Квантовая вселенная. Как устроено то, что мы не можем увидеть Кокс Брайан

где p – импульс. Можно переформулировать уравнение так, что оно примет вид

px < h,

и это действительно заслуживает дальнейшего обсуждения, потому что данное уравнение уже очень сильно напоминает принцип неопределенности Гейзенберга.

Итак, наши математические расчеты пока окончены, и, если вы не очень пристально следили за ними, вам следует ухватить нить рассуждений с этого момента.

Если начать с частицы, находящейся внутри связной области размером x, то, как мы установили, с течением времени она может оказаться где угодно внутри более крупной области размером x.

Эта ситуация показана на рис. 4.5. Точнее говоря, это значит, что, если бы мы искали частицу в начальный момент, были бы шансы найти ее где-то во внутренней области. Если бы мы не стали проводить измерения, а решили подождать, высоки были бы шансы найти ее где-то во внешней, более крупной связной области. Это значит, что частица могла перейти из точки внутри малой начальной области в точку внутри более крупной. Однако она не обязана была двигаться, так что до сих пор есть вероятность нахождения ее в меньшей области x. Но вполне возможно, что измерения покажут, что частица дошла как раз до края большой области[14]. Если бы этот предельный случай был реализован при измерении, то мы заключили бы, что частица движется с импульсом, который задается только что выведенным нами уравнением (если вы не следовали за нашими математическими рассуждениями, просто примите это на веру), то есть p = h / x.

Рис. 4.5. Небольшая область со временем растет, в то время как изначально локализованная там частица с течением времени делокализуется

Теперь можем опять начать сначала и вернуть все в исходное положение. Частица опять окажется в малой области размера x. После измерения мы, вероятно, найдем частицу в какой-то другой точке внутри более крупной области, до границы, и таким образом придем к выводу, что ее импульс меньше предельного значения.

Если мы представим, что вновь и вновь повторяем этот эксперимент, измеряя импульс частицы, которая первоначально находится внутри небольшой области размером x, мы обычно будем получать при измерении множество значений p где-то между нулем и предельным значением h / x. Фраза «если проделать этот эксперимент несколько раз, то можно предсказать, что измеренный импульс окажется в пределах между нулем и h / x» значит, что «импульс частицы имеет неопределенность h / x». Как и в случае с неопределенностью положения, физики ввели для неопределенности этого рода символ p и пишут, что px ~ h. Значок ~ обозначает, что произведение неопределенностей положения и импульса примерно равно постоянной Планка – оно может быть или немного больше, или немного меньше. Немного углубившись в математику, можно сделать это уравнение еще более точным. Результат будет зависеть от подробностей расположения первоначальной группы циферблатов, но не стоит тратить на него слишком много сил и времени, потому что уже сделанного достаточно, чтобы понять основные идеи.

Утверждение, что неопределенность положения частицы, умноженная на неопределенность ее импульса (приблизительно), равна постоянной Планка – возможно, самая известная формулировка принципа неопределенности Гейзенберга. Эта формулировка гласит: если мы знаем, что частица находится в какой-то исходный момент времени в какой-то области, то измерение положения частицы в какой-то более поздний момент времени покажет, что частица движется с импульсом, значение которого нельзя предсказать точнее, чем «нечто между нулем и h / x». Иными словами, если мы будем все больше и больше сужать начальную область нахождения частицы, она будет стремиться отпрыгнуть от этой области все дальше. Это настолько важно, что заслуживает третьего варианта формулировки: чем точнее вы знаете положение частицы в какой-то момент, тем хуже будете знать скорость ее движения и, соответственно, ту точку, в которой она окажется позже.

Эта формулировка принципа неопределенности как раз и принадлежит Гейзенбергу. Она лежит в основе квантовой теории, но тут мы должны четко заявить, что сам по себе принцип вовсе не является неопределенным. Это утверждение о нашей неспособности точного отслеживания частицы, и здесь не больше места для квантового волшебства, чем в ньютоновой физике. На последних нескольких страницах мы вывели принцип неопределенности Гейзенберга из фундаментальных правил квантовой физики, которые соответствуют правилам хода часов, сложения и вычитания циферблатов. И действительно, его происхождение кроется в нашем допущении, что частица через мгновение после измерения ее положения может оказаться в любом другом месте Вселенной. Диковатость нашего первого предположения, что частица может оказаться в совершенно произвольном месте Вселенной, была приручена с помощью неконтролируемой квантовой интерференции, и принцип неопределенности – это в каком-то смысле все, что осталось от исходной анархии.

Прежде чем двинуться дальше, мы должны сказать еще нечто очень важное об интерпретации принципа неопределенности. Не следует впадать в заблуждение, думая, что частица находится в каком-то конкретном единственном месте и что распространение исходных циферблатов отражает лишь ограниченность нашего понимания. Если мы считаем, что не можем правильно вывести принцип неопределенности, потому что не можем признать необходимость рассматривать все циферблаты из всех точек внутри исходной области, можно перемещать их по очереди в отдаленную точку Х и потом складывать. Именно делая это, мы и получили наш результат, то есть нам пришлось предположить, что частица прибывает в Х через суперпозицию многих возможных маршрутов.

Принципом Гейзенберга мы чуть позже воспользуемся для иллюстрации некоорых примеров из реального мира. Сейчас же достаточно и того, что нам удалось вывести один из ключевых результатов квантовой теории, не пользуясь ничем другим, кроме простых манипуляций с воображаемыми циферблатами.

Подставим в уравнения несколько цифр, чтобы добиться лучшего понимания предмета. Сколько нужно ждать возникновения существенной вероятности, что песчинка выпрыгнет из спичечного коробка? Предположим, что спичечный коробок имеет стенки длиной 3 см, а песчинка весит 1 мкг. Напомним, что условие для появления существенной вероятности перемещения песчинки на заданное расстояние определяется неравенством

где x – размер коробка. Теперь подсчитаем, каким должно быть время t, если мы хотим, чтобы песчинка покрыла расстояние x = 4 см, что уверенно превосходит размеры спичечного коробка. С помощью очень несложной алгебры находим, что

после чего подставляем числа и обнаруживаем, что t должно быть больше, чем примерно 1021 секунд. Это около 6 1013 лет, то есть в 1000 раз больше возраста Вселенной. Так что, вероятно, этого не случится. Квантовая механика – странная штука, но не настолько странная, чтобы песчинка сама по себе выпрыгивала из спичечного коробка.

Завершая эту главу и переходя к следующей, сделаем еще одно, последнее наблюдение. Наш вывод принципа неопределенности основывался на конфигурации часов, показанной на рис. 4.4. Если говорить точнее, то мы установили исходную группу часов так, чтобы все стрелки были одинаковой длины и показывали одно и то же время. Это соответствует частице, находящейся в начальном состоянии покоя в определенной области пространства, – как, например, песчинка в спичечной коробке. Хотя мы выяснили, что частица, скорее всего, не будет пребывать в покое, мы также обнаружили, что для больших объектов – а для квантового мира песчинка действительно очень велика – это движение совершенно незаметно. Таким образом, какое-то движение в нашей теории есть, но это движение неощутимо для достаточно больших объектов. Похоже, мы упускаем из виду что-то важное, потому что крупные предметы на самом-то деле движутся, а квантовая теория, как мы помним, – это теория и малых, и больших объектов. Теперь мы должны обратиться к новой проблеме: как объяснить движение?

5. Движение как иллюзия

В предыдущей главе мы вывели принцип неопределенности Гейзенберга из размышлений над определенным исходным расположением циферблатов в небольшой области. Часы имели стрелки одинакового размера, указывавшие в одинаковом направлении. Мы выяснили, что это отображает частицу, которая находится в относительно стационарном состоянии, хотя квантовые законы предполагают, что она все же совершает некие перемещения. Сейчас мы зададим другую первоначальную конфигурацию, чтобы описать частицу в движении.

На рис. 5.1 новое сочетание циферблатов. Это по-прежнему группа циферблатов, соответствующая частице, первоначально расположенной вблизи от них. Стрелка в положении 1 указывает на 12, как и ранее, но все остальные стрелки в поле повернуты и показывают другое время. На этот раз мы нарисовали пять часов просто потому, что так рассуждения будут более наглядными, хотя мы по-прежнему должны представить циферблаты и между точками, где размещаются те, что мы нарисовали: по одному циферблату для каждой точки в области. Применим, как и ранее, правило квантовой теории и переместим эти циферблаты в точку Х, находящуюся далеко от исходной группы, чтобы вновь описать то множество траекторий, по которым частица может переместиться из этой группы в точку Х.

Рис. 5.1. Исходная группа (которую иллюстрируют циферблаты 1–5) состоит из часов, показывающих разное время – стрелки каждых последующих сдвинуты на три часа вперед по отношению к предыдущим. Нижняя часть рисунка демонстрирует, как отличается время на часах по всей группе

Повторим уже ставшую, надеемся, стандартной процедуру: возьмем циферблат из точки 1 и переместим в точку Х, поворачивая стрелку в процессе этого перемещения. Она повернется на величину

Теперь возьмем циферблат из точки 2 и переместим в точку Х. Расстояние будет немного больше – допустим, что больше на d, и потребуется чуть больше повернуть стрелку:

Именно это мы и делали в предыдущей главе, но, возможно, вы уже заметили, что для новой начальной конфигурации циферблатов результат будет не совсем тем же, что в прошлый раз. Новая установка стрелок отличается тем, что циферблат 2 изначально показывает время на три часа вперед по сравнению с циферблатом 1:3 часа, а не 12. Но при переносе циферблата 2 в точку Х мы должны повернуть стрелку назад чуть больше, чем на циферблате 1, в соответствии с тем дополнительным расстоянием d, которое он должен покрыть. Если построить исходную ситуацию так, что начальное опережение показаний циферблата 2 будет точно таким же, как дополнительный поворот стрелки в процессе движения в точку Х, то циферблат 2 прибудет в точку Х, показывая точно такое же время, как циферблат 1. Это будет означать, что произойдет не отмена, а суммирование циферблатов и создастся новый циферблат больших размеров, что, в свою очередь, означает наличие высокой вероятности нахождения частицы в точке Х. Это совершенно не похоже на ту неконтролируемую квантовую интерференцию, случившуюся, когда все наши циферблаты показывали одинаковое время. Сейчас рассмотрим циферблат 3, который мы повернули на 6 часов вперед по сравнению с циферблатом 1. Этот циферблат должен пройти дополнительное расстояние 2d до точки Х, и снова из-за смещения стрелки этот циферблат в точке прибытия будет показывать 12 часов. Если задать все смещения стрелок подобным образом, то же самое будет происходить по всей группе, так что все циферблаты в точке Х будут суммироваться.

Это значит, что вероятность нахождения частицы в точке Х в какое-то более позднее время будет достаточно высокой. Точка Х отличается от других, потому что именно в ней все циферблаты из исходной группы, словно сговорившись, покажут одно и то же время. Но точка Х – не единственная из имеющих особенный характер: все точки слева от Х на расстоянии, равном размеру исходной группы, обладают тем же свойством: циферблаты в них тоже складываются с положительным результатом. Чтобы увидеть это, заметьте, что можно взять циферблат 2 и переместить его в точку на расстоянии d слева от Х. Это будет соответствовать перемещению циферблата на расстояние x, а это то же самое расстояние, на которое мы переместили циферблат 1 по направлению к точке Х. После этого можно переместить циферблат 3 в эту новую точку на расстояние x + d, что будет тем же самым расстоянием, на которое мы до того переместили циферблат 2. Эти два циферблата, следовательно, тоже должны показывать одно и то же время в точке прибытия и суммироваться. Мы можем продолжать делать то же самое для всех циферблатов в исходной группе, но только до тех пор, пока расстояние слева от Х не станет равно размеру исходной группы. За пределами этой особой области циферблаты в основном будут отменять друг друга, потому что останутся без защиты от обычной неконтролируемой квантовой интерференции[15].

Истолкование этого эксперимента очевидно: группа циферблатов движется, как показывает рис. 5.2.

Рис. 5.2. Группа циферблатов с постоянной скоростью движется вправо. Это происходит потому, что в исходной группе стрелки циферблатов повернуты по отношению друг к другу так, как описано в тексте

Это удивительный результат. Задав начальную группу с помощью часов, показывающих разное, а не одинаковое время, мы пришли к описанию движущейся частицы. Интересно, что мы можем установить очень важную связь между часами со сдвинутыми стрелками и оведением волн.

Помните, что в главе 2 нам пришлось ввести идею циферблатов, чтобы объяснить волновое поведение частиц в двухщелевом эксперименте. Вернемся к рис. 3.3, где мы изобразили набор циферблатов, описывающий волну. Он напоминает набор циферблатов в нашей движущейся группе. Соответствующую волну мы изобразили под группой циферблатов на рис. 5.1, пользуясь совершенно теми же методами, что и ранее: 12 часов – пик волны, 6 часов – ее минимум, а 3 и 9 часов соответствуют нулевой высоте волны.

Как мы могли предвидеть, представление движущейся частицы, видимо, имеет что-то общее с волной. У волны есть длина, соответствующая расстоянию между циферблатами с идентичными показаниями стрелок. Мы изобразили ее на рисунке, обозначив буквой .

Сейчас можно вычислить, насколько далеко точка Х должна располагаться от исходной группы, чтобы смежные циферблаты складывались с положительным значением. Это приводит нас к еще одному очень важному результату в квантовой механике и существенно проясняет связь между квантовыми частицами и волнами. Снова наступает момент, когда нам потребуется немного математики.

В первую очередь нужно вывести дополнительную величину, на которую повернута стрелка циферблата 2 по сравнению с циферблатом 1, поскольку дальше циферблат отправится в точку Х. С помощью результатов из начала главы находим, что

Вы можете сами произвести вычисления, раскрыв скобки и отбросив величину d, поскольку d – расстояние между циферблатами, которое слишком мало по сравнению с x – расстоянием до точки Х, лежащей очень далеко от исходной области.

Довольно несложно записать критерий и для циферблатов, показывающих одно и то же время; нам нужно еще немного подвести стрелки, чтобы при продвижении циферблата 2 это исходное смещение показаний часов полностью компенсировало дополнительный поворот стрелки в ходе перемещения циферблата. Для примера, показанного на рис. 5.1, циферблат 2 дополнительно переводится на , потому что мы должны будем повернуть стрелку на четверть часа вперед. Точно так же циферблат 3 подводится на , потому что мы должны будем повернуть стрелку вперед на полчаса. Символически выразить долю полного оборота в виде d / , где d – расстояние между циферблатами, а  – длина волны.

Если вы этого пока не улавливаете, рассмотрите случай, при котором расстояние между двумя циферблатами будет равняться длине волны. Тогда d = , а, следовательно, d / = 1, что соответствует одному полному обороту, при этом оба циферблата покажут одинаковое время.

Подытожим: чтобы два соседних циферблата показывали в точке Х одинаковое время, требуется, чтобы дополнительный поворот часовой стрелки в начальном положении равнялся дополнительному повороту часовой стрелки при распространении волны на расстояние:

Как и выше, можем упростить это выражение, отметив, что mx / t – это импульс частицы, p. После небольших преобразований уравнения получим:

Полученный результат настолько важен, что заслуживает собственного имени. И действительно, эта формула называется уравнением де Бройля, поскольку впервые в сентябре 1923 года ее предложил французский физик Луи де Бройль. Важность формулы в том, что она связывает длину волны с известным импульсом частицы. Иными словами, так проявляется тесная связь между свойством, обычно присутствующим у частиц – импульсом, и свойством, чаще всего ассоциирующимся с волнами, – длиной волны. Таким образом, из наших манипуляций с часами возник корпускулярно-волновой дуализм квантовой механики.

Уравнение де Бройля ознаменовало огромный концептуальный скачок. В своей оригинальной работе он писал, что «воображаемая связанная волна» должна приписываться всем частицам, в том числе электронам, и что поток электронов, проходя через щель, «должен демонстрировать феномен дифракции»[16]. В 1923 году это были еще теоретические рассуждения, потому что Дэвиссон и Джермер обнаружили появление интерференционной фигуры при испускании пучков электронов только в 1927-м. Эйнштейн сделал примерно то же предположение, что и де Бройль, на других основаниях и приблизительно в это же время. Эти два теоретических результата стали катализатором для развития волновой механики Шрёдингера. В работе, вслед за которой Шрёдингер уже опубликовал уравнение своего имени, он писал: «Нам приходится серьезно отнестись к волновой теории де Бройля – Эйнштейна о движении частиц».

Мы можем подробнее разобраться с уравнением де Бройля и посмотреть, что произойдет, если уменьшить длину волны, что будет соответствовать большему смещению часовой стрелки соседних циферблатов. Иными словами, сократим расстояние между циферблатами, показывающими одно и то же время. Это значит, что нужно увеличить расстояние x, чтoбы компенсировать сокращение , – то есть для погашения дополнительной подкрутки стрелок точка Х должна оказаться дальше. Это соответствует более быстрому движению частицы: чем меньше длина волны, тем больше импульс, о чем и говорит уравнение де Бройля. Отличный результат: нам удалось «вывести» обычное движение (потому что со временем группа циферблатов движется равномерно), начав со статичного ряда циферблатов.

Волновые пакеты

Теперь вернемся к важному вопросу, который до того мы в этой главе пропустили. Мы сказали, что исходная группа целиком движется к окрестностям точки Х, но лишь примерно сохраняет свою исходную конфигурацию.

Что мы имеем в виду под этим довольно туманным утверждением? Ответ снова связан с принципом неопределенности Гейзенберга и приводит нас к следующему открытию. Мы описывали происходящее с группой циферблатов, которая служит отображением частицы, находящейся где-то в малой области пространства. Эта область представлена на рис. 5.1 пятью циферблатами. Подобная группа называется волновым пакетом. Но мы уже видели, что локализация частицы в какой-то области пространства имеет свои последствия. Мы не можем воспрепятствовать тому, что локализованная частица получит «удар Гейзенберга» (то есть импульс ее будет неизвестен как раз ввиду ее локализации), и со временем это приведет к тому, что частица «просочится» за пределы области своего исходного расположения.

Этот эффект имеет место в случае, когда все циферблаты показывают одинаковое время; присутствует он и в случае перемещения группы циферблатов. Это приведет к такому распространению волнового пакета по мере движения, которое соответствует стационарному движению одиночной частицы.

Если подождать достаточно долго, то волновой пакет, которому соответствует движущаяся группа часов, полностью распадется, и мы потеряем все шансы на предсказание точного положения частицы. Это, разумеется, будет иметь место при любых попытках измерения скорости нашей частицы. Посмотрим, как это работает.

Хороший способ измерить скорость частицы – провести два измерения ее положения в два разных момента времени. После этого мы можем вывести ее скорость, разделив пройденное ею расстояние на время между двумя измерениями. Учитывая то, что мы сказали, это кажется опасным, потому что, если мы слишком точно измерим положение частицы, можем сжать весь волновой пакет, что изменит его последующее движение. Если же мы не хотим, чтобы частица получила значительный «удар Гейзенберга» (то есть существенный импульс, потому что x становится слишком малым), то должны убедиться, что наши измерения положения будут достаточно расплывчатыми. Конечно, слово «расплывчатый» слишком расплывчато, так что давайте его как-то определим. Если воспользоваться детектором частиц, способным определять частицы с точностью 1 мкм, а наш волновой пакет имеет ширину 1 нм, то детектор не окажет почти никакого воздействия на эту частицу. Экспериментатор, получающий данные с детектора, был бы счастлив иметь разрешение в 1 микрон, но с точки рения электрона все, что может детектор, – это сообщить экспериментатору, что частица находится в некоем огромном ящике, который в тысячу раз больше, чем существующий волновой пакет. В этом случае «удар Гейзенберга», вызванный процессом измерений, будет очень мал по сравнению с тем, который порождается конечным размером самого волнового пакета. Вот что мы имеем в виду под словами «достаточно расплывчатый».

Мы рисовали эту ситуацию на рис. 5.3, обозначив исходную ширину волнового пакета d и разрешение нашего детектора .

Рис. 5.3. Волновой пакет в два разных момента времени. Пакет двигается вправо и распространяется с течением времени. Пакет движется, потому что стрелки часов, которые его составляют, смещены относительно друг друга (де Бройль), и распространяется в соответствии с принципом неопределенности. Форма волнового пакета не так важна, но для полноты картины следует сказать, что если пакет большой, то циферблаты будут большими, а если пакет маленький, то небольшими будут и циферблаты

Мы изобразили также волновой пакет в более позднее время: он стал немного шире и имеет ширину d', которая больше, чем d. Максимум волнового пакета проходит расстояние L за временной интервал t со скоростью v. Приносим извинения, если эта формула навеяла вам давно забытые школьные дни, бездарно просиженные за исчерканной и покореженной деревянной партой, и голос учителя физики, теряющийся в полумраке зимнего дня и вгоняющий в совершенно неуместную дремоту. Мы покрываемся тут меловой пылью по серьезной причине и надеемся, что заключение этой главы вернет вас в сознание эффективнее, чем летающая тряпка для вытирания доски в детстве.

Снова оказавшись в нашей метафорической научной лаборатории, мы пытаемся измерить скорость v волнового пакета, выполнив два измерения его положения в два разных мгновения. Это даст нам расстояние L, которое волновой пакет покрыл за время t. Но разрешение нашего детектора равно , так что мы не сможем точно вычислить L. В символической форме можно записать, что измеренная скорость равна

где знак плюс-минус просто напоминает, что если мы проводим два измерения положения, то получаем обычно не L, а скорее «L плюс чуть-чуть» или «L минус чуть-чуть», где «чуть-чуть» получается благодаря тому, что мы согласились не измерять положение частицы слишком точно. Важно принять во внимание, что L мы в действительности измерить не можем: мы всегда получаем значение где-то в диапазоне L ± . Помните также, что величина  должна быть гораздо больше, чем размер волнового пакета, иначе частица сожмется и разрушит его. Немного перепишем последнее уравнение, чтобы лучше понять, что происходит:

Оказывается, что, если величина t будет очень большой, мы выполним измерение скорости v = L / t с весьма незначительной погрешностью, потому что можем ждать очень долго, добиться, чтобы t было сколь угодно большим, а  / t, соответственно, сколь угодно малым, притом что величина  продолжит оставаться достаточно великой. Поэтому кажется, что мы нашли отличный способ все же совершить точные вычисления скорости этой частицы, не вмешиваясь в ее ход: достаточно лишь долго подождать между первым и вторым измерениями. С точки зрения интуиции все прекрасно и логично. Представьте, что вы замеряете скорость автомобиля, движущегося по шоссе. Если замерите расстояние, которое он проедет за одну минуту, то вы, конечно, получите значительно более точный показатель его скорости, чем если интервал между измерениями составит одну секунду. Итак, мы обманули Гейзенберга?

Конечно, нет: мы забыли кое-что учесть. Частица описывается волновым пакетом, который рассеивается с течением времени. При наличии достаточного времени рассеяние окончательно размоет волновой пакет, так что частица может оказаться где угодно. Это увеличит диапазон значений, которые мы получим при измерении L, и перекроет нам возможность совершать сколь угодно точное вычисление скорости частицы.

Имея дело с частицей, описываемой волновым пакетом, мы все равно ограничены принципом неопределенности. Так как изначально частица находится где-то в области размером d, Гейзенберг информирует нас, что импульс частицы соответствующим образом искажается на величину h/d. Поэтому есть только один способ построения такой конфигурации циферблатов, чтобы представленная на ней частица двигалась с определенным импульсом, – нужно сделать d, то есть размер волнового пакета, очень большим. И чем больше он будет, тем меньше окажется неопределенность импульса частицы. Урок ясен: частица с хорошо известным импульсом описывается большой группой циферблатов[17]. Точнее говоря, частица с совершенно точно известным импульсом будет описана бесконечно длинной группой циферблатов, что означает бесконечно длинный волновой пакет.

Мы только что показали, что волновому пакету конечного размера не соответствует частица с определенным импульсом. Это значит, что, если измерить импульс очень большого количества частиц, которые описываются одним и тем же исходным волновым пакетом, мы не получим каждый раз один и тот же результат. Напротив, мы получим широкий набор разных ответов, и их разброс, как бы хороши мы ни были в экспериментальной физике, не может оказаться меньше, чем h / d.

Таким образом, мы можем сказать, что волновой пакет описывает частицу, которая движется с импульсом, определенным в рамках некоторого диапазона. Но уравнение де Бройля подразумевает, что в последнем предложении можно заменить слово «импульсы» словами «длины волн», потому что импульс частицы связан с волной определенной длины. Это, в свою очередь, означает, что волновой пакет должен состоять из волн разной длины. Точно так же, если частица описывается волной определенной длины, такая волна должна быть бесконечной. Кажется, нас подталкивают к выводу, что небольшой волновой пакет состоит из многих бесконечных волн разной длины. И действительно, нас побуждают двигаться по этому пути, и то, что мы описываем, хорошо знакомо математикам, физикам и инженерам. Мы входим в область математики, известную как анализ Фурье и названную в честь французского физика Жозефа Фурье.

Фурье был колоритной личностью. Среди его многочисленных достижений – губернаторство в Нижнем Египте при Наполеоне и открытие парникового эффекта. По слухам, ему нравилось заворачиваться в простыни, что в итоге привело к его безвременной кончине в 1830 году, когда он, плотно завернувшись, упал с собственной лестницы. Его главная аналитическая работа касалась теплопроводности твердого тела и была опубликована в 1807 году, хотя основная идея известна с гораздо более раннего времени.

Фурье показал, что абсолютно любая волна сколь угодно сложной формы и любого размера может быть получена сложением ряда волн-синусоид разной длины. Лучше всего показать это с помощью иллюстрации. На рис. 5.4 пунктирная кривая получается при сложении двух первых волн-синусоид на нижних графиках. Вы можете сложить их едва ли не в уме: обе волны имеют максимальную высоту в центре, так что складываются именно там, а на концах гасят друг друга. Штриховая кривая – это результат сложения всех четырех волн, показанных на нижних графиках, и в ней пик в центре еще более выражен. Наконец, непрерывная кривая показывает, что произойдет при сложении первых десяти волн, то есть четырех приведенных на иллюстрации плюс еще шести с последовательно уменьшающейся длиной. Чем больше мы добавляем волн, тем больше подробностей можем увидеть в результате. Волновой пакет на верхнем графике может описать локализованную частицу, в отличие от волнового пакета, изображенного на рис. 5.3. Таким образом, появляется реальная возможность синтезировать волну любой формы – и все это с помощью сложения простых волн-синусоид.

Рис. 5.4. Верхний график: сложение нскольких волн-синусоид дает в результате волновой пакет с резким пиком. Пунктирная кривая состоит из меньшего количества волн, чем штриховая, а та, в свою очередь, из меньшего, чем непрерывная. Нижние графики: первые четыре волны составляют волновой пакет на верхнем графике

Уравнение де Бройля сообщает нам, что каждая волна на нижних графиках рис. 5.4 соответствует частице с определенным импульсом, и этот импульс увеличивается с уменьшением длины волны.

Теперь становится более понятно, почему частица, описываемая локализованной группой циферблатов, должна обязательно иметь диапазон импульсов.

Продолжим пояснения и предположим, что частица описывается группой циферблатов, представленных непрерывной кривой на верхнем графике рис. 5.4[18]. Мы только что выяснили, что эту частицу можно описать и рядом гораздо более длинных групп циферблатов: первая волна с нижнего графика, плюс вторая волна с нижнего графика, плюс третья волна с нижнего графика и т. д. В этом случае в каждой точке оказывается несколько циферблатов (по одному из каждой длинной группы), которые мы должны сложить, чтобы получился единичный циферблат, представленный на верхнем графике рис. 5.4. Выбор метода представления частицы полностью зависит от вас: можно считать, что она представлена одним циферблатом в каждой точке (в этом случае размер циферблата непосредственно поясняет, где вероятнее всего обнаружить частицу, а именно в окрестности пика верхнего графика рис. 5.4). Или же можно считать, что она описывается как математический ряд циферблатов в любой точке, каждый из которых соответствует одному из возможных значений импульса частицы. Таким способом разложения в ряд мы напоминаем себе, что частица, локализованная в небольшой области пространства, не имеет определенного импульса. Невозможность построить компактный волновой пакет из волн одной-единственной длины – очевидная особенность математики Фурье.

Такой образ мысли дает возможность по-новому взглянуть на принцип неопределенности Гейзенберга. Он утверждает, что мы не можем описать частицу как локализованную группу циферблатов, если эти циферблаты соответствуют волнам только одной длины. Напротив, чтобы циферблаты отменяли друг друга за пределами локализованной области, мы обязаны смешивать волны разной длины, а следовательно, и разного импульса. Итак, цена, которую мы платим за локализацию частицы в какой-то области пространства, состоит в том, что мы не знаем ее импульса. Более того, чем сильнее мы ограничиваем область возможного местоположения частицы, тем больше волн разной длины нужно добавлять и тем хуже мы знаем импульс частицы. Именно это и составляет содержание принципа неопределенности, и очень приятно, что мы пришли к тому же выводу иным путем[19].

Завершая эту главу, мы хотели бы еще немного поговорить об анализе Фурье. Это очень хорошее средство описания квантовой теории, и оно тесно связано с идеями, которые мы как раз обсуждаем. Важно, что каждая квантовая частица, что бы она ни делала, описывается волновой функцией. Как мы уже говорили, волновая функция – это просто ряд небольших циферблатов, по одному для каждой точки в пространстве, – а размер циферблата определяет вероятность нахождения частицы в конкретной точке. Такой метод представления частицы носит название волновой функции пространственного положения, поскольку непосредственно связан с возможными положениями, которые может иметь частица. Однако есть много вариантов математического представления волновой функции, и маленькие циферблаты в пространственной версии – лишь один из них. Мы уже касались этого вопроса, когда говорили, что можно представить частицу в виде суммы волн-синусоид. Если ненадолго задержаться на этой возможности, легко понять, что составление полного списка волн-синусоид действительно дает исчерпывающее описание частицы (потому что при сложении этих волн можно получить циферблаты, связанные с волновой функцией пространственного положения).

Иными словами, если мы точно укажем, какие именно волны-синусоиды нужны нам для построения волнового пакета и с каким коэффициентом нужно прибавить каждую из волн-синусоид, чтобы получить нужную форму пакета, у нас получится иное, но полностью эквивалентное описание волнового пакета. Интересно, что любая волна-синусоида сама может быть описана одиночным воображаемым циферблатом: его размер отражает максимальную высоту волны, а фаза волны в определенной точке может быть представлена временем, на которое указывает стрелка. Таким образом, мы можем предпочесть представление частицы не через циферблаты в пространстве, но через альтернативный набор циферблатов – по одному для каждого возможного значения импульса частицы. Это описание столь же экономично, как и представление «циферблатов в пространстве», и вместо указания наиболее вероятного положения частицы мы указываем наиболее вероятные значения ее импульса. Этот альтернативный ряд циферблатов называется волновой функцией пространства импульсов и содержит ровно ту же информацию, что и волновая функция пространства положений[20].

Возможно, это звучит очень абстрактно, но технология, основанная на идеях Фурье, успешно используется в повседневной жизни: разложение волны на составляющие ее волны-синусоиды – это основа технологии аудио– и видеосжатия. Представьте себе звуковые волны, образующие вашу любимую мелодию. Эта сложная волна, как мы уже знаем, может быть разбита на составляющие с помощью ряда чисел, которые показывают относительный вклад каждой из множества волн-синусоид в получающийся звук. Оказывается, что, хотя для абсолютно точного воспроизведения исходного звука требуется множество отдельных волн-синусоид, можно отказаться от многих из них, что совершенно не скажется на восприятии качества аудиозаписи. Например, удаляются волны-синусоиды от звуков, не воспринимаемых человеческим слухом. Это существенно сокращает количество данных, которые нужны для хранения аудиофайла, поэтому ваши mp3-плееры не очень большие.

Можно задаться вопросом: как реально применить другую, еще более абстрактную версию волновой функции? Рассмотрим частицу, которая отображается одиночным циферблатом в представлении пространства положений. Так описывается частица, находящаяся в определенном месте Вселенной; в единственной точке – там, где расположен циферблат. Теперь рассмотрим частицу, которая отображается одиночным циферблатом в представлении пространства импульсов. Так описывается частица с единственным, точно определенным импульсом. Описание такой частицы с помощью волновой функции пространства положений потребует – по контрасту – бесконечного количества циферблатов одинакового размера, потому что, согласно принципу неопределенности, частица с точно определенным импульсом может находиться где угодно. В результате иногда проще производить вычисления непосредственно в терминах волновой функции пространства импульсов.

В этой главе мы выяснили, что описание частицы методом циферблатов способно схватывать суть того, что мы обычно называем «движением». Мы узнали, что наше восприятие равномерного движения объектов от одной точки к другой, согласно квантовой теории, является иллюзией. Более правдоподобно будет предположить, что частицы движутся из точки А в точку В всеми возможными путями. Только при сложении всех возможностей появляется движение в том виде, в каком мы его воспринимаем[21]. Мы также ясно увидели, как описание с помощью циферблатов позволяет перейти к волновой физике даже несмотря на то, что мы имеем дело лишь с частицами, подобными точкам. Сейчас пора использовать это сходство с волновой физикой для ответа на важный вопрос: как квантовая теория объясняет структуру атомов?

6. Музыка атомов

Изнутри атом представляет собой нечто странное. Если, например, вы встанете на протон и посмотрите оттуда во внутриатомное пространство, то увидите лишь пустоту. Электроны будут слишком малы, чтобы их разглядеть, даже если окажутся на расстоянии вытянутой руки, но даже и это будет происходить слишком редко. Протон в диаметре равен примерно 10–15 м, то есть 0,000 000 000 000 001 метра, и по сравнению с электроном он просто квантовый колосс. Если вы стоите «на протоне» у побережья Англии, на белых скалах Дувра, то расплывчатые пределы атома расположатся где-то на фермах северной Франции. Атомы обширны и пусты, поэтому ваша полноразмерная версия тоже обширна и пуста. Простейший атом – это водород, состоящий из одного протона и одного электрона. Поскольку электрон исчезающе мал, может показаться, что область его движения безгранична, но это не так. Он прикреплен к протону взаимным электромагнитным притяжением, и именно размер и форма этой просторной тюрьмы определяют характерный штрихкод из цветов радуги, тщательно зафиксированный в Handbuch der Spectroscopie нашим старым приятелем и частым гостем профессором Кайзером.

Сейчас мы можем применить накопленные знания для решения вопроса, который ставил в тупик Резерфорда, Бора и других ученых в первые десятилетия XX века: что именно происходит внутри атома? Если помните, проблема состояла в том, что Резерфорд выяснил сходство атома в некоторых отношениях с миниатюрной Солнечной системой: Солнце как твердое ядро в центре, и электроны как планеты, вращающиеся по удаленным орбитам. Резерфорд знал, что эта модель не может быть верной, потому что электроны на орбитах вокруг ядра должны постоянно испускать свет. Результат должен быть для атома катастрофическим, потому что, если электрон постоянно испускает свет, он должен терять энергию и закручиваться по спирали в направлении неизбежного столкновения с протоном. Конечно, этого не происходит. Атомы довольно стабильны, поэтому в нарисованной картине что-то не так. Но что?

Эта глава очень важна для всей книги, потому что здесь мы впервые попытаемся с помощью нашей теории объяснить явления реального мира. Весь наш труд до этого момента носил теоретический характер: мы разрабатывали особый «формализм» – способы представления квантовой частицы. Принцип неопределенности Гейзенберга и уравнение де Бройля стали венцом наших усилий, но в целом мы вели себя достаточно скромно, рассматривая Вселенную как состоящую из одной-единственной частицы. Теперь пора показать, как квантовая теория влияет на наш повседневный мир. Структура атомов – вещь исключительно реальная и осязаемая. Вы состоите из атомов: их строение – это ваше строение, их стабильность – ваша стабильность. Можно без особого преувеличения сказать, что понимание структуры атомов – одно из непременных условий понимания Вселенной в целом.

В атоме водорода электрон заперт в области, окружающей протон. Начнем с того, что представим, будто этот электрон заперт в своего рода ящике, что, впрочем, не так далеко от истины. Мы займемся исследованием того, до какой степени физика электрона, запертого в маленьком ящике, отражает ключевые особенности реального атома. Мы продолжим использовать то, что усвоили из предыдущей главы по поводу волновых свойств квантовых частиц: когда дело доходит до описания атомов, волновая картина действительно все упрощает, и мы можем добиться серьезного прогресса, не особенно беспокоясь по поводу уменьшения, добавления и смещения часов и их стрелок. Однако нужно все время держать в уме, что волны – это удобное приближение к тому, что происходит «под покровом». Так как структура, разработанная нами для квантовых частиц, очень близка к той, что описывает водяные волны, звуковые или волны гитарной струны, рассмотрим сначала поведение этих знакомых нам материальных волн в условиях определенного рода ограничений.

В целом следует сказать, что волны – сложные объекты. Представьте, что вы прыгаете в бассейн, полный воды. Вода немедленно начнет расплескиваться, и, кажется, не получится описать происходящее какими-то простыми методами. Однако за этой сложностью таится скрытая простота. Ключевым фактором будет ограниченность воды бассейном, то есть все волны в нем заперты. Это порождает феномен, известный под названием стоячей волны. Стоячие волны скрыты от нас в том беспорядке, который мы видим после своего прыжка в бассейн, но есть способ заставить воду «осциллировать» – двигаться в форме регулярных, повторяющихся колебаний стоячих волн. Рис. 6.1 показывает, как выглядит водная поверхность после того, как подвергнется одному такому колебанию. Максимумы и минимумы восходят и нисходят, но самое важное – то, что они восходят и нисходят строго в одном и том же месте. Есть и другие стоячие волны, в том числе такая, где вода в центре цистерны ритмически поднимается и опускается. Эти особые волны мы обычно не видим, потому что их трудно создать, но смысл в том, что абсолютно любое возмущение воды – даже вызванное нашим не самым элегантным нырком и последующей отчаянной молотьбой руками – может быть представлено в виде некоего сочетания различных стоячих волн. Мы уже встречались с таким типом поведения – это прямое обобщение идей Фурье, с которыми мы познакомились в прошлой главе.

Рис. 6.1. Шесть последовательных срезов стоячей волны в цистерне с водой. Ось времени направлена от верхнего левого к нижнему правому снимку

Там мы видели, что любой волновой пакет может состоять из сочетания волн определенной длины. Эти особые волны, отражающие состояние частицы с определенным импульсом, – синусоиды. В случае с запертыми водяными волнами можно сделать обобщение, что любое возмущение воды всегда можно описать с помощью какого-то сочетания стоячих волн. Позже в этой главе мы увидим, что стоячие волны имеют в квантовой теории важную интерпретацию: собственно говоря, в них содержится ключ к пониманию строения атома. Держа это в уме, рассмотрим стоячие волны более пристально.

На рис. 6.2 показан еще один пример стоячих волн в природе – три из множества возможных стоячих волн на гитарной струне. Когда мы трогаем гитарную струну, мы слышим звук, который определяется стоячей волной наибольшей длины – первой из трех, показанных на рисунке. И в физике, и в музыке это известно под названием низшей гармоники, или основного тона. Волны другой длины обычно тоже присутствуют и называются обертонами, или высшими гармониками.

Рис. 6.2. Три волны наибольшей длины, которые могут возникнуть при переборе гитарной струны. Самая длинная волна (сверху) соответствует нижней гармонике (основному тону), а остальные – высшим гармоникам (обертонам)

Две другие волны на рисунке – это два обертона с наибольшими длинами волн.

Гитара – отличный пример: довольно легко понять, почему гитарная струна может вибрировать только на этих конкретных волнах. Дело в том, что она фиксирована на обоих концах: с одной стороны – кобылкой[22], а с другой – пальцами, прижимающими струну к грифу. Это значит, что в двух этих точках струна не может двигаться, что и определяет разрешенные длины волны. Если вы играете на гитаре, вы инстинктивно понимаете такую физику: перебирая пальцами по грифу по направлению к кобылке, вы уменьшаете длину струны, тем самым заставляя ее колебаться с меньшей длиной волны, что соответствует более высоким нотам.

Нижняя гармоника – это волна, которая имеет всего две стационарные точки, или «узла»; во всех остальных точках она движется. Как видно на рисунке, длина волны звука равна двойной длине струны. Следующая, меньшая длина волны уже равняется длине струны, потому что мы можем видеть еще один узел в центре. Затем можно получить волну с длиной в  длины струны и т. д.

В целом, как и в случае с водой, запертой в бассейне, струна будет вибрировать в каком-то сочетании различных возможных стоячих волн, в зависимости от того, как именно тронута струна. Конкретную форму струны всегда можно получить, сложив стоячие волны, соответствующие каждой из имеющихся гармоник.

Гармоники и их относительные размеры дают характерный тон звука. У разных гитар будет разное распределение гармоник, поэтому и звучать они будут по-разному, но среднее до (чистая гармоника) на одной гитаре практически совпадает о средним до на другой.

Для гитары форма стоячих волн очень проста: это чистые синусоиды, и их длина фиксирована длиной струны. Для случая с бассейном стоячие волны более сложные, что показано на рис. 6.1, но общая идея такая же.

Возможно, вас интересует, почему эти конкретные волны называются стоячими. Дело в том, что они не меняют своей формы. Если мы сделаем два снимка гитарной струны, колеблющейся в форме стоячей волны, то эти две фотографии будут отличаться только общим размером волны. Пики будут всегда находиться в одних и тех же местах, как и узлы, которые фиксируются концами струны или, в случае с бассейном, его бортиками.

С математической точки зрения можно сказать, что волны на двух фотографиях отличаются только общим множителем. Этот множитель периодически колеблется со временем и отражает ритмические колебания струны. То же самое верно и для бассейна на рис. 6.1, где каждая фотография отличается от остальных общим множителем. Например, последняя фотография может быть получена из первой посредством умножения высоты волны в каждой точке на 1.

Иными словами, волны, каким-то образом ограниченные, всегда можно выразить в виде суммы стоячих волн (то есть тех, которые не меняют своей формы), и, как мы уже сказали, есть довольно серьезные причины посвятить им столько времени. Главная из них – стоячие волны квантованы. Это совершенно очевидно для стоячих волн на гитарной струне: длина основного тона в два раза превышает длину струны, а следующая по длине возможная волна равняется длине струны. Между этими двумя волнами стоячей волны с какой-либо промежуточной длиной быть не может, так что можно сказать, что разрешенные длины волн на гитарной струне квантованы.

Таким образом, с помощью стоячих волн проявляется следующее: «запирая» волны, мы что-то квантуем. В случае с гитарной струной это, очевидно, длина волны. В случае с электроном внутри ящика квантовые волны, соответствующие электрону, тоже будут заперты, и по аналогии можно ожидать, что в ящике будут присутствовать лишь волны с определенным, конкретным набором длин волн, а, следовательно, нечто вновь будет квантовано. Другие волны просто не могут существовать, как гитарная струна не может одновременно звучать всеми нотами в октаве. И общее состояние электрона, как и звук гитары, описывается смешением стоячих волн. Эти квантовые стоячие волны начинают выглядеть очень интересно. Заинтригованы? Приступаем к анализу.

Чтобы продвинуться в своих исследованиях, мы должны уточнить форму ящика, в который помещаем наш электрон. Для простоты предположим, что электрон может свободно двигаться в области размером L, но ему полностью запрещено выходить за пределы этой области. Необязательно уточнять, каким образом мы собираемся запретить электрону это делать, но, если наша модель претендует на то, чтобы быть упрощенной моделью атома, нужно представить, что за это отвечает притяжение положительно заряженного ядра. На научном жаргоне это имеет название «прямоугольная потенциальная яма». Мы зарисовали эту ситуацию на рис. 6.3, и причины для такого названия представляются очевидными. Идея заключения частицы в потенциальной яме очень важна, мы обратимся к ней еще не раз, поэтому полезно убедиться, что мы точно понимаем, о чем идет речь. Как на самом деле можно улавливать частицы?

Рис. 6.3. Электрон, пойманный в прямоугольную потенциальную яму

Вопрос довольно сложный: чтобы добраться до его сути, нужно выяснить, как частицы взаимодействуют друг с другом, о чем пойдет речь в главе 10. Тем не менее мы можем добиться прогресса в рассуждениях, если не будем задавать слишком много вопросов.

Способность «не задавать слишком много вопросов» – необходимый для физика навык, потому что для получения хоть каких-то ответов где-то надо провести черту, так как ни одна система объектов не может быть полностью изолированной. Кажется разумным, что при желании понять, как работает микроволновая печь, не стоит интересоваться движением вокруг нее.

Все это движение окажет незначительное влияние на работу микроволновки. Оно вызовет колебания воздуха и земли, которые повлекут за собой небольшие сотрясения и самой печи. Могут появиться какие-то бродячие магнитные поля, которые повлияют на работу электроники, как бы хорошо она ни была защищена от подобных воздействий. Игнорируя такие вещи, легко допустить ошибку, так как можно упустить из виду действительно важные детали. Если так и произойдет, мы получим неверный ответ и будем вынуждены пересмотреть предположения. Это очень важный момент, напрямую связанный с научным успехом: все предположения в конце концов подтверждаются или опровергаются экспериментально. Арбитром является природа, а не человеческая интуиция. Поэтому наша стратегия – игнорировать подробности функционирования механизма удержания электрона и моделировать нечто под названием «потенциал». Слово «потенциал» на самом деле обозначает «воздействие на частицу какой-то физической или иной силы, которую я не очень хочу подробно объяснять». Мы, впрочем, позже подробно опишем методы взаимодействия частиц, а пока будем употреблять термин «потенциал». Если это звучит несколько бесцеремонно, рассмотрите пример, иллюстрирующий использование потенциалов в физике.

На рис. 6.4 изображен мяч, лежащий в долине. Если ударить по мячу, он может подняться, но лишь до определенного предела, после чего снова упадет. Это отличный пример частицы, пойманной потенциалом. В этом случае гравитационное поле Земли создает потенциал, а крутой холм порождает крутой потенциал. Нужно понимать, что мы можем вычислить подробности передвижения мяча по долине, не зная деталей того, как долина взаимодействует с мячом, потому что для этого пришлось бы знать еще и теорию квантовой электродинамики. Если окажется, что детали внутриатомного взаимодействия между атомами в долине и атомами в мяче слишком сильно воздействуют на движение мяча, наши предсказания окажутся неверными. На самом деле внутриатомные взаимодействия важны, потому что из них возникает трение, но моделировать ситуацию можно и без обращения к диаграммам Фейнмана. Однако мы уклонились от темы.

Рис. 6.4. Мяч лежит в долине. Высота над уровнем моря прямо пропорциональна потенциалу, воздействию которого подвергается движущаяся частица

Этот пример очень важен, потому что в прямом смысле демонстрирует форму потенциала[23].

Однако идея имеет более общее содержание и работает в том числе и для потенциалов, созданных не гравитацией и не впадинами на земной поверхности. Примером служит электрон, оказавшийся в прямоугольной яме. В отличие от случая с мячом в долине, высота стенок ящика не может быть точной высотой чего бы то ни было; скорее, можно говорить, что она соответствует скорости, с которой должен двигаться электрон, чтобы выбраться из ямы. В случае с долиной аналогом этого будет быстрое движение мяча, при котором он взлетит выше стен и выскочит из ямы. Если электрон движется достаточно медленно, точная высота потенциала не имеет особого значения, и можно уверенно предположить, что движение электрона ограничено внутренней частью ямы.

Теперь сосредоточимся на электроне, замкнутом в ящике, который описывается прямоугольной потенциальной ямой. Поскольку он не может вырваться из ящика, квантовые волны должны упасть до нуля у его стенок. Три возможные квантовые волны с наибольшими длинами будут полностью аналогичны волнам, созданным гитарной струной и показанным на рис. 6.2: самая длинная волна будет иметь двойной размер по сравнению с ящиком, то есть 2L; следующая по длине волна будет равна размеру ящика – L; а следующая – 2L / 3. В общем случае мы можем описать электронные волны формулой 2L / n, где n = 1, 2, 3, 4 и т. д.

Таким образом, для нашего прямоугольного ящика электронные волны будут иметь точно такую же форму, что и волны на гитарной струне: это будут волны-синусоиды с четко определенным набором разрешенных длин. Теперь можно двинуться вперед, призвав на помощь уравнение де Бройля из предыдущей главы и связавдлину этих волн-синусоид с импульсом электрона: p = h / . В этом случае стоячие волны описывают электрон, которому разрешено иметь лишь определенные импульсы, заданные формулой p = nh / (2L), где все, что нам остается, – подставить разрешенные длины волны в уравнение де Бройля.

Получается, что импульс нашего электрона в прямоугольной яме квантуется. Это уже большое достижение. Однако надо быть осторожными: потенциал на рис. 6.3 – специфический случай, для других потенциалов стоячие волны обычно не синусоидальные. На рис. 6.5 показана фотография стоячих волн, созданных барабаном. Кожа барабана усыпана песком, который собирается в узлах стоячей волны. Так как кайма вибрирующего барабана круглая, а не прямоугольная, стоячие волны уже не будут синусоидами[24]. Это значит, что в более реалистичной ситуации, когда электрон пойман протоном, стоячие волны тоже не будут синусоидами. В свою очередь, это подразумевает, что связь между длиной волны и импульсом утеряна. И как в этом случае интерпретировать стоячие волны? Что если у пойманных частиц квантуется не импульс?

Рис. 6.5. Вибрирующий барабан покрыт песком. Песок собирается в узлах стоячих волн

Мы можем найти ответ, если заметим, что в прямоугольной потенциальной яме квантуется не только импульс электрона, но и его энергия. Это простое наблюдение, кажется, не содержит никакой новой важной информации, поскольку энергия и импульс прямо связаны друг с другом, а именно энергия E = p / 2m, где p – импульс удерживаемого электрона, а m – его масса[25]. Но это наблюдение не такое уж бесполезное, как можно подумать, потому что для потенциалов не столь простых, как прямоугольная яма, каждая стоячая волна всегда соотносится с частицей определенной энергии.

Важное различие между энергией и импульсом появляется потому, что уравнение E = p / 2m верно, только если потенциал одинаков по всей области вероятного пребывания частицы и позволяет ей двигаться свободно, как по мраморной столешнице или, что больше относится к делу, как электрону в прямоугольной яме. В общем случае энергия частицы не будет сводиться к E = p / 2m; это будет сумма кинетической и потенциальной энергий частицы. Так разрушается прямая связь между энергией частицы и ее импульсом.

Можно еще раз проиллюстрировать это положение с помощью мяча в долине с рис. 6.4. Начнем с мяча, который счастливо покоится на дне. С ним ничего не происходит[26]. Чтобы заставить мяч катиться вверх по склону, его нужно ударить, то есть добавить ему энергии. В мгновение, следующее за ударом, вся его энергия будет кинетической. По мере подъема мяча по склону он будет замедляться, пока на какой-то высоте не остановится, после чего будет снова падать. В момент остановки он не будет обладать кинетической энергией, но ведь энергия не исчезла по волшебству. На самом деле вся кинетическая энергия превратилась в потенциальную, которая равняется mgh, где g – ускорение свободного падения у поверхности Земли, а h – высота мяча над земной поверхностью. Когда мяч начинает падать, эта накопленная потенциальная энергия при наборе скорости постепенно снова превращается в кинетическую. Итак, пока мяч перелетает с одного конца долины в другой, общая энергия остается постоянной, но периодически перетекает из кинетической в потенциальную. Разумеется, импульс мяча постоянно меняется, но суммарная энергия остается неизменной (предположим, что трения, замедляющего скорость мяча, не существует. Если бы мы включили его в нашу картину, общая энергия тоже осталась бы неизменной, но нужно было бы добавить в качестве ее составляющей энергию, идущую на трение).

Сейчас мы попытаемся исследовать связь между стоячими волнами и частицами определенной энергии иным способом, не обращаясь к особому случаю прямоугольной ямы. Воспользуемся на сей раз маленькими квантовыми циферблатами.

В первую очередь заметьте: если электрон в какой-то момент времени описывается стоячей волной, то он будет описываться той же стоячей волной и в любой следующий момент. Под «той же» мы подразумеваем неизменность формы волны, как в случае со стоячей водяной волной на рис. 6.1. Мы, конечно, не имеем в виду, что волна вообще не меняется: изменяется ее высота, но не положение пиков и узлов.

Это позволяет нам установить, как должно выглядеть описание стоячей волны в терминах квантовых циферблатов, и оно показано на рис. 6.6 для случая стоячей волны основного тона. Размеры циферблатов вдоль волны отражают положение пиков и узлов, а все стрелки часов движутся с одинаковой скоростью. Надеемся, вы понимаете, почему мы изобразили именно такую группу циферблатов. Узлы должны всегда быть узлами, а пики – пиками, и они все должны оставаться на одном месте. Это значит, что циферблаты вблизи узлов должны всегда быть очень маленькими, а циферблаты, соответствующие пикам, должны всегда иметь самые длинные стрелки. Таким образом, единственное, что мы вольны делать, – так это поместить циферблаты по своему усмотрению и заставить их стрелки вращаться синхронно. Если следовать методологии предыдущих глав, мы должны были бы начать с конфигурации циферблатов, показанной в верхнем ряду рис. 6.6, и использовать правила уменьшения и поворота стрелок, чтобы получить три нижних ряда позже. Это упражнение со скачущими циферблатами – слишком сильный скачок прочь от темы книги, но его можно выполнить, и тут есть неплохой поворот[27], поскольку, чтобы выполнить упражнение правильно, нужно учесть тот факт, что частица «отскакивает от стенок ящика», прежде чем двинуться в своем направлении. Кстати, поскольку циферблаты в центре больше, мы можем непосредственно заключить, что электрон, который описывается этим набором циферблатов, скорее окажется в центре ящика, чем по краям.

Рис. 6.6. Четыре снимка стоячей волны в последовательные моменты времени. Стрелки на рисунке соответствуют стрелкам часов, а пунктирная линия – проекции «двенадцатичасового» направления. Все стрелки движутся в унисон

Итак, мы выяснили, что удерживаемый электрон описывается набором циферблатов, все стрелки которых вращаются с одинаковой скоростью. Физики, впрочем, обычно так не говорят, а уж музыканты и подавно; те и другие говорят, что стоячие волны – это волны определенной частоты[28]. Высокочастотные волны соответствуют часам, стрелки которых вращаются быстрее, чем стрелки часов низкочастотных волн. Это понятно, потому что если стрелка часов вращается быстрее, то уменьшается время падения волны с максимума до минимума и обратного подъема (представленного полным оборотом стрелки). Если говорить о водяных волнах, то высокочастотные стоячие волны поднимаются и опускаются быстрее, чем низкочастотные. В музыке говорят, что среднее до имеет частоту 262 Гц, то есть гитарная струна ежесекундно колеблется 262 раза. Нота ля выше среднего до, она имеет частоту 440 Гц, то есть колеблется быстрее (это общепринятый стандарт настройки в большинстве оркестров и для музыкальных инструментов во всем мире). Как мы уже отметили, однако, лишь для чистых синусоид верно, что волны определенной частоты имеют и определенную длину волны. В общем же случае частота – фундаментальная величина, которая описывает стоячие волны, но это определение, кажется, ничего не определяет. Вот вопрос на миллион долларов: что такое электрон определенной частоты? Напомним, что состояния электрона нам интересны, потому что они квантованы, и еще потому, что электрон в одном подобном состоянии остается таким все время (пока нечто не войдет в область потенциала, воздействуя на этот электрон).

Последнее предложение намекает, что мы должны понять значение частоты. В этой главе мы уже встречались с законом сохранения энергии, и это один из самых несомненных законов физики. Сохранение энергии оначает, что если электрон в атоме водорода (или в прямоугольной яме) обладает определенной энергией, то эта энергия не может измениться, пока «что-то не произойдет». Иными словами, электрон не может спонтанно изменить свою энергию без какой-либо причины. Кажется, что это не очень интересно, но сравните это со случаем, когда известно, что электрон находится в определенной точке. Как мы все хорошо знаем, он теперь будет перемещаться по всей Вселенной в долю секунды, переводя бесконечное число циферблатов. Но поведение циферблатов для стоячей волны будет иным. Структура циферблатов сохранит свою форму, и все стрелки будут счастливо вращаться, пока что-либо не нарушит их хода. Неизменная природа стоячих волн, таким образом, делает их очевидным кандидатом на описание электрона с определенной энергией.

Сделав шаг, связывающий частоту стоячей волны с энергией частицы, теперь мы можем использовать наше представление о гитарных струнах и предположить, что более высокие частоты должны соответствовать большим энергиям. Дело в том, что высокая частота подразумевает меньшую длину волны (поскольку короткие струны вибрируют быстрее), и мы, изучив конкретный случай прямоугольной потенциальной ямы, можем ожидать, что более короткая длина волны соответствует частице с большей энергией – по уравнению де Бройля. Таким образом, можно сделать важный вывод, который необходимо запомнить: стоячие волны описывают частицы с определенной энергией, и чем больше энергия, тем быстрее идут стрелки часов.

Резюмируем: если электрон удерживается потенциалом, то его энергия квантуется. На физическом жаргоне это звучит так: удерживаемый электрон может существовать только на определенных «энергетических уровнях». Минимально возможная энергия электрона соответствует его описанию только одной стоячей волной «основного тона»[29], и этот энергетический уровень обычно называют основным состоянием. Энергетические уровни, соответствующие стоячим волнам с более высокими частотами, носят название возбужденных состояний.

Представим электрон с определенной энергией, удерживаемый в прямоугольной потенциальной яме. Мы говорим, что он «находится на определенном энергетическом уровне» и его квантовая волна связана с единственным значением n. Выражение «находится на определенном энергетическом уровне» отражает тот факт, что электрон в отсутствие любых внешних влияний не делает ничего. Обобщим: электрон можно описать сразу многими стоячими волнами, как звук гитары состоит из многих гармоник. Это значит, что в общем случае электрон не имеет конкретной энергии.

Важно, что при измерении энергии электрона всегда будет получаться величина, равная той, которая связана с одной из составляющих стоячих волн. Чтобы вычислить вероятность нахождения электрона с конкретной энергией, мы должны взять циферблаты, связанные с конкретной составляющей общей волновой функции, возвести их в квадрат и сложить. От получившегося числа и зависит вероятность нахождения электрона в этом конкретном энергетическом состоянии. Сумму всех таких вероятностей (одна для каждой составляющей стоячей волны) должна в итоге получиться равной единице, и это лучшая иллюстрация того, что энергия частицы всегда будет соответствовать конкретной стоячей волне.

Сразу скажем, что электрон может одновременно иметь несколько различных энергий, и это утверждение ничуть не менее странное, чем то, что он имеет множество положений. Конечно, дочитав книгу до этого момента, стресс вы вряд ли испытаете, но для нашего повседневного восприятия это все равно шок. Заметьте, что есть критически важная разница между удерживаемой квантовой частицей и стоячими волнами в бассейне или на гитарной струне. Идея квантования волны на гитарной струне вовсе не странна, потому что волна, которая, собственно, описывает вибрирующую струну, одновременно состоит из многих разных стоячих волн, и все они физически составляют общую энергию волны. Так как смешивать их можно любым образом, действительная энергия вибрирующей струны может принимать вообще любое значение. Однако для электрона, запертого внутри атома, относительный вклад каждой стоячей волны описывает вероятность того, что электрон будет обнаружен с некой конкретной энергией.

Важная разница в том, что водяные волны – это волны водяных молекул, а электронные волны – это определенно не волны электронов.

Все это показывает, что энергия электрона внутри атома квантуется. Это значит, что электрон просто не может иметь энергию, значение которой будет располагаться между определенными разрешенными величинами: примерно как если бы мы сказали, что машина может ехать со скоростью 10 или 40 км/ч, но не с какой-то скоростью между этими двумя величинами. И это фантастически странное умозаключение непосредственно объясняет, почему атомы не испускают свет постоянно, что сопровождалось бы спиральным движением электрона к ядру. Дело в том, что электрон не может постоянно, по чуть-чуть излучать энергию. Единственный способ, которым он может испускать энергию, – потерять ее сразу и полностью.

То, что мы уже усвоили, можно применить к наблюдаемым свойствам атомов, а именно к уникальному цвету их излучения. На рис. 6.7 показан видимый свет, испускаемый простейшим атомом – водородом. Свет состоит из пяти отчетливых цветов: ярко-красная линия соответствует свету с длиной волны 656 нм, светло-голубая – длине волны 486 нм, а три остальные фиолетовые затухают в ультрафиолетовой части спектра. Эта серия цветных линий известна как серия Бальмера (в честь швейцарского физика и математика Иоганна Бальмера, который в 1885 году предложил формулу для ее описания).

Рис. 6.7. Водородная серия Бальмера: вот что видно, когда свет, испускаемый газообразным водородом, проходит через спектроскоп

Бальмер понятия не имел, почему его формула верна, потому что квантовая теория еще не была открыта: он просто выразил регулярность серии удобной математической формулой. Но мы можем пойти дальше и показать, что все дело в разрешенных квантовых волнах внутри атома водорода.

Мы знаем, что свет можно представить в виде потока фотонов, каждый из которых обладает энергией E = hc / , где  – длина световой волны[30]. Таким образом, то, что атомы испускают свет лишь определенного цвета, означает, что они испускают фотоны с четко определенной энергией. Мы выяснили также, что электрон, «заключенный в атоме», может обладать лишь определенной конкретной энергией. Это небольшой шаг на пути к объяснению давней загадки цвета излучения атомов: разные цвета соответствуют испусканию фотонов, при котором электроны «перепрыгивают» с одного разрешенного энергетического уровня на другой. Эта идея подразумевает, что наблюдаемая энергия фотона всегда должна соответствовать разнице между парой разрешенных значений энергии электрона. Такой способ описания физических явлений отлично иллюстрирует ценность выражения состояния электрона в терминах разрешенных значений его энергии. Если вместо этого мы бы предпочли говорить о разрешенных значениях импульса электрона, то квантовая природа этих явлений не была бы столь очевидной и нам не удалось бы с такой легкостью заключить, что атом может испускать и поглощать излучение только с определенными длинами волны.

Модель атома как частицы в ящике недостаточно точна для того, чтобы позволить нам вычислить значения энергии электрона в реальном атоме, необходимые для проверки всей нашей идеи. Но можно провести достаточно точные вычисления, если мы лучше смоделируем потенциал вблизи протона, который и удерживает электрон. Достаточно сказать, что эти вычисления без тени сомнения подтверждают: здесь-то и кроется причина появления загадочных спектральных линий.

Наверное, вы заметили, что мы пока не объяснили, почему электрон, испуская фотон, теряет энергию. Для целей, обсуждающихся в этой главе, такое объяснение не требуется. Но что-то должно побудить электрон покинуть святилище стоячей волны, и это «что-то» будет темой главы 10. Сейчас же просто скажем чтобы объяснить наблюдаемые спектры светового излучения, испускаемого атомами, необходимо предположить, что свет испускается, когда электрон перескакивает с одного энергетического уровня на другой, с меньшей энергией. Разрешенные энергетические уровни определяются формой удерживающего ящика и варьируются от атома к атому, потому что разные атомы служат разной средой, внутри которой заключены их электроны.

До настоящего времени мы сполна использовали возможности для объяснения положения дел с помощью очень простой картины атома, но вообще-то не так уж верно считать, что электроны свободно передвигаются внутри какого-то ящика, который их ограничивает. Они передвигаются вблизи множества протонов и других электронов, и для лучшего понимания природы атомов мы должны определить, как более точно описать эту среду.

Атомный ящик

Вооружившись понятием потенциала, можно более точно описать атомы. Начнем с простейшего из всех – атома водорода. Он состоит всего из двух частиц – электрона и протона. Протон почти в 2000 раз тяжелее электрона, так что мы можем предположить, что он почти ничего не делает и просто покоится на месте, создавая потенциал, удерживающий электрон.

Протон обладает положительным электрическим зарядом, а электрон – равным ему отрицательным зарядом. Кстати, причина, по которой электрические заряды протона и электрона в точности равны и противоположны друг другу, – это одна из величайших загадок физики. Вероятно, есть очень веская причина, которая связана с некоей пока еще не открытой теорией субатомных частиц, но на момент написания этой книги никто не может сказать этого с уверенностью.

Рис. 6.8. Потенциальная яма Кулона вокруг протона. Яма глубже всего там, где находится сам протон

Что мы действительно знаем, так это то, что противоположные заряды притягиваются и протон перетягивает электрон к себе, поэтому, с точки зрения доквантовой физики, он может притянуть к себе электроны на сколь угодно малое расстояние. Насколько оно мало, зависит от конкретной природы протона: он твердый шарик или какое-то облако? Но этот вопрос не имеет физического смысла, потому что, как мы уже видели, существует минимальный энергетический уровень, на котором может находиться электрон и который определяется (грубо говоря) квантовой волной самой большой длины, которая способна поместиться в потенциал, созданный протоном. Этот созданный протоном потенциал мы изобразили на рис. 6.8. Глубокая «яма» функционирует так же, как уже известная нам прямоугольная потенциальная яма, только ее форма уже не столь проста. Она носит название потенциала Кулона, потому что подчиняется закону, описывающему взаимодействие двух электрических зарядов, который впервые вывел Шарль Огюстен де Кулон в 1783 году.

Проблема, однако, остается той же самой: мы должны выяснить, какие квантовые волны могут соответствовать этому потенциалу, что и определит разрешенные энергетические уровни атома водорода. Будучи бесхитростными, мы могли бы сказать, что это делается посредством «решения волнового уравнения Шрёдингера для потенциальной ямы Кулона», что служит способом применения правила перевода циферблатов. Детали этого процесса чисто технические, даже для таких простых объектов, как атом водорода. К счастью, мы не узнаем здесь почти ничего нового по сравнению с тем, что уже усвоили, так что перейдем прямо к ответу. Рис. 6.9 показывает некоторые получающиеся стоячие волны для электрона в атоме водорода. Это картина распределения вероятностей нахождения электрона в какой-либо точке. В более светлых областях такая вероятность выше. Конечно, реальный атом водорода трехмерный, и эти рисунки соответствуют разрезам в центре атома. Рисунок слева вверху – это волновая функция основного состояния, показывающая, что электрон в этом случае обычно находится на расстоянии примерно 1 10–10 м от протона. Энергия стоячих волн нарастает от левого верхнего к правому нижнему рисунку. Масштаб тоже изменяется в восемь раз от левого верхнего к правому нижнему рисунку, так что светлая область, покрывающая большую часть левого верхнего рисунка, имеет примерно тот же размер, что и маленькие яркие точки в центре двух правых рисунков. Это значит, что электрон, скорее всего, будет располагаться дальше от протона, когда он находится на более высоких энергетических уровнях (а следовательно, слабее с ним связан). Ясно, что эти волны совсем не синусоиды, то есть не соотносятся с состояниями определенного импульса. Но, как мы изо всех сил стараемся подчеркнуть, они соответствуют состояниям определенной энергии.

Рис. 6.9. Четыре квантовые волны с самой низкой энергией, описывающие электрон в атоме водорода. В светлых областях электрон может находиться с наибольшей вероятностью. Протон в центре. Рисунки вверху справа и внизу слева увеличены в 4 раза по сравнению с первым, а рисунок внизу справа – в 8 раз. Первый рисунок соответствует размеру примерно 3 10–10 м в диаметре

Отчетливая форма стоячих волн появляется благодаря форме ямы, однако некоторые детали следует обсудить более подробно. Самая очевидная особенность воронки вокруг протона заключается в ее сферической симметричности, то есть со всех сторон она выглядит одинаково. Чтобы представить это, возьмите баскетбольный мяч без каких-либо отметок на нем: это идеальная сфера, которая выглядит одинаково, как ее ни вращай. Возможно, мы можем думать об электроне внутри атома водорода как о запертом внутри микроскопического баскетбольного мяча? Это определенно более удачно, чем говорить о том, что электрон попался в квадратную яму, но, как ни удивительно, тут есть некое сходство. Рис. 6.10 показывает слева две стоячие волны с самой низкой энергией, которые могут возникнуть внутри баскетбольного мяча. Мы снова разрезали мяч, и давление воздуха внутри него повышается от черного к белому. Справа даны две возможные стоячие волны электрона в атоме водорода.

Рис. 6.10. Две простейшие стоячие звуковые волны внутри баскетбольного мяча (слева) в сравнении с соответствующими электронными волнами в атоме водорода (справа). Они очень похожи. Верхний рисунок атома водорода – это увеличенное изображение центральной части левой нижней картинки с рис. 6.9

Рисунки не идентичны, но очень похожи. И снова не будет столь уж глупо предположить, что электрон внутри атома водорода находится внутри чего-то, похожего на микроскопический баскетбольный мяч. Этот рисунок демонстрирует волновое поведение квантовых частиц, и мы надеемся, что он до некоторой степени срывает покровы таинственности с данного предмета: понимание поведения электрона в атоме водорода не более сложно, чем понимание того, как колеблется воздух внутри баскетбольного мяча.

Прежде чем оставить в покое атом водорода, мы хотели бы еще немного поговорить о потенциале, создаваемом протоном, и о том, как электрон перепрыгивает с более высокого энергетического уровня на более низкий, испуская при этом фотон.

Мы избежали разговоров о том, как взаимодействуют друг с другом протон и электрон, введя идею потенциала. Это упрощение позволило понять квантование энергии запертых частиц. Но если мы всерьез хотим понять, что происходит, нужно попытаться объяснить механизм «запирания» частиц. Когда частица движется в рассматриваемом нами ящике, можно представить непроницаемую стенку, предположительно состоящую из атомов, так что частица не может пройти сквозь нее из-за взаимодействия с этими атомами. Правильное понимание «непроницаемости» приходит через понимание того, как частицы взаимодействуют друг с другом. Мы говорили, что протон в атоме водорода создает потенциал, в котором движется электрон, и этот потенциал захватывает электрон аналогично тому, как частица удерживается в ящике. Это приводит к более глубокой проблеме, потому что электрон, очевидно, взаимодействует с протоном, и именно это предопределяет «запирание» электрона.

В главе 10 мы увидим, что же необходимо добавить к уже сформулированным квантовым правилам. Эти добавки будут касаться взаимодействия частиц. Пока аши правила очень просты: частицы двигаются, перенося с собой воображаемые часы, стрелки которых переводятся назад точно определенным образом в зависимости от расстояния, на которое перемещаются частицы. Все прыжки частиц разрешены, так что частица может переместиться из точки А в точку В по бесконечному количеству различных траекторий. Каждая траектория приносит в точку В собственный квантовый циферблат, и мы должны сложить их все, чтобы получился единый общий циферблат, который позволит нам определить вероятность нахождения частицы в точке В. Добавление взаимодействий в эту картину оказывается на удивление простым делом. Мы дополняем правила перемещения частиц новым правилом, которое гласит, что частица может испускать или поглощать другую частицу. Если до взаимодействия была одна частица, то после него их может оказаться две; если до взаимодействия частиц было две, после него может остаться только одна. Конечно, если мы собираемся вырабатывать математические формулы для этого, мы обязаны уточнить, какие именно частицы будут сливаться или распадаться и что произойдет после взаимодействия с теми циферблатами, которые несет с собой каждая частица. Это станет темой главы 10, но предпосылки очевидны и так. Если есть правило, по которому электрон в ходе взаимодействия испускает фотон, то существует вероятность того, что электрон в атоме водорода может испустить фотон, потерять энергию и опуститься на более низкий энергетический уровень. Он может также поглотить фотон, приобрести энергию и подняться на более высокий энергетический уровень.

Существование спектральных линий подтверждает, что именно так все и происходит, но далеко не с равной вероятностью, а именно: электрон может испускать фотон и лишаться энергии в любое время, но единственный способ получения энергии и перехода на более высокий энергетический уровень заключается в существовании фотона (или какого-то иного источника энергии), который мог бы с ним столкнуться. В газообразном водороде таких фотонов обычно мало, а расстояние между ними велико. Атом в возбужденном состоянии имеет гораздо больше шансов на испускание фотона, чем на его поглощение. Общий эффект состоит в том, что атомы водорода стремятся выходить из возбужденного состояния (релаксировать), под чем мы понимаем победу испускания над поглощением. Со временем атом возвращается к основному состоянию n = 1. Это правило не может быть общим, поскольку можно постоянно возбуждать атомы, обеспечив контролируемую подкачку энергии. На этом основана технология лазера, ныне используемая повсеместно. Главная идея лазера состоит в закачивании энергии в атомы, приводящем к их возбуждению, и сборе фотонов, испускаемых при потере электронами энергии. Эти фотоны очень полезны для чтения данных высокой четкости, записанных на поверхности CD или DVD: влияние квантовой механики на нашу жизнь весьма многообразно.

В этой главе мы сумели объяснить происхождение спектральных линий, используя простую идею квантованных энергетических уровней. Кажется, нам удалось выработать правильный взгляд на атомы. Но все же кое-что не совсем так. Не хватает последнего кусочка головоломки, без которого невозможно объяснить структуру более тяжелых атомов, чем водород. Если говорить более прозаично, нам также не удастся объяснить, почему мы, собственно, не проваливаемся сквозь землю, что создает проблемы для нашей замечательной теории природы. Объяснение, которое мы ищем, кроется в работах австрийского физика Вольфганга Паули.

7. Вселенная на булавочной головке (и почему мы не проваливаемся сквозь землю)

То, что мы не проваливаемся сквозь землю, само по себе несколько удивительно. Объяснять это тем, что земля твердая, не особенно эффективно, во многом благодаря открытию Резерфорда, что атомы – это почти полностью пустое пространство. Ситуация удивляет еще больше, потому что, насколько мы знаем, фундаментальные частицы природы размером не обладают вовсе. Иметь дело с частицами, «не имеющими размера», явно проблематично и, вероятно, даже невозможно. Но ничто из сказанного в предыдущих главах не предполагает и не требует от частиц физической протяженности. Понимание их как действительно точечных объектов необязательно неверно, даже если бросает вызов здравому смыслу – если у читателя остался хоть какой-то здравый смысл на этой стадии книги о квантовой теории. Конечно, весьма возможно, что будущие эксперименты, например на Большом адронном коллайдере, покажут, что электроны и кварки вовсе не истинно элементарные частицы, но нынешние эксперименты этого не подтверждают, поэтому в фундаментальных уравнениях физики частиц нет места для их «размера». Нельзя сказать, что с точечными частицами не возникает проблем – идея конечного заряда, зажатого в бесконечно малый объем, довольно трудна для понимания, – но все же удается каким-то образом обойти теоретические трудности. Похоже, что развитие квантовой теории гравитации – основная проблема фундаментальной физики – намекает на конечный размер, но свидетельств пока попросту недостаточно, чтобы физики отказались от столь полюбившейся идеи элементарных частиц. Подчеркнем еще раз: точечные частицы не имеют размера, поэтому вопрос «Что случится, если я расщеплю электрон надвое?» не имеет никакого смысла – половинки электрона не бывает.

Приятный бонус работы с элементарными фрагментами материи, не имеющими никакого размера, состоит в том, что мы без проблем можем представить, что вся видимая Вселенная когда-то была сжата в объект размером с грейпфрут или даже с булавочную головку. Как бы ни шла кругом голова от таких мыслей – трудно вообразить, как до размеров горошины сжимается гора, не говоря уже о звезде, галактике и тем более 350 миллиардах больших галактик в обозримой Вселенной, – нет никаких причин объявлять такое сжатие невозможным. И действительно, современные теории происхождения Вселенной непосредственно оперируют свойствами, которые она имела в подобном астрономически плотном состоянии. Такие теории на первый взгляд кажутся нелепыми, но имеют ряд подтверждающих свидетельств. В последней главе нам встретятся объекты с плотностью если не как у «Вселенной в булавочной головке», то точно как у «горы в горошине»: белые карлики – объекты с массой звезды и объемом Земли – и нейтронные звезды, имеющие схожую массу и сжатые в идеальные шары размером с крупный город. И это не объекты из научной фантастики; астрономы наблюдают их и проводят точнейшие измерения, а квантовая теория позволяет вычислить их свойства и сравнить с данными наблюдений. Первый шаг на пути к пониманию белых карликов и нейтронных звезд состоит в том, чтобы обратиться к гораздо более прозаичному вопросу, с которого мы и начали эту главу: если Земля – по большей части пустое пространство, то почему мы сквозь нее не проваливаемся?

У этого вопроса длительная и почтенная история, и ответ на него не был сформулирован удивительно долго: он появился лишь в 1967 году в статье Фримена Дайсона и Эндрю Ленарда. Они принялись за дело, потому что некий физик пообещал бутылку винтажного шампанского тому, кто сможет доказать, что материя не может сжаться сама по себе. Дайсон говорил, что доказательство было исключительно сложным и туманным, но они показали, что материя способна быть стабильной, только если электроны будут подчиняться так называемому принципу Паули – одному из самых удивительных явлений в нашей квантовой Вселенной.

Начнем с цифр. В прошлой главе мы видели, что структуру простейшего атома водорода можно понять, найдя разрешенные квантовые волны, которые помещаются внутри потенциальной ямы протона. Это позволило разобраться, по крайней мере, с количественной точки зрения, почему атомы водорода испускают свет именно в таком диапазоне. Будь у нас время, мы могли бы вычислить и энергетические уровни в атоме водорода. Любой студент-физик в какой-то момент обучения проводит эти вычисления, и они прекрасно сходятся с экспериментальными данными. Кстати, о предыдущей главе: упрощение «частица в ящике» было довольно удачным, поскольку содержало все критические моменты, которые мы хотели подчеркнуть. Однако теперь нам понадобятся еще более точные вычисления, учитывающие, что реальный атом водорода существует в трех измерениях. Для нашей частицы в ящике мы рассматривали только одно измерение и получили серию энергетических уровней, помеченных числом n. Низший энергетический уровень был назван n = 1, следующий – n = 2 и т. д. Когда расчеты распространяются на случай для трех измерений, оказывается (что, впрочем, не должно удивлять), что для характеристики всех разрешенных энергетических уровней необходимы три числа. Традиционно они помечаются как n, l и m и называются квантовыми числами (в этой главе не следует путать m с массой частицы).

Квантовое число n – это эквивалент числа n для частицы в ящике. Оно принимает целые значения (n = 1, 2, 3 и т. д.), а энергия частицы стремится к увеличению с увеличением n. Возможные значения l и m оказываются связаны с n; l должно быть меньше n и может равняться нулю, например, если n = 3, то l может быть 0, 1 или 2; m может принимать любое значение от минус l до плюс l с целочисленными шагами. Так, если l = 2, то m может равняться 2, 1, 0, +1 или +2. Мы не собираемся объяснять, откуда берутся все эти числа, потому что к нашему пониманию предмета это ничего не добавит. Достаточно сказать, что четыре волны на рис. 6.9 имеют (n, l) = (1,0), (2,0), (2,1) и (3,0) соответственно (для всех этих волн m = 0)[31].

Как мы уже говорили, квантовое число n здесь главное: оно контролирует разрешенные значения энергии для электрона. В небольшой степени разрешенные значения энергии зависят и от значения l, но проявляется это только при очень точных измерениях испускаемого света. Бор не принимал его во внимание, впервые вычисляя энергию спектральных линий водорода, и его исходная формула выражалась исключительно через n. От m энергия электрона совершенно не зависит, пока атом водорода не помещен в магнитное поле (собственно, m и называется магнитным квантовым числом), но это не значит, что m не важно. Чтобы понять это, вернемся к нашим числам.

Если n = 1, сколько существует возможно разных энергетических уровней? Применив сформулированные выше правила, узнаем, что l и m могут в случае n = 1 равняться только нулю, так что энергетический уровень будет лишь 1.

Теперь проведем расчеты для n = 2: l может принимать два значения, 0 и 1. Если l = 1, то m может равняться 1, 0 или +1, то есть получается еще 3 энергетических уровня (всего 4).

Для n = 3 l может составлять 0, 1 или 2. Для l = 2 m может равняться 2, 1, 0, +1 или +2, что дает 5 уровней. Итак, всего получается 1 + 3 + 5 = 9 уровней для n = 3. И так далее.

Запомните числа для трех первых значений n: 1, 4 и 9. Теперь посмотрим на рис. 7.1, где показаны первые четыре ряда периодической таблицы химических элементов, и подсчитаем, сколько элементов в каждом ряду. Разделив эти значения на 2, мы получим 1, 4, 4 и 9. Важность этого вскоре выяснится.

Рис. 7.1. Первые четыре ряда периодической таблицы химических элементов

Честь расположения химических элементов подобным образом обычно приписывается русскому химику Дмитрию Менделееву, который представил ее 6 марта 1869 года на заседании Русского химического общества. Это было задолго до того, как придумали вычислять разрешенные энергетические уровни атома водорода. Менделеев расположил элементы в порядке их атомных весов, что на современном языке соответствует количеству протонов и нейтронов внутри атомных ядер, хотя, конечно, в то время он и этого тоже не знал. Расположение элементов на самом деле соответствует числу протонов в ядре (количество нейтронов значения не имеет), но для самых легких элементов эта поправка не имеет значения, благодаря чему Менделеев и сумел расставить их в правильном порядке. Он решил выстроить элементы в ряды и столбцы, отметив, что некоторые элементы обладают очень похожими химическими свойствами, несмотря на разницу атомных весов; вертикальные столбцы как раз и объединяют подобные химические элементы – так, гелий, неон, аргон и криптон в крайнем правом столбце таблицы считаются инертными газами. И Менделеев не только правильно зафиксировал существующее расположение, но и предсказал наличие новых элементов, которые должны были заполнить пробелы в его таблице: элементы 31 и 32 (галлий и германий) были открыты в 1875 и 1886 годах соответственно. Эти открытия подтвердили, что Менделееву удалось нащупать нечто очень важное в строении атомов, но пока никто не знал, что это такое.

Удивительно, что в первом ряду 2 элемента, во втором и третьем их 8, а в четвертом – 18. Эти числа ровно в два раза больше тех, что получились у нас после подсчета разрешенных энергетических уровней в водороде. Почему?

Как мы уже упоминали, элементы в периодической системе упорядочены слева направо по рядам в соответствии с количеством протонов в ядре, что совпадает с количеством электронов, которое могут содержать эти атомы. Помните, что все атомы электрически нейтральны: положительные электрические заряды протонов точно уравновешиваются отрицательными зарядами электронов. Здесь явно что-то интересное связано с химическими свойствами элементов и разрешенными энергетическими уровнями, который электроны могут иметь во время вращения по орбитам вокруг ядра.

Мы можем представить, как более тяжелые атомы строятся из более легких, к которым по очереди добавляются протоны, нейтроны и электроны. Нужно держать в уме, что каждый раз при добавлении лишнего протона в ядро мы должны добавить и дополнительный электрон на один из энергетических уровней. Арифметические упражнения помогут создать систему, которую мы видим в периодической таблице, если просто допустить, что каждый энергетический уровень может содержать два и только два электрона. Посмотрим, как это работает.

У водорода только один электрон, который попадает на уровень n = 1. У гелия два электрона, которые тоже разместятся на уровне n = 1. Теперь уровень n = 1 заполнен. Чтобы получить литий, мы должны добавить третий электрон, но он уже пойдет на уровень n = 2. Следующие 7 электронов, соответствующие следующим 7 элементам (бериллий, бор, углерод, азот, кислород, фтор и неон), могут тоже уместиться на уровне n = 2, потому что там имеются 4 места, соответствующие l = 0 и l = 1, m = 1, 0 и +1. Таким образом можно найти место для всех элементов до неона включительно. На неоне уровни n = 2 заполняются, и начиная с натрия мы переходим к n = 3. Следующие 8 электронов один за другим начинают заполнять уровни n = 3; сначала электроны идут на l = 0, затем на l = 1. Это происходит для всех элементов третьего ряда вплоть до аргона. Четвертый ряд таблицы можно объяснить, если предположить, что он содержит все оставшиеся электроны n = 3 (то есть 10 электронов с l = 2) и электроны n = 4 с l = 0 и 1 (всего 8 электронов), так что в итоге и получается волшебное число – 18 электронов. Мы набросали, как электроны заполняют энергетические уровни, для самого тяжелого элемента в нашей таблице – криптона (с его 36 электронами) – на рис. 7.2.

Рис. 7.2. Заполнение энергетических уровней криптона. Точки символизируют электроны, а горизонтальные линии – энергетические уровни, помеченные квантовыми числами n, l и m. Мы сгруппировали уровни с различными значениями m, но одинаковыми значениями n и l

Чтобы изложенное относилось к науке, а не к занимательной математике, предстоит сделать несколько пояснений. Во-первых, нужно объяснить, почему химические свойства элементов из одного и того же вертиального столбца схожи. Из нашей схемы ясно, что первый элемент каждого из трех первых рядов начинает процесс заполнения уровней с увеличивающимся значением n. А именно: водород открывает этот процесс, вводя единственный электрон на пустой до того момента уровень n = 1, с лития начинается второй ряд – первый электрон появляется на пустом до того уровне n = 2, а с натрия третий ряд – электрон занимает пустой до того уровень n = 3. Третий ряд немного выбивается, потому что на уровне n = 3 может находиться 18 электронов, а в самом третьем ряду все же не 18 элементов. Можно предположить, что именно происходит: первые 8 электронов заполняют уровни n = 3 с l = 0 и l = 1, а затем (по каким-то причинам) случается переход на четвертый ряд. Четвертый ряд содержит оставшиеся 10 электронов на уровнях n = 3 с l = 2 и 8 электронов на уровнях n = 4 с l = 0 и l = 1. То, что ряды не совсем соответствуют значению n, свидетельствует лишь о том, что связь между химией и подсчетом энергетических уровней не так проста, как можно было бы подумать. Однако сейчас известно, что калий и кальций, два первых элемента в четвертом ряду, имеют электроны на уровне n = 4, l = 0, а следующие 10 элементов (от скандия до цинка) имеют электроны на запоздалых уровнях n = 3, l = 2.

Чтобы понять, почему заполнение уровней n = 3 и l = 2 откладывается до скандия, нужно объяснить, почему уровни n = 4, l = 0, на которых находятся электроны в калии и кальции, обладают меньшей энергией, чем уровни n = 3, l = 2.

Помните, что «основное состояние» атома будет характеризоваться конфигурацией электронов с самой низкой энергией, поскольку в любом возбужденном состоянии атом будет всегда терять энергию при испускании фотона. И говоря, что «этот атом содержит такие-то электроны, находящиеся на таких-то энергетических уровнях», мы сообщаем вам конфигурацию электронов с самой низкой энергией. Конечно, мы еще не пытались подсчитывать энергетические уровни, так что пока не можем и расположить их по возрастанию или убыванию энергии. Подсчитать разрешенную для электрона энергию для атомов более чем с двумя электронами на самом деле очень сложно, и даже случай для двух электронов (атом гелия) не так-то прост. Предположение о ранжировании уровней по увеличению числа n – результат гораздо более простых расчетов по атому водорода, для которого верно, что уровень n = 1 обладает наименьшей энергией, за ним следуют уровни n = 2, потом уровни n = 3 и т. д.

Очевидный вывод из сказанного – элементы на правом краю периодической таблицы соответствуют атомам, множество уровней которых заполнено до конца. Например, для гелия заполнен уровень n = 1, для неона – уровень n = 2, у аргона плотно заселен уровень n = 3, по крайней мере для l = 0 и l = 1. Мы можем еще немного развить эти идеи, таким образом поняв ряд очень важных положений в химии. К счастью, мы пишем не учебник по химии, так что можно говорить кратко. Может показаться, что мы пытаемся уложить всю тему в один абзац, но все же попробуем.

Основное наблюдение в том, что атомы могут скрепляться, обмениваясь электронами: мы встретимся с этой идеей в следующей главе, когда будем разбираться, как пара атомов водорода соединяется в молекулу водорода. Общее правило таково: элементы «предпочитают» полностью заполнять все свои энергетические уровни. В случае с гелием, неоном, аргоном и криптоном уровни уже заполнены, так что этим элементам уже «хорошо»: им «неинтересно» реагировать с другими. Другие же элементы могут «пытаться» заполнить свои уровни, обмениваясь электронами с другими элементами. Водороду, например, нужен один дополнительный электрон для заполнения уровня n = 1. Этого можно достичь, обменявшись электронами с другим атомом водорода. Таким образом формируется молекула водорода; ее химическая запись – H2. Это обычная форма существования водорода. У углерода 4 электрона из возможных 8 на уровнях n = 2, l = 0 и l = 1, и ему «хотелось бы» получить еще 4, чтобы заполнить все уровни. Этого можно добиться путем соединения с четырьмя атомами водорода. Образуется CH4 – газ, известный под названием метан.

Атом углерода может соединиться и с двумя атомами кислорода, которые сами нуждаются в двух электронах, чтобы закончить уровень n = 2. Это приводит к образованию CO2 – двуокиси углерода. Кислород может закончить свой уровень и с помощью двух атомов водорода, образуя воду – H2O. И так далее. Это основы химии: атомы стремятся заполнить свои энергетические уровни электронами, даже посредством реакции с соседом. Это их «желание», которое восходит к стремлению находиться в состоянии наименьшей энергии, управляет образованием всех соединений – от воды до ДНК. В мире, который богат на водород, кислород и углерод, легко понять, почему так часто встречаются углекислый газ, вода и метан.

Это все очень вдохновляет, но нужно объяснить и последний кусочек головоломки: почему только два электрона могут занимать каждый энергетический уровень? Так утверждает принцип Паули, и он очень важен для связи в единое целое всего, что мы обсуждаем. Без него электроны толпились бы на низшем энергетическом уровне вокруг каждого ядра, и никакой химии не было бы. Это не самая приятная перспектива, потому что тогда не было бы молекул, а следовательно, и жизни на Земле.

Утверждение о том, что каждый энергетический уровень могут занимать два и только два электрона, кажется каким-то произвольным. До того как эта идея была впервые предложена, никто не высказывал предположений по этому поводу. Первый прорыв в этой области был совершен Эдмундом Стоунером, сыном профессионального игрока в крикет (который прошел восемь калиток в игре с Южной Африкой в 1907 году, если вы читаете Wisden Cricketers’ Almanack) и бывшим студентом Резерфорда, впоследствии возглавившим физический факультет в Университете Лидса. В октябре 1924 года Стоунер предположил, что на каждом энергетическом уровне (n, l, m) должно находиться два электрона. Паули развил идеи Стоунера и в 1925 году опубликовал правило, которому годом позже Дирак присвоил его имя. Принцип Паули состоит в том, что ни одна пара электронов в атоме не может иметь одни и те же квантовые числа. Однако он столкнулся с проблемой: все указывало на то, что на самом деле два электрона могут иметь одинаковый набор значений n, l и m. Паули обошел проблему, просто введя новое квантовое число. Это был анзац: он не знал, чему соответствует это число, но оно могло принимать одно из всего двух значений. Паули признавался: «Более точно причин существования этого правила мы указать не можем». Новое открытие случилось в 1925 году и было изложено в работе Джорджа Уленбека и Сэмюэла Гаудсмита. В поисках возможности проведения точных измерений атомных спектров они связали дополнительное квантовое число Паули с реальным физическим свойством электрона, которое носит название спин[32].

Основная идея спина довольно проста и восходит еще к 1903 году: она значительно старше квантовой теории. Через несколько лет после открытия собственно электрона немецкий физик Макс Абрахам предположил, что электрон – это мельчайшая вращающаяся электрически заряженная сфера. Если бы это было верно, то электроны подвергались бы действию магнитных полей в зависимости от ориентации поля по отношению к оси их вращения. В статье 1925 года, опубликованной через три года после смерти Абрахама, Уленбек и Гаудсмит отмечали, что модель вращающегося шара не может быть верной, потому что для подтверждения экспериментальных данных электрон должен вращаться быстрее скорости света. Но сам дух идеи был верен: у электрона действительно есть свойство под названием спин, которое действительно влияет на его поведение в магнитном поле. Однако на самом деле идея спина – это непосредственное и довольно тонкое последствие теории специальной относительности Эйнштейна, получившее должную оценку только после того, как Поль Дирак в 1928 году записал уравнение, описывающее квантовое поведение электрона. Для наших целей сейчас нужно только указать, что существует два типа электрона, которые мы будем называть «спин вверх» и «спин вниз». Они отличаются противоположными значениями момента вращения, то есть словно бы вращаются в противоположных направлениях. Очень жаль, что Абрахам лишь немного не дожил до открытия истинной природы спина электрона, потому что так и не отказался от своего подозрения, что электрон – это мельчайшая сфера. В некрологе Абрахаму в 1923 году Макс Борн и Макс фон Лауэ писали: «Он был достойным оппонентом, сражался достойным оружием и не старался замаскировать поражения причитаниями и не относящимися к делу аргументами… Он любил свой абсолютный эфир, свои уравнения поля, свой неподвижный электрон, как повзрослевший человек любит свою первую страсть, воспоминания о которой не затмит никакой последующий опыт». Если бы все наши оппоненты были такими, как Абрахам!

В оставшейся части этой главы мы попытаемся объяснить, почему электроны ведут себя столь странным образом, описанным в принципе Паули. Как обычно, постараемся по максимуму использовать наши квантовые циферблаты. Для этого подумаем, что произойдет при «отталкивании» электронов друг от друга. На рис. 7.3 показан конкретный сценарий, когда два электрона, помеченные цифрами 1 и 2, начинают свое движение в одном месте и заканчивают в каком-то другом. Конечные точки мы отметили буквами А и В. Заштрихованные круги напоминают, что мы пока не думали по поводу того, что случается при взаимодействии двух электронов друг с другом (подробности этого процесса для нынешних целей не имеют особого значения).

Рис. 7.3. Разлет двух электронов

Нужно представить, что электрон 1 выпрыгивает из исходной точки и заканчивает движение в точке А. Точно так же электрон 2 «приземляется» в точке В. Это показано на верхней иллюстрации. На самом деле аргумент, который мы намерены предъявить, прекрасно работает, даже если игнорировать возможность взаимодействия электронов. В этом случае электрон 1 попадает в точку А независимо от любых блужданий электрона 2, и вероятность найти электрон 1 в точке А и электрон 2 в точке В будет всего лишь произведением двух независимых вероятностей.

Например, представим, что вероятность прибытия электрона 1 в точку А равна 45 %, а вероятность электрона 2 в точку В – 20 %. Вероятность нахождения электрона 1 в точке А и электрона 2 в точке В равна 0,45 0,2 = 0,09 = 9 %. Здесь мы пользуемся обычной логикой, которая говорит, что вероятность подбросить монетку, чтобы выпал орел, и вместе с тем бросить кубик, чтобы выпала шестерка, равны , что составляет 1/12 (то есть чуть больше 8 %)[33]. Как показано на иллюстрации, у электронов есть и другой способ оказаться в точках А и В. Электрон 1 может попасть в точку В, а электрон 2 – в точку А. Допустим, вероятность найти электрон 1 в точке В равна 5 %, а вероятность найти электрон 2 в точке А – 20 %. Тогда вероятность найти электрон 1 в точке В и электрон 2 в точке А равна 0,05 0,2 = 0,01 = 1 %.

Таким образом, у нас есть два варианта нахождения двух электронов в точках А и В – один с вероятностью 9 % и один с вероятностью 1 %. Таким образом, вероятность того, что один электрон будет в точке А, а другой в точке В, если не имеет значения, какой где окажется, должна составлять 9 % + 1 % = 10 %. Все просто; но неверно.

Ошибка состоит в предположении о том, что вообще можно утверждать, какой электрон попадает в точку А, а какой в точку В. Что если электроны полностью идентичны? Кажется, что этот вопрос не имеет никакого значения, однако это не так. Кстати, предположение, что квантовые частицы могут быть полностью идентичны, впервые было сформулировано в связи с законом излучения черного тела Планка. Малоизвестный физик Ладислас Натансон еще в 1911 году заметил, что закон Планка несовместим с предположением, что фотоны можно идентифицировать. Иными словами, если бы можно было пометить фотон и отследить его передвижения, закон Планка не получился бы.

Если электроны 1 и 2 совершенно идентичны, можно описать процесс их разлета следующим образом: изначально есть два электрона, а еще через некоторое время по-прежнему есть два электрона, расположенных в разных местах. Как нам уже известно, квантовые частицы не двигаются по хорошо определенным траекториям, так что даже в принципе невозможно отследить их перемещение. Таким образом, нет смысла утверждать, что электрон 1 появился в точке А, а электрон 2 – в точке В. Мы просто не можем этого сказать, а стало быть, нет смысла их как-то маркировать. Вот что понимается под «идентичностью» частиц в квантовой теории. И куда же нас заведут подобные рассуждения?

Посмотрите еще раз на рисунок. В нашем конкретном случае две вероятности, которые мы связывали с двумя диаграммами (9 % и 1 %), верны. Однако это еще не все. Мы знаем, что квантовые частицы описываются циферблатами, так что мы должны связать циферблат с электроном 1, прибывающим в точку А, при этом размер циферблата будет равен 45 %. Точно так же другой циферблат будет связан с электроном 2, прибывающим в точку В, и его размер будет равняться 20 %. Теперь можно сформулировать новое квантовое правило: оно гласит, что мы должны связать отдельный циферблат с целым процессом, то есть будет существовать циферблат с размером, квадрат которого будет равен вероятности нахождения электрона 1 в точке А и электрона 2 в точке В. Иными словами, верхней иллюстрации на рис. 7.3 будет соответствовать свой циферблат. Мы видим, что этот циферблат должен иметь размер, равный 9 %, поскольку именно с этой вероятностью происходит процесс. Но какое время он будет показывать? Ответ на этот вопрос будет дан в главе 10, и он связан с идеей умножения циферблатов. Для целей же этой главы знать время необязательно; понадобится лишь только что сформулированное новое важное правило, которое стоит даже повторить, потому что оно существенно для всей квантовой теории: мы должны связать одиночный циферблат со всеми возможными способами, которыми может идти весь процесс. Циферблат, который мы связываем с нахождением одиночной частицы в конкретном месте, – это простейшая иллюстрация нашего правила, и до этого места в книге мы уже продвинулись. Но это особый случай, и раз уж мы начали рассматривать более одной частицы, то правило нуждается в расширении. Это значит, что с верхней иллюстрацией на рисунке связан циферблат размером 0,3. Точно так же есть и второй циферблат размером 0,1 (потому что 0,12 – это 0,01, то есть 1 %), связанный с нижней иллюстрацией на рисунке. Таким образом, у нас есть два циферблата, и нужно найти способ использовать их для определения вероятности найти один электрон в точке А и другой в точке В. Если бы эти два электрона можно было отличить друг от друга, ответ был бы очевидным: мы просто сложили бы вероятности (но не циферблаты), связанные с каждой возможностью. У нас получился бы ответ – 10 %.

Но если нет никакого способа определить, какой из изображенных на диаграммах процессов произошел в действительности – что справедливо, если электроны неотличимы друг от друга, – то, следуя логике, которую мы разработали для скачков одиночной частицы из точки в точку, нужно складывать именно циферблаты. Мы стоим на пороге обобщения правила, утверждающего, что для одной частицы нужно складывать циферблаты, связанные со всеми различными способами достижения этой частицей определенной точки, чтобы определить вероятность нахождения частицы в этой конкретной точке. Для системы, состоящей из множества идентичных частиц, нужно сочетать все циферблаты, связаные со всеми возможными способами, которыми эти частицы могут попасть в свои конечные пункты, чтобы определить вероятность их нахождения в этих конечных пунктах. Это достаточно важное положение, чтобы перечитать его несколько раз: должно быть ясно, что этот новый закон сочетания циферблатов служит обобщением закона, который мы использовали для одиночной частицы. Однако вы могли заметить, что мы очень тщательно выбираем термины. Мы не сказали, что циферблаты нужно обязательно складывать: мы говорим, что их нужно сочетать. И для такой оговорки есть причины.

Самым простым на вид было бы действительно сложить циферблаты. Но прежде чем заняться этим, надо спросить себя, каковы, собственно, основания считать это действие правильным. Это хороший пример того, что в физике не все стоит считать само собой разумеющимся: проверка предположений часто ведет к новым идеям, как и в этом случае. Сделаем шаг назад и подумаем о чем-то как можно более общем – например, представим, что один циферблат переводится или сжимается (или расширяется) до общего сложения циферблатов. Рассмотрим эту возможность более подробно.

Мы говорим: «У меня есть два циферблата, и я хочу сочетать их, чтобы получился один, и я мог с его помощью узнать, какова вероятность нахождения двух электронов в точках А и В. Как мне их сочетать?» Не будем забегать вперед с ответом, потому что хотим понять, действительно ли стоит воспользоваться сложением циферблатов. Оказывается, мы не очень-то свободны в действиях, и, как ни странно, простое сложение циферблатов – это одна из всего двух возможностей.

Чтобы упростить разговор, будем называть циферблат, соответствующий движению частицы 1 в точку А и движению частицы 2 в точку В, циферблатом 1. Это циферблат, который связан с верхней иллюстрацией на рис. 7.3. Циферблат 2 соответствует другой возможности, когда частица 1 приходит в точку В. Важно понять: если мы переведем циферблат 1 до сложения с циферблатом 2, то вычисляемая общая вероятность должна быть такой же, как если бы мы таким же образом перевели циферблат 2 перед его сложением с циферблатом 1.

В доказательство этого можно указать, что перемена наименований А и В в наших диаграммах, очевидно, не может ничего изменить. Это просто иной способ описания одного и того же процесса. Но если поменять А на В и наоборот, то и диаграммы на рис. 7.3 поменяются местами. Это значит, что, если мы решим подкрутить циферблат 1 (соответствующий верхней диаграмме) перед его прибавлением к циферблату 2, это действие должно полностью соответствовать смещению циферблата 2 перед его прибавлением к циферблату 1 после того, как мы поменяли их названия. Это логическое соображение жизненно важно для нас, так что его необходимо довести до сознания. Так как мы предположили, что нет возможности определить разницу между двумя частицами, то можно поменять местами их названия. Это значит, что подведение циферблата 1 должно давать тот же результат, что и такое же подведение циферблата 2, поскольку нет никакой возможности эти циферблаты различить.

Приведенное выше наблюдение нельзя назвать скромным или незначительным: оно имеет очень важные последствия, поскольку существует лишь два возможных способа подведения и уменьшения циферблатов, прежде чем сложить их, в результате чего получится конечный циферблат со свойствами, не зависящими от того, какой из исходных циферблатов подвергся обработке. Это показано на рис. 7.4. Верхняя половина рисунка иллюстрирует, что если подкрутить циферблат 1 на 90° и прибавить его к циферблату 2, то получившийся циферблат будет не равен по размеру тому, который получится, если подкрутить на 90° циферблат 2 и прибавить его к циферблату 1. Это можно видеть, потому что, если сначала подкрутить циферблат 1, то новая стрелка, которая показана здесь пунктиром, будет показывать в противоположном по отношению к стрелке циферблата 2 направлении, таким образом частично отменяя этот циферблат. При смещении же циферблата 2 его стрелка продолжает указывать в том же направлении, что и стрелка циферблата 1, так что они прибавляются, образуя более длинную стрелку.

Рис. 7.4. Верхняя часть рисунка показывает, что сложение циферблатов 1 и 2 после смещения циферблата 1 на 90° не эквивалентно их сложению после смещения на те же 90° циферблата 2. Нижняя часть показывает интересную возможность смещения одного из циферблатов на 180° перед сложением

Должно быть ясно, что 90° – это не какой-то особый случай, и другие углы тоже дадут циферблаты, которые зависят от того, который из двух исходных мы предпочли подкрутить.

Очевидное исключение – это перевод стрелки часов на 0°, потому что смещение циферблата 1 на 0° с последующим его сложением с циферблатом 2 – это, разумеется, то же самое, что и смещение циферблата 2 на 0° с последующим его сложением с циферблатом 1. Это значит, что сложение циферблатов без всякого перевода их стрелок – это вполне жизнеспособная возможность. Точно так же подойдет и подведение обоих циферблатов на одну и ту же величину, но это фактически та же ситуация, что и случай «без смещения»: нужно просто переопределить то, что мы будем называть «12 часами». Это равноценно утверждению, что мы всегда можем смещать любой циферблат на определенную величину, если эта величина равна для всех циферблатов. Это никогда не будет оказывать воздействие на те вероятности, которые мы пытаемся подсчитать.

Нижняя часть рис. 7.4 показывает, что, как бы странно это ни звучало, есть еще один способ сочетания циферблатов: мы можем повернуть один из них на 180° с последующим их сложением. Не получается один и тот же циферблат в двух случаях, но размер при этом остается тем же самым, следовательно, это приводит к той же самой вероятности нахождения одного электрона в точке А и другого в точке В.

Подобные рассуждения можно привести и по поводу возможности сжатия или расширения одного из циферблатов перед их сложением, потому что если мы сожмем циферблат 1 на определенную величину, прежде чем прибавить его к циферблату 2, то получаться будет не тот результат, что при сжатии циферблата 2 на ту же величину перед сложением его с циферблатом 1, и исключений у этого правила нет.

Итак, можно сделать интересный вывод. Хотя мы начали с того, что даровали себе полную свободу действий, оказалось, что, поскольку нет возможности отличить частицы друг от друга, есть лишь два способа сочетания циферблатов: мы можем сложить их либо сразу, либо после поворота стрелки одного из них на 180°. И самое замечательное, что природа идет обоими путями.

В случае с электронами перед сложением циферблатов нужно произвести лишний оборот. В случае с фотонами или бозонами Хиггса нужно сложить циферблаты, не прибегая к повороту. Итак, частицы природы делятся на два типа: те, которым нужен лишний оборот, называются фермионами, а те, которые обходятся без него, именуются бозонами.

Что определяет, фермион конкретная частица или бозон? Ее спин. Спин, как можно догадаться по этимологии слова (от англ. spin – «вращать»), – это мера углового момента частицы, и фермионы всегда имеют спин, равный полуцелому числу[34], а у бозонов спин целый. Мы говорим, что у электрона спин равен , у фотона – 1, а у бозона Хиггса – 0. Не хотим вдаваться в подробности по поводу спина, потому что они в основном чисто технические. Однако в разговоре о периодической системе оказалось важно, что в результате электроны делятся на два типа в соответствии с двумя возможными значениями их углового момента (спин, направленный вверх, или спин, направленный вниз). Это пример общего правила, которое гласит: частицы со спином s обычно имеют 2s + 1 типов, например частицы со спином (то есть электроны) имеют два типа, со спином 1 – три типа, а со спином 0 – один тип.

Взаимосвязь между угловым моментом частицы и нашим способом сочетания часов известна как теорема Паули, или теорема о связи спина со статистикой. Она выводится втом случае, когда формулировка квантовой теории согласуется со специальной теорией относительности Эйнштейна. Точнее говоря, это прямой результат выполнения причинно-следственных законов. К сожалению, выведение теоремы о связи спина со статистикой лежит за пределами уровня этой книги – как, честно говоря, и многих других. В «Фейнмановских лекциях по физике» автору пришлось сказать следующее:

«Мы просим прощения за то, что неспособны элементарно объяснить вам это. Но объяснение существует, его нашел Паули, основываясь на сложных доводах квантовой теории поля и теории относительности. Он показал, что эти факты по необходимости связаны друг с другом; но мы не в состоянии найти способ воспроизвести его аргументы на элементарном уровне. Это, видимо, одно из немногих мест в физике, когда правило формулируется очень просто, хотя столь же простого объяснения ему не найдено».

Вспомнив о том, что Ричард Фейнман вынужден был написать подобное в учебнике университетского уровня, мы можем только поднять руки и сдаться. Но правило само по себе довольно простое, и вам лишь придется поверить нам на слово в его доказательстве: для фермионов поворот необходим, а для бозонов – нет. Судя по всему, поворот служит причиной принципа Паули, а следовательно, и структуры атомов, и теперь, наконец, мы можем дать очень простое объяснение после всей предыдущей кропотливой работы.

Представьте, что точки А и В на рис. 7.3 движутся все ближе и ближе друг к другу. Когда они оказываются совсем близко, циферблат 1 и циферблат 2 должны стать примерно одного размера и показывать примерно одинаковое время. Когда А и В перекрываются, то и циферблаты должны быть идентичными. Это очевидно, поскольку циферблат 1 соответствует частице 1, заканчивающей движение в точке А, а циферблат 2 в этом конкретном случае показывает точно такое же время, поскольку точки А и В перекрываются. Тем не менее циферблатов по-прежнему два, и мы по-прежнему должны их сложить. Но тут и возникает тонкость: для фермионов один из циферблатов должен быть перед сложением повернут на 180°. Это значит, что циферблаты всегда будут показывать точно противоположное время для случая совпадения точек А и В (если на одном будет 12 часов, то на другом 6 часов), так что при сложении всегда будет получаться циферблат нулевого размера. Это замечательный результат, поскольку он означает, что вероятность нахождения двух электронов в одной и той же точке всегда будет равна нулю: законы квантовой физики побуждают их избегать друг друга. Чем ближе они друг к другу, тем меньше получающийся циферблат и, соответственно, вероятность такой близости. Это один из способов формулировки знаменитого принципа Паули: электроны избегают друг друга.

Сначала мы собирались показать, что ни одна пара идентичных электронов не может находиться на одном и том же энергетическом уровне в атоме водорода. Мы пока еще окончательно этого не доказали, но замечание о том, что электроны избегают друг друга, разумеется, имеет последствия для атомов и понимания того, почему же мы не проваливаемся сквозь землю. Теперь становится понятно не только то, что электроны в нашей обуви отталкиваются от электронов земной поверхности по правилу отталкивания одноименных зарядов, но и то, что они отталкиваются, потому что естественным образом избегают друг друга в соответствии с принципом Паули. Оказывается, согласно доказательству Дайсона и Ленарда, именно это избегание и не позволяет нам провалиться сквозь землю. Оно же заставляет электроны занимать разные энергетические уровни внутри атомов, определяя их строение, и в итоге служит причиной разнообразия химических элементов, которое мы наблюдаем в природе. Определенно, этот физический закон имеет очень важные для повседневной жизни последствия. В последней главе книги мы расскажем также, как принцип Паули играет ключевую роль в предотвращении гравитационного коллапса некоторых звезд.

В завершение мы должны объяснить, как из того, что ни одна пара электронов не может находиться в одном и том же месте в одно и то же время, следует, что ни у одной пары электронов в атоме не может быть одинаковых квантовых чисел, то есть два электрона не могут иметь одинаковую энергию и спин. Возьмем два электрона с одинаковым спином и докажем, что они не могут пребывать на одном и том же энергетическом уровне. Если бы они находились на одном энергетическом уровне, то каждый по необходимости описывался бы совершенно одинаковым набором циферблатов, распределенных в пространстве (в соответствии с применимой здесь стоячей волной). Для каждой пары точек в пространстве – обозначим их X и Y – есть два циферблата. Циферблат 1 соответствует «электрону 1 в точке Х» и «электрону 2 в точке Y», а циферблат 2 соответствует «электрону 1 в точке Y» и «электрону 2 в точке Х». Из предыдущих рассуждений мы знаем, что эти циферблаты нужно сложить после перевода одного из них на 6 часов, чтобы вычислить вероятность нахождения одного электрона в точке Х, а другого в точке Y. Но если два электрона обладают одинаковой энергией, то перед решающим дополнительным поворотом циферблаты 1 и 2 должны быть идентичны. После поворота же они будут показывать противоположное время и, как и раньше, при сложении образуют циферблат, не имеющий размера. Это верно для любого конкретного положения точек Х и Y, так что вероятность найти пару электронов в одной и той же конфигурации стоячей волны, то есть обладающих одной и той же энергией, равна нулю. Именно этим в конечном счете и определяется стабильность атомов в нашем организме.

8. Взаимозависимость

До этого времени мы уделяли пристальное внимание квантовой физике изолированных частиц и атомов. Мы выяснили, что электроны находятся внутри атомов в определенных энергетических состояниях, известных как стационарные состояния, хотя атом может быть в суперпозиции нескольких подобных состояний. Мы определили также, что электрон может перейти из одного энергетического состояния в другое с сопутствующим испусканием фотона. Испускание фотона, таким образом, свидетельствует о наличии энергетических состояний у атома; мы повсюду видим характерные цвета атомных переходов. Однако наш физический опыт связан с восприятием множества сгруппированных между собой атомов, и уже поэтому пора начать разбираться с тем, что происходит, когда атомы группируются.

Размышления над сочетаниями атомов поведут нас к химическим связям, разнице между проводниками и изоляторами и в конце концов к полупроводникам. Эти интересные материалы обладают свойствами, которые можно использовать для создания мельчайших устройств, способных производить базовые логические операции. Такие устройства называются транзисторами, и при объединении многих миллионов транзисторов можно создать микрочипы. Как мы увидим, теория транзисторов имеет квантовую природу. Трудно понять, как можно было бы изобрести и использовать транзисторы без квантовой теории, а современный мир без них уже нельзя представить. Это замечательный пример научной проницательности: мы столько времени описывали противоречащие интуиции подробности исследований природы, движимых чистым любопытством, и вот оказывается, что они привели к революции в повседневной жизни. Уильям Шокли, один из изобретателей транзистора и глава Группы физики твердого тела в компании Bell Telephone Laboratories, прекрасно показал, чем чреваты попытки классифицировать и контролировать научные знания[35]:

«Я хотел бы выразить свою точку зрения на определения, которыми часто пытаются классифицировать типы физических исследований: например, чистая, прикладная, неограниченная, фундаментальная, базовая, академическая, промышленная, практическая физика и т. д. Мне кажется, что слишком часто некоторые слова используются в пренебрежительном смысле: с одной стороны, это принижает практические цели производства полезных вещей, а с другой – отрицает возможное долгосрочное значение исследований в новых отраслях знания, где нельзя предсказать появление полезных результатов. Меня часто спрашивали, например, относится планируемый мной эксперимент к чистой или прикладной науке; я же считаю более важным понять, может ли эксперимент принести новые, желательно остающиеся на века знания о природе. Если получить такие знания удается, то это, на мой взгляд, и есть хорошая фундаментальная наука; и это гораздо более важный показатель, чем то, руководствуется ли экспериментатор жаждой чисто эстетического удовлетворения или пытается повысить стабильность работы транзистора высокого напряжения. Для высшего блага человечества требуется и тот и другой подходы».

Поскольку так говорил не кто-то, а изобретатель едва ли не самого полезного предмета со времен появления колеса, законодателям и управленцам всего мира стоило бы прислушаться к этим словам. Квантовая механика изменила мир, а новые теории, возникающие в наши дни на переднем краю физики, наверняка смогут еще раз изменить нашу жизнь.

Как всегда, мы начнем с начала: от Вселенной с одной частицей перейдем к рассмотрению Вселенной, где частиц будет две. Представьте себе, например, простую Вселенную, состоящую из двух изолированных атомов водорода; два электрона связаны с двумя отдаленными протонами, вокруг которых вращаются по орбите. Через несколько страниц мы начнем сводить их вместе и посмотрим, что получится, но пока предположим, что они расположены очень далеко друг от друга.

Принцип Паули утверждает, что два электрона не могут находиться в одинаковом квантовом состоянии, потому что это не отличимые друг от друга фермионы. Сначала может появиться соблазн заявить, что, если атомы далеко друг от друга, то два электрона должны пребывать в различных квантовых состояниях, так что и говорить тут не о чем. Но все значительно интереснее. Представьте, что мы помещаем электрон 1 в атом 1, а электрон 2 – в атом 2. Через некоторое время утверждение «электрон 1 все еще в атоме 1» не будет иметь смысла. Он может находиться и в атоме 2, потому что всегда есть вероятность того, что электрон совершил квантовый скачок. Как мы помним, все, что может произойти, действительно происходит, и электроны вполне могут за мгновение облететь всю Вселенную. На языке мельчайших циферблатов, даже если начать с того, который описывает один из электронов, расположенный вблизи только одного из протонов, придется в следующий миг ввести уже и циферблат вблизи другого протона. И хотя подразумевается, что циферблаты вблизи второго протона будут очень малы, их размеры все же не равны нулю, так что существует конечная вероятность нахождения там электрона. Чтобы более четко представлять себе последствия принципа Паули, нужно перестать мыслить о двух изолированных атомах и перейти к рассмотрению всей системы в целом: у нас есть два протона и два электрона, и наша задача – понять их самоорганизацию. Упростим ситуацию: пренебрежем электромагнитным взаимодействием между двумя электронами, что будет вполне неплохим приближением, если протоны удалены друг от друга, к тому же на ходе наших рассуждений это почти никак не скажется.

Страницы: «« 1234 »»

Читать бесплатно другие книги:

Когда Руси касалось порою лихолетье,Господь тогда на помощь достойных призывал,Кто Родину любил, кто...
В мире ушедших богов война, охватившая целый континент, длится уже четвертый год, давно надоела всем...
Не все спокойно в мире Четырех земель. Повелитель колдунов Брона, раскрывший тайну бессмертия с помо...
Автор знакомит читателей с актуальными инструментами визуализации и способами их применения на практ...
Можно ли комфортно существовать в городе, претендующем на статус столицы мира, и не затеряться в тол...
«Любов до рідного завжди має конкретні форми. У сучасній Україні, у вирі драматичних подій, розумієш...