Смерть в черной дыре и другие мелкие космические неприятности Тайсон Нил

Первобытная лаборатория готова.

В ясную погоду отметьте положение тени от палки на восходе Солнца, в течение дня и на закате. Сначала тень будет длинная, потом начнет укорачиваться, а затем снова удлиняться, и так до заката. Сбор данных этого эксперимента – дело примерно настолько же увлекательное, что и наблюдение за движением часовой стрелки на циферблате. Но поскольку никаких технических средств у вас нет, отвлекаться вам особенно не на что. Обратите внимание, что когда тень короче всего, это значит, что полдня уже прошло. В этот момент, который называется «местный полдень», тень указывает в точности на север или на юг в зависимости от того, по какую сторону от экватора вы находитесь.

Итак, вы только что создали примитивные солнечные часы. Если хотите выражаться по-ученому, называйте палку красивым словом «гномон» (лично мне больше нравится «палка»). Обратите внимание, что в северном полушарии, где зародилась цивилизация, при движении Солнца по небу тень от палки вращается вокруг основания палки по часовой стрелке. Собственно, часовая стрелка вращается «по часовой стрелке» именно поэтому.

Если погода останется ясной, а у вас хватит терпения повторить это упражнение 365 раз подряд, вы отметите, что Солнце восходит каждый день в другой точке горизонта. И дважды в году тень от палки на восходе показывает в прямо противоположную сторону, чем на закате. В такие дни Солнце восходит точно на востоке, а садится точно на западе, и день длится ровно столько же, что и ночь. Это дни весеннего и осеннего равноденствия. В остальные дни Солнце встает и заходит в других местах горизонта. Поэтому тот, кто считает, будто Солнце всегда встает на востоке и садится на западе и это так же верно, как дважды два – четыре, просто никогда не наблюдал, что происходит в небе.

Если следить, в каких точках Солнце восходит и заходит, из северного полушария, видно, что эти точки после весеннего равноденствия сползают на север от линии «восток-запад», потом останавливаются, а затем некоторое время сползают на юг. Когда они снова пересекут линию «восток-запад», сползание к югу замедляется, прекращается и опять сменяется сползанием к северу. Этот цикл повторяется ежегодно.

Все это время траектория Солнца меняется. В день летнего солнцестояния Солнце встает и садится в самой северной точке горизонта и проходит по небу выше всего. Поэтому летнее солнцестояние – самый длинный день в году, а тень от палки в полдень этого дня окажется короче всего. Когда Солнце встает и садится в самой южной точке горизонта, его траектория проходит по небу ниже всего, отчего в полдень тень от палки окажется самой длинной. Понятно, что этот день называется зимним солнцестоянием, как же иначе?

На 60 % земной поверхности и примерно для 75 % обитателей Земли Солнце никогда не поднимается прямо над головой. На остальной части планеты – в поясе шириной 5000 км около экватора – Солнце поднимается в зенит лишь два раза в год (ну или ровно один раз в год, если вы живете точно-точно на тропике Рака или тропике Козерога). Спорим, тот, кто считает, будто Солнце встает точно на востоке и заходит точно на Западе, еще и убежден, будто в полдень оно всегда в зените?

Глядите-ка: всего одна палка и неисчерпаемый запас терпения – и вы уже отметили на компасе важнейшие точки и знаете, какие четыре дня знаменуют смену времен года. Теперь надо изобрести какой-то способ замерять интервал между местным полднем сегодня и завтра. Тут бы пригодился дорогой хронометр, но достаточно и хороших песочных часов – одних или нескольких. И тот и другой прибор для измерения времени достаточно точно подскажет, сколько времени нужно Солнцу, чтобы обойти Землю, то есть сколько длятся одни солнечные сутки. Да, в среднем за год они составляют ровно 24 часа. Без учета ежегодно добавляемой секунды координации, чтобы компенсировать замедление вращения Земли за счет гравитационного воздействия Луны на земные океаны.

Вернемся к вашей палке. Мы еще не закончили. Проведите воображаемую линию от верхушки палки к какой-нибудь точке на небе и при помощи своего верного измерителя времени отметьте момент, когда через нее проходит какая-нибудь знакомая звезда из знакомого созвездия. Затем, опять же с помощью измерителя времени, замерьте, когда звезда займет то же положение относительно палки на следующую ночь. Этот интервал, так называемые сидерические сутки, длится 23 часа, 56 минут и 4 секунды. Из-за того, что солнечные и сидерические сутки отличаются почти на четыре минуты, Солнце блуждает на фоне узоров из звезд и создает впечатление, будто в течение года оно навещает разные созвездия по очереди.

При свете дня никаких звезд, кроме Солнца, разумеется, не видно. Но те, которые видны у горизонта сразу после заката или перед самым рассветом, отмечают положение Солнца на небе, поэтому внимательный наблюдатель, наделенный цепкой памятью на звездные узоры, может понять, какие из них окажутся за солнечным диском.

Воспользовавшись в очередной раз прибором для измерения времени, попробуйте проделать с палкой, воткнутой в землю, еще один опыт. Целый год каждый день отмечайте, куда падает тень от верхушки палки в полдень по данным прибора для измерения времени. Оказывается, каждый день положение тени будет меняться, и к концу года у вас получится восьмерка – она называется ученым словом «аналемма».

Почему? Потому что земная ось наклонена на 23,5 градуса относительно плоскости солнечной системы. Этот наклон обеспечивает не только привычную смену времен года и отклонения траектории Солнца по небу, но и восьмерку, которая образуется, если отмечать изменчивое положение Солнца в полдень в течение года. Более того, орбита Земли вокруг Солнца – не идеальный круг. А согласно законам движения планет Кеплера, скорость движения Земли по орбите должна быть непостоянной: когда мы приближаемся к Солнцу, она возрастает, а когда удаляемся, снижается. А поскольку период обращения Земли остается незыблемым, как скала, чем-то придется пожертвовать – поэтому Солнце не всегда достигает высшей точки в небе именно в «полдень по часам». Изо дня в день это отклонение невелико, однако в иные дни Солнце запаздывает на целые 14 минут. А иногда спешит на целые 16. И лишь четыре дня в году – соответствующие низшей и высшей точке восьмерки и центральному пересечению – время по часам совпадает с солнечным. Так случилось, что эти дни приходятся на 15 апреля (в США в этот день надо подавать налоговую декларацию, но это совпадение), 14 июня (это День государственного флага Соединенных Штатов – но это тоже совпадение), 2 сентября (День Труда – опять же совпадение) и 25 декабря (понятно, что и к Рождеству это тоже отношения не имеет).

Теперь клонируйте самого себя и свою палку и отправьте своего двойника точно на юг, в заранее выбранную точку далеко за горизонтом. Договоритесь, что вы в один и тот же день и в одно и то же время измерите длину тени от палки. Если окажется, что тени одной длины, значит, вы живете на сверхгигантской или плоской Земле. Если тени разной длины, то при помощи простой геометрии вы вычислите окружность Земли.

Именно так и поступил астроном и математик Эратосфен Киренский (276–194 до н. э.). Он сравнил длину тени в полдень в двух египетских городах – Сиене (ныне Асуан) и Александрии, правда, переоценил расстояние между ними – решил, что оно равно 5000 стадиев. Однако в результате ему удалось вычислить окружность Земли с погрешностью всего 15 %. Само слово «геометрия» в переводе с древнегреческого означает «землемерие».

Вы провозились с палками и камнями уже несколько лет, зато следующий эксперимент займет чуть более минуты. Воткните палку в землю под углом, а не вертикально, чтобы получилась, в сущности, просто палка, воткнутая в землю. Теперь привяжите к ее концу тонкий шнур с камнем. У вас получился маятник. Измерьте длину шнура и качните маятник. Сосчитайте, сколько раз он качнется за 60 секунд.

Оказывается, это число очень слабо зависит от амплитуды колебаний маятника и вообще не зависит от его массы. Играют роль лишь два фактора – какой длины шнур и на какой планете вы находитесь. Воспользовавшись довольно простой формулой, вы сможете вывести ускорение свободного падения на поверхности Земли – собственно, это и есть мера вашего веса. На Луне, где гравитация в шесть раз меньше земной, тот же маятник будет качаться гораздо медленнее и сделает за минуту меньше колебаний.

Отличный способ ощутить пульс планеты.

* * *

Пока что палка не предоставила вам ни одного доказательства, что Земля вращается – она лишь позволила заключить, что Солнце и ночные звезды вращаются с правильными предсказуемыми интервалами. Для следующего эксперимента вам понадобится палка длиной больше 10 метров. Опять же воткните ее в землю под углом. Привяжите к ее концу тяжелый камень на длинной тонкой веревке. Теперь качните маятник, как и в прошлый раз. Благодаря тому, что веревка длинная и тонкая, а камень тяжелый, маятник сможет беспрепятственно качаться часами.

Если вы внимательно проследите, в каком направлении качается маятник, и проявите колоссальное терпение, то заметите, что плоскость качания медленно поворачивается. С педагогической точки зрения самое удачное место для этого эксперимента – географический Северный (или, соответственно, Южный) полюс. На полюсах плоскость качания маятника совершает один полный оборот за 24 часа – простая мера направления и скорости вращения Земли под ним. Во всех других местах на Земле – кроме экватора – плоскость качания маятника тоже поворачивается, но чем ближе от полюса к экватору, тем медленнее. На экваторе она вообще не поворачивается. Этот опыт не только показывает, что движется именно Земля, а не Солнце, но и позволяет с помощью несложных тригонометрических вычислений ответить на обратный вопрос и вывести из времени поворота плоскости качания маятника географическую широту своего положения на планете.

Первым это проделал Жан-Бернар-Леон Фуко, французский физик, и это, пожалуй, был последний по-настоящему дешевый лабораторный инструмент. В 1851 году Фуко пригласил коллег «прийти в парижский Пантеон и посмотреть, как вертится Земля». Сегодня маятник Фуко качается практически в любом научно-техническом музее в мире.

Учитывая все, что мы можем узнать, наблюдая за простой палкой, воткнутой в землю, что дадут нам более сложные доисторические обсерватории, рассеянные по всему миру? От Европы и Азии до Африки и Латинской Америки изучение древних культур привело к открытию бесчисленных каменных монументов, служивших низкотехнологичными астрономическими центрами, а заодно, скорее всего, и святилищами, а может быть, имели и другую культурную ценность.

Например, в Стоунхендже утром в день летнего солнцестояния несколько камней, составляющих концентрические круги, идеально совпадают с точкой восхода Солнца. Некоторые другие камни указывают на особые точки восхода и захода Луны. Стоунхендж был построен на Солсберийской равнине около 3100 года до н. э. и с тех пор неоднократно перестраивался; в нем есть огромные монолиты, которые явно привезли издалека. Около 80 стел из голубого гранита, по нескольку тонн каждая, доставили сюда с холмов Пресели, почти за 400 километров. Так называемые сарсеновые (песчаниковые) камни весом до 50 тонн прибыли из Мальборо-даунс в 35 километрах отсюда.

О предназначении Стоунхенджа написано очень много. И историки, и наблюдатели-дилетанты восхищаются астрономическими познаниями древних и их способностью перевозить столь неподатливые материалы на такие далекие расстояния. На иных фантазеров Стоунхендж производит до того сильное впечатление, что они даже предполагают, будто в его строительстве участвовали инопланетяне.

Почему древние ученые и жрецы, создавшие Стоунхендж, не взяли какие-нибудь камни попроще и поближе, остается загадкой. Зато удалось разобраться, о каких познаниях и умениях он нам говорит. Основные периоды строительства заняли в сумме несколько сотен лет. Вероятно, около столетия ушло на предварительное планирование. За полтысячи лет вполне можно построить все что угодно, и уже неважно, откуда брать материалы. Более того, астрономические принципы, которые легли в основу планировки Стоунхенджа, не слишком отличаются от всего того, что мы с вами узнали благодаря палке, воткнутой в землю.

Возможно, древние обсерватории неизменно производят такое сокрушительное впечатление на наших современников именно потому, что они плохо понимают, как движутся Солнце, Луна и звезды. По вечерам мы таращимся в экран телевизора и не обращаем внимания на то, что происходит в небесах. Для нас незатейливая конструкция из грубо отесанных камней, основанная на наблюдениях над небесными телами, – это прямо-таки что-то эйнштейновское. А между тем подлинной загадкой для ученых стала бы цивилизация, которая вообще не оставила бы по себе культурных и архитектурных памятников, связанных с изучением небесной механики.

Часть II

Познание природы

Почему так трудно разбираться, что в мире бывает и чего не бывает

Глава шестая

Из солнечных недр

В повседневной жизни нам редко приходится задумываться о том, какой путь проходит луч света из недр Солнца, где он возникает, до самой поверхности Земли, где он упирается в чьи-нибудь ягодицы на жарком пляже. Самая легкая часть пути – это собственно космический вакуум, участок от Солнца до Земли, на преодоление которого уходит 500 секунд. Самая трудная – тернистый путь из центра Солнца к его поверхности, который занимает миллион лет.

В недрах звезд, где минимальная температура составляет примерно 10 миллионов градусов по Кельвину – а в ядре Солнца все 15 миллионов, – ядра водорода, давно уже лишившиеся своих одиноких электронов, разгоняются до таких больших скоростей, что преодолевают естественное отталкивание и сталкиваются друг с другом. Из материи создается энергия, и в результате термоядерного синтеза из четырех ядер водорода (Н) возникает одно ядро гелия (Не). Опустим промежуточные этапы – и получится, что Солнце говорит нам:

4 H He + энергия.
И стал свет!

Каждый раз, когда создается ядро гелия, возникают и частицы света – они называются фотонами. В этих фотонах заключено достаточно энергии, чтобы назвать их гамма-лучами – разновидностью света, обладающей самой большой энергией по существующей классификации. Фотоны гамма-излучения, от рождения движущиеся со скоростью света – 300 000 километров в секунду, – волей-неволей начинают пробиваться к поверхности Солнца. Если фотону не мешать, он будет двигаться по прямой. Однако, если что-то встает у него на пути, он либо отражается, либо поглощается, а затем испускается снова. В результате каждого из конкретных вариантов взаимодействия фотон летит в разных направлениях с разной энергией. Учитывая плотность солнечного вещества, средний путь фотона по прямой длится меньше одной тридцатимилилардной доли секунды (тридцатая часть наносекунды) – за это время фотон еле-еле успевает пролететь около сантиметра, после чего взаимодействует либо со свободным электроном, либо с атомом.

После каждого взаимодействия направление движения фотона меняется – то ли наружу, то ли в сторону, то ли даже обратно. Как же бесцельно блуждающий фотон умудряется покинуть Солнце? Отчасти это можно понять на примере горького пьяницы, который случайным образом шагает в разные стороны от фонарного столба на углу. Как ни странно, есть вероятность, что пьяница с этим столбом больше не встретится. Если направление его шагов и вправду случайно, расстояние от столба будет мало-помалу увеличиваться.

Нельзя точно предсказать, далеко ли уйдет от столба тот или иной пьяница после того или иного числа шагов, но вполне можно оценить среднюю дистанцию, если, конечно, удастся уговорить достаточно большую выборку пьяниц достаточно долго шагать в случайном направлении на благо науки. Данные покажут, что в среднем расстояние до столба увеличивается пропорционально квадратному корню из общего числа сделанных шагов. Например, если каждый пьяница сделает 100 шагов в случайном направлении, среднее расстояние от столба составит всего 10 шагов. Если 900, среднее расстояние вырастет всего до 30 шагов.

Шаг фотона составляет один сантиметр, поэтому ему придется сделать почти 5 секстильонов шагов, чтобы «случайно пройти» 70 миллиардов сантиметров, отделяющих центр Солнца от поверхности. Совокупный пройденный путь на тот момент составит около 5000 световых лет. Поскольку фотон летит со скоростью света, это путешествие, очевидно, займет у него 5000 лет. Но если учесть при подсчете более реалистичную модель Солнца, например то, что около 90 % массы Солнца помещается в пределах половины его радиуса, поскольку газообразное Солнце сжимается под собственным весом, и добавить время, которое теряется на остановки между поглощением и повторным испусканием фотона, на путешествие у фотона уйдет около миллиона лет. Если бы путь от центра до поверхности Солнца был свободен, он занял бы всего 2,3 секунды.

Уже в 1920-е годы у нас появилось некоторое представление о том, что фотон при попытке выбраться из Солнца должен встретить серьезное сопротивление. А подвести под исследования структуры звезд достаточный физический фундамент, чтобы найти решение этой задачи, удалось весьма колоритной фигуре – британскому астрофизику сэру Артуру Стенли Эддингтону. В 1926 году он написал книгу «The Internal Constitution of the Stars» («Внутреннее устройство звезд») и опубликовал ее сразу после открытия новой отрасли физики под названием «квантовая механика», однако за 12 лет до того, как источником энергии Солнца был официально объявлен термоядерный синтез. Едва ли не досужие рассуждения Эддингтона во вводной главе отражают если не все детали, то хотя бы общую суть тернистого пути эфирной волны (то есть фотона):

Внутренность звезды – это кипучая смесь атомов, электронов и эфирных волн. Чтобы уследить за всеми фигурами их затейливого танца, нам придется прибегнуть к помощи последних открытий в области атомной физики… Только представьте себе эту суматоху! Растрепанные атомы мечутся со скоростью 50 миль в секунду, от их изысканных одежд из электронов остались лишь лохмотья – их сорвали в толчее. Потерянные электроны разгоняются в сто раз быстрее, чтобы найти новое прибежище. Берегитесь! За [одну десятимиллиардную] секунды электрон тысячу раз едва успевает избежать лобового столкновения… Затем… электрон все же попадает в ловушку, присоединяется к атому, его свободной карьере конец. Но лишь на миг. Только-только атом успевает прицепить к своему охотничьему поясу очередной скальп, как на него налетает квант эфирной волны. Взрыв – и электрон снова устремляется навстречу новым приключениям.

(Eddington 1926, p. 19)

С тем же жаром и любовью к своему предмету Эддингтон пишет и о том, что эфирные волны – единственные составляющие Солнца, которым предстоит далеко пойти:

Наблюдая эту сцену, мы задаемся вопросом: неужели это и есть величественная драма звездной эволюции? Это куда больше похоже на клоунаду, когда комедианты весело разбивают друг о дружку горшки. Комедия положения в атомной физике не очень-то соответствует нашему представлению о прекрасном… Атомы и электроны, как бы ни суетились, никогда никуда не попадут, они лишь меняются местами. Единственная часть населения, которой предстоит хоть чего-то достичь, – это эфирные волны; на первый взгляд они беспорядочно мечутся во все стороны, однако, сами того не замечая, мало-помалу продвигаются к поверхности.

(Eddington 1926, рp. 19–20)

На четверть радиуса под поверхностью Солнца энергия в основном перемещается посредством бурной конвекции – процесса, очень похожего на кипение бульона в кастрюле (или на кипение чего угодно в кастрюле). Огромные пласты и комья горячего вещества поднимаются вверх, а другие, более холодные пласты и комья тонут. Наш трудяга-фотон и не подозревает, что пласт вещества, в котором он очутился, проваливается на несколько десятков тысяч километров обратно к центру Солнца и тысячи лет случайных метаний идут насмарку. Верно, конечно, и обратное: благодаря конвекции мечущиеся фотоны могут быстро оказаться у поверхности, что повышает их шансы на побег.

Однако сказание о мытарствах гамма-луча еще не кончено. Температура в центре Солнца составляет 15 миллионов градусов по Кельвину, а у поверхности – 6000 градусов, так что она падает в среднем на одну сотую градуса на метр. При каждом поглощении и испускании фотона высокоэнергичные фотоны гамма-лучей частенько порождают множество фотонов с более низкой энергией – ценой собственного существования. Подобный альтруизм происходит во всем спектре от гамма-лучей, рентгеновских и ультрафиолетовых фотонов до видимого и инфракрасного света. Энергии одного-единственного гамма-фотона хватает на порождение тысячи рентгеновских фотонов, каждый из которых в конечном счете породит тысячу фотонов видимого света. Иначе говоря, к тому времени, как случайные метания выведут один-единственный фотон гамма-луча а поверхность Солнца, он, скорее всего, успеет породить свыше миллиона видимых и инфракрасных фотонов.

В сторону Земли направляется лишь один из полумиллиарда фотонов, вырывающихся из Солнца. Понимаю, на первый взгляд кажется, что это очень мало, но при наших размерах и расстоянии от Солнца Земле достается как раз столько, сколько нужно. А остальные фотоны разлетаются кто куда.

Кстати, газовая «поверхность» Солнца и есть по определению тот самый слой, где случайно шагающие фотоны делают последний шаг перед тем, как вырваться в межпланетное пространство. Только свет из такого слоя способен достичь вашего глаза, беспрепятственно попав туда по прямой, и это позволяет оценить габариты Солнца. В целом свет с большей длиной волны вырывается из более глубоких слоев Солнца, чем свет с более короткой длиной волны. Например, диаметр Солнца несколько меньше, если оценивать его на основании инфракрасного света, чем по данным видимого света. Не знаю, сказано ли об этом в ваших учебниках, однако приводимые там оценки диаметра Солнца, как правило, предполагают, что габариты измерялись на основании видимого света.

Не вся энергия плодовитых гамма-лучей превращается в фотоны с низкой энергией. Часть этой энергии обеспечивает широкомасштабную бурную конвекцию, которая, в свою очередь, запускает волны давления, которые ударяют в Солнце изнутри примерно как язык в колокол. Тщательные и точные измерения солнечного спектра при постоянном наблюдении показывают, что в нем наблюдаются мельчайшие осцилляции, которые можно толковать примерно так же, как геосейсмологи толкуют звуковые волны, распространяющиеся под землей и вызванные землетрясениями. Закономерности вибрации Солнца необычайно сложны, поскольку одновременно распространяется множество колебаний. Самые трудные гелиосейсмологические задачи лежат в области разложения осцилляций на составляющие, что позволяет определить размеры и структуру внутренних неоднородностей Солнца, которые порождают эти колебания. Это примерно как проводить «анализ» вашего голоса после того, как вы крикнули в открытый рояль. Звуковые волны, порожденные голосом, вызывают вибрации тех струн рояля, у которых диапазон частот совпадает с диапазоном частот вашего голоса.

Организация под названием «Группа по изучению сети глобальных осцилляций» – «Global Oscillation Network Group» или GONG (очередная симпатичная аббревиатура) – запустила координированный проект по изучению солнечных осцилляций. По всему миру – на Гавайях, в Калифорнии, в Чили, на Канарских островах, в Индии и в Австралии, то есть так, чтобы охватывать все временные пояса – размещены солнечные обсерватории с соответствующим оборудованием, которые позволяют вести постоянное наблюдение этих колебаний. Когда ученые наконец-то суммировали результаты наблюдений, оказалось, большинство современных представлений о структуре Солнца находят подтверждение. В частности, то, что перенос энергии осуществляют случайно шагающие фотоны, которые вырываются из внутренних слоев Солнца, а затем выходят и из внешних слоев благодаря масштабной конвекции. Да, некоторые открытия оказываются великими просто потому, что подтверждают то, о чем мы и так догадывались с самого начала.

Героические приключения на пути сквозь Солнце даются одним лишь фотонам, а другим формам вещества и энергии это не по силам. Если бы в подобное путешествие пустились мы с вами, нас, конечно, сразу расплющило бы насмерть и испарило, а из атомов, составляющих наше тело, вырвали бы все до единого электроны. Если бы не все эти опасности, думаю, билеты в подобный тур распродавались бы мигом. Правда, лично мне достаточно знать все это в теории. Когда я греюсь на солнышке, то делаю это со всем уважением к тому пути, который прошли все фотоны, попадающие на мою кожу, в какую бы анатомическую деталь они ни угодили.

Глава седьмая

Парад планет

Когда рассказываешь об исследованиях космоса, трудно найти более занимательный сюжет, чем многовековая история изучения планет – небесных странниц (собственно, слово «планета» происходит от древнегреческого слова, которое значит «блуждающий»), выписывающих круги на фоне звездного неба. Из восьми объектов в нашей Солнечной системе, которые бесспорно признаны планетами, пять видны невооруженным глазом и были известны мыслителям древности – а также наблюдательным троглодитам. Каждая из пяти планет – Меркурий, Венера, Марс, Юпитер и Сатурн – получила имя бога или богини, которых напоминала какими-то своими качествами. Например, Меркурий движется на фоне неба быстрее всех, поэтому и получил название в честь римского бога-вестника, которого обычно изображали с крошечными, бессмысленными с аэродинамической точки зрения крылышками на головном уборе и сандалиях. А Марс, единственная красноватая планета из известных в древности, был назван в честь римского бога войны и кровопролития. Земля, разумеется, тоже видна невооруженным глазом. Достаточно посмотреть себе под ноги. Однако terra firma долго не входила в сообщество планет и была допущена туда лишь после 1543 года, когда Николай Коперник выдвинул гелиоцентрическую модель Вселенной.

Для бестелескопных страдальцев планеты и были, и есть всего лишь светящиеся точки, которые почему-то движутся по небосводу. Лишь в XVII веке, когда телескопы распространились повсюду, астрономы открыли, что планеты имеют форму шаров. Лишь в XX веке планеты удалось изучить с близкого расстояния при помощи космических зондов. И лишь в XXI веке людям, скорее всего, предстоит на них высадиться.

Первая телескопическая встреча с небесными странницами состоялась у человечества зимой 1609–1610 годов. Едва Галилео Галилей услышал о голландском изобретении 1608 года, как изготовил превосходный телескоп собственной конструкции, в который и увидел, что планеты – это шары, а может быть, даже иные миры. Одна из них, блистательная Венера, проходила фазы, подобные лунным: Венера-полумесяц, Венера во второй четверти, полная Венера. А у другой планеты, Юпитера, были собственные луны, и Галилео открыл четыре самые крупные – это Ганимед, Каллисто, Ио и Европа, названные в честь различных персонажей, в то или иное время сыгравших заметную роль в жизни Зевса – так звали Юпитера в Древней Греции.

Самое простое объяснение фазам Венеры, как и всем другим особенностям ее движения по небосводу, – утверждение, что планеты вращаются не вокруг Земли, а вокруг Солнца. И в самом деле, наблюдения Галилея подтвердили верность модели Вселенной, какой ее видел Коперник.

Спутники Юпитера продвинули коперникову модель еще на шаг вперед: хотя телескоп Галилея с увеличением всего в 20 крат мог показать спутники всего лишь в виде светящихся точек, прежде никто никогда не видел, чтобы небесное тело обращалось вокруг чего-нибудь кроме Земли. Казалось бы, простое и честное наблюдение над происходящим в небе – однако католическая церковь и «здравый смысл» не могли с этим смириться. Галилей со своим телескопом сделал открытие, противоречащие догмату о том, что Земля – это центр мироздания, точка, вокруг которой вращается все остальное. О своих убедительных находках и соображениях Галилей рассказал в начале 1610 года в коротком, однако судьбоносном труде под названием «Sidereus Nuncius» («Небесный вестник»).

* * *

Когда же модель Коперника приняли повсеместно, устройство небес по праву получило название Солнечной системы, а Земля заняла подобающее ей место – стала одной из шести известных планет. Тогда никто и не предполагал, что их может оказаться больше. В том числе и английский астроном сэр Уильям Гершель, который в 1781 году открыл седьмую.

На самом деле заслуга отчасти принадлежит английскому астроному Джону Флемстиду, первому Королевскому астроному – это он в 1690 году первым сообщил, что видел седьмую планету. Однако тогда он не зарегистрировал, что она движется. Он решил, что это просто очередная звезда, и назвал ее 34 Тельца. Когда Гершель увидел, что «звезда» Флемстида движется на фоне звездного неба, то объявил, что открыл комету, поскольку исходил из невольного предположения, что планеты не входят в список небесных тел, которые в принципе можно открыть. А про кометы все знают, что они движутся и что их то и дело открывают. Новообретенное небесное тело Гершель собирался назвать «Georgium Sidus» – «Звезда Георга», в честь своего покровителя, английского короля Георга III. Если бы астрономическое сообщество пошло навстречу этим пожеланиям, в реестре нашей Солнечной системы значились бы сегодня Меркурий, Венера, Земля, Марс, Юпитер, Сатурн и Георг. В целях борьбы с низкопоклонством небесное тело назвали Ураном, чтобы сохранить единообразие с названиями других планет, хотя некоторые французские и американские астрономы называли Уран «Планетой Гершеля» до 1850 года, когда прошло уже несколько лет после открытия восьмой планеты – Нептуна.

Время шло, телескопы становились больше и мощнее, однако особых деталей на поверхности планет астрономы так и не рассмотрели. Дело в том, что телескопы, даже очень большие, позволяли глядеть на планеты лишь сквозь бурную атмосферу Земли, поэтому даже самые лучшие изображения были несколько затуманены. Однако это не помешало несгибаемым исследователям открыть, например, Большое Красное Пятно на Юпитере, кольца Сатурна, шапки льда на полюсах Марса и десятки спутников планет. И все же познания о планетах были очень скудны – а невежество всегда дает простор для псевдонаучных спекуляций.

* * *

Вспомним хотя бы Персиваля Лоуэлла – это был весьма состоятельный американский предприниматель, астроном и фантазер, который вел свои изыскания на рубеже XIX–XX веков. Имя Лоуэлла навеки связано с марсианскими каналами, венерианскими спицами, поисками планеты Х и, разумеется, с Обсерваторией Лоуэлла в городе Флагстафф в штате Аризона.

Подобно множеству исследователей во всем мире, Лоуэлл подхватил выдвинутую в конце XIX века идею итальянского астронома Джованни Скиапарелли, согласно которой линии, различимые на марсианской поверхности, – это canali.

Беда в том, что Лоуэлл неверно понял это слово: в переводе с итальянского оно означает «канавы» или «борозды», а Лоуэлл решил, что это буквально «каналы», поскольку по размеру эти метки, как тогда считалось, были близки к масштабным строительным проектам, которые велись в те годы на Земле. Воображение увлекло Лоуэлла в неведомые дали, и он посвятил свою жизнь наблюдениям и нанесению на карту сети акведуков на поверхности Красной Планеты, которые, конечно, были выстроены развитой марсианской цивилизацией – в это Лоуэлл верил всей душой. Он полагал, что марсианские города, истощив местные запасы воды, вынуждены были рыть каналы, чтобы доставлять воду из полярных ледников планеты – а тогда о них уже было известно, – в более густонаселенные экваториальные зоны. Верить во все это было очень соблазнительно – и к тому же подобные идеи породили массу прелестных литературных произведений.

Кроме того, Лоуэлл очень увлекался Венерой, которая благодаря густому покрову облаков, прекрасно отражающих свет, входит в число ярчайших объектов на ночном небе. Орбита Венеры проходит относительно близко к Солнцу, поэтому сразу после заката – или перед самым рассветом – Венера сияет на сумеречном небосклоне во всей своей красе. А поскольку сумеречный небосклон сам по себе бывает очень красочным, у службы «911» нет отбою от звонков взволнованных очевидцев, которые только что заметили над горизонтом сверкающий огнями НЛО.

Лоуэлл утверждал, что на Венере видна целая сеть толстых линий, по большей части расходящихся радиально от центрального узла (очередные canali), подобно спицам колеса. Что за спицы он видел, остается загадкой. Дело в том, что больше никто не сумел разглядеть подобных узоров ни на Марсе, ни на Венере. Других астрономов это, впрочем, не настораживало, они знали, что обсерватория Лоуэлла, выстроенная на горной вершине, – одна из лучших в мире. Так что если не видишь на Марсе бурного строительства, которое наблюдает Персиваль, то только потому, что гора у тебя ниже, чем у него, а телескоп слабее.

Разумеется, повторить открытия Лоуэлла не удалось и впоследствии, когда телескопы удалось значительно усовершенствовать. И в наши дни этот эпизод стал расхожим примером того, как стремление поверить пересилило потребность собрать точные, надежные данные. Любопытно, что объяснить, что же происходило в обсерватории Лоуэлла, удалось лишь в XXI веке.

Врач-оптометрист по имени Шерман Шульц из города Сент-Пол в штате Миннесота прочитал статью в июльском выпуске журнала «Sky and Telescope» за 2002 год и написал письмо в редакцию. Шульц указал, что оптическое устройство, сквозь которое Лоуэлл предпочитал смотреть на венерианскую поверхность, было похоже на особый аппарат, при помощи которого врачи обследуют глазное дно пациента. Посоветовавшись с коллегами, Шульц пришел к выводу, что линии, которые Лоуэлл наблюдал на Венере, на самом деле были сетью теней, которые отбрасывали на сетчатку Лоуэлла его же собственные кровеносные сосуды. Если сравнить схему «спиц» на чертежах Лоуэлла с рисунком кровеносных сосудов глаза, они прекрасно совпадают. А если прибавить к этому еще то неприятное обстоятельство, что у Лоуэлла было повышенное артериальное давление – а это очень заметно по сосудам глаза, – и присовокупить к этому страстное желание поверить в свои открытия, не приходится удивляться, что в фантазиях Лоуэлла и Венера, и Марс кишели разумной жизнью, достигшей значительного технического прогресса.

Увы, и поиски планеты, якобы расположенной за Нептуном – так называемой планеты Х – тоже не увенчались успехом. Никакой планеты Х не существует, что убедительно доказал астроном Майлс Стэндиш-младший в середине 1990-х годов. Плутон, который открыли в обсерватории Лоуэлла в феврале 1930 года, примерно через 13 лет после его смерти, некоторое время служил вполне приемлемым кандидатом на место планеты Х. Однако не прошло и нескольких недель с того дня, когда обсерватория заявила о своем сенсационном открытии, как астрономы принялись спорить, можно ли считать Плутон девятой планетой или все-таки нет. Поскольку мы, сотрудники Роузовского Центра Земли и Космоса – отделения Американского музея естественной истории в Нью-Йорке, – решили, что в нашей экспозиции Плутон будет представлен как комета, а не как планета, я невольно поучаствовал в этих спорах и, смею вас заверить, вопрос до сих пор не решен окончательно. Астероид, планетоид, планетезималь, ледяная планетезималь, крупная планетезималь, малая планета, карликовая планета, гигантская комета, объект из пояса Койпера, транснептуновое тело, метановый снежный ком, туповатая псина по имени Астро из мультфильма про Джетсонов – да что угодно, только не девятая планета, так говорим мы, скептики.

Дело в том, что Плутон слишком маленький, слишком легкий, слишком льдистый, слишком капризный, да и орбита у него слишком вычурная. Кстати, то же самое мы говорим и о недавно открытых серьезных конкурентах Плутона, в том числе – о трех-четырех объектах, орбиты которых, как выяснилось, лежат еще дальше орбиты Плутона, об объектах, которые способны поспорить с Плутоном и по габаритам, и по умению себя вести.

* * *

Шло время, а с ним и технический прогресс. Настали 1950-е годы – и наблюдения радиоволн, а также усовершенствованные методы астрофотографии поведали нам удивительные факты о планетах. К 1960-м годам и люди, и роботы вышли на околоземную орбиту, и мы получили фамильные фотопортреты планет. Каждый новый факт, каждая фотография позволяли еще чуть-чуть приподнять завесу тайны.

Венера, названная в честь богини любви и красоты, оказалась обладательницей толстой и почти что непрозрачной атмосферы, состоящей в основном из углекислого газа, и эта атмосфера, как выяснилось, давит на поверхность Венеры почти в 100 раз сильнее, чем земная на уровне моря. Хуже того, температура воздуха у поверхности приближается к 500 градусам по Цельсию. Сорокасантиметровая пицца с пепперони испечется на Венере за семь секунд, если просто подержать ее на воздухе (да-да, я все подсчитал). Столь суровые условия сильно затрудняют исследования, поскольку практически все, что мы только можем отправить на Венеру, продержится совсем недолго, а потом испарится, расплавится или сплющится. Так что, если хочешь собрать данные с поверхности этой неприветливой красавицы, нужно быть жаропрочным или по крайней мере очень проворным.

Кстати, то, что на Венере так жарко, отнюдь не случайно. Там свирепствует парниковый эффект, вызванный углекислым газом в атмосфере, который не выпускает инфракрасное излучение. Так что, хотя венерианские облака отражают большую часть поступающего на планету видимого солнечного света, камни и почва на поверхности поглощают весь остаток, которому удается пробиться. А затем снова испускают его в виде инфракрасного света, который накапливается в воздухе, и так и получается постоянно действующая печка для пиццы.

Кстати, мы говорим «венерианский», а не «венерический», что больше соответствует правилам словообразования, поскольку врачи, к сожалению, добрались до этого слова раньше астрономов. Впрочем, стоит ли их винить? Венерические болезни появились гораздо раньше астрономии, которая занимает всего лишь второе место в списке древнейших профессий.

С остальными планетами Солнечной системы мы тоже знакомимся все ближе день ото дня. Первый космический аппарат – «Маринер-4» – пролетел мимо Марса еще в 1965 году, и благодаря ему мы получили первые снимки Красной планеты крупным планом. Не считая фантазий Лоуэлла, до 1965 года никто не знал, как выглядит поверхность Марса, знали только, что она красноватая, с ледниками у полюсов и вся в темных и светлых пятнах. Никто не знал, что там есть горы и система каньонов гораздо шире, глубже и длиннее Большого Каньона. Никто не знал, что там есть вулканы гораздо больше, чем самый большой вулкан на Земле – Мауна-Кеа на Гавайях, – даже если измерить его высоту с океанского дна. Да и свидетельств, что по поверхности Марса некогда текли потоки воды, у нас оказалось предостаточно: на планете есть извилистые (пересохшие) русла рек длиной и шириной с Амазонку, сеть (пересохших) притоков, (пересохшие) речные дельты и (пересохшие) поймы. Исследовательские марсоходы, шажок за шажком продвигающиеся по пыльным каменистым равнинам, подтвердили, что на поверхности планеты есть минералы, которые формируются лишь с участием воды. Да-да, следы воды повсюду – но ни капельки, чтобы утолить жажду.

И на Марсе, и на Венере что-то произошло. Может быть, и на Земле тоже произойдет? Наш биологический вид обращается с окружающей средой совершенно беспардонно, не задумываясь об отдаленных последствиях. Вероятно, нам не пришло бы в голову задаваться подобными вопросами до изучения наших ближайших космических соседей, Венеры и Марса, которые заставили нас задуматься о собственном поведении.

* * *

Чтобы лучше рассмотреть более далекие планеты, нужны космические зонды. Первыми космическими аппаратами, которые покинули Солнечную систему, были «Пионер-10», запущенный в 1972 году, и его брат-близнец «Пионер-11», запущенный в 1973 году. Оба два года спустя прошли мимо Юпитера, устроив нам замечательную познавательную экскурсию. Вскоре они перейдут отметку в 16 миллиардов километров от Земли – в два с лишним раза дальше расстояния до Плутона.

Однако при запуске «Пионер-10» и «Пионер-11» не обладали достаточными запасами энергии, чтобы улететь далеко за Юпитер. Как же добиться, чтобы космический аппарат улетел дальше, чем хватит его источника энергии? Нацеливаешься, запускаешь ракетные двигатели, и пусть звездолет летит к цели, влекомый гравитационными силам всех объектов в Солнечной системе. А поскольку астрофизики очень точно рассчитывают траектории, зонды черпают энергию в ходе разных маневров, которые задействуют энергию движения по орбите различных планет и запускают аппарат дальше, словно праща. Специалисты по динамике орбит так ловко манипулируют гравитацией, что куда там бывалым бильярдистам.

Благодаря «Пионеру-10» и «Пионеру-11» мы получили очень качественные снимки Юпитера и Сатурна – с земной поверхности такие сделать невозможно. Однако настоящих кинозвезд из дальних планет сделали другие два зонда-близнеца – «Вояджер-1» и «Вояджер-2», запущенные в 1977 году и снабженные самым разным оборудованием для научных экспериментов и получения изображений. Благодаря «Вояджерам» Солнечная система стала близкой и знакомой целому поколению обитателей Земли. Среди неожиданных сенсаций, которыми мы обязаны этому проекту, – открытие, что спутники внешних планет такие же разные и удивительные, как и сами планеты. Так далекие луны превратились из скучных светящихся точек в целые миры, достойные нашего внимания и восхищения.

Сейчас, когда я пишу эти строки, орбитальная станция «Кассини», запущенная НАСА, вращается вокруг Сатурна и всесторонне изучает и саму планету, и поразительную систему ее колец, и множество ее спутников. Станция «Кассини» оказалась в окрестностях Сатурна благодаря четырем гравитационным «трамплинам» и успешно спустила дочерний зонд под названием «Гюйгенс», разработанный Европейским космическим агентством и названный в честь Христиана Гюйгенса, голландского астронома, открывшего кольца Сатурна. Зонд спустился в атмосферу Титана, самого большого спутника Сатурна, единственного спутника в Солнечной системе, обладающего плотной атмосферой. Химическая среда на поверхности Титана, богатая органическими молекулами, возможно, представляет собой самый близкий доступный нам аналог Земли до зарождения на ней жизни. НАСА планирует запустить и другие сложные космические аппараты, которые проделают то же самое на Юпитере и позволят нам основательно изучить и саму планету, и семьдесят с лишним его спутников.

* * *

В 1584 году в своей книге «О бесконечности Вселенной и мирах» итальянский монах и философ Джордано Бруно высказал предположение о существовании «неисчислимых солнц» и «неисчислимых Земель, которые вращаются вокруг этих солнц». Более того, Бруно заявил, что если исходить из предпосылки о всеблагом и всемогущем Творце, каждая из этих Земель населена живыми существами. За это и другие подобные дерзкие и богохульные высказывания католическая церковь сожгла Бруно на костре.

Однако Бруно был не первым и не последним, кто высказывал такого рода идеи в том или ином виде. В числе его предшественников – и древнегреческий философ Демокрит, живший в V веке до н. э., и кардинал Николай Кузанский, живший в XV веке н. э. А в числе великих последователей, например, немецкий философ XVIII века Иммануил Кант и французский прозаик XIX века Оноре де Бальзак. Бруно просто не повезло родиться в те времена, когда за подобные мысли казнили.

На протяжении XX века астрономы выяснили, что жизнь возможна и на других планетах, как и на Земле, но только если они вращаются вокруг своей звезды в так называемой «обитаемой зоне» – полосе пространства, пролегающей не слишком близко, чтобы вода не испарялась, но и не слишком далеко, чтобы она не замерзала. Жизнь в том виде, в каком знаем ее мы, несомненно, невозможна без воды, однако мы еще предполагали, что жизни обязательно нужен источник энергии в виде солнечного света.

И вот тогда-то мы и открыли, что спутники Юпитера Ио и Европа, а также и другие небесные тела в Солнечной системе, питаются тепловой энергией не только от Солнца. Ио принадлежит рекорд внешней Солнечной системы по вулканической активности, она изрыгает в свою атмосферу сернистые газы и плюется лавой направо и налево. Под ледяной корой Европы, скорее всего, таится океан жидкой воды, насчитывающий миллиард лет. В обоих случаях приливное воздействие Юпитера на твердые спутники накачивает их недра энергией, отчего лед тает и возникает среда, в которой могла бы зародиться жизнь, независимая от солнечной энергии.

Даже прямо здесь, на Земле, обнаружены новые категории организмов под общим названием экстремофилы, которые прекрасно себя чувствуют в условиях, враждебных для человека. Концепция обитаемой зоны опиралась на предубеждение, что для жизни лучше всего подходит именно комнатная температура. Однако некоторым организмам очень по нраву горячие ванны с температурой в несколько сотен с лишним градусов, а при комнатной температуре они прямо-таки чахнут. Для них это мы – экстремофилы. Многие места на Земле, прежде считавшиеся непригодными для жизни, стали домом для подобных существ: это и дно Долины Смерти, и устья горячих источников на дне океана, и свалки ядерных отходов, и многое другое.

Вооружившись знанием о том, что жизнь может появляться в местах гораздо более разнообразных, чем мы думали раньше, астробиологии расширили первоначальные, более строгие представления об обитаемой зоне. Сегодня мы знаем, что эта зона должна охватывать и суровые условия, которые, оказывается, нужны некоторым микроорганизмам, и широкий диапазон источников энергии, способных поддерживать такие условия. К тому же, как и подозревали Джордано Бруно и другие мыслители, список внесолнечных планет стремительно пополняется. Их уже свыше 150, и все они были открыты примерно за последние десять лет.

Мы вернулись к мысли о том, что жизнь, вероятно, кишит повсюду, как и предполагали наши предки. Однако сегодня мы не рискуем поплатиться за это головой и вдобавок знаем, что жизнь весьма вынослива и обитаемая зона вполне может распространяться на всю Вселенную.

Глава восьмая

Бродяги в Солнечной системе

Долгие сотни лет список наших небесных соседей почти не менялся. В него входили Солнце, звезды, планеты, горстка спутников и кометы. Плюс-минус планета-другая, но на общее строение системы это не влияло.

Однако 1 января 1801 года возникла новая категория – астероиды, которым дал это название в 1802 году Джон Гершель, сын сэра Уильяма, первооткрывателя Урана. За следующие два столетия семейный альбом Солнечной системы оказался битком набит данными, фотографиями и биографиями астероидов, поскольку астрономы открывают этих бродяг в огромном количестве, выявляют, откуда они берутся, оценивают их состав, прикидывают габариты, зарисовывают форму, вычисляют орбиты и сбрасывают на них зонды. Некоторые исследователи предполагают также, что астероиды сродни кометам и даже спутникам планет. И вот прямо сейчас, когда вы читаете эти строки, некоторые астрофизики и инженеры разрабатывают методы обороны от крупных астероидов, задумавших нагрянуть к нам в гости без приглашения.

* * *

Чтобы разобраться, как устроены мелкие объекты в Солнечной системе, следует сперва изучить крупные объекты, особенно планеты. Один любопытный факт, касающийся планет, установил и выразил в виде довольно простой математической формулы прусский астроном по имени Иоганн Даниэль Тициус в 1766 году. Несколько лет спустя коллега Тициуса Иоганн Элерт Боде безо всяких ссылок на Тициуса стал рекламировать эту формулу, и ее по сей день часто называют правилом Тициуса-Боде или даже просто законом Боде, совершенно забывая о заслугах Тициуса. Эта удобная и практичная формула дает вполне приемлемую оценку расстояний между планетами и Солнцем – по крайней мере, если речь идет о тех планетах, о которых уже знали в то время, то есть о Меркурии, Венере, Земле, Марсе, Юпитере и Сатурне. В 1781 году распространившиеся знания о законе Тициуса-Боде заметно помогли в открытии Урана, седьмой от Солнца планеты.

Это внушает уважение. Выходит, либо это правило – просто совпадение, либо оно отражает какое-то фундаментальное условие формирования солнечных систем.

Однако формула не совсем точна.

Проблема номер один: чтобы получить верное расстояние от Солнца до Меркурия, придется немного подтасовать данные – там, где формула требует 1,5, подставить 0. Проблема номер два: Нептун, восьмая планета, оказался гораздо дальше, чем показывает формула, зато примерно там, где должна была бы быть девятая. Проблема номер три: Плутон, который многие упорно называют девятой планетой[1], вообще выпадает из общей схемы, что, впрочем, для него характерно.

Кроме того, по этому закону между Марсом и Юпитером должна быть еще одна планета – на расстоянии около 2,8 астрономических единиц[2].

Воодушевленные открытием Урана примерно на том расстоянии, которое предсказало правило Тициуса-Боде, астрономы в конце XVIII века решили, что хорошо бы исследовать зону в окрестностях 2,8 а. е. И точно – в первый день нового 1801 года итальянский астроном Джузеппе Пиацци, основатель Палермской обсерватории, обнаружил там некое небесное тело. Впоследствии оно исчезло, неразличимое в сиянии Солнца, однако ровно год спустя благодаря блестящим вычислениям великого немецкого математика Карла Фридриха Гаусса его удалось снова найти в другой части небосклона. Все пришли в радостное волнение – триумф математики и триумф телескопов привели к открытию новой планеты! Сам Пиацци назвал ее Церерой в честь римской богини земледелия, придерживаясь традиции давать планетам имена в честь древнеримских божеств.

Но затем астрономы пригляделись повнимательнее, рассчитали орбиту, дистанцию и яркость Цереры и обнаружили, что новая планета очень уж мала. В ближайшие несколько лет в той же зоне были открыты и другие крошечные планеты – Паллада, Юнона и Веста. Гершель дал им название «астероиды» («звездоподобные тела»), и этот термин пусть не сразу, лишь через несколько десятков лет, но все же привился: в отличие от планет, которые в телескопы того времени выглядели как диски, открытые объекты ничем не отличались на вид от звезд за тем лишь исключением, что двигались. Дальнейшие исследования показали, что астероидов очень много, и уже к концу XIX века их открыли 464 – и все в полосе плотной «застройки» в окрестностях 2,8 а. е. А поскольку оказалось, что эта полоса – относительно плоская лента и не распространяется во все стороны вокруг Солнца, будто пчелиный рой вокруг улья, эту зону назвали поясом астероидов.

На сегодняшний день в каталоги вошли десятки тысяч астероидов, их открывают по нескольку сотен ежегодно. Всего, по некоторым оценкам, астероидов более километра в поперечнике насчитывается свыше миллиона. Понятно, что при всей насыщенной личной жизни римских богов и богинь у них не насчитаешь 10 000 сердечных друзей, поэтому астрономам уже давно пришлось отказаться от этого источника названий. Так что теперь астероиды называют в честь актеров, художников, философов, драматургов, городов, стран, динозавров, цветов, времен года и всякой всячины. Иногда им дают простые человеческие имена, так что многие люди вправе считать, что в их честь назвали астероид. Например, все, кого зовут Харриет, Джо-Энн или Ральф: существуют астероиды 1744 Харриет, 2316 Джо-Энн и 5051 Ральф, причем цифры обозначают порядковый номер в едином списке астероидов, орбиты которых определены с достаточной точностью.

Дэвид Леви, астроном-любитель из Канады, святой покровитель охотников за кометами и первооткрыватель множества астероидов, оказал мне честь, выбрал из своего запаса астероид и назвал его моей фамилией – 13123 Тайсон. Сделал он это вскоре после того, как мы открыли свой Центр Земли и Космоса, который обошелся в 240 миллионов долларов и предназначен исключительно для того, чтобы показать посетителям космос прямо здесь, на Земле. Жест Дэвида очень тронул меня, к тому же я сразу изучил данные об орбите астероида 13123 Тайсон и выяснил, что он вращается вокруг Солнца в общей массе собратьев и не пересекает орбиту Земли, а значит, из-за него жизни на Земле точно ничего не угрожает. Как-то спокойнее, когда уверен в подобных вещах.

* * *

Из всех астероидов сферической формой обладает одна лишь Церера, она же – самый крупный астероид, ее диаметр составляет около 900 км. Остальные гораздо меньше и имеют грубую, неправильную форму – вроде смешных картофелин или косточек-погрызушек для собак. Любопытно, что на одну Цереру приходится около четверти общей массы астероидов. И даже если подсчитать совокупную массу всех астероидов, которые достаточно крупны, чтобы их разглядеть, плюс всех мелких астероидов, о чьем существовании говорят нам косвенные данные, все равно не наберется на приличную планету. Получится примерно 5 % от массы Луны. Поэтому предсказание, что где-то на расстоянии 2,8 а. е. от Солнца прячется самая настоящая планета, сделанное на основании правила Тициуса-Боде, оказалось несколько преувеличенным.

Большинство астероидов вращается в так называемом «главном поясе» – в зоне между Марсом и Юпитером; эти астероиды состоят целиком из каменных пород, хотя есть и металлические, а есть такие, которые состоят из смеси металла и камня.

Обычно считается, что астероиды формируются из материала, оставшегося с первых дней существования Солнечной системы, – того материала, которому не удалось инкорпорироваться в планету. Однако это объяснение, мягко говоря, неполно и не учитывает того обстоятельства, что некоторые астероиды состоят из чистого металла. Чтобы во всем разобраться, нужно первым делом рассмотреть, как формировались самые крупные небесные тела в Солнечной системе.

Планеты сгустились из облака газа и пыли, обогащенных рассеявшимися остатками взорвавшихся звезд, содержавших заметные количества разных химических элементов. Сжавшееся облако образует протопланету – плотный ком, который притягивает к себе все больше и больше материала и от этого разогревается. С крупными протопланетами происходят две вещи. Во-первых, ком имеет склонность принимать шарообразную форму. Во-вторых, из-за внутреннего жара протопланета остается в расплавленном состоянии так долго, что все тяжелое – прежде всего железо с добавлением никеля и капелькой других металлов, например золота, кобальта и урана, – успевает утонуть и скапливается у центра нарастающей массы. Тем временем все легкое – и гораздо более распространенное, – то есть водород, углерод, кислород и кремний – всплывает к поверхности. Геологи, для которых чем слово длиннее и мудренее, тем лучше, называют этот процесс дифференциацией. Вот так и получается, что ядро дифференцированной планеты вроде Земли, Марса и Венеры состоит из металла, а мантия и кора – в основном из скальных пород и по совокупному объему гораздо больше ядра.

Потом такая планета остывает, и если впоследствии она разрушается, ну, скажем, в результате столкновения с кем-то из соседок, то фрагменты обеих будут вращаться по орбите вокруг Солнца более или менее по тем же траекториям, что и погибшие планеты. Фрагменты будут состоять в основном из камня, потому что получились из толстых внешних каменистых слоев двух дифференцированных небесных тел, однако небольшая их доля окажется цельнометаллической. Именно таково распределение состава между астероидами. Более того, кусок железа не может возникнуть прямо посреди межзвездного пространства, поскольку отдельные атомы железа, из которого он состоит, рассеяны по газовым облакам, из которых формируются планеты, а эти облака состоят в основном из водорода и гелия. Чтобы атомы железа нашли друг друга и сконцентрировались, необходимо, чтобы сначала возникло жидкое тело, которое впоследствии дифференцируется.

* * *

Но откуда же астрономы-специалисты по Солнечной системе выяснили, что большинство астероидов главного пояса состоит из каменистых пород? Как они вообще хоть что-то узнают об астероидах? Главный показатель – альбедо астероида, его способность отражать свет. Астероиды сами по себе не излучают свет, они лишь поглощают и отражают солнечные лучи. Как ведет себя 1744 Харриет – отражает или впитывает инфракрасные лучи? А видимый свет? А ультрафиолет? Разные материалы впитывают и отражают разные части светового спектра по-разному. Если досконально изучить спектр солнечного света (а астрофизики так и делают), а потом тщательно пронаблюдать, каков спектр солнечного света, отражаемого от того или иного астероида (а астрофизики так и делают), то можно выяснить, как изменился первоначальный солнечный свет, и, следовательно, определить, из каких материалов состоит поверхность астероида. А по этим материалам можно узнать, какую долю падающего света отражает поверхность. Эта цифра и расстояние до астероида позволяют рассчитать его размеры. В конечном итоге отталкиваешься от того, насколько ярко блестит астероид в небе, однако он может быть, например, очень большим, но совсем тусклым, или, наоборот, маленьким, но с очень высоким коэффициентом отражения, или ни то ни другое. Поэтому, если не знать его состав, нельзя получить ответ, просто измерив яркость.

Этот метод спектрального анализа поначалу привел к простой классификации – все астероиды поделили на три типа: богатые углеродом астероиды С-типа (от слова «Carboneum» – «углерод»), богатые кремнием астероиды S-типа («Silicium» – «кремний») и металлические астероиды М-типа. Однако в результате более точных измерений возник целый алфавит из доброго десятка классов, в каждый из которых входят астероиды, состав который обладает какой-то конкретной и важной особенностью. И тогда стало понятно, что у многих астероидов несколько предков среди небесных тел, а не одна планета-мать, которая когда-то разбилась вдребезги.

Если знать состав астероида, можно с некоторой уверенностью судить о его плотности. Любопытно, что некоторые оценки размера и массы астероидов свидетельствуют о плотности меньшей, чем у камня. Логично предположить, например, что у астероидов внутри могут быть пустоты или что их состав неравномерен. Что же к ним подмешано? Может быть, лед? Едва ли. Пояс астероидов находится от Солнца на таком расстоянии, что все ледяное – вода, углекислый газ, аммиак – с плотностью меньше камня должно было давно испариться. Возможно, речь действительно идет о пустотах, и астероиды состоят не только из камней, но и из рыхлого космического мусора, слипшегося с камнями воедино.

Первые подтверждения этой гипотезы были получены на основе анализа изображений шестидесятикилометрового продолговатого астероида под названием Ида, сделанных при помощи космического зонда «Галилео», когда он пролетал мимо нее 28 августа 1993 года. Полгода спустя примерно в 100 километрах от центра Иды было замечено пятнышко, которое оказалось спутником, имеющим форму гальки и диаметром почти два километра! Спутник назвали Дактиль, и это первый зарегистрированный спутник, вращающийся вокруг астероида. Можно ли сказать, что спутники у астероидов – редкость? Если у астероида в принципе может быть один спутник, следует из этого, что их может быть десять или сто? Иными словами, вдруг некоторые астероиды представляют собой груды камней?

Ответ, разумеется, да. Некоторые астрофизики даже говорят, что эти «кучи щебня» – уже появился такой научный термин (в отличие от геологов, астрофизики предпочитают передавать суть, а не нагромождать слоги) – встречаются довольно часто. Один из ярких примеров астероида такого типа – это Психея, общий диаметр которой составляет около 200 км, а коэффициент отражения большой, что заставляет предположить, что она металлическая. Однако средняя плотность Психеи свидетельствует о том, что она более чем на 70 % состоит из пустот.

* * *

Когда изучаешь объекты, которые «живут» вне главного пояса астероидов, довольно быстро наталкиваешься на прочих бродяг Солнечной системы – на астероиды-убийцы, орбиты которых пересекаются с орбитой Земли, на кометы и сонмища спутников. Кометы – это космические снежки. Обычно они имеют в поперечнике всего несколько километров и состоят из смеси замерзших газов, пыли, льда и всевозможных частиц. В сущности, они могут быть просто астероидами, покрытыми коркой льда, который никогда полностью не испаряется. Вопрос о том, чем считать тот или иной обломок – астероидом или кометой – сводится к тому, где он возник и где побывал. До 1687 года, когда Ньютон опубликовал свои «Начала», где сформулировал закон всемирного тяготения, никто и не представлял себе, что кометы живут и странствуют среди планет и обращаются по сильно вытянутым орбитам, то навещая Солнечную систему, то удаляясь из нее. Обледенелые обломки, которые сформировались на задворках Солнечной системы – как в поясе Койпера, так и за ним, – сохраняют ледяной покров, а если их обнаруживают на характерной вытянутой орбите по пути к Солнцу, когда они оказываются в пределах орбиты Юпитера, за ними виден разреженный, но хорошо заметный «хвост» из водяного пара и других летучих газов. В конце концов, побывав во внутренней части Солнечной системы столько раз, сколько потребуется (может быть, и сотни и даже тысячи), подобная комета растеряет весь свой лед, и останется только каменная глыба. В сущности, многие, если не все, астероиды, орбиты которых пересекаются с орбитой Земли, возможно, представляют собой «истощенные» кометы, чье твердое ядро продолжает преследовать нас.

А есть еще метеориты – летающие космические обломки, которые падают на Землю. Поскольку все метеориты, как и астероиды, состоят из камня, иногда с включениями металла, совершенно очевидно, что их родина – пояс астероидов. Специалистам по геологии планет, изучающим известные астероиды, число которых постоянно растет, стало ясно, что не все орбиты возникают в главном поясе астероидов.

Как любит напоминать нам Голливуд, рано или поздно какой-нибудь астероид (или комета) столкнется с Землей, однако то, что это реальная угроза, мы поняли лишь в 1963 году, когда астрогеолог Юджин М. Шумейкер убедительно доказал, что Аризонский метеоритный кратер Барринджера близ города Уинслоу, возникший 50 000 лет назад, мог быть только результатом падения метеорита, а не вулканической активности или воздействия какой-либо иной геологической силы земного происхождения.

Как мы еще увидим в части 6, открытие Шумейкера вызвало новую волну интереса к пересечениям орбиты Земли с орбитами астероидов. В 1990 годы космические агентства начали отслеживать объекты, близкие к Земле, – кометы и астероиды, чьи орбиты, как деликатно выражаются в НАСА, «позволяют им оказаться по соседству от Земли».

* * *

Важнейшую роль в жизни удаленных от нас астероидов и их собратьев играет планета Юпитер. Гравитационный баланс между Юпитером и Солнцем привел к скоплению семейств астероидов на 60 градусов впереди и на 60 градусов позади Юпитера на его орбите вокруг Солнца, так что, если соединить их прямыми линиями с Юпитером и с Солнцем, получится два равносторонних треугольника. Если измерить эти треугольники, получится, что астероиды находятся на расстоянии 5,2 а. е. и от Юпитера, и от Солнца. Эти пленные небесные тела именуются «троянскими астероидами» и находятся в так называемых точках Лагранжа. Как мы увидим в следующей главе, эти точки – словно магниты, которые притягивают астероиды, попадающие в сферу их притяжения.

Кроме того, Юпитер отводит много комет, которые направляются к Земле. Большинство комет живет в поясе Койпера, который начинается за орбитой Плутона и расстилается очень далеко. Однако если у кометы хватает дерзости пройти близко к Юпитеру, ее швыряет в другую сторону. Если бы не Юпитер, стоящий на часах, кометы бомбардировали бы Землю гораздо чаще. Более того, принято считать, что облако Оорта – обширная популяция комет на самой границе Солнечной системы, получившее название в честь Яна Оорта, голландского астронома, который выдвинул гипотезу о его существовании, – состоит из комет из пояса Койпера, которые вышвырнул вон Юпитер. А орбиты комет из облака Оорта тянутся на половину расстояния до ближайших звезд.

А как же спутники планет? Некоторые из них, по всей видимости, – пленные астероиды, например, Фобос и Деймос, маленькие, тусклые, картофелевидные спутники Марса. Однако у Юпитера есть в распоряжении несколько обледенелых спутников. Нельзя ли классифицировать их как кометы? А Харон, один из спутников Плутона, не слишком уступает размерами самому Плутону. При этом оба покрыты льдом. Вероятно, их стоит считать двойной кометой. Думаю, Плутон и против этого возражать не станет.

* * *

Около десятка комет и астероидов исследованы при помощи космических зондов. Первым это сделал американский космический аппарат «NEAR-Шумейкер» размером с автомобиль (остроумное сокращение NEAR означает «Near Earth Asteroid Rendezvous» – «Рандеву с астероидами поблизости от Земли»), который в 2001 году посетил расположенный неподалеку от нас астероид Эрос – и это отнюдь не случайно произошло перед самым Валентиновым днем. Аппарат опустился на поверхность астероида со скоростью всего 7 километров в час, оборудование его осталось в целости и сохранности, и он смог еще две недели передавать данные на Землю, благодаря чему планетные геологи смогли с определенной уверенностью сказать, что Эрос – астероид длиной около 35 километров – это недифференцированный плотный объект, а не куча щебня. В дальнейшем было осуществлено еще несколько смелых проектов, в том числе запущен зонд «Стардаст», который пролетел сквозь так называемую «кому» – пыльное облако вокруг кометы – и сумел взять пробу из роя крошечных частиц, захватив их при помощи ячеек, заполненных силиконовым аэрогелем. Цель проекта была очень простой – разобраться, какие бывают виды космической пыли, и собрать частицы, не повредив их. Для этого НАСА применило чудесную и удивительную субстанцию под названием аэрогель – больше всего это вещество напоминает рукотворное привидение. Это высушенная силиконовая губка, на 99,8 % состоящая из воздуха. Если пылинка попадает в нее со сверхзвуковой скоростью, то начинает лавировать и в конце концов останавливается, но остается целой и невредимой. А если попробовать остановить ту же самую пылинку бейсбольной перчаткой или чем угодно еще, то пылинка на большой скорости ударится о поверхность и от резкой остановки просто испарится. Как жаль, что при возвращении на Землю «Стардаст» разбился из-за нераскрывшегося парашюта!

Не отстает от американцев в исследовании комет и астероидов и Европейское космическое агентство. Космический аппарат «Розетта», чей полет продлится 12 лет, посвятит два года изучению одной-единственной кометы и соберет о ней небывалое количество информации с близкого расстояния, а затем двинется дальше и осмотрит два астероида в главном поясе.

Каждая встреча с космическими бродягами даст нам весьма конкретные сведения, которые позволят сделать выводы о формировании и эволюции Солнечной системы, о том, какие небесные тела ее населяют, о том, возможно ли, что органические молекулы попали на Землю на метеоритах, а также о размерах, форме и плотности соседних объектов. Как всегда, глубокое понимание зависит не от того, насколько хорошо удается описать тот или иной конкретный объект, а от того, как этот объект связан с массивом накопленных знаний и как новые знания влияют на вечно расширяющуюся границу этого массива. Если речь идет о Солнечной системе, то вечно расширяющаяся граница знаний лежит в области поиска иных солнечных систем. Теперь ученые стремятся всесторонне сравнить Землю с космическими бродягами – астероидами и с экстрасолярными планетами. Только тогда мы сумеем наконец разобраться, можно ли считать наш домашний уклад нормальным или мы живем в неблагополучной космической семейке.

Глава девятая

Пять точек Лагранжа

Первым пилотируемым космическим кораблем, покинувшим околоземную орбиту, был «Аполлон-8». Этот прорыв до сих пор остается одним из самых значительных, но малоизвестных рекордов XX столетия. Когда настал назначенный миг, астронавты включили третью, последнюю ступень мощной ракеты «Сатурн-V», и командный отсек корабля вместе с тремя его обитателями разогнался до скорости почти в 11 километров в секунду. На то, чтобы добраться до орбиты Земли, была растрачена половина энергии, необходимой, чтобы долететь до Луны.

После сброса третьей ступени двигатели были больше не нужны – только в середине полета необходимо было слегка скорректировать траекторию, чтобы астронавты не промахнулись мимо Луны. На протяжении 90 % путешествия почти в 400 тысяч километров командный отсек постепенно замедлялся под влиянием слабеющей земной гравитации. Тем временем по мере приближения к Луне ее притяжение становилось все сильнее. Поэтому где-то на пути неизбежно должна была быть точка, где взаимное притяжение Земли и Луны уравновешено. Когда командный отсек проходил эту точку в пространстве, его скорость снова возросла и он двинулся в сторону Луны с ускорением.

Если бы при этом приходилось учитывать одну лишь силу гравитации, эта точка была бы единственным местом в системе «Земля-Луна», где противодействующие силы уравновешивают друг друга. Однако Земля и Луна вращаются еще и вокруг общего центра тяжести, который находится примерно в полутора тысячах километров под поверхностью Земли на воображаемой линии, соединяющей центры Луны и Земли. Когда тела движутся по кругу любого радиуса и на любой скорости, они создают новую силу, которая направлена от центра вращения наружу. Именно эту «центробежную» силу вы и ощущаете, когда закладываете крутой разворот в машине или зачем-то соглашаетесь сходить на аттракцион вроде центрифуги или скоростной карусели. Классический пример подобных тошнотворных в буквальном смысле развлечений – это когда вы встаете по периметру большой круглой панели, прижавшись спиной к бортику. Когда все это устройство приходит в движение и раскручивается все быстрее и быстрее, вы чувствуете, как вас все сильнее и сильнее прижимает к бортику. На большой скорости эта сила не даст вам даже пошевелиться. И в этот-то момент у вас из-под ног убирают пол и начинают качать и переворачивать эту конструкцию в разные стороны. Когда я в детстве катался на таком аттракционе, то даже пальцами пошевелить не мог – они словно приклеились к бортику вместе со всем остальным моим телом.

Если во время подобного развлечения вас по-настоящему вырвет и вы успеете повернуть голову вбок, рвотные массы улетят под углом. Или тоже прилипнут к бортику. А вот если все будет еще хуже и вы не успеете повернуть голову, не исключено, что рвотные массы останутся у вас во рту, поскольку мощная центробежная сила подействует на них в противоположном направлении. (Тут мне пришло в голову, что я давненько не видел именно таких аттракционов. Неужели их наконец-то запретили?)

Центробежная сила – это просто следствие того, что любой предмет имеет тенденцию, придя в движение, двигаться дальше равномерно и прямолинейно, поэтому на самом деле это и не сила вовсе. Однако в расчеты ее можно включать как самую настоящую. И тогда – как сделал гениальный французский математик XVIII века Жозеф-Луи Лагранж (1736–1813) – откроешь во вращающейся системе «Земля-Луна» точки, где гравитация Земли и Луны и центробежные силы уравновешивают друг друга. Это особые места, и называются они точками Лагранжа.

Их пять.

Первая точка Лагранжа, которую ласково называют L1, находится между Землей и Луной – чуть ближе к Земле, чем точка простого гравитационного равновесия. Любой объект, попавший туда, будет вращаться по орбите вокруг центра тяжести системы «Земля-Луна» с тем же периодом в один месяц, как и Луна, и поэтому покажется, будто он застрял в пространстве на линии от Земли до Луны. Хотя все силы в этой точке словно бы перестают действовать, первая точка Лагранжа – это точка весьма ненадежного равновесия. Стоит телу чуть-чуть сместиться в сторону в любом направлении, совокупное воздействие трех сил вернет его на прежнее место. Однако если оно даже на самую малость сдвинется по линии «Земля-Луна», то неизбежно упадет или на Землю, или на Луну – словно шарик, с трудом уравновешенный на вершине крутого холма, который скатится либо по одному, либо по другому склону, если сдвинется хотя бы на волосок.

Вторая и третья точки Лагранжа (L2 и L3) тоже лежат на линии «Земля-Луна», однако L2 расположена далеко по ту сторону Луны, а L3 – далеко по ту сторону Земли. Там опять же действуют три силы – гравитация Земли, гравитация Луны и центробежная сила вращающейся системы. И опять же тело, помещенное в одну из этих точек, будет обращаться вокруг центра тяжести системы «Земля-Луна» с тем же периодом в один месяц, что и Луна.

Гравитационные «площадки» в точках L2 и L3 гораздо просторнее, чем в L1. Так что если вы случайно отклонитесь в сторону Луны или Земли, самой чуточки топлива хватит, чтобы вернуться на место.

Точки L1, L2 и L3 пользуются заслуженным уважением, однако премия «Лучшие точки Лагранжа» достается точкам L4 и L5. Одна расположена далеко слева от центральной линии системы «Земля-Луна», другая на таком же расстоянии справа, и каждая представляет собой вершину равностороннего треугольника, две другие вершины которого – Земля и Луна.

Точки L4 и L5, как и три их сестры, – это точки равновесия всех сил. Однако в точках L1, L2 и L3 равновесие лишь неустойчивое, а в L4 и L5 – устойчивое, и в какую сторону ни подашься, куда ни отклонишься, силы не дадут отклониться еще больше: это словно долина между двумя холмами.

Если тело, находящееся в любой точке Лагранжа, расположено не в точности в том месте, где уравновешиваются все силы, оно будет колебаться в окрестностях точки равновесия и траектория его колебаний называется либрацией. (Не путайте их с определенными точками на поверхности Земли, где умы колеблются под воздействием либаций, то есть возлияний.) Либрации похожи на колебания шарика, который скатывается в лунку, но по инерции проскакивает дальше нижней точки, а потом возвращается обратно.

Мало того что L4 и L5 – это особые точки орбиты, это еще и места, где в принципе можно создать космические колонии. Нужно всего лишь доставить туда строительные материалы, добытые не только на Земле, но, возможно, и на Луне или на каком-нибудь астероиде, оставить их там, не рискуя, что они разлетятся, а потом вернуться с очередной партией. Накопив в точке с нулевой гравитацией достаточно материалов, можно построить огромную космическую станцию размером в десятки километров, причем напряжение в ее конструкции будет минимальным. А если станция будет вращаться, центробежная сила создаст искусственную гравитацию для сотен (а может быть, и тысяч) ее обитателей.

Именно с этой целью в августе 1975 года было создано «Общество L5». Основателями его стали инженеры-энтузиасты Кейт и Кэролайн Хенсон, а запомнилось оно в основном поддержкой идей принстонского преподавателя физики и рьяного сторонника колонизации космоса Джерарда О’Нила, который написал об этом несколько книг, в том числе классическую работу «Верхний фронтир. Человеческие колонии в космосе» (Gerard K. O’Neill, «High Frontier: Human Colonies in Space», 1976). Руководящим принципом «Общества L5» было «распустить Общество на общем собрании в точке L5» – видимо, общее собрание должно пройти на космической станции, и таким образом будет показано, что Общество достигло своей цели. В апреле 1987 года «Общество L5» объединилось с Национальным космическим институтом, и в результате было сформировано Национальное космическое общество, которое существует и по сей день.

Идею расположить крупные космические станции в точках либрации выдвинул еще Артур Кларк в романе «Лунная пыль» (1961). Кларк был знаком с особыми орбитами не понаслышке. В 1945 году он первым рассчитал, на каком расстоянии от поверхности Земли период обращения спутника в точности совпадет с 24-часовым периодом обращения Земли; расчеты заняли четыре страницы и были вручную отпечатаны на пишущей машинке. Спутник на такой орбите «парил» бы над поверхностью Земли и служил бы идеальной ретрансляционной станцией для международной радиокоммуникации. Сегодня именно таких спутников связи насчитывается несколько сотен.

Где же находится это волшебное место? Это не низкая околоземная орбита. Те, кто ее занимают, например, Космический телескоп им. Хаббла и Международная космическая станция, облетают Землю примерно за 90 минут. А если тело находится от Земли на том же расстоянии, что и Луна, оно обращается вокруг нашей планеты примерно за месяц. Логично предположить, что где-то между ними расположена орбита, на которой можно поддерживать период обращения в 24 часа. Оказывается, она пролегает в 35 786 километрах над Землей.

* * *

Вообще-то вращающаяся система вроде системы «Земля-Луна» – явление достаточно распространенное. Для вращающейся системы «Земля-Солнце» существует свой набор из пяти точек Лагранжа. Астрофизическим спутникам особенно уютно в точке L2 системы «Земля-Солнце». Точки Лагранжа в этой системе вращаются по орбите между центром тяжести системы с периодом в один земной год. На расстоянии в полтора миллиона километров от Земли в направлении, противоположном Солнцу, телескоп в точке L2 может наблюдать все ночное небо 24 часа в сутки, поскольку Земля оттуда выглядит такой маленькой, что уже не играет никакой роли. А вот с низкой околоземной орбиты, где вращается телескоп имени Хаббла, Земля так велика, что заслоняет почти половину поля зрения. А Зонд микроволновой анизотропии им. Уилкинсона (Wilkinson Microwave Anisotropy Probe, WMAP) достиг точки L2 системы «Земля-Солнце» в 2002 году и вот уже несколько лет усердно собирает данные о вездесущем реликтовом микроволновом излучении, следствии Большого Взрыва. «Вершина холма» области L2 в системе «Земля-Солнце» еще более просторная и плоская, чем в системе «Земля-Луна». У WMAP осталось всего 10 % топлива, однако этого хватит, чтобы находиться в этой точке неустойчивого равновесия почти сто лет. Сейчас НАСА планирует запуск Космического телескопа им. Джеймса Уэбба, который назван в честь бывшего руководителя НАСА, который стоял во главе агентства в 1960-е годы. Этот телескоп должен сменить телескоп им. Хаббла. Он тоже будет жить и работать в области L2 системы «Земля-Солнце». И даже после его появления там останется достаточно места для новых спутников – десятки тысяч квадратных километров.

А вокруг точки L1 в системе «Земля-Луна» колеблется еще один лагранжелюбивый спутник НАСА под названием «Дженезис». Расстояние от Земли до точки L1 составляет полтора миллиона километров в сторону Солнца. В течение двух с половиной лет «Дженезис» был нацелен на Солнце и собирал беспримесное солнечное вещество, в том числе атомы и молекулы из солнечного ветра. Затем материал был переправлен на землю в капсуле, и ее состав изучали точно так же, как должны были изучать образчики вещества с аппарата «Стардаст», который собирал космическую пыль. «Дженезис» позволит подробнее изучить состав первоначального солнечного облака, из которого сформировались Солнце и планеты. Покинув точку L1, капсула с собранным веществом пролетела вокруг точки L2 и вернулась на Землю.

Поскольку точки L4 и L5 – это области устойчивого равновесия, можно предположить, что возле них будет скапливаться космический мусор, так что вести там дела станет довольно рискованно. В сущности, и сам Лагранж предсказывал, что в точках L4 и L5 системы «Солнце-Юпитер» с ее мощной гравитацией будет обнаружен космический мусор. Прошло сто лет – и были открыты первые из «троянских астероидов» Юпитера. Теперь мы знаем, что в областях L4 и L5 системы «Солнце-Юпитер» находится множество астероидов, которые предшествуют Юпитеру и следуют за ним по орбите вокруг Солнца с периодами, равными периоду обращения Юпитера. Ведут они себя точь-в-точь так, словно их держат на месте какие-то силовые лучи из фантастических романов, – и на веки вечные обречены сидеть на привязи гравитационных и центробежных сил в системе «Солнце-Юпитер». Разумеется, мы не сомневаемся, что в точках L4 и L5 систем «Земля-Солнце» и «Земля-Луна» и в самом деле скапливается космический мусор. Так и есть. Но его несопоставимо меньше, чем в системе «Солнце-Юпитер».

У всего этого есть важный побочный эффект: межпланетные маршруты, которые начинаются в точках Лагранжа, требуют очень мало топлива, чтобы добраться до других точек Лагранжа, а иногда и до других планет. Если запустить космический аппарат из точки Лагранжа, то, в отличие от запуска с земной поверхности, когда львиная доля топлива расходуется только на то, чтобы оторваться от земли, получится похоже на спуск судна из сухого дока, когда оно плавно соскальзывает в океан с минимальными затратами топлива. Современные ученые и инженеры думают скорее не о самодостаточных «колониях Лагранжа» – с людьми и фермами, – а о том, что точки Лагранжа могут послужить воротами в остальную Солнечную систему. От точек Лагранжа в системе «Земля-Солнце» полпути до Марса – если говорить не о расстоянии или времени, а о расходе топлива, который, собственно, все и решает.

Представьте себе такой вариант освоения пространства в будущем: мы расставим во всех точках Лагранжа в Солнечной системе заправочные станции, где путешественники будут пополнять свои запасы топлива по дороге в гости к друзьям и родным на других планетах. Такая модель при всей своей кажущейся утопичности не такая уж и надуманная. Обратите внимание, что если бы по всей стране не были обильно разбросаны автозаправочные станции, то, чтобы пересечь ее от побережья до побережья, вам понадобился бы автомобиль размером с ракету «Сатурн-V»: основной объем и массу вашего транспортного средства составляло бы именно топливо, которое использовалось бы в основном для транспортировки топлива, запасенного на будущее. По Земле мы так не ездим. Возможно, настало время отказаться от такого способа перемещения и в космосе.

Глава десятая

И антивещество на что-нибудь сгодится

По-моему, физика элементарных частиц занимает среди прочих естественных наук первое место по количеству смешных терминов. Где еще отрицательный мюон и мюонное нейтрино обмениваются векторным бозоном? Или странный кварк и очарованный кварк обмениваются глюоном?

Параллельно с бесчисленным на первый взгляд множеством частиц с диковинными названиями существует Вселенная античастиц, которые в совокупности называются антивеществом. Несмотря на популярность в научно-фантастической литературе, антивещество совершенно точно не фантастика, а самая настоящая реальность. Правда, оно действительно аннигилирует при контакте с обычным веществом.

Устройство Вселенной говорит об особых романтических отношениях частиц с античастицами. Они рождаются вместе из чистой энергии – и иногда и умирают (аннигилируют) тоже вместе, и их совокупная масса превращается обратно в энергию. В 1932 году американский физик Карл Дэвид Андерсон открыл антиэлектрон (обычно называемый позитроном), положительно заряженную частицу антивещества, соответствующую отрицательно заряженному электрону. С тех пор в ускорителях по всему миру то и дело создавались всевозможные античастицы, однако в целые атомы они начали складываться лишь недавно. Международная исследовательская группа, которой руководит Вальтер Элерт из Юлихского исследовательского центра в Германии, создала атомы, в которых антиэлектрон прекрасно связывается с антипротоном. Знакомьтесь – антиводород! Первые антиатомы были созданы в Женеве, в ускорителе Европейской организации по ядерным исследованиям, известной под сокращенным французским названием ЦЕРН, благодаря которой было сделано много открытий в области физики элементарных частиц.

Суть метода очень проста: надо создать пучок антиэлектронов и пучок антипротонов, столкнуть их при подходящей температуре и плотности и уповать на то, что они соединятся в атомы. В ходе первого раунда экспериментов группа Элерта получила девять атомов антиводорода. Однако в мире, где преобладает обычное вещество, жизнь атома антивещества трудна и полна опасностей. Антиводород прожил менее 40 наносекунд (40 миллиардных секунды), после чего аннигилировал с обычными атомами.

Открытие антиэлектрона стало одним из величайших триумфов теоретической физики, поскольку его существование предсказал всего за несколько лет до этого английский физик Поль А. М. Дирак. Дирак обнаружил два набора решений уравнения для энергии электрона – одно положительное и одно отрицательное. Положительное решение соответствовало качествам обычного электрона, а вот отрицательнее поначалу было необъяснимо, у него словно бы не было никаких соответствий в реальном мире.

Уравнения с двумя решениями встречаются сплошь и рядом. Простейший пример: «Какое число при умножении само на себя даст 9?» Три или минус три? Разумеется, оба ответа верные, поскольку 3 3 = 9 и (3) (3) = 9. Уравнения никогда не гарантируют, что их решения имеют отношение к событиям и явлениям реального мира, но если математическая модель физического явления верна, то манипулировать с ее уравнениями так же полезно, как и манипулировать со всей Вселенной, и при этом куда как проще. Как и в случае с Дираком и антивеществом, подобные опыты часто приводят к гипотезам, которые можно проверить, а если нельзя, значит, от теории придется отказаться. При любом физическом результате математическая модель обеспечивает логичность и внутреннюю непротиворечивость выводов.

* * *

Квантовая теория, она же квантовая физика, возникла в 1920-е годы и представляет собой область физики, которая описывает вещетво в масштабе атомных и субатомных частиц. Дирак на основании только что установленных законов квантовой физики постулировал, что иногда фантомный электрон «с другой стороны» появляется в нашем мире под видом обычного электрона, и тогда в «море» отрицательных энергий от него остается дырка. Дирак предположил, что эта дырка экспериментально проявится как положительно заряженный антиэлектрон, впоследствии получивший название «позитрон».

У субатомных частиц много измеряемых качеств. Если у какого-то качества может быть противоположное значение, значит, у античастицы это значение будет противоположным, а все остальные – идентичны «оригиналу». Самый очевидный пример – электрический заряд: позитрон во всем похож на электрон, только у позитрона заряд положительный, а у электрона отрицательный. Подобным же образом антипротон – античастица протона, несущая противоположный заряд.

Хотите верьте, хотите нет, а античастица есть даже у нейтрона, у которого нет электрического заряда. Называется она – вы угадали – антинейтрон. И он наделен нулевым зарядом, противоположным нулевому заряду обычного нейтрона.

Это арифметическое чудо объясняется тем, из какого набора дробно заряженных частиц (кварков) состоит нейтрон. Кварки, составляющие нейтрон, обладают такими зарядами: , , +, а кварки, составляющие антинейтрон, такими: +, +, . Каждый набор в сумме дает нулевой заряд, однако, как видите, соответствующие компоненты обладают противоположными зарядами.

Может показаться, будто антивещество берется из ничего. Если у пары гамма-лучей достаточно высокая энергия, они способны взаимодействовать и спонтанно превращаться в пару электрон-позитрон, таким образом превращая очень много энергии в самую чуточку вещества, что и описано прославленной формулой Эйнштейна, выведенной в 1905 году:

E = mc

Что в переводе на простой человеческий язык выглядит как

Энергия = (масса) (скорость света),

а в переводе на совсем простой человеческий язык

Энергия = масса (огромное-преогромное число).

На языке первоначальной интерпретации Дирака гамма-лучи вышибают электрон из царства отрицательных энергий, и создается обычный электрон и электронная дырка. Возможно и обратное. Если частица сталкивается с античастицей, они аннигилируют, закрывая дырку и испуская гамма-лучи. Гамма-лучи – это излучение, с которым лучше не связываться. Хотите, докажу? Вспомните Халка, персонажа комиксов, и то, как он стал большим, зеленым и страшным.

Если вам как-то удалось получить немножко античастиц в домашних условиях, у вас возникнут большие сложности с их хранением, поскольку если вы решите положить античастицы в обычный пакетик, бумажный или полиэтиленовый, или в сумку, они сразу аннигилируют. Лучше поступить вот как: заключить заряженные античастицы в сильное магнитное поле, где они будут отталкиваться от магнитных стенок. Если это магнитное поле в вакууме, то аннигиляция с обычным веществом античастицам не грозит.

Подобный магнитный эквивалент бутылки – самое подходящее вместилище и для других веществ, склонных разрушать емкости, куда их помещают, например, для светящегося газа с температурой 100 миллионов градусов, который участвует в экспериментах по термоядерному синтезу (контролируемых). Настоящие трудности с хранением возникают, если создаешь целые (а следовательно, электрически нейтральные) антиатомы, поскольку они при нормальных условиях не отталкиваются от магнитных стенок. Так что лучше всего не смешивать позитроны и антипротоны без крайней необходимости.

* * *

Чтобы создать антивещество, нужно по меньшей мере столько же энергии, сколько получишь, когда оно аннигилирует и снова превратится в энергию. Если не запастись заранее полным баком топлива, двигатели на самогенерирующемся антивеществе мало-помалу съедят всю энергию у вашего звездолета. Мне неизвестно, знали ли об этом создатели оригинальной теле– и киноверсий «Звездного пути», но, помнится, капитан Кирк все время требовал «повысить мощность» генераторов вещества-антивещества, а Скотти постоянно отвечал, что двигатели «не сдюжат».

У нас нет оснований полагать, что свойства антиводорода будут чем-то отличаться от свойств обычного водорода, однако их тождественность тоже пока не доказана. Очевидно, что нужно проверить два обстоятельства: тонкости поведения позитрона в связи с антипротоном – подчиняется ли он всем законам квантовой теории – и силу гравитации антиатома – вдруг у него не обычная гравитация, а наоборот, антигравитация. На атомном масштабе сила гравитации между частицами неизмеримо мала. Все события определяются не силой тяжести, а электромагнитными и ядерными силами, которые неизмеримо сильнее гравитации. Нужно создать столько антиатомов, чтобы из них получились тела макро-масштаба, и только тогда можно будет измерить свойства больших количеств антивещества и сравнить их со свойствами обычного вещества. Если сделать из антивещества набор биллиардных шаров, а также, разумеется, биллиардный стол и кии, удастся ли отличить антибиллиардную партию от обычной биллиардной? Упадет ли черный шар на пол точно с тем же ускорением, что и обычный черный шар? Будут ли антипланеты вращаться вокруг антизвезды точно так же, как и обычные планеты вокруг обычных звезд?

С философской точки зрения я убежден, что свойства макроколичеств антивещества окажутся тождественны свойствам обычного вещества – нормальная гравитация, нормальная упругость, нормальный свет, нормальный биллиард и так далее. К сожалению, из этого следует, что антигалактика, которая окажется на опасно близком расстоянии с Млечным путем и столкнется с ним, будет неотличима от обычной галактики, пока не станет слишком поздно и уже ничего нельзя будет поделать. Однако эта страшная участь, судя по всему, не так уж часто постигает галактики во Вселенной, поскольку, например, если одна-единственная звезда аннигилирует с одной-единственной антизвездой, вещество очень быстро и без остатка превратится в гамма-излучение. Две звезды с массой, примерно равной массе Солнца, в каждой из которых содержится около 1057 частиц), вспыхнули бы с такой яркостью, что система, получившаяся в результате столкновения, временно превзошла бы по выработке энергии все звезды в сотне миллионов галактик. У нас нет убедительных свидетельств того, что подобное случалось хотя бы раз. Так что, насколько мы можем судить, во Вселенной преобладает обычное вещество. Иначе говоря, когда вы отправитесь в очередное межгалактическое путешествие, опасность аннигиляции при разработке правил техники безопасности можно и не учитывать.

И все же равновесия во Вселенной нет, и это нервирует: в момент создания у любой античастицы всегда есть частица-двойняшка, а вот обычные частицы, похоже, прекрасно обходятся без своих античастиц. Может быть, где-то во Вселенной таятся залежи антивещества, которые и отвечают за дисбаланс? Или в первые мгновения существования Вселенной был нарушен какой-то физический закон (либо действовал какой-то неизвестный физический закон) и это навеки перекосило равновесие в пользу обычного вещества? Ответы на эти вопросы мы, возможно, так и не узнаем, но пока что, если у вас во дворе приземляется инопланетный звездолет и оттуда высовывается в приветственном жесте какое-то щупальце, не спешите его пожимать – лучше бросьте ему биллиардный шар. Если щупальце взорвется, значит, инопланетянин, скорее всего, состоял из антивещества. Если нет, налаживайте общение и ведите его к своему командиру.

Часть III

Нравы и обычаи природы

Какой видит природу пытливый ум и почему так получается

Глава одиннадцатая

Как важно быть постоянной

Стоит упомянуть слово «постоянная» – и слушателям сразу приходит на ум супружеская верность либо финансовя стабильность, а может быть, старая пословица, что в жизни нет ничего постоянного, кроме перемен. Между тем у Вселенной есть свои постоянные – неизменные величины, которые постоянно напоминают о себе и в природе, и в математике, числа, чьи значения играют важнейшую роль в научных изысканиях. Одни постоянные – физические, основанные на наблюдениях и измерениях. Другие тоже проливают свет на устройство Вселенной, однако они исключительно численные и происходят из математики как таковой.

Одни постоянные локальны и ограниченны, их можно применять всего-навсего в одном контексте, к одному объекту или одной подгруппе. Другие фундаментальны и универсальны и относятся к пространству, времени, веществу и энергии всегда и везде, и благодаря им исследователи получают возможность понимать и предсказывать прошлое, настоящее и будущее Вселенной. Ученым известно лишь несколько фундаментальных постоянных. Первые три места в их списке в памяти большинства из нас занимают скорость света в вакууме, гравитационная постоянная Ньютона и постоянная Планка, основа квантовой физики и ключ к печально знаменитому принципу неопределенности Гейзенберга. Кроме того, в число универсальных постоянных входят заряд и масса всех фундаментальных субатомных частиц.

Всякий раз, когда во Вселенной проявляется какая-либо закономерность причин и следствий, возникает подозрение, что здесь замешана постоянная. Однако, чтобы определить причину и следствие, нужно отделить все изменчивое от неизменного и убедиться, что мы не принимаем за причинно-следственную связь простую корреляцию, какой бы соблазнительной она ни была. В 90-х годах XX века в Германии резко возросла популяция аистов – а еще количество женщин, решивших рожать детей дома, а не в больнице. Так что же, считать, что детишек доставляли аисты? Едва ли.

Зато, убедившись, что постоянная вправду существует, и измерив ее значение, можно строить теории и прогнозировать всевозможные явления, которые мы еще не открыли или о которых даже не задумывались.

* * *

Первую неизменную физическую величину, имевшую отношение к устройству Вселенной, открыл немецкий математик Иоганн Кеплер, обладавший мистическим складом ума. В 1618 году, проблуждав десять лет в мистических дебрях, Кеплер обнаружил, что если возвести в квадрат время, которое нужно планете, чтобы обойти вокруг Солнца, эта величина всегда пропорциональна кубу среднего расстояния от планеты до Солнца. И оказалось, что это поразительное соотношение справедливо не только для всех до единой планет в нашей Солнечной системе, но и для всех до единой звезд, вращающихся вокруг центра Галактики, и для всех до единой галактик, вращающихся вокруг центра скопления галактик. Как читатель, вероятно, уже заподозрил, здесь не обошлось без постоянной, о чем Кеплер и не подозревал: в формулы Кеплера закралась ньютонова гравитационная постоянная, которую предстояло открыть лишь через 70 лет.

Вероятно, первой константой, которую вы проходили в школе, было число пи – математическая величина, получившая название в честь греческой буквы в начале XVIII века. Пи – это всего-навсего отношение длины окружности к ее диаметру. Иначе говоря, пи – множитель, при помощи которого можно по диаметру круга вычислить длину окружности или наоборот. Кроме того, с числом пи мы постоянно сталкиваемся и в обычной жизни, и в разных интересных ситуациях – всегда, когда речь идет о кругах и эллипсах, об объемах некоторых геометрических тел, о движении маятников, о дрожании струн и об анализе электрических контуров.

Пи – не целое число, оно обладает бесконечной последовательностью неповторяющихся десятичных знаков; если оборвать эту последовательность так, чтобы в нее вошли все арабские цифры, получится 3,14159265358979323846264338327950. В любые времена, при любом месте жительства и национальности, в любом возрасте и при любых эстетических предпочтениях, при любом вероисповедании и любых политических пристрастиях, будь ты хоть республиканец, хоть демократ, стоит подсчитать число пи – и получишь тот же ответ, что и кто угодно другой во всей Вселенной. Постоянные вроде пи обладают таким уровнем глобализации, о какой человеку и мечтать нечего, мы его все равно никогда не достигнем – и именно поэтому, если людям когда-нибудь придется налаживать коммуникацию с инопланетянами, общение, скорее всего, пойдет на языке математики, космическом «лингва франка».

Итак, число пи мы называем иррациональным. Его нельзя представить в виде дроби двух целых чисел – наподобие или 18/11. Однако математики древности, не подозревавшие о существовании иррациональных чисел, определяли число пи приблизительно в виде дробей – 25/8 (вавилоняне, около 2000 г. до н. э.) или 256/81 (египтяне, около 1650 г. до н. э.) Затем, уже около 250 г. до н. э., греческий математик Архимед, проделав трудоемкие геометрические построения, нашел не одну дробь, а две – 223/71 и 22/7. Архимед понимал, что точное значение пи, которое сам он не сумел найти, лежит где-то посередине.

В Библии также содержится примерная оценка числа пи – если учесть научные достижения того времени, можно сказать, довольно грубая. При описании убранства храма царя Соломона читаем: «И сделал литое из меди море, – от края его до края его десять локтей, – совсем круглое, вышиною в пять локтей, и снурок в тридцать локтей обнимал его кругом» (III Царств, 7:23). То есть диаметр составлял 10 единиц, а окружность 30 – такое могло быть лишь в том случае, если бы пи равнялось трем. Прошло три тысячи лет, и в 1897 году нижняя палата законодательного органа штата Индиана издала законопроект, согласно которому в «Штате верзил», как принято называть Индиану, «диаметр и окружность относятся как пять четвертей к четырем» – то есть число пи в точности равно 3,2.

Однако оставим в стороне законодателей, которые были зациклены на десятичных дробях. Даже величайшие математики, в том числе великий персидский ученый IX века Мухаммад ибн Муса аль-Хорезми, чье имя увековечено в слове «алгоритм», и даже сам Ньютон, упорно пытались повысить точность вычисления пи. Разумеется, огромный рывок в решении этой задачи был достигнут с появлением электронных вычислительных машин, то есть компьютеров. К началу XXI века количество известных цифр числа пи перешло отметку в триллион, превысив точность, необходимую для любого мыслимого применения этого числа в физике, если не считать исследования, будет ли когда-нибудь эта последовательность похожа на случайную (фанаты числа пи интересуются даже этим).

* * *

Ньютон внес в науку куда более существенный вклад, нежели вычисление числа пи: это, конечно, три фундаментальных закона движения и один закон всемирного тяготения. Все четыре закона впервые были сформулированы в основополагающем труде Ньютона «Philosophi Naturalis Principia Mathematica» или просто «Principia» («Начала»), увидевшем свет в 1687 году.

До «Начал» Ньютона ученые, занимавшиеся наукой, которая тогда называлась «механика», а впоследствии – «физика», просто описывали, что видели, уповая на то, что в следующий раз все произойдет примерно так же. Однако, вооружившись ньютоновыми законами движения, они получили возможность описывать соотношения между силой, массой и ускорением при любых условиях. В науке появилась предсказуемость. Как и в жизни в целом.

В отличие от первого и третьего законов, второй закон Ньютона представляет собой уравнение:

F = m a

В переводе на простой человеческий язык это означает, что равнодействующая сила F, прилагаемая к телу данной массы m, приведет к тому, что это тело будет двигаться с ускорением а. В переводе на еще более простой человеческий язык – чем больше сила, тем больше ускорение. И шагают они нога в ногу: если удвоить силу, действующую на тело, ускорение тоже удвоится. Масса тела служит в уравнении постоянной, позволяющей вычислить, какого именно ускорения следует ожидать при той или иной силе.

А что если масса тела не постоянна? Запусти ракету – и ее масса будет падать по мере расход топлива. А теперь смеха ради представим себе, что масса меняется, даже если не отбирать у тела составляющее его вещество. Это происходит в рамках специальной теории относительности Эйнштейна. В ньютоновой Вселенной масса любого тела принадлежит ему на веки вечные. Во Вселенной, где правит относительность Эйнштейна, у тел есть неизменная «масса покоя» (она же «масса» из уравнений Ньютона), к которой прибавляется все новая и новая масса в соответствии со скоростью движения тела. Происходит вот что: если ускорить тело во Вселенной Эйнштейна, его сопротивление ускорению повышается, а в уравнении это проявляется как увеличение массы тела. Об этих «релятивистских» эффектах Ньютон знать не мог, поскольку они становятся заметны только при скоростях, сопоставимых со скоростью света. Для Эйнштейна они означали, что на сцену выходит еще одна постоянная – скорость света. Она заслуживает отдельного рассказа – но это как-нибудь в другой раз.

* * *

Ньютоновы законы движения, как и многие другие физические законы, очень просты и понятны. Закон всемирного тяготения несколько сложнее. Согласно этому закону, сила гравитационного притяжения между двумя любыми телами – будь то пушечное ядро и Земля или Земля и Луна, два атома или две галактики – зависит только от масс этих двух тел и расстояния между ними. А точнее, сила тяготения прямо пропорциональна произведению масс взаимодействующих тел и обратно пропорциональна квадрату расстояния между ними. Эти пропорции позволяют понять, как устроена природа: если сила гравитационного притяжения между двумя телами на одном расстоянии равна некоей величине F, то при удвоении расстояния она равна одной четверти F, а при утроении – одной девятой F.

Однако этих сведений недостаточно, чтобы посчитать точное значение силы. Нужна постоянная – в данном случае так называемая гравитационная постоянная G.

Открытие соотношения между массой и расстоянием было одним из гениальных открытий Ньютона, но измерить значение постоянной G Ньютон никак не мог. Для этого ему пришлось бы знать все остальные величины в уравнении, и тогда G была бы полностью определена. Однако во времена Ньютона знать все остальные величины было невозможно. Измерить массы двух пушечных ядер и расстояние между ними проще простого, однако сила взаимного притяжения у них так мала, что ее не могли зарегистрировать никакие тогдашние приборы. Можно было бы измерить силу притяжения между ядром и Землей – но никто не знал в точности массу Земли. Так было более ста лет после публикации «Начал», до самого 1798 года, когда Генри Кавендиш, английский физик и химик, сумел вычислить G с достаточной точностью. Для этого он проделал опыт, ставший знаменитым: собрал прибор, основная часть которого представляла собой что-то вроде гантели из пары свинцовых шариков примерно по пять сантиметров в диаметре. Гантель была подвешена на тонкой вертикальной струне за середину, так что вся конструкция могла вращаться туда-сюда. Все это Кавендиш поместил в воздухонепроницаемый кожух, а снаружи к нему поднес (наискосок относительно гантели) два больших свинцовых шара – почти по 30 сантиметров в диаметре. Гравитационное воздействие внешних шаров должно было потянуть гантель и скрутить струну, на которой она висела. Самое точное измерение, которое получил Кавендиш, с трудом позволяло определить величину G в виде четырех десятичных знаков на конце целой цепочки нулей. В кубических метрах на килограмм на секунду в квадрате это значение составило 0,00000000006754.

Придумать подходящую установку для эксперимента было совсем не просто. Гравитация так слаба, что ее практически не уловить, и ее проявления в ходе эксперимента вполне могло затереть даже легчайшее дуновение воздуха внутри лабораторного кожуха. В конце XIX века венгерский физик Лоранд Этвеш построил новый, усовершенствованный аппарат Кавендиша и несколько повысил точность G. Проделать этот опыт так трудно, что даже сейчас G удается вычислить лишь с точностью до нескольких дополнительных знаков после запятой. Самые свежие результаты получены в результате экспериментов, которые провели Йенс Гундлах и Стивен Мерковиц в Вашингтонском университете в Сиэттле. Они видоизменили установку и получили значение 0,000000000066742. То, что гравитация очень слаба, никакое не преувеличение: как отмечают Гундлах и Мерковиц, сила гравитации, которую им нужно было измерить, эквивалентна весу одной-единственной бактерии!

Зная G, можно вывести самые разные величины – и, в частности, массу Земли, что и составляло конечную цель Кавендиша. По оценкам Гундлаха и Мерковица, она составляет около 5,9722 1024 килограммов, и эта оценка за прошедшие 15 лет уже почти не поменялась.

* * *

Многие физические постоянные, открытые за последние сто лет, связаны с силами, влияющими на субатомные частицы – а в этом царстве правит не точность, а вероятность. Самую важную постоянную открыл в 1900 году немецкий физик Макс Планк. Постоянная Планка, которую принято обозначать буквой h, легла в основу квантовой механики, однако Планк обнаружил ее, когда исследовал на первый взгляд скучное соотношение между температурой тела и диапазоном энергии, которую оно излучает.

Температура тела – это и есть мера средней кинетической энергии его непоседливых атомов и молекул. Разумеется, в пределах этой средней величины одни молекулы колеблются очень быстро, а другие относительно медленно. Вся эта кипучая деятельность порождает море света, разлитого в широком диапазоне энергий, в точности как частицы, испускающие эти энергии. Когда температура становится достаточно высокой, тело начинает светиться в видимом диапазоне. Во времена Планка одной из главных задач физики было исследование полного спектра этого света, в особенности полос с самой высокой энергией.

Идея Планка состояла в том, что описать весь диапазон излучаемого света одним уравнением можно только в том случае, если предположить, что сама энергия квантована – то есть делится на крохотные единички, которые дальше делить нельзя: на кванты.

Стоило Планку ввести в свою формулу спектра энергии постоянную h, как она стала появляться повсюду. В частности, h необходима для квантового описания и понимания природы света. Чем выше частота света, тем выше и энергия: диапазон наибольших частот – это гамма-лучи, самое опасное для жизни излучение. Радиоволны, диапазон наименьших частот, пронизывают вас ежедневно и ежесекундно без малейшего вреда. Высокочастотное излучение именно потому и вредно, что несет больше энергии. Насколько больше? Прямо пропорционально частоте. А каков показатель этой пропорциональности? Это и есть постоянная Планка – h. И если вы считаете, что постоянная G как показатель пропорциональности очень мала, взгляните, как выглядит самая точная на данный момент оценка h (с ее родной размерностью – килограмм, умноженный на метр квадратный в секунду): 0,00000000000000000000000000000000066260693.

Одно из самых поразительных, самых неожиданных проявлений постоянной Планка в природе – это так называемый принцип неопределенности, который первым сформулировал немецкий физик Вернер Гейзенберг в 1927 году. Принцип неопределенности задает условия неизбежного космического компромисса: для некоторых пар взаимосвязанных фундаментальных физических величин – например, для координаты и скорости или энергии и времени – невозможно точно вычислить значения обеих величин сразу. Иными словами, если снизить неопределенность для одной составляющей такой пары (например, для координаты), придется довольствоваться более приблизительной оценкой ее партнера (скорости). И именно h задает пределы доступной точности. Когда измеряешь что-то в обычной жизни, особых компромиссов не требуется. Но стоит спуститься на уровень атомов, как крошка h начинает вовсю диктовать свои условия.

* * *

В последние десятилетия ученые начали искать доказательства, что постоянные со временем меняются – хотя на певый взгляд кажется, будто такой подход внутренне противоречив или вовсе нездоров. Тем не менее в 1938 году английский физик Поль А. М. Дирак предположил, что значение не чего-нибудь, а самой ньютоновой постоянной G, вероятно, уменьшается с возрастом Вселенной. Сегодня поиски переменчивых постоянных стали у физиков настоящим хобби. Одни ищут постоянные, которые меняются со временем, другие – следы изменений в зависимости от места, третьи исследуют, как ведут себя физические формулы в доселе неисследованных областях. Рано или поздно будут получены какие-то надежные результаты. Так что держите руку на пульсе – вот-вот появятся новости о непостоянстве постоянных.

Глава двенадцатая

Ограничения скорости

В жизни встречаются вещи, которые могут летать быстрее пули – в том числе космические корабли или, скажем, Супермен. Однако никто и никогда не движется быстрее света в вакууме. Никто и никогда. Хотя свет, конечно, движется очень быстро, скорость его не бесконечна. А поскольку у света есть скорость, астрофизики знают, что заглядывать очень-очень далеко в пространстве – это все равно что смотреть в прошлое. И если достаточно точно оценить скорость света, можно приблизиться к хорошей оценке возраста Вселенной.

Все это играет роль не только в космических масштабах. Конечно, когда щелкаешь выключателем, не приходится долго ждать, пока свет достигнет пола. Однако в одно прекрасное утро, когда сидишь и завтракаешь и хочется подумать о чем-нибудь новом и интересном, можно поразмышлять над тем, что видишь собственных детей, которые сидят напротив, не такими, каковы они сейчас, а такими, каковы они были когда-то – примерно три наносекунды назад. Казалось бы, сущая ерунда, однако если понаблюдать за детишками в соседней галактике Андромеда, то пока разглядишь, как они едят свои кукурузные хлопья, дети постареют на два с лишним миллиона лет.

Если отбросить знаки после запятой, то скорость света в вакууме составляет 299 792 километра в секунду. Чтобы получить эту величину с такой точностью, потребовались столетия кропотливой работы. Однако мыслители задумывались о природе света задолго до того, как научные методы и инструменты достигли нынешних высот: что есть свет – свойство воспринимающего глаза или эманация предмета? Это волна или поток частиц? Свет перемещается или просто возникает? А если перемещается, то насколько далеко и с какой скоростью?

* * *

В середине V века до н. э. философ, поэт и ученый Эмпедокл, далеко опережавший свое время, задался вопросом, не может ли быть такого, что свет перемещается с некой скоростью и ее можно измерить. Однако миру пришлось дожидаться Галилея, который был сторонником эмпирического подхода к приобретению знаний. Он-то и поставил эксперимент, позволивший, так сказать, пролить свет на этот вопрос.

Об этом эксперименте Галилей писал в своей книге «Математические доказательства, касающиеся двух новых отраслей науки», вышедшей в 1638 году. Темной ночью два человека, взяв по горящему светильнику, которые можно быстро заслонять и открывать, стоят далеко друг от друга, но так, чтобы оставаться в зоне видимости. Первый быстро открывает и снова заслоняет свет своего светильника. Второй, завидев этот свет, в тот же миг открывает и снова заслоняет свой светильник. Проделав этот опыт всего один раз на расстоянии меньше мили, Галилей пишет:

Мне удалось произвести его лишь на малом расстоянии… почему я и не мог убедиться, действительно ли появление противоположного света совершается внезапно. Но если оно происходит и не внезапно, то, во всяком случае, с чрезвычайной быстротой, почти мгновенно…

Страницы: «« 1234567 »»

Читать бесплатно другие книги:

В книге рассматриваются три исторически неодновременных пути модернизации – модернизация Запада, дог...
«От Пушкина до Чехова. Русская литература в вопросах и ответах» продолжает цикл книг, основанных на ...
Что делать существу из другого мира, которое попало не на ту планету на которую планировало? Роман «...
Бог избранных «награждает» несносным характером и в то же время великой ответственностью за судьбы м...
Это мир Дикой Охоты, костров Бельтайна, чумы и грядущего Апокалипсиса. Некромант Грель Ворон — после...
Перед вами третья, заключительная часть красочно иллюстрированной и захватывающей трилогии «Новейшие...