01 даст 0,02, в то время как сложение 0,1 и 0,1 и последующее возведение суммы в квадрат даст 0,04.

Эту ключевую для квантовой теории идею можно проиллюстрировать еще одним примером. Допустим, мы делаем с частицей нечто, из-за чего она может быть описана с помощью конкретного множества циферблатов. Допустим также, у нас есть прибор, способный измерять местоположение частиц. Такое легко вообразимое, но не так уж легко конструируемое устройство может представлять собой, например, небольшой ящичек, который легко водрузить в любой области пространства. Если теория говорит, что шансы найти частицу в определенной точке равны 0,01 (потому что длина стрелки часов в этой точке составляет 0,1), то, устанавливая наш ящичек вблизи этой точки, мы имеем 0,01 вероятности найти в ящике нужную частицу. Это значит, что на самом деле вряд ли в ящике что-то окажется. Однако если воссоздать эксперимент так, чтобы частица снова описывалась тем же самым набором циферблатов, повторять его можно сколько угодно раз. И теперь из каждых 100 наших заглядываний в ящичек мы в среднем один раз будем обнаруживать в нем частицу – остальные 99 раз ящичек будет пуст.

Интерпретация квадрата длины часовой стрелки как вероятности найти частицу в определенном месте на вид не так уж сложна, но действительно кажется, что мы (или, точнее говоря, Макс Борн) взяли ее с потолка. На самом деле в исторической перспективе оказалось, что даже таким величайшим ученым, как Эйнштейн и Шрёдингер, было трудно принять подобное толкование. Через 50 лет после лета 1926 года Поль Дирак вспоминал: «Проблема правильного истолкования оказалась гораздо сложнее, чем просто вывести уравнения». Несмотря на всю эту сложность, стоит отметить, что к концу 1926 года спектр света, испускаемого атомом водорода, который стал одной из величайших загадок физики XIX века, уже вычислили с помощью уравнений как Гейзенберга, так и Шрёдингера (Дирак со временем доказал, что оба этих подхода во всех случаях совершенно эквивалентны).

Известны возражения Эйнштейна против вероятностной природы квантовой механики, которые он в декабре 1926 года высказал в письме к Борну: «Теория говорит очень много, но на деле не приближает нас к тайне Старика. В любом случае я убежден, что Он не играет в кости». Проблема в том, что до этого времени считалось, будто физика имеет полностью детерминистский характер. Конечно, идея вероятности характерна не только для квантовой теории. Она регулярно применяется во множестве ситуаций – от ставок на бегах до термодинамики, которой занимались лучшие умы еще в Викторианскую эпоху. Но причиной использования этих вероятностей были не фундаментальные законы, а как раз недостаток знаний о соответствующей сфере.

Возьмем подбрасывание монетки – архетипическую игру случая. Все мы знакомы с вероятностью в этом контексте. Если мы подбросим монетку 100 раз, можно ожидать, что в среднем 50 раз выпадет орел и 50 раз решка. До квантовой теории мы обязаны были бы сказать, что, обладая всеми необходимыми данными о монете – о точном способе ее подбрасывания в воздух, силе притяжения, о воздушных потоках, проходящих через комнату, температуре воздуха и т. д., – мы могли бы в принципе предсказать, что выпадет – орел или решка. Появление вероятностей в этом контексте, таким образом, можно считать отражением недостатка знаний о системе, а не чем-то внутренне присущим самой этой системе.

Вероятности в квантовой теории имеют совершенно иную природу; они фундаментальны. Мы можем предсказать лишь вероятность появления частицы в определенном месте, и не потому, что мы невежественны. Мы даже в принципе не можем предсказать, каково будет положение частицы. Что мы можем предсказать, да еще и с абсолютной точностью, так это вероятность того, что частица окажется в определенном месте, если мы будем ее там искать. Более того, мы с абсолютной точностью можем предсказать, как эта вероятность изменится со временем. Борн прекрасно высказался об этом еще в 1926 году: «Частицы движутся по законам вероятности, но сама вероятность распространяется по закону причинности». Именно об этом идет речь и в уравнении Шрёдингера: оно позволяет точно вычислить, как будет выглядеть волновая функция в будущем, если знать ее вид в прошлом. В этом смысле оно аналогично законам Ньютона. Разница в том, что если законы Ньютона позволяют вычислить положение и скорость частиц в любое конкретное время в будущем, то квантовая механика позволяет вычислить лишь вероятность того, что они будут находиться в определенном месте.

Именно такое падение предсказательной силы и беспокоило Эйнштейна и многих его коллег. Сейчас, с высоты восьмидесяти прошедших лет и после огромного объема проделанной работы спорить по этому поводу кажется несколько бессмысленным: легко заявить, что Борн, Гейзенберг, Паули, Дирак и еще кое-кто были правы, а Эйнштейн, Шрёдингер и другие представители старой гвардии ошибались. Но в то время казалось вполне разумным полагать, что квантовая теория просто еще не завершена и что вероятности возникают, как в термодинамике или при подбрасывании монеты, потому что мы упускаем какую-то информацию о частицах. Сегодня у этой идеи мало сторонников: теоретические и экспериментальные данные свидетельствуют, что природа действительно имеет дело со случайными числами и отсутствие возможности предсказывать положение частицы как несомненный факт – это внутреннее свойство физического мира: вероятности – это лучшее, на что мы можем рассчитывать.

4. Все, что может случиться, действительно случается

Итак, теперь можно заняться детальным исследованием квантовой теории. Техническое содержание основных идей довольно простое – сложно лишь примириться с тем, что они бросают вызов нашим предубеждениям по поводу устройства мира. Мы уже говорили, например, что частицу можно представить в виде множества маленьких циферблатов, расставленных здесь и там, и что длина стрелки такого циферблата (возведенная в квадрат) соответствует вероятности, с которой частицу можно обнаружить в конкретном месте. Циферблаты – это не суть системы, а математический инструмент, которым мы пользуемся, чтобы вычислить шансы найти где-то нашу частицу. Мы привели правило сложения циферблатов, необходимое для описания феномена интерференции. Сейчас нам нужно окончательно свести концы с концами и сформулировать правило, которое объясняло бы, как циферблаты изменяются от одного момента к другому. Это правило послужит заменой первому закону Ньютона в том смысле, что позволит спрогнозировать действия частицы, оставленной в покое. Сначала представим одиночную частицу в некоторой точке.

Мы знаем, как представлять частицу в точке (рис. 4.1). Итак, изображен одиночный циферблат с длиной стрелки 1 (потому что 1 в квадрате – это и есть 1, стало быть, вероятность найти частицу в этой точке равна 1, то есть 100 %). Предположим, что на циферблате 12 часов, хотя этот выбор совершенно произволен. С точки зрения вероятности стрелка часов может указывать в любом направлении, но надо же с чего-то начать, так что условимся на 12 часов. Мы хотим добиться ответа на следующий вопрос: каковы шансы того, что частица позже будет находиться где-то еще? Иными словами, сколько еще циферблатов нужно нарисовать и где их поместить в следующее мгновение? Исааку Ньютону на такой очевидный вопрос отвечать было бы даже скучно: если мы размещаем где-то частицу и ничего с ней не делаем, она никуда и не движется. Но природа весьма категорично утверждает, что это попросту неверно. На самом деле Ньютон не мог ошибиться еще сильнее.

Рис. 4.1. Одиночный циферблат, представляющий частицу, которая четко локализуется в конкретной точке пространства

А вот и правильный ответ: частица в следующий момент может оказаться в любой точке Вселенной. Это значит, что нам придется нарисовать бесконечное множество циферблатов – по одному для каждой мыслимой точки в пространстве. Это предложение стоит перечитать много раз. Наверное, лучше раскрыть эту мысль.

Допущение, что частица может быть где угодно, эквивалентно полному отсутствию предположений по поводу ее движения. Это самое беспристрастное допущение, которое мы можем сделать, и такое решение обладает определенной аскетической[7] привлекательностью, хотя, по общему признанию, действительно кажется, что оно нарушает все законы здравого смысла, а заодно, возможно, и законы физики.

Циферблат представляет нечто определенное – вероятность того, что частица будет обнаружена на месте этого циферблата. Если мы знаем, что частица находится в конкретном месте в конкретное время, то представляем это в виде одиночного циферблата в этой точке. Но если мы начнем с частицы, находящейся в нулевой момент времени в определенном месте, то для «нулевого момента плюс еще сколько-то времени» придется нарисовать огромное – на самом деле бесконечное – количество других циферблатов, заполняющих всю Вселенную. Так подтверждается возможность того, что частица перепрыгивает в любое другое место в одно мгновение. Наша частица будет одновременно и в нанометре от исходного положения, и в миллиарде световых лет отсюда, в ядре звезды отдаленной галактики. Звучит, говоря по-простому, странно. Но нужно со всей ясностью сказать: теория должна быть способна объяснить двухщелевой эксперимент, и как волна начинает распространяться, если обмакнуть в стоячую воду палец ноги, так и электрон, изначально расположенный в некой точке, должен распространяться с течением времени. Нужно только установить, как именно он распространяется.

Мы предполагаем, что, в отличие от водяной волны, электронная волна распространяется по всей Вселенной мгновенно. В техническом смысле можно сказать, что правило распространения частиц отличается от правила распространения водяной волны, хотя в обоих случаях распространение соответствует «волновому уравнению». Уравнение для водяных волн отличается от уравнения волн-частиц (это то самое знаменитое уравнение Шрёдингера, которое мы упомянули в прошлой главе), но оба они связаны с физикой волн. Различия – в деталях того, как объекты движутся с места на место. Кстати, если вы немного в курсе теории относительности Эйнштейна, то должны бы занервничать, услышав, что мы ведем речь о мгновенных перемещениях частицы по Вселенной, так как получается, словно что-то передвигается быстрее скорости света. На самом же деле идея того, что частица может быть здесь и через мгновение очень далеко отсюда, сама по себе вовсе не противоречит теориям Эйнштейна, потому что суть их в том, что быстрее скорости света не может перемещаться информация, а этому ограничению квантовая теория удовлетворяет. Как мы вскоре увидим, динамика прыжков частиц через Вселенную совершенно не такая, как при передаче информации, потому что мы не можем сказать заранее, куда же прыгнет частица. Кажется, что наша теория строится на полной анархии, и будет вполне естественно, если вы не поверите, что природа так себя может вести. Но далее в этой книге мы убедимся, что порядок нашей повседневной жизни действительно берет свое начало в этом фантастически абсурдном поведении.

Если вам непросто переварить подобную анархию – например, необходимость наполнить всю Вселенную маленькими циферблатами, чтобы описать движение единственной субатомной частицы от одного момента к другому, – то вы в хорошей компании. Снятие покровов с квантовой теории и попытки истолковать ее внутреннюю деятельность поставят в тупик кого угодно. Нильс Бор, например, известен такой фразой: «Те, кто не пришел в ужас при знакомстве с квантовой механикой, просто не могут ее понять». Ричард Фейнман предварил третий том «Фейнмановских лекций по физике» словами: «Думаю, могу с уверенностью сказать, что никто не понимает квантовую механику». К счастью, следовать ее законам гораздо проще, чем пытаться разобраться в ее сути. Способность тщательно рассматривать последствия определенного набора предположений, не слишком затрудняя себя их философским смыслом, – одно из самых важных умений современного физика. Это как раз в духе Гейзенберга: зададим первичные предположения и вычислим их последствия. Если мы получаем набор предсказаний, согласующихся с повседневными наблюдениями, теория признается жизнеспособной.

Многие проблемы слишком сложны, чтобы решить их одним мыслительным усилием, а глубокое понимание редко приходит в моменты, когда ученый кричит «эврика». Нужно убедиться, что вы действительно понимаете каждый мельчайший шаг, и после достаточного количества шагов должно появиться понимание общей картины. В противном случае мы поймем, что пошли по ложному пути и нужно начинать все с начала. Эти мельчайшие шаги, которые мы упомянули, не так сложны, но идея взять один циферблат и превратить его в бесконечное множество циферблатов, безусловно, сложна, особенно если представить себе, что их все надо нарисовать. Вечность, если перефразировать Вуди Аллена, – это очень долго, особенно ближе к концу. Советуем не паниковать и не сдаваться. В любом случае мы имеем дело лишь с кусочком вечности. Наша следующая задача – установить правило, которое будет описывать поведение этих циферблатов в определенное время после запуска частицы.

Это правило – основной закон квантовой теории, хотя впоследствии нам понадобится и второй закон, когда мы перейдем к рассмотрению возможности наличия во Вселенной больше одной частицы. Но начнем по порядку и сначала сосредоточимся на единственной на всю Вселенную частице: никто не обвинит нас в том, что мы хватаемся за все сразу. Итак, она существует в один миг времени – предположим, мы точно знаем, в какой именно, – и представлена единственным циферблатом. Наша конкретная задача – найти правило, описывающее, как будут выглядеть в любой момент все новые циферблаты, рассеянные по Вселенной.

Сначала мы сформулируем это правило, не подводя под него никаких оснований. К тому, почему правило звучит именно так, а не иначе, вернемся через несколько абзацев, но сейчас должны просто принять его на веру. Итак, вот оно: во время t в будущем стрелка циферблата, находящегося на расстоянии x от исходного циферблата, продвинется против часовой стрелки на величину, пропорциональную x; величина продвижения также пропорциональна массе частицы m и обратно пропорциональна времени t. В записи с помощью символов это значит, что нам нужно повернуть стрелку против хода часов на величину, пропорциональную mx / t. А если объяснять это словами, то быстрее двигаются по циферблату более массивные частицы, более далекие от исходной точки, а с течением времени ход становится медленнее. Существует алгоритм – или, если угодно, рецепт, – который точно описывает, как определить поведение определенного набора циферблатов в какой-то момент будущего. В каждой точке Вселенной мы рисуем новый циферблат, стрелка которого сдвинута на заданную правилом величину. Это подкрепляет наше предположение о том, что частица может (и так оно и есть) перепрыгивать из начального положения в любую другую точку Вселенной, порождая в процессе движения новые циферблаты.

Для простоты мы представляли только один исходный циферблат, но, конечно, в какой-то момент времени уже может существовать несколько циферблатов, и это отражает постулат, что частица не находится в каком-то определенном месте. Как разобраться с целой кучей циферблатов? Ответ таков: нужно делать то, что мы делали для одного циферблата, и повторять процесс для всех имеющихся циферблатов. Эту идею иллюстрирует рис. 4.2. Первичный набор циферблатов представлен маленькими кружками, а стрелки показывают, как частица перепрыгивает с места каждого первичного циферблата в точку X, «оставляя» там новый циферблат. Конечно, при этом каждый первичный циферблат порождает в точке X новый циферблат, и мы должны сложить их все вместе, чтобы создать окончательный циферблат для точки X. Размер этого окончательного циферблата дает вероятность впоследствии найти частицу в точке X.

.

Рис. 4.2. Прыгающие циферблаты. Окружности соответтвуют местонахождению частицы в определенный момент времени; нам необходимо каждой такой точке поставить в соответствие по циферблату. Чтобы вычислить вероятность обнаружения частицы в точке X, мы должны позволить частице прыгнуть туда из всех исходных мест ее пребывания. Несколько таких прыжков обозначено стрелками. Форма линий не имеет никакого значения и уж точно не означает, что частица движется с места нахождения циферблата в точку X по какой-то определенной траектории

Необходимость сложения всех появляющихся в точке циферблатов не так уж странна. Каждый циферблат соответствует специфической траектории, по которой частица могла бы прибыть в точку X. Сложение циферблатов легко понять, если вернуться к двухщелевому эксперименту: мы просто пытаемся перефразировать описание волны для циферблатов. Можем представить два исходных циферблата – по одному у каждой щели. Каждый из них порождает новый циферблат на конкретной точке экрана в одно из последующих мгновений, и мы должны сложить эти два циферблата, чтобы получилась интерференционная фигура[8]. Итак, правило предсказания внешнего вида циферблата в любой точке состоит в том, чтобы перенести в эту точку все исходные циферблаты, один за другим, а потом сложить их все по правилу сложения, описанному в предыдущей главе.

Так как мы решили описывать подобным языком распространение волн, можно использовать его и при размышлениях о более знакомых нам волнах. Самой идее уже много лет. Известно, что голландский физик Христиан Гюйгенс описывал так световые волны еще в 1690 году. Он, конечно, не упоминал воображаемых циферблатов, скорее подчеркивал, что каждую точку световой волны нужно рассматривать в качестве источника вторичных волн (как каждый циферблат порождает множество новых). Эти вторичные волны затем соединяются, что дает новую волну. Процесс повторяется, так что каждая точка новой волны служит источником результирующих волн, которые вновь соединяются друг с другом, и таким способом волна продвигается дальше.

Теперь можно вернуться к тому моменту, который может вызывать ваше справедливое беспокойство. Почему мы выбрали величину mx / t для определения сдвига часовой стрелки? У этой величины есть имя – это действие – и долгая почтенная история в развитии физики. На самом деле никто пока не понимает, почему эта величина настолько прочно укоренилась в природе, а стало быть, никто не может рационально объяснить, почему стрелки движутся так, как движутся. Возникает вопрос: как вообще кто-то понял, что это так важно? Понятие действия впервые предложил немецкий философ и математик Готфрид Лейбниц в написанной в 1669 году, но неопубликованной работе, однако он не сумел найти способ производить вычисления с его помощью. Вновь ввел его в 1744 году французский ученый Пьер Луи де Мопертюи, а затем его использовал для формулировки нового и очень мощного принципа природы друг Мопертюи, математик Леонард Эйлер. Представьте себе мяч, летящий по воздуху. Эйлер обнаружил: мяч движется по такой траектории, что действие между двумя точками маршрута будет каждый раз наименьшим. В случае с мячом действие соотносимо с разностью между кинетической и потенциальной энергией мяча[9]. Эта закономерность получила название «принципа наименьшего действия», и он может быть использован как альтернатива ньютоновым законам движения. На первый взгляд, принцип довольно странен, потому что кажется, будто для полета с наименьшим действием шар должен заранее знать, куда он собирается лететь еще до того, как он туда полетит. Как иначе он мог бы лететь по воздуху так, чтобы величина, именуемая действием, каждый раз получалась минимальной, когда он уже пролетел? Если перефразировать, то принцип наименьшего действия кажется телеологическим (так говорят, когда предполагают, что события происходят с целью достичь заранее предопределенного исхода). Телеологические идеи вообще пользуются в науке дурной репутацией, и несложно догадаться почему. В биологии телеологическое объяснение появления сложных существ подкрепляло бы теорию существования творца, в то время как теория эволюции путем естественного отбора, выдвинутая Дарвином, предлагает гораздо более простое объяснение, которое к тому же прекрасно согласуется с имеющимися данными. В теории Дарвина нет телеологического компонента: случайные мутации ведут к появлению вариаций в организмах, а внешнее давление со стороны среды и других живых существ определяет, какие вариации передаются следующим поколениям. Этот процесс – единственный, способный объяснить то многообразие и сложность жизненных форм, которые мы наблюдаем сейчас на Земле. Иными словами, устраняется необходимость божественного промысла и постепенного восхождения организмов к какому-то совершенству. Вместо этого оказывается, что эволюция жизни – случайный путь, который определяется несовершенным копированием генов в постоянно меняющихся условиях внешней среды. Лауреат Нобелевской премии французский биолог Жак Моно даже назвал краеугольным камнем современной биологии «систематическое или аксиоматическое отрицание возможности того, что научное знание может быть получено на основе теорий, которые явным или неявным образом включают в себя телеологический принцип».

У физиков, однако, споры о том, работает ли принцип наименьшего действия, не ведутся, потому что он позволяет производить вычисления, верно описывающие природу, и является краеугольным камнем физики. Можно возразить, что принцип наименьшего действия вовсе не телеологический, но все споры в любом случае закончатся, когда мы возьмем на вооружение подход Фейнмана к квантовой механике. Мяч, летящий по воздуху, «знает», какую траекторию избрать, потому что на самом деле втайне исследует каждую возможную траекторию.

Как же выяснилось, что правило хода стрелок часов имеет нечто общее с величиной, именуемой действием? В исторической перспективе первым такую формулировку квантовой теории, включающей понятие действия, предложил Дирак, но со свойственной ему эксцентричностью опубликовал свое исследование в советском журнале – в знак поддержки советской науки. Статья под названием «Лагранжиан в квантовой механике» была опубликована в 1933 году и пребывала в забвении много лет. Весной 1941 года молодой Ричард Фейнман размышлял, как разработать новый подход к квантовой теории, используя лагранжеву формулировку классической механики (эта формулировка вытекает из принципа наименьшего действия). Однажды вечером на пивной вечеринке в Принстоне он встретил Герберта Йеле, европейского физика, и, как это водится у физиков, после нескольких кружек они начали обсуждать идеи для исследований. Йеле вспомнил давнюю статью Дирака, и на следующий день они нашли ее в Принстонской библиотеке. Фейнман немедленно начал вычисления по методам Дирака, и в течение дня на глазах у Йеле обнаружил, что может вывести уравнение Шрёдингера из принципа наименьшего действия. Это был большой шаг вперед, хотя Фейнман изначально предполагал, что Дирак мог уже сделать то же самое, потому что это ведь было элементарно; да, элементарно, если вас зовут Ричардом Фейнманом. Со временем Фейнману удалось выяснить у Дирака, знал ли тот, как можно использовать его работу 1933 года, если сделать несколько дополнительных математических шагов. Позднее Фейнман вспоминал, что Дирак, лежа на принстонской траве после не самой выдающейся лекции, ответил просто: «Нет, я не знал. Это интересно». Дирак был одним из величайших физиков в истории, но говорил очень мало. Юджин Вигнер, сам принадлежавший к сонму великих, заметил: «Фейнман – это второй Дирак, но на этот раз с человеческим лицом».

Итак, напомним: мы сформулировали правило, которое позволяет зарисовать множество циферблатов, представляющих состояние частицы в некий момент времени. Правило довольно странное: мы наполняем Вселенную бесконечным количеством циферблатов, которые все оказываются связанными друг с другом отношениями, зависящими от тоже довольно странной, но имеющей большое историческое значение величины – действия. Если два или более циферблата оказываются  одном положении в одно и то же время, они суммируются. Правило основано на том, что мы должны предоставить частице свободу перепрыгнуть из любого конкретного места во Вселенной в любое другое место за бесконечно малое время. Мы сразу же сказали: такие абсурдные на вид идеи должны подвергнуться проверке путем столкновения с природой, чтобы убедиться, что получается что-то разумное. Для начала рассмотрим, как из этой кажущейся анархии возникает нечто очень конкретное. Это один из краеугольных камней квантовой теории – принцип неопределенности Гейзенберга.

Принцип неопределенности Гейзенберга

Принцип неопределенности Гейзенберга – одна из самых неправильно понимаемых частей квантовой теории, тропинка, по которой всякие шарлатаны и поставщики вздора проталкивают свою философскую ерунду. Гейзенберг представил эту концепцию в 1927 году в работе под названием ber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik[10], которое с трудом поддается переводу. Самое трудное слово – anschaulich, которое значит то ли «физический», то ли «интуитивный».

Гейзенбергом, возможно, двигало внутреннее раздражение по поводу того, что интуитивно более понятная версия квантовой теории, предложенная Шрёдингером, была принята шире, чем его собственная, несмотря на то что оба метода вели к одинаковым результатам. Весной 1926 года Шрёдингер был уверен, что его уравнение для волновой функции дает физическую картину происходящего внутри атомов. Он считал, что волновую функцию можно визуализировать и что она связана с распространением электрического заряда внутри атома. Это все оказалось неверным, но, по крайней мере, позволило физикам уверенно чувствовать себя всю первую половину 1926 года, пока Борн не предложил вероятностную интерпретацию.

Гейзенберг, с другой стороны, построил свою теорию на абстрактной математике, которая чрезвычайно успешно предсказывала результаты экспериментов, но не подлежала четкой физической интерпретации. Он изложил свое раздражение Паули в письме от 8 июня 1926 года – за несколько недель до того, как Борн метнул свой метафорический гаечный ключ в сторону интуитивного подхода Шрёдингера: «Чем больше я думаю о физической стороне теории Шрёдингера, тем более отвратительной она мне кажется. Там, где Шрёдингер пишет об Anschaulichkeit (наглядности) своей теории… я читаю Mist». Немецкое слово mist переводится как «вздор», «дерьмо»… или «ерунда».

Гейзенберг решил выяснить, что же должно пониматься под «интуитивной картиной», или Anschaulichkeit, физической теории. Что, спросил он себя, квантовая теория должна говорить о таких уже известных свойствах частиц, как их положение? В духе своей оригинальной гипотезы он предположил, что имеет смысл вести речь о положении частицы, только если указать при этом, как его измерять. Поэтому нельзя задавать вопрос, действительно ли электрон находится внутри атома водорода, не описав, каким, собственно, образом вы собираетесь получить информацию об этом. Кажется, это похоже на семантику, но нет. Гейзенберг заметил, что сам процесс измерения порой вносит возмущение, результатом которого становятся ограничения на пути того, что мы можем «знать» об электроне. В своей оригинальной работе Гейзенберг сумел оценить отношения между точностью измерения положения и импульса частицы. В знаменитом принципе неопределенности он утверждает, что если x – это неопределенность наших знаний о положении частицы (греческая буква произносится «дельта», так что x произносится «дельта икс»), а p – соответствующая неопределенность импульса, то

xp ~ h,

где h – постоянная Планка, а символ ~ значит «примерно равен». Иными словами, произведение неопределенности положения частицы на неопределенность ее импульса будет приблизительно равно постоянной Планка. Это значит, что чем более точно мы определяем положение частицы, тем меньше можем знать о ее импульсе, и наоборот. Гейзенберг пришел к этому выводу, рассматривая отрыв фотонов от электронов. Фотоны – это средство, благодаря которому мы «видим» электрон, как и все остальные объекты: фотоны отрываются от них и собираются перед нашими глазами. Обычно свет, испускаемый объектом, вызывает в самом объекте лишь незначительные возмущения, но это не отменяет нашей фундаментальной неспособности полностью отделить процесс измерения от измеряемого предмета. Логично предположить, что можно миновать ограничения принципа неопределенности, если придумать достаточно хитроумный эксперимент. Сейчас мы покажем, что это не так, и принцип неопределенности носит фундаментальный характер: мы выведем его исключительно из нашей теории циферблатов.

Вывод принципа неопределенности Гейзенберга из теории циферблатов

Вместо того чтобы начать с частицы в определенной точке, подумаем лучше о ситуации, когда мы лишь примерно знаем, где находится частица, но точное ее местоположение неизвестно. Если она где-то в небольшой области пространства, нужно представить ее в виде ряда циферблатов, занимающих всю эту область. В каждой его точке будет находиться по циферблату, и эти циферблаты отразят вероятность, с которой частицу можно найти в этой точке. Если мы возведем в квадрат длины всех стрелок этих циферблатов в каждой точке и сложим, то получим 1, то есть вероятность найти частицу где-то в этой области равна 100 %.

Через некоторое время мы воспользуемся собственными квантовыми правилами для серьезных вычислений, но сначала вынуждены признаться, что забыли упомянуть важное дополнение к правилу поворота стрелок. Мы не хотели вводить его раньше, потому что это чисто техническая деталь, но, если игнорировать ее при вычислении реальных вероятностей, правильных ответов не получим. Относится эта деталь к тому, что написано в конце предыдущего абзаца.

Если начать с одиночного циферблата, стрелка должна иметь длину 1, потому что частица должна находиться в месте расположения циферблата со 100 %-ной вероятностью. Наше квантовое правило гласит: чтобы описать положение частицы в какой-то момент будущего, мы должны переместить циферблат во все точки Вселенной, соответственно тому, как частица может прыгнуть из своего текущего местоположения. Естественно, мы не в силах сделать так, чтобы все стрелки циферблатов имели длину 1, потому что тогда вся интерпретация вероятности рушится. Представьте, например, что частица описывается четырьмя циферблатами, так как находится в четырех разных местах. Если стрелка каждого циферблата имеет длину 1, то вероятность того, что частица находится в любой из четырех позиций, будет равняться 400 % – очевидно, что это нонсенс. Чтобы решить эту проблему, мы должны уменьшать циферблаты, а не только двигать их против часовой стрелки. Это «правило уменьшения» гласит, что после того, как все новые циферблаты будут порождены, каждый из них должен быть разделен на квадратный корень из общего количества часов[11]. Для четырех часов это значит, что каждую стрелку нужно разделить на 4, то есть стрелка каждого циферблата будет иметь длину . Отсюда следует: вероятность того, что частица будет найдена на месте любого из четырех циферблатов, равна ()2 = 25 %. Таким простым способом мы можем убедиться, что вероятность нахождения частицы где-либо всегда будет 100 %-ной.

Конечно, количество возможных положений может быть бесконечным, так что циферблаты могут оказаться и нулевого размера. Это вызывает тревогу, но математика справится. Для наших целей мы всегда будем считать, что число циферблатов конечно и нам никогда не будет нужно знать, насколько уменьшается каждый циферблат.

Вернемся к предположению, что Вселенная содержит единственную частицу, положение которой точно не известно. Следующий раздел можете воспринимать как небольшую математическую задачу – следить за ходом мысли сначала окажется сложно (тогда попробуйте перечитать), но еси вы сможете понять, что происходит, то поймете и то, как возникает принцип неопределенности. Для простоты допустим, что частица движется в одномерном пространстве, то есть находится где-то на прямой линии. Более реалистичный пример для трех измерений не отличается фундаментально, зато его сложнее изобразить. На рис. 4.3 мы сделали зарисовку ситуации одномерного движения, изобразив частицу линией из трех циферблатов. Однако нужно представить, что их намного больше – по одному в каждой точке, где может находиться частица. Просто нарисовать такое количество было бы очень трудно. В этой группе циферблатов, соответствующей исходному положению частицы, циферблат 3 находится слева, а циферблат 1 – справа. Итак, в этой ситуации мы знаем, что частица в начальный момент находится где-то между циферблатами 1 и 3. Ньютон сказал бы, что она останется между циферблатами 1 и 3, если с ней ничего не делать, но как насчет квантового правила? Здесь-то и начинается самое интересное: мы поиграем с правилами циферблатов, чтобы ответить на этот вопрос.

Рис. 4.3. Три циферблата, показывающие одинаковое время и расположенные на одной линии, описывают частицу, в начальный момент находящуюся где-то в области этих циферблатов. Нас интересует, каковы шансы на то, чтобы найти частицу в точке X в некоторый последующий момент времени

Позволим времени идти вперед и выясним, что произойдет с этим рядом циферблатов. Представим себе сначала одну конкретную точку на большом расстоянии от исходной группы циферблатов. На рисунке она отмечена буквой X. О точных параметрах «большого расстояния» поговорим чуть позже, а сейчас это просто значит, что стрелки должны существенно изменить свое положение.

Применив правила игры, мы должны перенести каждый циферблат из исходной группы в точку Х, передвигая стрелки и уменьшая их соответствующим образом. Физически это соответствует тому, что частица прыгает из точки поля в точку Х. В точку Х прибудет несколько циферблатов – по одному из каждой исходной точки, и следует сложить их все. В итоге квадрат длины результирующей стрелки циферблата в точке Х даст нам вероятность нахождения частицы в Х.

Теперь понаблюдаем за процессом в развитии и добавим ряд цифр. Допустим, что точка Х находится на расстоянии 10 единиц от циферблата 1, а ширина области, занимаемой исходной группой циферблатов, – 0,2 единицы. При ответе на очевидный вопрос «Что это за расстояние – 10 единиц?» в наше повествование входит постоянная Планка, но сейчас мы ловко отпихиваем ее в сторону и просто отмечаем, что 1 единица расстояния соответствует 1 полному (12-часовому) обороту стрелки на циферблате. Это значит, что точка Х примерно в 10 = 100 полных оборотах от изначального поля (помните о правиле хода часов). Положим также, что циферблаты в исходной группе были одного размера и все указывали на 12 часов. Предположение об их одинаковом размере – это предположение о том, что частицу можно с одинаковыми шансами найти в точках, соответствующих циферблатам 1, 2 и 3 на нашем рисунке, а значение того, что все циферблаты показывают одинаковое время, выявится позднее.

Чтобы переместить циферблат из точки 1 в точку Х, нужно в соответствии с правилом сделать полный оборот стрелки против хода часов 100 раз. Сейчас перенесемся в точку 3, которая находится в 0,2 единицы от точки 1, и переместим в Х и этот циферблат. Так как этот циферблат должен пройти 10,2 единицы, открутить его стрелку назад нужно чуть дальше – 10,2 раза, что очень близко к 104.

Теперь у нас два циферблата в точке Х, соответствующие частице, прибывшей туда из точки 1, и частице, прибывшей из точки 3. Их нужно сложить, чтобы начать вычислять итоговый циферблат. Поскольку обе стрелки были откручены назад примерно одинаковое количество раз, то они оба показывают приблизительно 12 часов. При сложении они дают часы с более длинной стрелкой, тоже указывающей на 12. Заметьте, роль играет только конечное положение часовой стрелки. Нет смысла фиксировать число ее оборотов. Пока все хорошо, но мы еще не закончили, потому что между правым и левым краями исходной группы еще есть множество маленьких циферблатов.

И мы переводим внимание на циферблат, лежащий посредине исходной группы, то есть в точке 2. Этот циферблат находится в 10,1 единицы от Х, то есть нужно совершить 10,12 оборота стрелки. Это очень близко к 102 полным оборотам, то есть снова получается целое число. Нужно прибавить этот циферблат к остальным из точки Х, и, как и в предыдущий раз, стрелка станет длиннее. Продолжим: есть точка между точками 1 и 2, и при перемещении циферблата в точку Х нужно будет сделать 101 полный оборот, что снова удлинит стрелку получающегося циферблата. И тут наступает важный момент. Если обратиться к циферблату между этими двумя, то его нужно будет подкрутить 100,5 раза до достижения точки Х. Таким образом получится циферблат, стрелка которого укажет на 6 часов, и при сложении мы уменьшим длину стрелки в Х. Немного подумав, вы убедитесь, что, хотя точки, отмеченные как 1, 2 и 3, дают в Х циферблаты, указывающие на 12, как и точки, лежащие между 1–2 и 2–3, но точки, лежащие на  и  пути между 1–3 и 2–3, дают циферблаты, указывающие на 6. Всего получается 5 циферблатов со стрелкой вверх и 4 циферблата со стрелкой вниз. При сложении всех этих циферблатов мы получим в точке Х такой циферблат, стрелка которого будет микроскопической, потому что почти все циферблаты будут отменять друг друга.

Такое «аннулирование циферблатов», разумеется, относится и к более реалистическому случаю, когда мы принимаем во внимание абсолютно все точки, лежащие в области между точками 1 и 3. К примеру, точка, лежащая на  пути от точки 1, дает циферблат со стрелкой на 9 часов, в то время как точка, лежащая на  пути, указывает на 3 часа – и снова они отменяют друг друга. В суммарном итоге оказывается, что циферблаты, соответствующие всем возможным для частицы маршрутам из любой точки поля в точку Х, отменяют друг друга. Аннулирование показано в правом углу рисунка. Стрелки соответствуют часовым стрелкам, прибывающим в Х из различных точек исходной области.

В результате сложения всех этих стрелок они отменяют друг друга. Это основной момент, который нужно усвоить.

Итак, повторим: мы сейчас показали, что, если исходная группа циферблатов достаточно велика и точка Х достаточно далека, то для каждого циферблата, прибывающего в Х со стрелкой на 12 часов, найдется другой циферблат со стрелкой на 6 часов, отменяющий предыдущий. Для каждого циферблата со стрелкой на 3 часа найдется другой со стрелкой на 9 часов, отменяющий первый, и т. д. Эта массовая отмена подразумевает, что на самом деле нет практически никаких шансов найти частицу в точке Х. Звучит это очень интересно и вдохновляюще, так как кажется, что описание соответствует неподвижной частице. Начав со смехотворного на вид предположения о том, что частица может перемещаться из любой точки пространства в любое другое место Вселенной за очень короткий срок, мы обнаруживаем, однако, что это не так, если начать с группы циферблатов. В ситуации, когда все циферблаты интерферируют друг с другом, частица практически не имеет возможности сдвинуться далеко от исходного положения.

Этот вывод, по словам профессора Оксфордского университета Джеймса Блайни, стал результатом «неконтролируемой квантовой интерференции». Для этого явления и соответствующей ему взаимной отмены циферблатов точка Х должна быть достаточно далека от исходной области, – настолько, чтобы циферблаты могли совершить достаточное количество оборотов. Почему? Потому что если точка Х расположена слишком близко, то стрелки часов, возможно, не успеют сделать даже один оборот, а следовательно, не будут отменять друг друга столь эффективно. Представим, например, что расстояние между циферблатом в точке 1 и точкой Х не 10 единиц, а 0,3 единицы. Теперь стрелка циферблата на передней сороне области повернется меньше, чем в предыдущем случае, совершая всего 0,3 = 0,09 оборота, и укажет на начало второго. Аналогично стрелка циферблата из точки 3 на задней стороне области совершит 0,5 = 0,25 оборота и укажет на 3 часа. Соответственно, все циферблаты в Х укажут на что-то между часом и тремя, то есть больше не отменяют друг друга, а складываются в один большой циферблат, указывающий приблизительно на 2 часа. Все это говорит о том, что существует довольно весомый шанс нахождения частицы в местах, расположенных вблизи от исходной области, но все же вне ее. Под «вблизи» мы понимаем расстояние, недостаточное для того, чтобы получить по меньшей мере один оборот стрелки часов. Все это уже намекает на принцип неопределенности, но по-прежнему выглядит довольно туманно, поэтому давайте разберемся, что именно мы понимаем под «достаточно большой» исходной областью и «достаточно удаленной» от него точкой.

Вслед за Дираком и Фейнманом мы сделали предположение, что, если частица массой m проходит расстояние x за время t, величина поворота стрелок будет пропорциональна действию, то есть mx / t. Однако слова «пропорциональна» недостаточно, если нужно рассчитать реальные величины. Нужно точно знать, чему равен поворот стрелок. В главе 2 мы говорили о законе всемирного тяготения Ньютона и для точных количественных прогнозов ввели понятие гравитационной постоянной Ньютона, которая определяет величину силы гравитации.

С помощью добавления в уравнение постоянной Ньютона можно подставлять числа в уравнение и вычислять характеристики реальных физических явлений, например период обращения Луны по орбите или маршрут движения космического корабля «Вояджер-2» по Солнечной системе. Но нам нужно что-то подобное и для квантовой механики – такая природная константа, которая «задает масштаб» и позволяет нам взять величину действия и выдать точное предсказание того, сколько оборотов должны сделать часовые стрелки при перемещении частицы на конкретное расстояние из исходного положения за заданное время. Эта константа называется постоянной Планка.

Краткая история постоянной Планка

Вечером 7 октября 1900 года в полете вдохновения Максу Планку удалось понять, каким образом нагретые тела излучают энергию. Всю вторую половину XIX века точные отношения между распространением световых волн, испускаемых нагретыми телами, и их температурой были одной из главных загадок физики. Каждое нагретое тело испускает свет, причем с увеличением температуры природа этого света изменяется. Мы знакомы с видимым диапазоном света, соответствующим цветам радуги, но свет может иметь и такую длину волны, которая окажется слишком короткой или слишком длинной по сравнению с видимым человеческим глазом спектром. Свет с большей длиной волны называется «инфракрасным», его можно наблюдать с помощью приборов ночного видения. Еще более длинные – радиоволны. Более короткие, чем видимый спектр, световые волны называются ультрафиолетовыми, а волны самой короткой длины относятся к гамма-излучению. Неосвещенный кусок угля при комнатной температуре испускает инфракрасное излучение. Но если бросить его в костер, он начнет светиться красным цветом. Дело в том, что при повышении температуры угля средняя длина волны излучения уменьшается, постепенно доходя до значения, воспринимаемого человеческим глазом. Чем сильнее нагрето тело, тем короче длина волны, которую оно излучает. В XIX веке, когда точность экспериментальных измерений существенно выросла, стало ясно, что верной математической формулы для описания этого наблюдения не существует. Эту ситуацию часто называют «проблемой излучения черного тела», потому что физики называют идеализированные объекты, которые полностью поглощают излучение и затем переизлучают его (осуществляют реэмиссию), «черными телами». Эта проблема была очень серьезной, потому что показывала неспособность физиков понять характер света, излучаемого всеми на свете объектами.

Планк обдумывал этот и сопредельные вопросы термодинамики и электромагнетизма много лет, прежде чем был назначен профессором теоретической физики в Берлине. Изначально пост предлагался Больцману и Герцу, но оба отклонили предложение. Это оказалось неожиданной удачей, потому что Берлин был центром экспериментальных исследований излучения черного тела, а погружение Планка в сердце экспериментальной работы оказалось ключевым для его последующих теоретических свершений. Физики часто работают лучше, когда имеют возможность вести незапланированные беседы с коллегами по самому широкому спектру вопросов.

Мы знаем дату и время откровения, явившегося Планку, потому что он с семьей проводил воскресный день 7 октября 1900 года вместе с коллегой Генрихом Рубенсом. За обедом они обсуждали непригодность современных им теоретических моделей для детального объяснения излучения черного тела. К вечеру Планк нацарапал формулу на почтовой открытке и отправил Рубенсу. Формула оказалась верной, но выглядела и впрямь очень странно. Планк позднее охарактеризовал свои действия как жест отчаяния: он перепробовал все, что пришло в голову. Честно говоря, совершенно непонятно, как он пришел к своей формуле. В великолепной биографии «Научная деятельность и жизнь Альберта Эйнштейна», составленной Абрахамом Пайсом, написано: «Его аргументация была безумной, но безумие это было того божественного сорта, который привносят в науку только величайшие ее представители». Предложение Планка было одновременно революционным и необъяснимым. Он понял, что может истолковать излучение черного тела, только если предположить, что энергия испускаемого излучения состоит из большого количества более мелких «пакетов» энергии. Иными словами, общая энергия квантуется в единицах новой фундаментальной константы природы, которую Планк назвал квантом действия. Сегодня мы называем ее постоянной Планка.

Формула Планка предполагает (хотя он не имел об этом представления), что свет всегда излучается и поглощается пакетами, или квантами. В современной записи эти пакеты обладают энергией E = hc / , где  – длина световой волны (произносится «лямбда»), c – скорость света, а h – постоянная Планка.

Роль постоянной Планка в этом уравнении – быть коэффициентом преобразования длины световой волны в энергию соответствующего кванта. Предположение, что определенное Планком квантование энергии испускаемого света возникает, потому что сам свет тоже состоит из частиц, было очень осторожно выдвинуто Альбертом Эйнштейном. Он сделал это предположение в 1905 году, в чудесный год вспышки своего творческого гения, когда он сформулировал также специальную теорию относительности и самое знаменитое уравнение в истории науки: E = mc. Правда, Нобелевскую премию 1921 года по физике (которая из-за каких-то хитрых бюрократических уловок была вручена только в 1922-м) Эйнштейн получил за работу над фотоэффектом, а не за более известные теории относительности. Ученый предположил, что свет можно рассматривать как поток частиц (в то время он не использовал термин «фотоны»), и верно осознал, что энергия каждого фотона обратно пропорциональна длине волны. Эта идея Эйнштейна стала источником одного из самых знаменитых парадоксов квантовой теории, в которой частицы ведут себя как волны, и наоборот.

Планк разрушил первые камни в основании Максвеллова представления о свете, показав, что энергия света, излучаемого нагретым телом, может быть описана, только если она испускается квантами. Окончательно разметал весь фундамент классической физики Эйнштейн. Его интерпретация фотоэлектрического эффекта заключалась не только в том, что свет испускается малыми порциями, но и в том, что он взаимодействует с материей в форме локализованных пакетов. Иными словами, свет действительно ведет себя как поток частиц.

Идея о том, что свет состоит из частиц (можно сказать, что «электромагнитное поле квантовано») звучала глубоко противоречиво, и правота Эйнштейна была признана лишь через несколько десятилетий. Так же неохотно, как они соглашались с идеей фотона, одним из оавторов которой стал сам Планк, в 1913 году коллеги Эйнштейна представляли его к членству в престижной Прусской академии (это было спустя целых восемь лет после введения понятия фотона):

«В целом можно сказать, что, кажется, нет ни одной крупной проблемы, на которые так богата современная физика, где Эйнштейн не отметился бы значительным вкладом. То, что порой его рассуждения могут оказываться несколько бесцельными, как, например, гипотеза световых квантов, нельзя рассматривать в качестве аргумента против него, потому что невозможно предлагать действительно новые идеи даже в самых точных науках, полностью исключая любой риск».

Иными словами, на самом деле в реальность фотонов никто не верил. Широко распространено было мнение о том, что предположение Планка относилось больше к свойствам материи – мельчайшим осцилляторам, испускающим свет, – чем к собственно свету. Было попросту слишком странно считать, что замечательные волновые уравнения Максвелла подлежат замене теорией частиц.

Мы рассказываем эту историю во многом для того, чтобы подтвердить: осознать квантовую теорию сложно всем и всегда. Визуализировать такие объекты, как электрон или фотон, нереально: они ведут себя то как частица, то как волна, а иногда как ни то ни другое. Эйнштейна этот вопрос беспокоил до конца жизни. В 1951 году, за четыре года до смерти, он писал: «Все 50 лет труда не приблизили меня к ответу на вопрос: что же такое световые кванты?»

Сейчас, спустя еще 60 лет, не возникает сомнения, что теория, которую мы продолжаем разрабатывать с помощью множества мельчайших циферблатов, безошибочно описывает результаты каждого эксперимента, поставленного для ее проверки.

Обратно, к принципу неопределенности Гейзенберга

Такова вкратце история введения постоянной Планка. Но для наших целей важнее всего отметить, что постоянная Планка – это единица «действия», то есть та же величина, которая говорит нам, насколько нужно повернуть часы. Современное значение постоянной Планка равно 6,626 10–34 кг·м/с, что является крошечной величиной по меркам повседневности. Это и служит причиной того, почему мы не замечаем в повседневной жизни ее всепроникающего действия.

Вспомните, что мы писали о действии, соответствующем прыжку частицы из одной точки в другую: оно равно массе частицы, умноженной на квадрат расстояния, на которое совершен прыжок, и деленной на временной интервал, в течение которого этот прыжок происходит. Измеряется оно в кг·м/с, как и постоянная Планка, так что если мы просто разделим действие на постоянную Планка, то все единицы сократятся и получится чистое число. Согласно Фейнману, это чистое число и есть та самая величина, на которую мы должны перевести стрелку, соответствующую частице, которая прыгает с одного места на другое. Например, если число равно 1, это значит один полный оборот, а если , то пол-оборота, и т. д. В символической форме точная величина, на которую мы должны перевести стрелку часов для расчета вероятности прыжка частицы на расстояние x за время t, равна mx / (2ht).

Заметьте: в формуле появляется дробь . Вы можете либо принять на веру, что она необходима для достижения соответствия экспериментальным данным, либо заметить, что она возникает из самого определения действия[12]. Оба варианта прекрасно подойдут. Сейчас, когда мы знаем значение постоянной Планка, можно точно вычислить величину поворота стрелки часов и коснуться вопроса, который чуть раньше оставили без ответа. А именно: что такое прыжок на расстояние «10»?

Посмотрим, что наша теория говорит о маленьком по повседневным нормам объекте – о песчинке. Теория квантовой механики, которую мы разработали, предполагает, что, если поместить песчинку в какую-то точку, позднее она может оказаться в любом другом месте Вселенной. Но очевидно, что с настоящими песчинками так не происходит. Мы уже видели способ выхода из этой потенциальной проблемы, потому что если интерференция между циферблатами, соответствующими песчинке, перепрыгивающей из множества изначальных точек, достаточна, то при сложении циферблатов они все отменяют друг друга, и песчинка остается на месте.

Первый вопрос, на который нужно ответить, звучит так: сколько раз будут повернуты стрелки часов, если мы переместим частицу с массой песчинки на расстояние, например, 0,001 мм за одну секунду? Мы не сможем увидеть такое небольшое расстояние невооруженным глазом, но для атомного мира оно все еще велико. Вычислить это довольно просто самостоятельно, заменив числа в правиле хода часов Фейнмана[13]. Ответом будет где-то триллион полных оборотов стрелки. Только представьте себе масштабы сопутствующей интерференции.

В результате песчинка остается на своем месте, и практически нет шансов, что она перепрыгнет на существенное расстояние, хотя для получения этого вывода мы реально учитывали возможность того, что она может тайно выпрыгнуть куда-то в другую точку Вселенной.

И этот результат очень важен. Если вы сами подставили числа в формулу, то уже понимаете, почему это так: дело в ничтожной величине постоянной Планка. Если записать ее полностью, получится 0,000 000 000 000 000 000 000 000 000 000 000 662 6 кг·м/с.

Если разделить почти любое привычное нам число на это, получится множество оборотов стрелок и огромная интерференция, так что все экзотические перемещения нашей песчинки по Вселенной отменят друг друга, и эту путешественницу через пространство мы будем воспринимать лишь как скучную пылинку, неподвижно лежащую на пляже.

Мы, разумеется, особенно интересуемся теми случаями, когда циферблаты не отменяют друг друга. Как мы уже видели, это происходит, если стрелка проходит не более одного оборота. В этом случае неконтролируемой интерференции не будет. Посмотрим, что это значит с количественной точки зрения.

Возвращаемся к группе циферблатов, заново нарисовав ее на рис. 4.4, но на этот раз вместо работы с точными числами будем рассуждать более абстрактно. Предположим, что область, в которой расположена группа циферблатов, имеет размер x, а расстояние до ближайшей точки области от точки Х равно x. В этом случае размер области x соответствует неопределенности нашего знания о начальном положении частицы; она стартует откуда-то из области размера x. Начиная с точки 1, которая находится в исходной области и ближе всего к точке Х, мы должны поворачивать часы соответственно прыжку из этой точки в точку Х на величину

Рис. 4.4. Он изображает то же самое, что и рис. 4.3, с тем исключением, что нет ограничения конкретной величиной размера группы циферблатов или расстоянием до точки X

Теперь перейдем к самой удаленной точке – точке 3. Когда мы переносим циферблат из этой точки в точку Х, стрелка поворачивается на большую величину, а именно

Теперь мы можем точно сформулировать условие, при котором циферблаты, прибывающие в точку Х из всех точек исходного поля, не аннулировали бы друг друга: разница между циферблатами, прибывшими из точек 1 и 3, должна быть меньше одного полного оборота, то есть

W3 W1 < один оборот.

Если записать это полностью, мы получим

Рассмотрим конкретный случай, в котором размер области x будет много меньше расстояния x. Это значит, что мы исследуем условия, при которых частица совершит скачок значительно больший, чем диаметр ее исходной области. В этом случае условие, при котором циферблаты не отменяют друг друга, выводится непосредственно из предыдущего неравенства и выглядит как

Если вы немного заете математику, то поймете, как это получается – с помощью перемножения членов в скобках и пренебрежения той частью, которая включает в себя (x). Это можно сделать, потому что по условиям x по сравнению с x – величина очень малая, а малая величина в квадрате – это очень малая величина.

Это уравнение заключает в себе условие, при котором циферблаты в точке Х не отменяют друг друга. Мы знаем, что если циферблаты не аннулируются взаимно в определенной точке, то существуют хорошие шансы обнаружить в этой точке частицу. Итак, мы выяснили, что если частица изначально расположена внутри области размером x, то через время t существуют хорошие шансы найти ее на значительном расстоянии x от поля, если неравенство выше будет выполнено. Более того, это расстояние увеличивается со временем, потому что в формуле мы на время t делим. Иными словами, чем больше времени проходит, тем выше вероятность нахождения частицы довольно далеко от ее исходного положения. Тут мы начинаем подозревать, что частица все-таки двигается. Заметьте также, что шансы нахождения частицы вдалеке от исходной точки увеличиваются, если x уменьшается – то есть если неопределенность исходного положения частицы становится меньше. Иными словами, чем более точно мы улавливаем частицу, тем быстрее она удаляется от исходного положения. Теперь это уже очень напоминает принцип неопределенности Гейзенберга.

Напоследок давайте немного переформулируем наше неравенство. Заметьте: чтобы частица проделала путь из любой точки исходной области до точки Х за время t, она должна пройти расстояние x. Если вы действительно зарегистрировали частицу в точке X, то, разумеется, пришли к выводу, что частица передвигалась со скоростью x / t. Кроме того, напомним, что масса, умноженная на скорость частицы, есть ее импульс, поэтому величина mx / t – это измеренный нами импульс частицы. Теперь можно продвинуться еще дальше и вновь упростить неравенство, записав

Страницы: 1234 »»

Читать бесплатно другие книги:

Когда Руси касалось порою лихолетье,Господь тогда на помощь достойных призывал,Кто Родину любил, кто...
В мире ушедших богов война, охватившая целый континент, длится уже четвертый год, давно надоела всем...
Не все спокойно в мире Четырех земель. Повелитель колдунов Брона, раскрывший тайну бессмертия с помо...
Автор знакомит читателей с актуальными инструментами визуализации и способами их применения на практ...
Можно ли комфортно существовать в городе, претендующем на статус столицы мира, и не затеряться в тол...
«Любов до рідного завжди має конкретні форми. У сучасній Україні, у вирі драматичних подій, розумієш...