Смерть в черной дыре и другие мелкие космические неприятности Тайсон Нил

Лед и пламень

Когда Коул Портер в 1948 году сочинил шлягер «Ну и жарища» («Too Darn Hot») для своего бродвейского мюзикла «Целуй меня, Кэт», то жаловался в этой песенке на температуру не выше 35–40 градусов по Цельсию. Если воспользоваться стихами Портера как руководством по выбору верхнего предела температуры для приятных занятий любовью, вреда от этого не будет. Если сопоставить это с тем, что делает с эротическими порывами обычного человека холодный душ, получится вполне приличная оценка того, как узок диапазон приемлемых температур для нагого человеческого тела – от нуля по Цельсию с отметкой комнатной температуры где-то посередине.

Во Вселенной все по-другому. Как вам температура в 100 000 000 000 000 000 000 000 000 000 000 градусов? Это сто тысяч миллиардов миллиардов миллиардов градусов. А еще это температура Вселенной спустя крошечную долю секунды после Большого Взрыва, когда вся энергия, вещество и пространство, которому предстояло превратиться в планеты, петунии, пряники и специалистов по физике частиц, были расширяющимся шаром из кварк-глюонной плазмы. И пока космос не остыл во много миллиардов раз, в нем не могло существовать ничего, что можно было бы назвать предметом или явлением.

Как велят законы термодинамики, примерно через секунду после Большого Взрыва расширяющийся огненный шар остыл до 10 миллиардов градусов и раздулся от размеров меньше атома до объема около тысячи Солнечных систем. Когда прошло три минуты, во Вселенной настала блаженная прохлада всего в миллиард градусов и вовсю шла работа по созданию простейших атомных ядер. Расширение – верная служанка остывания, и они с тех пор так и трудятся, не покладая рук.

Сегодня средняя температура Вселенной составляет 2,73 градуса по Кельвину. Все упоминавшиеся до сих пор температуры, кроме диапазона человеческого либидо, указаны в градусах Кельвина. Градус Кельвина соответствует на шкале температуры тому же интервалу, что и градус Цельсия, только на шкале Кельвина нет отрицательных чисел. Нуль есть нуль, и точка. Чтобы отмести все сомнения, нуль на шкале Кельвина называется абсолютный нуль.

Шотландский инженер и физик Уильям Томпсон, который впоследствии стал лордом Кельвином – и под этим именем прославился, – был первым, кто выдвинул идею минимальной возможной температуры. Это было еще в 1848 году. В лаборатории ее так и не удалось получить. И в принципе никогда не получится, хотя ученые подобрались к абсолютному нулю до ужаса близко. В лаборатории физика из Массачусетского технологического института Вольфганга Кеттерле в 2003 году искусными методами была получена температура в 0,0000000005 K (или, как сказали бы фанаты метрических систем, в 500 пикокельвинов).

Между тем космические явления охватывают поразительно широкий диапазон температур. Одно из самых жарких мест в сегодняшней Вселенной – ядра голубых звезд-сверхгигантов в часы коллапса. Перед самым взрывом сверхновой, в результате которого все окрестности звезды сильно разогреваются, ее температура взлетает до 100 миллиардов К. Для сравнения, в недрах Солнца всего 15 миллионов К.

На поверхностях гораздо прохладнее. Оболочка голубого сверхгиганта разогрета примерно до 25 000 К – этого, конечно, достаточно, чтобы испускать голубой свет. На нашем Солнце можно намерять 6000 К – этого достаточно, чтобы светить белым светом, и достаточно, чтобы плавить и испарять всю таблицу Менделеева. На поверхности Венеры 740 К, и этого хватит, чтобы поджарить любую электронику, которой обычно оснащают космические зонды.

Значительно ниже по шкале располагается точка замерзания воды – 273,15 К, что прямо-таки тепло по сравнению с 60 К на поверхности Нептуна, почти в 5 миллиардах километров от Солнца. Еще холоднее на Тритоне, одном из спутников Нептуна. Его поверхность, покрытая замерзшим азотом, охлаждена до 40 К, и это самое холодное место в Солнечной системе по эту сторону от Плутона.

Где же здесь место для обитателей Земли? Средняя температура тела человека – 36,6 градусов Цельсия – находится чуть ниже 310 по шкале Кельвина. Официально зарегистрированные температуры на Земле колеблются от жары в 331 К (57,8 °C, в ливийском городе Эль-Азизия в 1922 году) до мороза в 184 К (–89,15 °C, на базе Восток в Антарктиде в 1983 году). Однако при таких экстремальных температурах человеку без соответствующей экипировки не выжить. Если в Сахаре не укрыться от жары, то перегреешься, а без груды одежды и караванов провизии в Арктике обязательно замерзнешь. А между тем живущие на Земле микроорганизмы-экстремофилы, и термофилы (теплолюбивые), и психрофилы (холодолюбивые), изобретают разнообразные механизмы приспособления к температурам, при которых мы с вами изжарились бы или промерзли до костей. В сибирской вечной мерзлоте, насчитывающей 3 миллиона лет, обнаружили жизнеспособные дрожжевые грибки – безо всякой одежды. Один вид бактерий, проведший 32 000 лет в ледяном плену у вечной мерзлоты на Аляске, пробудился и начал плавать, едва растаял лед. И сейчас, когда вы читаете эти строки, разные виды архей и бактерий живут себе припеваючи в кипящей грязи, бурлящих горячих источниках и подводных вулканах.

В таких же поразительных условиях выживают даже сложные организмы. Крошечные беспозвоночные под названием тихоходки способны при соответствующей провокации временно приостанавливать обмен веществ. В этом состоянии они переносят температуры в 424 К (150 °C) в течение нескольких минут, а 73 К (–200 °C) – в течение нескольких дней кряду, так что им вполне хватило бы жизнестойкости, чтобы высадиться на Нептуне. Когда вам в следующий раз понадобятся космические путешественники с «соответствующей закалкой», стоит набрать экипаж из дрожжей и тихоходок, а всевозможные космонавты, астронавты и тайконавты[4] пусть отдохнут дома.

* * *

Температуру часто путают с теплом. Это распространенное заблуждение. Тепло – это общая энергия всех движений всех молекул в выбранном вами веществе. Так сложилось, что внутри смеси диапазон энергий очень широк: одни молекулы движутся быстро, другие медленно. Температура всего лишь отражает их среднюю энергию. Например, температура чашки горячего кофе выше, чем температура бассейна с подогревом, однако вся вода в бассейне содержит куда больше тепла, чем одинокая чашечка кофе. Если вы по невоспитанности выльете свой кофе при температуре 93 °C в бассейн с температурой 37 °C, бассейн вовсе не нагреется до «средней» температуры в 64 °C. И хотя два человека в одной постели испускают вдвое больше тепла, чем один человек в постели, средняя температура двух их тел – 36,6 °C и 36,6 °C – не создает под одеялом духовку с температурой в 73,2 °C.

Ученые XVII и XVIII веков считали, что жар тесно связан с горением. А горение в их понимании происходило, когда из предмета истекал флогистон, гипотетическая субстанция, в основном характеризующаяся именно горючестью. Если сжечь полено в камине, воздух унесет весь флогистон, а лишенное флогистона полено окажется всего-навсего грудой золы.

К концу XVIII века французский химик Антуан-Лоран Лавуазье предложил вместо теории флогистона теорию теплорода. Лавуазье считал, что тепло – это «флюид», простое вещество, невидимое, невесомое, без вкуса и запаха, которое передается от одного предмета к другому посредством горения или трения. Представление о тепле было в корне неверным до середины XIX века – пока не набрала обороты промышленная революция, когда в рамках новой отрасли физики под названием «термодинамика» оформилась более широкая концепция энергии.

* * *

Научное представление о природе тепла поставило в тупик множество самых гениальных умов, однако идею температуры вот уже много тысяч лет интуитивно понимают и ученые, и неученые. Если предмет горячий, значит, температура у него высокая. Если холодный – низкая. Эту связь подтверждают и термометры.

Изобретение термометра часто приписывают Галилею, однако первые такие приборы, возможно, создал изобретатель Герон Александрийский, живший в I веке до н. э. В книге Герона «Пневматика» есть описание «термоскопа» – устройства, которое показывает изменение объема газа при нагревании и остывании. В эпоху Возрождения «Пневматика», как и многие другие древнегреческие тексты, была переведена на латынь. В 1594 году Галилей прочел ее и, как впоследствии в случае с недавно изобретенным телескопом, сразу же создал усовершенствованный термоскоп. То же самое сделали и несколько его современников.

Главное в термометре – шкала. Есть любопытная традиция, которая идет еще с начала XVIII века: калибровать единицы температуры так, чтобы распространенным явлениям соответствовали числа, которые удобно делить – те, у которых много делителей. Исаак Ньютон предложил шкалу от нуля (таяние льда) до 12 (температура тела человека); ясно, что 12 делится нацело на 2, 3, 4 и 6. Датский астроном Оле Рёмер предложил шкалу от нуля до 60 (поскольку 60 делится на 2, 3, 4, 5, 6, 10, 12, 15, 20 и 30). По шкале Рёмера нулем обозначалась самая низкая температура, какой ему удалось достичь при помощи смеси из воды, льда и соли, а 60 градусов приходились на точку кипения воды.

В 1724 году немецкий мастер Даниэль Габриэль Фаренгейт – тот самый, который в 1714 году изобрел ртутный термометр – придумал более точную шкалу, разделив каждый градус Рёмера на четыре равные части. По новой шкале вода вскипала при 240 градусах, замерзала при 30, а температура человеческого тела составляла 90 градусов. После дальнейших уточнений диапазон от нуля до температуры тела составил 96 градусов, поскольку число 96 – это еще один чемпион по делимости (оно делится на 2, 3, 4, 6, 8, 12, 16, 24, 32 и 48). Точка замерзания воды стала отметкой в 32 градуса.

Шведский астроном Андерс Цельсий пошел по другому пути и в 1742 году предложил стоградусную шкалу температуры, лучше подходящую для десятеричной системы исчисления. При этом точка замерзания помещалась на отметке 100 градусов, а точка кипения – на нуле. Надо сказать, что это был не первый и не последний раз, когда астроном размечал шкалу в обратную сторону. Но какой-то неведомый благодетель, – весьма вероятно, ремесленник, которому заказали шкалы для термометров Цельсия – оказал человечеству неоценимую услугу и перевернул разметку, благодаря чему мы и получили всем известную шкалу Цельсия. Такое чувство, что число нуль само по себе парализует у иных людей мыслительные способности. Как-то раз лет двадцать назад, в бытность аспирантом, я приехал к родителям на зимние каникулы. Они тогда жили к северу от Нью-Йорка. Я включил радио, чтобы послушать классическую музыку. На северо-восток надвигалась волна холодного воздуха из Канады, и между частями «Музыки на воде» Георга Фридриха Генделя диктор объявлял о снижении температуры воздуха: «Пять градусов по Фаренгейту… четыре… три градуса»… И наконец огорченно воскликнул: «Если так и дальше пойдет, скоро никакой температуры не останется!»

Отчасти ради того, чтобы избежать подобных неловких признаний в невежестве, международное научное сообщество предпочитает пользоваться шкалой температуры Кельвина, где нуль стоит на подобающем месте – в абсолютном низу. Любое другое положение нуля произвольно и не слишком приспособлено для арифметических комментариев в прямом эфире.

Несколько предшественников Кельвина измеряли сокращение объема газа при охлаждении и установили, что 273,15 градусов по Цельсию или 459,67 градусов по Фаренгейту – это температура, при которой молекулы любого вещества обладают минимально возможной энергией. Другие эксперименты показали, что 273,15 °C – это температура, при которой газ при постоянном давлении сожмется до нулевого объема. Поскольку нулевого объема у газа не бывает, отметка 273,15 °C стала незыблемой нижней границей шкалы Кельвина. Разве можно найти для такой отметки название удачнее, чем «абсолютный нуль»?

* * *

Можно сказать, что Вселенная в целом ведет себя немного как газ. Если заставить газ расширяться, он охлаждается. В прошлом, когда Вселенная насчитывала всего-то полмиллиона лет от роду, температура в ней была около 3000 К. Сегодня она меньше 3 К. Неумолимое расширение навстречу холодной гибели привело к тому, что нынешняя Вселенная в тысячу раз больше и в тысячу раз холоднее, чем во младенчестве.

На Земле температуру обычно меряют, сунув градусник в какое-нибудь естественное отверстие в живом организме или прикоснувшись термометром к предмету каким-то другим, менее инвазивным способом. Подобная форма прямого контакта позволяет движущимся молекулам внутри термометра достичь такой же средней энергии, что и молекулы предмета, температуру которого мы измеряем.

Если термометр просто лежит себе на воздухе, а не занимается трудами праведными в куске запеченного мяса, ему говорит, какую показывать температуру, средняя скорость сталкивающихся молекул воздуха. Кстати, о воздухе: в определенное время и в определенном месте на Земле температура воздуха на солнцепеке примерно такая же, что и температура воздуха под ближайшим деревом. Тень всего-навсего прикрывает термометр от энергии солнечного света, которая практически вся проходит через атмосферу, не поглощаясь, и попадает вам на кожу, и от этого-то у вас и возникает ощущение, что вы горячее окружающего воздуха. Однако в пустоте никакого воздуха нет и нет движущихся молекул, которые заставят термометр что-то показать. Поэтому вопрос «Какая температура в космосе?» очевидного смысла не имеет. Если к термометру ничего не прикасается, он может регистрировать лишь энергию излучения всех источников, которое на него попадает.

На дневной стороне нашей Луны, лишенной атмосферы, термометр покажет 400 К (127 °C). Отойдите на несколько шагов в тень валуна или перейдите на ночную сторону Луны – и термометр тут же упадет до 40 К (–233 °C). Чтобы пережить лунный день без скафандра с контролем температуры, вам пришлось бы закладывать пируэты, чтобы попеременно разогревать и охлаждать разные части тела и как-то сохранять приемлемую температуру.

* * *

Если ударит совсем уж лютый мороз и вам захочется собрать как можно больше энергии излучения, лучше наденьте что-нибудь темное, а не блестящее.

Точно так же и термометр. Чем обсуждать, в какую обшивку помещать его в космосе, предположим, что можно сделать термометр с идеальным поглощением. А теперь, если вы поместите его посреди пустоты – например, на полдороге между Млечным Путем и галактикой Андромеда, вдали ото всех очевидных источников излучения, – термометр в конце концов покажет 2,73 К, нынешнюю фоновую температуру Вселенной.

В последнее время космологи пришли к согласию в том, что Вселенная будет расширяться вечно. К тому времени, как космос удвоится в размерах, его температура упадет вдвое. К тому времени, как он еще удвоится, температура снова снизится в два раза. Пройдут триллионы лет, весь оставшийся газ будет задействован при создании звезд, а все звезды сожгут все свое термоядерное топливо. Между тем температура расширяющейся Вселенной будет все падать и падать и все сильнее приближаться к абсолютному нулю.

Часть IV

Смысл жизни

Взлеты и падения на пути к пониманию того, откуда мы взялись

Глава двадцатая

Прах к праху

Если просто взглянуть на Млечный Путь невооруженным глазом, увидишь полосу из темных и светлых пятен, похожих на облака, которая тянется через все небо от горизонта до горизонта. Если взять обычный бинокль или любительский телескоп, при небольшом увеличении унылые темные пятна Млечного Пути превратятся в не менее темные и унылые пятна, зато на месте ярких пятен проступят бесчисленные звезды и туманности.

Галилей в своей книжке под названием «Sidereus Nuncius» («Звездный вестник» или «Астрономический вестник»), опубликованной в 1610 году в Венеции, рассказывает, как выглядят небеса, если смотреть на них в телескоп, и в том числе приводит первое в истории описание светлых пятен на Млечном Пути. Когда он упоминает свой инструмент – слово «телескоп» еще предстояло изобрести, поэтому Галилей называет его «зрительная труба», – то приходит в такое волнение, что едва сдерживается:

Третьим предметом нашего наблюдения была сущность, или материя Млечного Пути. При помощи зрительной трубы ее можно настолько ощутительно наблюдать, что все споры, которые в течение стольких веков мучили философов, уничтожаются наглядным свидетельством, и мы избавимся от многословных диспутов. Действительно, Галаксия является не чем иным, как собранием многочисленных звезд, расположенных группами. В какую бы его область ни направить зрительную трубу, сейчас же взгляду представляется громадное множество звезд, многие из которых кажутся достаточно большими и хорошо заметными. Множество же более мелких не поддается исследованию.

strong>(Пер. И. Веселовского)

Самое увлекательное, конечно, происходит именно в «собрании многочисленных звезд». К чему интересоваться темными областями, где и звезд-то нет? Наверное, это какие-то космические дыры в бесконечную пустоту.

Только три века спустя стало понятно, что темные пятна – это густые плотные облака из газа и пыли, затмевающие далекие россыпи звезд. Именно в недрах этих облаков и таятся звездные питомники. Американский астроном Джордж Комсток задался вопросом, почему одни далекие звезды выглядят гораздо тусклее других на том же расстоянии, но кто в этом виноват, догадался лишь позднее, в 1909 году, голландский астроном Якобус Корнелиус Каптейн (1851–1922). Он написал об этом две статьи – обе назывались «О поглощении света в космосе» («On the Absorption of Light in Space»), – где привел доказательства, что облака, «межзвездная среда», которую он открыл, не просто рассеивают свет звезд: они по-разному влияют на разные части спектра звезды и ослабляют синий свет сильнее, чем красный. Из-за такого выборочного поглощения далекие звезды на Млечном Пути выглядят в среднем краснее близких.

Обычные водород и гелий, главные составляющие облаков межзвездного газа, не делают свет красным. А вот более крупные молекулы на это способны, особенно те, которые содержат углерод и кремний. А когда молекулы становятся так велики, что их уже нельзя называть молекулами, мы зовем их пылью.

* * *

С домашней разновидностью пыли знакомы, наверное, все, хотя лишь немногим известно, что в замкнутом пространстве квартиры она состоит в основном из отшелушившихся мертвых клеток кожи человека (а также домашних животных, если вы держите дома какое-нибудь млекопитающее). Насколько мне известно, космическая пыль в межзвездном пространстве ничьего эпидермиса не содержит. Зато там есть удивительный набор сложных молекул, излучение которых лежит в основном в инфракрасном и микроволновом диапазоне. В арсенале астрофизиков микроволновые телескопы появились лишь в 60-е годы XX века, а инфракрасные – и того позже, в 70-е. Так что до той поры никто не подозревал о таком химическом многообразии. В последующие десятилетия сформировалась сложная и завораживающая картина рождения звезд.

Звезды формируются далеко не во всех газовых облаках на Млечном Пути и далеко не всегда. Чаще всего облако пребывает в растерянности – не знает, что делать дальше. Хотя нет, в растерянности пребывают скорее астрофизики. Мы знаем, что облако хочет схлопнуться под собственным весом и создать звезду, а может, и несколько. Однако этому мешает вращение, а также турбулентность в недрах облака. А еще обычное давление газа, которое вы проходили на физике в школе. Схлопыванию препятствуют и галактические магнитные поля: они пронизывают облако и вцепляются во все свободно парящие заряженные частицы в газе – и тем самым лишают облако возможности свободно реагировать на собственную гравитацию. И вот что пугает: если бы мы не знали заранее, что звезды существуют, данные самых передовых исследований на сегодняшний день предоставили бы нам массу убедительных доказательств невозможности их формирования.

Подобно нескольким сотням миллиардов звезд на Млечном Пути, облака газа вращаются вокруг центра Галактики. Звезды – это крошечные крупицы всего в несколько световых секунд в поперечнике, которые плавают в просторном океане проницаемого пространства, и друг с другом они расходятся, словно корабли в ночном море. А вот газовые облака очень велики. Обычно они расстилаются на сотни световых лет, и их масса эквивалентна миллионам солнц. Пробираясь по галактике, они частенько сталкиваются, и их содержимое перемешивается. Иногда они слипаются, словно поджаренный зефир, а иногда от ярости раздирают друг друга на части – все зависит от относительной скорости и угла столкновения.

Если облако остывает до достаточно низкой температуры (меньше 100 К), составляющие его атомы перестанут пробегать мимо друг дружки (как бывает при более высоких температурах) и начнут слипаться. Последствия подобного химического перехода сказываются на всех. Растущие частички, которые содержат уже десятки атомов, начинают отражать туда-сюда видимый свет, что заметно ослабляет свет звезд, которые находятся за облаком. К тому времени, как частички превращаются в полномасштабные пылинки, они содержат уже по 10 миллиардов атомов. При таких габаритах они уже не рассеивают видимый свет от далеких звезд, а поглощают его, а затем заново испускают полученную энергию в виде инфракрасного излучения – в этой части спектра излучение беспрепятственно покидает облако. Однако поглощение видимого света создает давление, которое толкает облако в направлении, противоположном источнику света. Теперь динамическая эволюция этого облака неразрывно связана с поглощаемым звездным светом. Силы, из-за которых повышается плотность облака, впоследствии могут привести его к гравитационному коллапсу, а это, в свою очередь, приводит к рождению звезд. Тут мы сталкиваемся со странной ситуацией: чтобы создать звезду с достаточной для термоядерного синтеза температурой недр 10 миллионов градусов, нужно сначала создать в газовом облаке максимально прохладную среду.

Когда астрофизики рассказывают об этом этапе жизни облака, то могут лишь мычать и размахивать руками. Теоретики и специалисты по компьютерному моделированию сталкиваются с задачей множественных переменных: прежде чем подступиться к изучению динамического поведения больших массивных облаков с учетом всех внутренних и внешних воздействий, им нужно вложить в свои суперкомпьютерные расчеты все известные физические и химические законы. Однако трудности на этом не заканчиваются: ученые, к своему вящему унижению, упираются в то обстоятельство, что первоначальное облако в миллиарды раз больше и в сотни секстильонов раз менее плотное, чем звезда, которую мы хотим создать, так что им приходится одновременно описывать и те процессы, которые играют роль на очень маленьких масштабах, и те, что играют роль на очень больших масштабах – непосильная ноша даже для самых мощных компьютеров современности.

* * *

Впрочем, в одном мы можем быть уверены: в самых темных и плотных глубинах межзвездного облака, где температура падает до 10 градусов выше абсолютного нуля, сгустки газа все-таки схлопываются безо всякого сопротивления – и их гравитационная энергия преобразуется в тепло. Температура в области, которой вскоре предстоит стать ядром новорожденной звезды, стремительно возрастает, отчего все крупицы пыли поблизости разрушаются. В конце концов схлопывающийся газ достигает температуры в 10 миллионов градусов. При этой волшебной температуре протоны (в сущности, голые атомы водорода) разгоняются до такой скорости, что преодолевают отталкивание и связываются под влиянием сильного притяжения, которое работает на близких расстояниях и в науке называется – «сильное взаимодействие». В результате термоядерного синтеза образуется гелий, чья масса меньше суммы масс его составных частей. Согласно знаменитой формуле Эйнштейна E = mc, где E – энергия, m – масса, а c – скорость света, недостающая масса при этом превращается в огромное количество энергии. Тепло распространяется во все стороны, газ начинает светиться, и энергия, которая раньше была массой, находит выход. И хотя область раскаленного газа по-прежнему заключена в большое облако, словно в материнскую утробу, тем не менее можно смело сообщить Млечному Пути, что у него родилась звезда.

Мы знаем, что звезды бывают самой разной массы – от всего-то одной десятой массы Солнца примерно до ста его масс. По причинам, которые пока что скрыты от нас завесой тайны, гигантское облако газа содержит множество прохладных участков, причем все они образуются примерно в одно и то же время – и в каждом из них зарождается по звезде. На каждую звезду с большой массой приходится тысяча звезд с низкой массой. Но в рождении звезд участвует лишь около 1 % всего газа из первоначального облака, и поэтому нам приходится решать классическую задачу – выяснять, как и почему хвост виляет собакой.

* * *

Найти нижнюю границу массы достаточно просто. Ниже примерно одной десятой массы Солнца у схлопывающегося газа не хватит гравитационной энергии, чтобы поднять температуру недр до требуемых 10 миллионов градусов. Звезда не родится. Вместо нее получится так называемый коричневый карлик. Поскольку собственного источника энергии у него нет, со временем он тускнеет, поскольку расходует ту скудную энергию, которую заполучил в результате коллапса. Внешние газовые слои коричневого карлика так холодны, что многие крупные молекулы, которые в атмосфере более горячих звезд обычно разрушаются, существуют в них вполне благополучно. Коричневый карлик с его жалкой светимостью очень трудно найти – для этого нужны примерно те же методы, что и для регистрации планет. Более того, набрать достаточно коричневых карликов, чтобы распределить их на дополнительные категории, удалось лишь в последние годы. Верхняя граница массы тоже определяется без труда. При массе выше приблизительно ста масс Солнца звезда начинает светиться так сильно, что мощное давление ее света на крупицы пыли внутри облака отталкивает прочь любую дополнительную массу, которая и хотела бы присоединиться к звезде, а пыль тянет с собой и газ. Возникает прочная и необратимая связь между звездным светом и пылью. Воздействие давления излучения оказывается таким мощным, что светимость всего нескольких массивных звезд способна развеять почти всю массу облака, в котором они зародились, рассеять темную завесу, оголив тем самым десятки, если не сотни, новеньких звезд, своих сестричек, и выставив их на обозрение всей галактике.

Великая Туманность Ориона, расположенная чуть ниже пояса Ориона, примерно на середине его меча, и представляет собой примерно такой звездный питомник. В этом облаке в одном гигантском скоплении зарождаются тысячи звезд. Четыре из нескольких тамошних массивных звезд составляют Трапецию Ориона и стремительно опустошают огромную дыру в самой середине облака, из которого они сформировались. В телескоп им. Хаббла отлично видно новые звезды, образующиеся в тех краях, причем каждая новорожденная запелената в формирующийся протопланетный диск из пыли и других молекул, притянутых из первоначального облака. А внутри каждого диска образуется солнечная система.

Довольно долго новорожденные звезды никого не беспокоят. Однако в конце концов длительные и стойкие гравитационные возмущения огромных облаков, проходящих мимо них, заставляют скопление распасться, и составляющие скопление звезды рассеиваются среди сонмища звезд в галактике. Звезды с низкой массой живут практически вечно – так рационально они расходуют свое топливо. Звезды средней массы – вроде нашего Солнца – рано или поздно превращаются в красных гигантов и на пути к гибели раздуваются в объеме чуть ли не в сто раз. Их внешние газовые слои так слабо связаны с самой звездой, что уплывают в пространство, обнажая продукты переработки ядерного топлива, которое питало звезду на протяжении ее жизни в десять миллиардов лет. Газ, возвращающийся в космическое пространство, захватывается проходящими мимо облаками – и впоследствии участвует в дальнейших раундах формирования звезд.

Хотя звезды с самой большой массой встречаются редко, у них на руках почти все эволюционные козыри. У них самая высокая светимость (в миллион раз ярче Солнца), а следовательно, и самая короткая жизнь (всего несколько миллионов лет). И, как мы вскоре убедимся, самые массивные звезды вырабатывают десятки тяжелых элементов, по порядку перерабатывая в своих недрах водород в гелий, углерод, азот, кислород и так далее, до самого железа. И смерть у них геройская и зрелищная – это взрывы сверхновых, в пожаре которых создаются все новые элементы, а их ослепительные вспышки затмевают на время целые галактики. Энергия взрыва рассеивает свежесозданные элементы по всей галактике, пробивает дыры в заволакивающем ее газе и обогащает близлежащие облака сырьем для создания собственной пыли. Волны от взрыва сверхновой распространяются по облакам со сверхзвуковой скоростью, сжимают газ и пыль и, вероятно, создают участки высокой плотности, которые и нужны, чтобы создавались звезды.

Как мы узнаем из следующей главы, главный дар сверхновой мирозданию – то, что она засевает облака газа тяжелыми элементами, из которых потом получаются планеты, одноклеточные организмы и люди, – и получается, что благодаря тому, что облака обогащаются химическими элементами от предыдущего поколения массивных звезд, рождается новая звезда.

Глава двадцать первая

Рожденные в недрах звезд

Далеко не все научные открытия совершают необщительные гении-одиночки. Не все научные открытия попадают в статьи под броскими заголовками или в бестселлеры. В некоторых работах участвует много народу, а сам процесс растягивается на десятилетия, требует сложных математических выкладок, да и популярно изложить его в прессе не так-то просто. Для широкой общественности подобные открытия проходят незамеченными.

Первое место в моем списке недооцененных открытий XX века занимает тот факт, что главный источник тяжелых химических элементов во Вселенной и главный фактор, определивший их относительные количества, – это сверхновые. Это неизвестное широкой общественности открытие явилось в форме объемистой научной статьи, опубликованной в 1957 году в журнале «Reviews of Modern Physics» под заголовком «Синтез химических элементов в звездах», а написали ее Маргарет Э. Бербидж, Джеффри Р. Бербидж, Уильям Фаулер и Фред Хойл (E. Margaret Burbidge, Geoffrey R. Burbidge, William Fowler, Fred Hoyle «The Synthesis of the Elements in Stars»). В этой статье они заложили теоретическую и математическую основу новой интерпретации умозаключений, накопленных другими учеными за предшествовавшие сорок лет по двум животрепещущим вопросам: каковы источники звездной энергии и как химические элементы превращаются друг в друга.

Космическая ядерная химия – наука запутанная. Как была запутанной в 1957 году, так до сих пор и остается. В число основных ее вопросов входит и такие: как ведут себя различные элементы из знаменитой таблицы Менделеева при разных температурах и давлениях? Синтезируются ли элементы? Расщепляются ли? Насколько легко обеспечить для этого условия? Что при этом происходит с энергией – она высвобождается или поглощается?

Разумеется, таблица Менделеева – это отнюдь не просто загадочная сетка из примерно ста ячеек с непонятными буковками. Это последовательность всех известных элементов во Вселенной в порядке увеличения количества протонов в их ядрах. Самые легкие элементы – это водород, у которого один протон, и гелий, у которого их два. И из них – при нужном сочетании температуры, плотности и давления – можно синтезировать все остальные элементы.

Извечная задача ядерной химии состоит в том, чтобы вычислить точные сечения соударения – то есть меру того, насколько близко одна частица должна подойти к другой, чтобы между ними произошло значимое взаимодействие. Если имеешь дело с предметами вроде бетономешалок или домов, которые перемещают по улице на огромных платформах, вычислить сечение соударения довольно просто, но когда речь идет о неуловимых субатомных частицах, все становится сложнее. Если точно знаешь, каковы сечения соударения, то можешь предсказать скорости и пути ядерных реакций. Зачастую мелкие неопределенности в таблицах сечений соударения приводят к чудовищно ошибочным выводам. В целом задача сильно напоминает прокладку маршрута в метро в незнакомом городе на основании схемы метро совсем другого города.

Этими пробелами дело не ограничивается – ученые долго полагали, что если где-то во Вселенной идет какой-то экзотический ядерный процесс, то он вполне может идти где угодно, а не только в недрах звезд. В частности, британский астроном-теоретик сэр Артур Эддингтон в 1920 году опубликовал статью под названием «Внутреннее устройство звезд» (Arthur Eddington, «The Internal Constitution of the Stars»), где утверждал, что лаборатория имени Кавендиша в Англии, в то время самый знаменитый центр физических исследований, не может быть единственным местом во Вселенной, где удается превратить одни элементы в другие:

Однако можно ли предположить, что подобный переход действительно происходит? Это трудно подтвердить, но еще труднее опровергнуть… а все, что возможно в лаборатории имени Кавендиша, не так уж затруднительно в недрах Солнца. Думаю, что в общем и целом все научное сообщество подозревает, что именно звезды – это тигли, где легкие атомы, которых так много в туманностях, составляются в более сложные элементы.

(Eddington, 1920, p. 18)

Статья Эддингтона на несколько лет опередила открытия квантовой механики, без которых наши познания о физике атомов и субатомных частиц были бы по меньшей мере скудными. Проявив незаурядную прозорливость, Эддингтон начал формулировать теорию, согласно которой звезды вырабатывают энергию посредством термоядерного синтеза водорода в гелий и далее:

Нам не нужно опираться на образование гелия из водорода как на единственную реакцию, обеспечивающую [звезду] энергией, хотя может показаться, что на дальнейших этапах создания химических элементов энергия высвобождается уже не в таком количестве, а может быть, и поглощается. Эту точку зрения можно вкратце описать следующим образом: атомы всех элементов создаются из связанных друг с другом атомов водорода и предположительно когда-то сформировались из водорода, и недра звезды, как видится, подходят для подобного рода эволюции не хуже любого другого места.

(Там же).

Кроме того, хотелось бы, чтобы модель превращения элементов друг в друга объясняла и то, почему на Земле и во всей остальной Вселенной наблюдается именно такое относительное содержание разных элементов, какое мы измеряем. Но для этого сначала нужно было разобраться в механизме подобных превращений. К 1931 году уже была разработана квантовая физика (хотя нейтрон еще не открыли), и астрофизик Роберт д’Эскур Аткинсон опубликовал подробную статью, в аннотации которой заявил, что выдвигает «теорию синтеза звездной энергии и происхождения элементов… в которой различные химические элементы поэтапно создаются в недрах звезд из более легких посредством последовательного, по одному, включения протонов и электронов» (Atkinson, 1931, p. 250).

Примерно в то же время специалист по ядерной химии Уильям Д. Харкинс опубликовал статью, где отмечал, что «элементы с низким атомным весом распространены более широко, чем элементы с высоким атомным весом, к тому же среди элементов со сходными весами элементы с четными атомными числами в среднем примерно в 10 раз распространеннее элементов с нечетными атомными числами» (Lang and Gingerich 1979, p. 374). Харкинс предположил, что относительная распространенность элементов зависит скорее от ядерных, чем от обычных химических процессов, а тяжелые элементы должны синтезироваться из легких.

Многоступенчатый механизм ядерного синтеза в звездах давал исчерпывающее объяснение присутствия в космосе многих элементов, особенно тех, которые получаются каждый раз, когда двухпротонное ядро гелия добавляется к уже созданному элементу. Это, собственно, и есть распространенные элементы с «четными атомными числами», о которых пишет Харкинс. Однако существование и количественное соотношение многих других элементов осталось без объяснения. Значит, другие способы создания элементов тоже сыграли свою роль.

Эддингтон и представить себе не мог, какую важную роль играет в термоядерном синтезе нейтрон, открытый лишь в 1932 году, – это сделал британский физик Джеймс Чедвик, который тогда работал в лаборатории имени Кавендиша. Собрать вместе протоны – задача непростая, поскольку они от природы отталкиваются друг от друга. Их надо подвести друг к другу достаточно близко (для этого обычно нужны высокие температуры, давление и плотность), чтобы сильное взаимодействие, которое работает лишь на коротком расстоянии, преодолело отталкивание и связало их. Однако нейтрон, лишенный заряда, никаких частиц не отталкивает, так что спокойно может войти в чужое ядро как к себе домой и присоединиться к прочим собравшимся частицам. На этом этапе новый элемент еще не создается – добавив нейтрон, мы просто сделали изотоп исходного элемента. Однако у некоторых элементов захваченный нейтрон остается нестабильным и спонтанно превращается в протон (который остается в ядре и больше никуда не девается) и электрон (который тут же сбегает). Подобно ахейским воинам, которые сумели пробраться за стены Трои в чреве Троянского коня, протоны, в сущности, украдкой пролезают в ядро атома под личиной нейтрона.

Если поток нейтронов во внешней среде достаточно велик, ядро атома может захватить сразу несколько нейтронов подряд до того, как первый из них распадется. Быстрый захват нейтронов позволяет создать самые разные элементы, которые могут родиться только в таком процессе и существенно отличаются от элементов, которые получаются, когда нейтроны захватываются медленно.

Этот процесс называется «захват нейтронов» и обеспечивает создание целого ряда элементов, которые невозможно получить посредством традиционного термоядерного синтеза. Остальные элементы, которые не могут родиться ни при медленном, ни при быстром захвате нейтронов, получаются в результате некоторых других процессов, в том числе, при бомбардировке ядер тяжелых атомов высокоэнергичным излучением (гамма-лучами), в результате которой тяжелые ядра распадаются на более мелкие и легкие.

* * *

Несмотря на риск чрезмерно упростить жизненный цикл массивной звезды, достаточно понять, что звезда занята выработкой и высвобождением энергии, что помогает ей сопротивляться собственной гравитации. Иначе огромный газовый шар схлопнулся бы под собственным весом. Когда ядро звезды переработает весь запас водорода в гелий, оно примется превращать гелий в углерод, потом углерод в кислород, кислород в неон и так далее вплоть до железа. Чтобы успешно выработать эту последовательность все более тяжелых элементов, нужны все более высокие температуры, иначе атомные ядра не смогут преодолеть природное отталкивание. К счастью, это происходит само собой, поскольку в конце каждой промежуточной стадии источник энергии звезды временно отключается, внутренние области схлопываются, температура растет – и запускается следующая термоядерная реакция. Остается лишь одна проблема. Термоядерный синтез железа не генерирует, а поглощает энергию. Для звезды это очень плохо, поскольку она больше не может сопротивляться гравитации. Она тут же сдается и схлопывается, отчего температура возрастает так стремительно, что происходит мощный взрыв, и звезда разлетается в клочки. В момент взрыва яркость звезды возрастает чуть ли не в миллиард раз. Такие взрывы мы называем вспышками сверхновых, хотя мне всегда казалось, что лучше уж не стесняться и называть их «супер-пупер-новые».

Во время взрыва сверхновой доступность нейтронов, протонов и энергии делает возможными самые разные способы создания элементов. Бербидж, Бербидж, Фаулер и Хойл на основании (1) проверенных временем принципов квантовой механики, (2) физики взрывов, (3) последних данных о сечениях соударения, (4) знания разнообразных процессов, которые позволяют элементам превращаться один в другой и (5) основ теории эволюции звезд сделали окончательный вывод, что взрывы сверхновых – это главный источник всех элементов тяжелее водорода и гелия во Вселенной.

Когда сверхновые выстреливают во все стороны, они заодно решают еще одну проблему. Дело в том, что даже если внутри звезд создаются элементы тяжелее водорода и гелия, остальной Вселенной от этого ни жарко ни холодно: ведь надо еще каким-то образом рассеять эти элементы в межзвездном пространстве, чтобы они могли формировать планеты и людей. Да, мы всего лишь горстка звездной пыли.

Я вовсе не намекаю, что главные задачи космохимии уже удалось решить. В наши дни космохимия пытается разгадать одну любопытную загадку, в которой замешан элемент технеций – это был первый химический элемент, синтезированный в лаборатории, и произошло это в 1937 году. (Название «технеций», как и другие слова с корнем «тех», восходит к древнегреческому слову technetos – «искусственный»). Этот элемент в природных условиях на Земле до сих пор так и не обнаружили, зато нашли в атмосфере отдельных красных гигантов. Уже одно это должно было бы насторожить – но мало того: период полураспада у технеция всего-навсего 2 миллиона лет, а это гораздо меньше, чем возраст и ожидаемая продолжительность жизни звезд, в котором его обнаруживают. Иначе говоря, это вещество не могло присутствовать в звезде при рождении, иначе к нашему времени его не осталось бы. Мы не знаем ни одного механизма, благодаря которому технеций создавался бы в недрах звезд и всплывал бы на поверхность, где мы его наблюдаем; в результате возникли всякие экстравагантные теории, которые пока еще не завоевали доверия астрофизического сообщества.

Красные гиганты с особыми химическими свойствами встречаются редко, однако все же не настолько редко, чтобы вокруг них не сплотилась достаточно большая компания астрофизиков, в основном спектроскопистов, которые специализируются на этой теме. В сущности, мои профессиональные исследовательские интересы тоже в значительной мере затрагивают эту тему – я регулярно получаю международную рассылку «Newsletter of Chemically Peculiar Red Giant Stars» («Новости о красных гигантах с особыми химическими свойствами»). В рубрике «Это интересно знать» районной малотиражки такого не напечатают. Обычно там пишут о конференциях и о данных последних исследований. Для заинтересованного ученого подступы к ответу на подобные химические загадки не менее интересны, чем, скажем, вопросы, связанные с черными дырами, квазарами и ранними этапами существования Вселенной. Однако о них вы нигде не прочитаете. Почему? Потому, что СМИ в очередной раз решили, что освещать некоторые области не стоит, даже если речь идет о вселенском происхождении всех элементов, составляющих ваш организм – правда же, скука смертная?

Глава двадцать вторая

Облачные посланницы

Почти все первые 400 000 лет с момента рождения Вселенная представляла собой бурлящее варево из стремительных и голых атомных ядер, у которых не было своих электронов. Самые простые химические реакции были еще несбыточной мечтой, а до первых проблесков жизни на Земле оставалось целых 10 миллиардов лет.

90 % ядер, возникших в результате Большого взрыва, были ядрами водорода, большая часть остальных ядер – ядрами гелия, еще самая чуточка – ядра лития: шло производство простейших элементов. И лишь когда температура расширяющейся Вселенной упала с триллионов примерно до трех тысяч градусов Кельвина, ядра начали захватывать электроны. При этом они превратились в полноправные атомы и сделали возможными химические реакции. Вселенная становилась все больше и все холоднее, и атомы стали собираться во все более крупные структуры – газовые облака, где из самых первых ингредиентов, доступных во Вселенной, создавались первые молекулы – водород (H2) и гидрид лития (LiH). Эти газовые облака породили первые звезды, масса каждой из которых составляла примерно сто масс Солнца. И в недрах каждой звезды разгоралась термоядерная топка, одержимая лишь одной целью – создавать химические элементы гораздо тяжелее трех самых первых и самых простых.

Когда исполинские первые звезды исчерпали запасы топлива, они разлетелись вдребезги и рассеяли свои химические внутренности по всему космосу. Благодаря энергии собственного взрыва они смогли создать еще более тяжелые элементы. Теперь в космическом пространстве стали скапливаться обогащенные тяжелыми атомами облака газа, способные воплотить самые смелые химические проекты.

Перемотаем вперед – и вот перед нами уже галактики, главные структуры видимого вещества во Вселенной, а в них – газовые облака, уже обогащенные обломками крушений после прежних взрывов сверхновых. Вскоре эти галактики будут порождать все новые поколения звезд, те тоже будут взрываться и запускать все новые волны обогащения химическими элементами, бесперебойный источник загадочных буковок в ячейках таблицы Менделеева.

Не будь этой эпической драмы, жизнь на Земле – да и в любом месте – не могла бы существовать. Химические механизмы жизни, как и все прочие химические механизмы, предполагают, чтобы элементы складывались в молекулы. Беда в том, что молекулы не создаются и не сохраняются в термоядерных топках звездных взрывов. Им нужна среда поспокойнее и попрохладнее. Так как же Вселенной удалось превратиться в богатейшую сокровищницу молекул, в которой мы теперь обитаем?

* * *

Вернемся ненадолго на фабрику элементов в глубоких недрах массивной звезды одного из первых поколений.

Как мы только что убедились, там, в самом ядре, при температурах выше 10 миллионов градусов, проворные ядра водорода – одиночные протоны – случайным образом натыкаются друг на друга. Это порождает череду ядерных реакций, которые в конце концов дают по большей части гелий и много-много энергии. Пока звезда «включена», энергия, высвобождаемая идущими в ней ядерными реакциями, создает давление, направленное изнутри наружу, и его достаточно, чтобы не давать колоссальной массе звезды схлопнуться под собственным весом. Но рано или поздно водородное топливо звезды все-таки кончается. Остается шар из гелия, который сидит сложа руки и ничего не делает. Бедный гелий. Нужно увеличить температуру в десять раз – и лишь тогда он начнет перегорать в более тяжелые элементы.

Лишившись источника энергии, ядро звезды схлопывается – и от этого разогревается. Примерно при 100 миллионах градусов частицы разгоняются так, что ядра гелия набирают достаточную скорость, чтобы, налетая друг на друга, синтезировать более тяжелые элементы. При этом синтезе высвобождается достаточно энергии, чтобы предотвратить дальнейший коллапс, по крайней мере, отложить его. Слипшиеся ядра гелия некоторое время проводят в виде промежуточных продуктов, например бериллия, но в конце концов три ядра гелия превращаются в одно ядро углерода. (Гораздо позднее, когда углерод превратится в цельный атом с полным набором электронов, он займет почетное место самого плодовитого с химической точки зрения элемента в таблице Менделеева).

Между тем в недрах звезды идет процесс термоядерного синтеза. Однако в конце концов в жаркой зоне кончается гелий, и остается шар из углерода, окруженный гелиевой оболочкой, которая, в свою очередь, окружена всем остальным веществом звезды. И тогда ядро снова схлопывается. Когда его температура возрастает примерно до 600 миллионов градусов, углерод тоже начинает налетать на соседей и синтезировать более тяжелые элементы посредством все более и более сложных механизмов термоядерного синтеза, и все это время производится вдоволь энергии, чтобы не допустить дальнейшего коллапса. Фабрика элементов работает на полную мощность и выпускает азот, кислород, натрий, магний, кремний.

И так мы проходим по таблице Менделеева до самого железа. На железе процесс застопоривается – это последний элемент, который синтезируется в ядрах первых звезд. Если попытаться пережечь железо или более тяжелые элементы, в ходе таких реакций энергия будет не вырабатываться, а тратиться. Однако дело звезды – генерировать энергию, так что когда звезда обнаруживает, что в ядре у нее завелся железный шар, это не сулит ей ничего хорошего. У нее больше нет источника энергии, чтобы уравновесить неумолимую силу собственной гравитации, и ее ядро быстро схлопывается.

Коллапс ядра и сопутствующее стремительное повышение температуры запускает чудовищный взрыв – взрыв сверхновой. И тут-то появляется вдосталь энергии, чтобы создавать элементы тяжелее железа. Сразу после взрыва по окрестностям звезды разлетается огромное облако из всех элементов, унаследованных и созданных звездой. А теперь вспомним, каковы основные элементы этого облака: это атомы водорода, гелия, кислорода, углерода и азота. Знакомый набор? Все эти элементы – кроме гелия, который химически инертен, – основные ингредиенты жизни в привычном нам виде. Учитывая, какой поразительно разнообразный ассортимент молекул можно создать из этого набора элементов – а также с использованием других атомов, – скорее всего, перед нами основные ингредиенты жизни в непривычном для нас виде.

Итак, Вселенная готова, согласна и способна создавать в космическом пространстве первые молекулы и строить следующее поколение звезд.

* * *

Если газовые облака хотят создавать устойчивые молекулы, им нужен не только набор необходимых ингредиентов. Еще в них должно быть прохладно. Если температура в облаке выше нескольких тысяч градусов, частицы движутся слишком быстро, а столкновения атомов слишком энергичны, чтобы им удавалось слипаться воедино и складываться в молекулы. Даже если двум-трем атомам удается сойтись и создать молекулу, того и гляди, в них врежется еще какой-нибудь энергичный атом и конструкция распадется. Высокая температура и столкновения на высоких скоростях, которые так замечательно способствовали термоядерному синтезу, для химии лишь помеха.

Газовые облака вполне могут жить долго и счастливо, пока их поддерживает турбулентное движение в отдельных внутренних областях. Однако со временем это движение замедляется, внутренние области охлаждаются до такой степени, что гравитация одерживает верх и облако схлопывается. Более того, облако охлаждается благодаря тому же самому процессу, который формирует молекулы: когда два атома сталкиваются и слипаются, часть той энергии, которая их столкнула, уходит на сформированные связи между атомами или испускается в виде излучения.

Охлаждение оказывает удивительное воздействие на состав облака. Теперь атомы сталкиваются, словно медленные суда в море, слипаются и создают молекулы, а не разрушают их. Поскольку атомы углерода всегда рады соединиться со своими собратьями, углеродосодержащие молекулы могут быть крупными и сложными. Иногда они перепутываются сами с собой – словно пыль, которая собирается в комья под кроватью. Если позволяют ингредиенты, то же самое происходит с молекулами на основе кремния. И в том и в другом случае любая крупица пыли становится центром событий – на ней полно гостеприимных уголков и расщелинок, где атомы могут встречаться на досуге и создавать новые молекулы. Чем ниже температура, тем больше и сложнее могут становиться молекулы.

* * *

Среди первых и самых распространенных во Вселенной соединений, которые формируются, стоит температуре упасть ниже нескольких тысяч градусов, – несколько знакомых нам двухатомных и трехатомных молекул. Например, угарный газ (СО) стабилизируется задолго до того, как углерод конденсируется в пыль, а молекулярный водород (H2) становится главным компонентом остывающих газовых облаков, которые теперь – что вполне логично – называются молекулярными облаками. В числе трехатомных молекул, которые формируются сразу после двухатомных, – вода (H2O), углекислый газ (CO2), синильная кислота (HCN), сероводород (H2S) и диоксид серы (SO2). Еще образуется высокореактивная трехатомная молекула H3+, которая стремится скормить свой третий протон голодным соседкам, что способствует все новым химическим свиданиям.

Облако продолжает остывать, и когда температура падает ниже 100 К или около того, возникают более крупные молекулы – некоторые из них вполне могут найтись у вас под рукой в кухне или в гараже: ацетилен (C2H2), аммиак (NH3), формальдегид (H2CO), метан (CH4). Если облако еще холоднее, там можно найти главные ингредиенты других нужнейших веществ – антифриза (его делают из этиленгликоля), спиртных напитков (этиловый спирт), духов (бензол) и сахара (гликольальдегид), а также муравьиную кислоту, структура которой похожа на структуру аминокислот, из которых состоят белки.

Список молекул, которые дрейфуют в межзвездном пространстве, уже стремится к 130. Чемпионы по величине и сложности структуры – антрацен (C14H10) и пирен (C16H10), которые в 2003 году открыл в Туманности Красного Прямоугольника – до нее от Земли около 2300 световых лет – Адольф Н. Уитт из Университета Толедо в штате Огайо и его коллеги. Антрацен и пирен, которые состоят из взаимосвязанных стабильных углеродных колец, принадлежат к семейству молекул, которые химики, большие любители длинных ученых слов, называют полициклическими ароматическими углеводородами (ПАУ).

А если самые сложные молекулы в космосе основаны на углероде, значит, и мы, конечно, тоже.

* * *

Сейчас всем кажется, что существование молекул в космическом пространстве – нечто само собой разумеющееся, однако до 1963 года большинство астрофизиков об этом не подозревало – если учесть положение дел в других науках, это несколько поздновато. К 1963 году уже была описана молекула ДНК. «Довели до совершенства» атомную бомбу, водородную бомбу, баллистические ракеты. Шла работа над программой «Аполлон» по высадке человека на Луне. В лабораторных условиях удалось синтезировать одиннадцать элементов тяжелее урана.

Причина такого отставания астрофизики состояла в том, что еще не было открыто целое окно электромагнитного спектра – микроволновое излучение. Как мы видели в части III, оказывается, свет, который поглощают и испускают молекулы, как правило, приходится на микроволновую часть спектра, и до 1960 годов, когда появились микроволновые телескопы, Вселенная скрывала от нас волшебное разнообразие своего молекулярного ассортимента. Вскоре стало понятно, что темные области Млечного Пути – это без устали работающие химические фабрики. В 1963 году в межзвездной среде нашли гидроксил (ОН), в 1968 году – аммиак, в 1969 – воду, в 1970 – угарный газ, в 1975 – этиловый спирт, и все это оказалось перемешано в газообразный коктейль. К середине семидесятых в микроволновом излучении были обнаружены характерные черты почти сорока молекул.

Молекулы обладают определенной структурой, однако электронные связи, которые скрепляют атомы друг с другом, не жесткие – они расшатываются, елозят, скручиваются и растягиваются. Так вышло, что микроволны расположены именно в том диапазоне энергий, в котором можно стимулировать подобные движения молекул. Именно поэтому, в частности, работают микроволновые печки – много-много микроволн с нужной энергией заставляют вибрировать молекулы воды, содержащиеся в вашей еде. Трение между пляшущими частицами создает тепло, и еда быстро приготавливается изнутри.

Любой вид молекул в космосе, так же как и любой вид атомов, обладает своим неповторимым набором спектральных особенностей, иначе называемым сигнатурой. Этот набор легко сравнить со спектральными узорами из каталогов, которые собраны в лабораториях здесь, на Земле, а без лабораторных данных, зачастую дополненных теоретическими выкладками, мы бы и не знали, на что, собственно, смотрим. Чем крупнее молекула, тем больше связей призваны ее скреплять и тем больше у них возможностей елозить и расшатываться. А каждый способ елозить и расшатываться обладает своей характерной спектральной длиной волны или «цветом»; одни молекулы имеют сотни и даже тысячи «цветов» во всем микроволновом спектре – длин волн, на которых они могут поглощать и испускать свет, когда их электроны решают размяться. А выделить сигнатуру одной молекулы из мешанины остальных сигнатур – дело непростое, это все равно что вслушиваться в вопли целой толпы детишек, играющих в большой комнате, пытаясь расслышать голосок своего ребенка. Это трудно, но возможно. Надо лишь очень хорошо понимать, какие именно звуки обычно издает ваш малыш. Это и есть ваш лабораторный образец.

* * *

Сформировавшаяся молекула далеко не всегда ведет степенную жизнь. В областях, где рождаются очень горячие звезды, звездный свет содержит в себе очень много ультрафиолета. Ультрафиолет вреден молекулам, поскольку его высокая энергия разрушает связи между атомами, которые составляют молекулу. Именно поэтому ультрафиолет вреден и вам: лучше держаться подальше от всего, что разрушает молекулы твоего организма. Поэтому забудьте, что гигантское облако газа может быть настолько прохладным, что в нем формируются молекулы – если кругом все залито ультрафиолетом, молекулы в облаке превратятся в жаркое. И чем больше молекула, тем беззащитнее она перед таким агрессором.

Однако среди межзвездных облаков попадаются такие большие и плотные, что их внешние слои защищают внутренние. Доблестные молекулы-пограничники, отдающие жизнь за своих сестер внутри облака, останавливают ультрафиолет на входе и тем самым сохраняют сложный химический состав, которым так славятся прохладные облака.

Однако рано или поздно молекулярным гуляньям приходит конец. Как только центр газового облака или любой области газа становится достаточно плотным и достаточно холодным, энергия движущихся частиц уменьшается – и уже не может предохранять структуру от гравитационного коллапса. Спонтанное схлопывание под собственным весом снова подхлестывает температуру, и то, что только что было газовым облаком, превращается в очаг испепеляющего жара, где идет термоядерный синтез. И рождается еще одна звезда.

* * *

В этой жаркой печи неизбежно, неотвратимо, можно даже сказать – трагически распадаются все химические связи, в том числе и органические молекулы, которые облако так усердно создавало на своем пути к превращению в звезду. Однако относительно разреженные области газового облака беда обходит стороной. Еще есть газ, который находится от звезды на таком расстоянии, чтобы растущая сила притяжения звезды, с одной стороны, удерживала его, а с другой – все же не затягивала в саму звезду. Внутри такого кокона пыли и газа на безопасной орбите вокруг звезды скапливающееся вещество формирует толстые диски. А в пределах этих дисков сохраняются старые молекулы и в изобилии создаются новые.

И вот перед нами уже формирующаяся солнечная система, в которой вот-вот зародятся богатые молекулами планеты и кометы. А как только появится твердый строительный материал, воображение Вселенной разыгрывается просто фантастически. Молекулы могут расти и толстеть сколько угодно. Стоит в таких условиях спустить с поводка углерод, и можно получить самые сложные из известных науке химических соединений. Насколько сложные? Настолько, что и называться они будут иначе: биология.

Глава двадцать третья

Сказка о Златовласке и трех планетах

Жила-была солнечная система, и вот однажды – давным-давно, около четырех миллиардов лет назад, – она поняла, что уже почти сформировалась.

У самого-самого Солнца появилась Венера – и так близко была она к Солнцу, что энергия солнечных лучей испарила весь ее запас воды. А Марс был от Солнца далеко – и вся его вода замерзла. И только одна планета – Земля – оказалась от Солнца как раз на таком расстоянии – «в самый раз», – что вода на ней осталась жидкой, и поэтому на поверхности Земли смогла зародиться жизнь. Этот пояс вокруг Солнца стали называть обитаемой зоной.

Сказку про трех медведей рассказывают детям во многих странах, а в Англии ее героиню зовут Златовлаской. Она тоже любила, чтобы все было «в самый раз». В домике трех медведей одна миска с кашей была слишком горячая. Другая – слишком холодная. И только третья пришлась Златовласке «в самый раз». А еще в домике трех медведей было три кроватки, и одна была слишком жесткая, другая – слишком мягкая, а третья – «в самый раз», в ней Златовласка и уснула. Когда три медведя вернулись домой, то обнаружили не только пропажу каши из третьей миски, но и Златовласку, которая сладко спала в постели маленького медвежонка. Не помню, чем там все кончилось, но на месте трех медведей – всеядных хищников, находящихся на самом верху пищевой цепочки, – я бы Златовласку съел.

Златовласку, наверное, заинтересовала бы относительная пригодность Венеры, Земли и Марса для обитания, но на самом деле сюжет об этих планетах гораздо сложнее трех мисок с кашей. Четыре миллиарда лет назад поверхности планет еще вовсю бомбардировали богатые водой кометы и богатые минералами астероиды, пусть и гораздо реже, чем раньше. Во время этой партии в космический бильярд некоторые планеты мигрировали из родных мест поближе к Солнцу, а некоторых выбило на орбиты большего диаметра. А многие из десятков сформировавшихся планет оказались на нестабильных орбитах и упали на Солнце или на Юпитер. Еще несколько планет просто вышвырнуло из Солнечной системы. Оставшиеся в итоге единицы вращались именно на тех орбитах, которые оказались «в самый раз», чтобы пережить на них миллиарды лет.

Земля осела на орбите со средним расстоянием до Солнца примерно 150 миллионов километров. На этом расстоянии Земля перехватывает весьма скромную долю общей энергии, испускаемой Солнцем, – всего-то две миллиардные. Если предположить, что Земля впитывает всю эту энергию, то средняя температура нашей планеты составляет около 280 К, то есть 7 °C, – посередине между зимней и летней температурами. При нормальном атмосферном давлении вода замерзает при 273 К, а кипит при 373 К, так что, к вящей нашей радости, почти вся вода на Земле пребывает в жидком состоянии.

Однако не надо спешить. Иногда в науке получаешь верные ответы, исходя из неверных предпосылок. На самом деле Земля поглощает лишь две трети доходящей до нее солнечной энергии. Остальное земная поверхность (особенно океаны) и облачный покров отражают обратно в космос. Если добавить в формулу коэффициент отражения, то средняя температура Земли падает уже до 255 К, что куда как ниже точки замерзания воды. В наши дни должен действовать еще какой-то механизм, который удерживает среднюю температуру на более удобной отметке.

И снова не торопитесь. Все теории эволюции звезд говорят нам, что четыре миллиарда лет назад, когда из пресловутого первобытного бульона на Земле формировалась жизнь, Солнце было на треть тусклее, чем сегодня, значит, средняя температура Земли была ниже точки замерзания. Может быть, Земля в далеком прошлом была просто ближе к Солнцу? Однако после периода усиленных бомбардировок, который давно закончился, мы не знаем никаких механизмов, которые сдвигали бы стабильные орбиты в пределах Солнечной системы. Может быть, в прошлом парниковый эффект был сильнее? Наверняка мы не знаем. Зато знаем, что обитаемые зоны в первоначальном смысле этих слов имеют лишь отдаленное отношение к тому, может ли существовать жизнь на планетах, расположенных в границах этих зон.

Знаменитое уравнение Дрейка, на которое всегда ссылаются при поисках внеземного разума, позволяет дать приблизительную оценку того, сколько цивилизаций в принципе можно обнаружить в галактике Млечный Путь. Уравнение вывел в 60-е годы XX века американский астроном Фрэнк Дрейк, и в то время понятие обитаемой зоны было ограничено представлением о том, что планеты должны находиться от своей звезды на расстоянии, которое «в самый раз» подходит для существования жизни. Смысл одного из вариантов уравнения Дрейка примерно таков: начнем с числа звезд в галактике (сотни миллиардов). Умножим это огромное число на долю звезд, у которых есть планеты. Получившееся число умножим на долю планет, находящихся в обитаемой зоне. Теперь умножим результат на долю планет, на которых развилась жизнь. Результат умножим на долю планет, на которых развилась разумная жизнь. Результат умножим на долю планет, где технический прогресс дошел до такого этапа, что можно наладить межзвездную коммуникацию. Если теперь учесть темп формирования звезд и ожидаемую продолжительность жизни технологически развитой цивилизации, получится количество развитых цивилизаций, которые в эту самую минуту, вероятно, дожидаются нашего телефонного звонка.

Маленькие холодные звезды с низкой светимостью живут сотни миллиардов, а может быть, и триллионы лет, а значит, у их планет достаточно времени, чтобы вырастить на себе два-три вида живых организмов, однако их обитаемые зоны находятся от звезды слишком близко. Планета, которая сформировалась в этой зоне, быстро попадает в так называемый приливный захват звезды и вращается всегда одной стороной к ней, отчего в обогреве планеты возникает сильнейший перекос – вся вода на «лицевой» стороне планеты испарится, а вся вода на «обратной» замерзнет. Если бы Златовласка жила на такой планете, мы бы обнаружили, что кашу свою она ест, вертясь вокруг своей оси, словно цыпленок на гриле, – на самой границе между вечным солнцепеком и вечной тьмой. У обитаемых зон вокруг звезд-долгожителей есть и другой недостаток – они очень узкие, так что у планеты очень мало шансов случайно оказаться на орбите с радиусом, который «в самый раз».

Зато вокруг горячих, больших, ярких звезд раскинулись огромные обитаемые зоны. Однако эти звезды, к сожалению, встречаются редко и живут всего несколько миллионов лет, а потом взрываются, так что их планеты едва ли можно рассматривать как кандидаты при поисках жизни в привычном нам виде, – разве что там происходит какая-то очень быстрая эволюция. И едва ли первыми из первобытной слизи выберутся животные, способные придумать дифференциальное исчисление.

Уравнение Дрейка можно считать математикой Златовласки, методом, которым можно оценить, каковы шансы, что где-то в галактике все сложилось «в самый раз», как надо. Однако в уравнение Дрейка в его первоначальном виде не входит, например, Марс, который расположен далеко за пределами обитаемой зоны Солнца. А между тем на Марсе полным-полно извилистых пересохших рек с дельтами и поймами, а это неопровержимо доказывает, что когда-то в прошлом на Марсе было вдоволь жидкой воды.

А как же Венера, «сестра» Земли? Она попадает точнехонько в обитаемую зону Солнца. Эта планета, полностью покрытая толстым слоем облаков, обладает самой высоким коэффициентом отражения во всей Солнечной системе. Нет никаких очевидных причин, почему на Венере может быть плохо и неуютно. Однако на ней наблюдается чудовищный парниковый эффект. Толстая венерианская атмосфера в основном состоит из углекислого газа и поглощает почти 100 % того небольшого количества излучения, которое достигает ее поверхности. Температура на Венере составляет 750 К, и это рекорд во всей Солнечной системе, хотя расстояние от Солнца до Венеры почти вдвое больше, чем до Меркурия.

Поскольку Земля поддерживала на себе жизнь на протяжении всей ее эволюции – миллиарды лет бурных перипетий – значит, сама жизнь, наверное, обеспечивает какой-то механизм обратной связи, который сохраняет на планете жидкую воду. Эту идею развили биологи Джеймс Лавлок и Линн Маргулис в 70-е годы, и она называется «гипотеза Геи». Эта достаточно популярная, но противоречивая гипотеза предполагает, что набор биологических видов на Земле в каждый момент времени действует, словно коллективный организм, который непрерывно, пусть и непреднамеренно, корректирует состав атмосферы и климат Земли таким образом, чтобы они способствовали наличию и развитию жизни, – то есть наличию на поверхности воды в жидком состоянии. Мне кажется, это очень интересно и достойно изучения. Гипотеза Геи – любимая гипотеза сторонников философии нью-эйдж. Но я готов спорить, что какие-то давно покойные марсиане и венерианцы наверняка тоже отстаивали эту идею миллиард лет назад…

* * *

Если расширить понятие обитаемой зоны, окажется, что для нее нужен всего-навсего любой источник энергии, чтобы растапливать лед. Один из спутников Юпитера, ледяная Европа, разогревается приливными силами гравитационного поля Юпитера. Подобно мячу для игры в ракетбол, который нагревается от частых ударов, Европа нагревается от перепада динамических нагрузок из-за того, что одну ее сторону Юпитер притягивает сильнее, чем другую. Что в результате? Нынешние данные наблюдений и теоретических расчетов показывают, что под корой льда толщиной в километр на Европе раскинулся океан жидкой воды либо, возможно, снеговой жижи. Учитывая изобилие жизни в океанских глубинах на Земле, Европа – самый соблазнительный кандидат на наличие жизни в Солнечной системе вне Земли.

Другой недавний прорыв в нашем понимании, что такое обитаемая зона, – это живые организмы, недавно получившие название «экстремофилы»: организмы, которые не просто выживают, но даже процветают в условиях крайнего холода или крайней жары. Если бы среди экстремофилов были биологи, они бы наверняка считали, что это они нормальные, а экстремофилы – это все те, кому неплохо живется при комнатной температуре. Среди экстремофилов есть жаролюбивые термофилы, которые обычно живут у подводных горных кряжей посреди океанов, где вода, разогретая под огромным давлением до температуры гораздо выше обычной точки кипения, выплескивается из-под земной коры в холодную толщу океана. Условия там похожи на обстановку в кухонной скороварке: особо прочная кастрюля с герметичной крышкой позволяет разогреть воду под давлением до температуры выше кипения, избежав при этом кипения как такового.

На холодном океанском дне из горячих источников поднимаются минералы, создающие гигантские пористые трубы высотой в десяток этажей – в середине там жарко, у краев, где они прямо соприкасаются с океанской водой, немного прохладнее. При всех этих температурах в трубах обитают бесчисленные виды живых существ, которые никогда не видели Солнца и которым все равно, есть оно или нет. Эти крепкие орешки питаются геотермальной энергией, которая складывается из того, что осталось еще со времен формирования Земли, и жара, который постоянно просачивается в земную кору из-за радиоактивного распада природных, однако нестабильных изотопов давно знакомых химических элементов – в их числе, например, алюминий-26, которого хватает на миллионы лет, и калий-40, которого хватает на миллиарды.

Океанское дно – вероятно, одна из самых стабильных экосистем на Земле. Что будет, если с Землей столкнется гигантский астероид и вся жизнь на ее поверхности вымрет? Океанские термофилы будут жить-поживать как ни в чем не бывало. Возможно, после каждой волны вымирания они даже эволюционируют и заново заселяют земную сушу. А что будет, если Солнце по загадочным причинам исчезнет из центра Солнечной системы, а Земля сорвется с орбиты и будет дрейфовать в космическом пространстве? Это событие даже не попадет в термофильские газеты. Однако пройдет пять миллиардов лет, и Солнце превратится в красный гигант, расширится и поглотит всю внутреннюю часть Солнечной системы. Земные океаны при этом выкипят, да и сама Земля испарится. Вот это уже будет сенсация.

Если термофилы живут на Земле повсюду, возникает серьезный вопрос: что если жизнь зародилась глубоко в недрах блудных планет, которых вышвырнуло из Солнечной системы во время ее формирования? Их «гео»-термальных резервуаров хватило бы на миллиарды лет. А что можно сказать о бесчисленных планетах, которые насильно изгнали изо всех остальных солнечных систем, успевших сформироваться в нашей Вселенной? Может быть, межзвездное пространство кишмя кишит жизнью, которая возникла и эволюционировала в глубинах бездомных планет?

Обитаемая зона – это вовсе не аккуратно очерченная область вокруг звезды, куда попадает идеальное, «в самый раз», количество солнечного света, – на самом деле она везде. Так что домик трех медведей, возможно, тоже не занимает никакого особого места в мире волшебных сказок. Миска с кашей, температура которой «в самый раз», могла найтись в любом жилище, даже в домиках трех поросят. Мы выяснили, что соответствующий множитель уравнения Дрейка – тот самый, который отвечает за существование планет в пределах обитаемой зоны, – вполне может вырасти почти до 100 %.

Так что у нашей сказки очень многообещающий финал. Жизнь совсем не обязательно редкое и уникальное явление, возможно, она встречается так же часто, как и сами планеты.

А термофильные бактерии жили с тех пор долго и счастливо – примерно пять миллиардов лет.

Глава двадцать четвертая

Вода, вода, кругом вода

Судя по виду некоторых самых засушливых и негостеприимных мест в нашей Солнечной системе, можно подумать, что вода, которой на Земле полным-полно, в остальных уголках галактики – редкая роскошь. Однако из всех трехатомных молекул вода самая распространенная, причем с большим отрывом. А в списке самых распространенных в космосе элементов составляющие воды – водород и кислород – занимают первое и третье место. Так что не надо спрашивать, откуда в том или ином месте взялась вода, – лучше спросить, почему она все-таки есть не везде.

Начнем с Солнечной системы. Если вы ищете местечко без воды и без воздуха, далеко ходить не надо: у вас в распоряжении Луна. При низком атмосферном давлении на Луне – оно равно практически нулю – и двухнедельных днях, когда температура близка к 100 °C, вода быстро испаряется. Во время двухнедельной ночи температура падает до –155 °C: при таких условиях почти что угодно замерзнет.

Астронавты, участвовавшие в программе «Аполлон», брали с собой на Луну весь воздух, всю воду и все системы для кондиционирования воздуха), какие были им нужны для путешествия туда и обратно. Однако в далеком будущем экспедициям, вероятно, будет уже не нужно возить с собой воду и различные продукты из нее. Данные с космического зонда «Клементина» позволяют раз и навсегда положить конец давним спорам о том, есть ли на дне глубоких кратеров на Северном и Южном полюсах Луны замороженные озера.

Если учесть среднее количество столкновений Луны с межпланетным мусором в год, приходится предположить, что среди падающих на поверхность обломков должны быть и достаточно большие ледяные кометы. Что значит «достаточно большие»? В Солнечной системе достаточно комет, которые, если растают, оставят лужу размером с озеро Эри.

Конечно, нельзя рассчитывать, что новенькое озеро переживет много жарких лунных день с температурой, близкой к 100 °C, однако любая комета, которая упала на поверхность Луны и испарилась, сбрасывает часть своих молекул воды на дно глубоких кратеров у полюсов. Эти молекулы впитываются в лунную почву, где и остаются на веки вечные, поскольку такие места – это единственные уголки на Луне, где буквально «Солнце не светит». (Если вы пребывали в уверенности, что одна сторона Луны всегда темная, значит, вас ввели в заблуждение самые разные авторитетные источники, в число которых, несомненно, входит и альбом группы «Пинк Флойд» «Темная сторона Луны», вышедший в 1973 году.)

Как знают обитатели Арктики и Антарктики, изголодавшиеся по солнечному свету, в этих местах Солнце никогда не поднимается высоко над горизонтом – ни в течение дня, ни в течение года. А теперь представьте себе, что вы живете на дне кратера, край которого выше, чем точка на небосклоне, докуда поднимается Солнце. В таком кратере, да еще и на Луне, где нет воздуха и нечему рассеять свет, чтобы он попал в тенистые уголки, придется жить в вечной тьме.

* * *

В вашем холодильнике тоже холодно и темно, однако лед там со временем все-таки испаряется (не верите – посмотрите, как выглядят кубики льда, когда вы возвращаетесь из долгой отлучки), тем не менее на дне этих кратеров так холодно, что испарение, в сущности, прекращается (по крайней мере, в рамках нашего разговора мы вполне можем предположить, что его нет). Нет никаких сомнений, что если мы когда-нибудь построим на Луне колонию, ее надо будет расположить неподалеку от таких кратеров. Помимо очевидных преимуществ – у колонистов будет вдоволь льда, будет что растапливать, очищать и пить, – из молекул воды можно еще добывать водород, отделяя его от кислорода. Водород и часть кислорода пойдут в ракетное топливо, а остальным кислородом колонисты будут дышать. А в свободное от космических экспедиций время можно покататься на коньках по замороженному озеру из добытой воды.

Итак, древние данные кратеров говорят нам, что на Луну падали кометы, – из этого следует, что такое случалось и с Землей. Если учесть, что Земля больше и гравитация у нее сильнее, можно даже сделать вывод, что кометы падали на Землю гораздо чаще. Так и есть – с самого рождения Земли и по сегодняшний день. Более того, Земля ведь не возникла из космического вакуума в виде готового сферического кома. Она выросла из конденсировавшегося протосолнечного газа, из которого сформировалось и само Солнце, и все остальные планеты. Земля продолжала расти, поскольку на нее налипали мелкие твердые частички, а потом – за счет постоянной бомбардировки астероидами, которые были богаты минералами, и кометами, которые были богаты водой. В каком смысле постоянной? Подозревают, что частоты падения на Землю комет на ранних стадиях ее существования хватило для обеспечения водой всех ее океанов. Однако здесь остаются определенные вопросы (и простор для споров). В воде из комет, которые мы исследуем сейчас, по сравнению с водой из океанов очень много дейтерия – разновидности водорода, в ядре которого есть лишний нейтрон. Если океаны заполнялись за счет комет, то кометы, которые падали на Землю в начале существования Солнечной системы, имели несколько иной химический состав.

Думали, можно спокойно выходить на улицу? Вот и нет: недавние исследования содержания воды в верхних слоях земной атмосферы показали, что на Землю регулярно падают куски льда размером с дом. Эти межпланетные снежки при соприкосновении с воздухом быстро испаряются, но успевают внести свой вклад в водяной бюджет Земли. Если частотность падений была постоянной на протяжении всей истории Земли в 4,6 миллиардов лет, то эти снежки, возможно, тоже пополняли земные океаны. Прибавим к этому водяной пар, который, как нам известно, попадает в атмосферу при извержении вулканов, и окажется, что Земля получила свой запас воды на поверхности самыми разными путями.

Сейчас наши величественные океаны занимают две трети земной поверхности, однако составляют всего одну пятитысячную земной массы. Казалось бы, очень маленькая доля, однако это все равно целых полтора квинтильона тонн, 2 % которых в каждый момент времени пребывают в виде льда. Если на Земле когда-нибудь случится период сильнейшего парникового эффекта, как на Венере, то наша атмосфера поглотит избыточное количество солнечной энергии, температура воздуха возрастет, и океаны вскипят и быстро испарятся в атмосферу. Это будет плохо. Мало того что флора и фауна Земли вымрут – это очевидно, – одной из веских (в буквальном смысле) причин всеобщей гибели станет то, что атмосфера, насыщенная водяным паром, станет в триста раз массивнее. Нас всех расплющит.

Венера отличается от прочих планет в Солнечной системе во многих отношениях, в том числе – своей толстой, плотной, тяжелой атмосферой из углекислого газа, давление которой в сто раз больше давления земной атмосферы. Нас бы и там расплющило. Однако в моем рейтинге самых удивительных особенностей Венеры первое место занимает наличие кратеров, которые все как один образовались относительно недавно и распределены равномерно по всей поверхности. Эта безобидная на первый взгляд черта наталкивает на мысль о какой-то одной катастрофе планетарного масштаба, которая перезапустила часы образования кратеров и стерла все свидетельства соударений в прошлом. Такое по силам, например, эрозивному климатическому феномену вроде всемирного потопа. А еще – масштабной геологической (не венерологической же) активности, скажем, потокам лавы, которые превратили всю поверхность Венеры в мечту американского автомобилиста – целиком заасфальтированную планету. Что бы ни перезапустило часы, произошло это резко и одномоментно. Однако не все тут ясно. Если на Венере и правда был всемирный потоп, куда теперь подевалась вся вода? Ушла под поверхность? Испарилась в атмосферу? Или Венеру затопила вообще не вода, а какое-то другое вещество?

* * *

Наше любопытство и невежество одной Венерой не ограничиваются – они распространяются и на другие планеты. Марс когда-то был настоящим болотом – с извилистыми реками, поймами, дельтами, сетью мелких ручьев и огромных каньонов, выточенных бегущей водой. У нас уже достаточно доказательств, что если где-то в Солнечной системе и были изобильные источники воды, так это на Марсе. Однако на сегодняшний день поверхность Марса совершенно суха, а почему – непонятно. Глядя на Марс и Венеру – брата и сестру нашей планеты – я по-новому смотрю и на Землю и задумываюсь о том, как, возможно, ненадежны наши источники воды на земной поверхности.

Как мы уже знаем, разыгравшееся воображение заставило Персиваля Лоуэлла предположить, что это колонии изобретательных марсиан выстроили на Марсе хитроумную сеть каналов, чтобы доставлять воду с полярных ледников в более населенные средние широты. Чтобы объяснить то, что он увидел (или решил, что увидел), Лоуэлл выдумал умирающую цивилизацию, которая почему-то лишилась воды. В своем подробном, однако на диво ошибочном трактате «Марс как пристанище жизни» («Mars as the Abode of Life», 1909), Лоуэлл оплакивает неизбежный закат марсианской цивилизации, порожденной его фантазией:

Высыхание планеты продолжится, несомненно, до тех самых пор, пока его поверхность не утратит способность поддерживать всякую жизнь. Время, несомненно, сдует ее, словно пыль. Однако, когда потухнет последняя ее искорка, мертвая планета будет нестись в пространстве, будто призрак, а ее эволюционная карьера оборвется навсегда.

(Lowell, 1908, р. 216)

Кое-что Лоуэлл понял совершенно правильно. Если на марсианской поверхности когда-то и существовала цивилизация (или любые живые организмы), которой требовалась вода, то на каком-то неведомом этапе марсианской истории и по какой-то неведомой причине вся вода на поверхности действительно высохла, что и привело в точности к такому финалу, какой описывает Лоуэлл. Возможно, пропавшая марсианская вода просто ушла под землю и попала в плен вечной мерзлоты.

Чем это можно доказать? У больших кратеров на поверхности Марса потеки высохшей грязи, перелившейся через край, встречаются чаще, чем у маленьких. Если предположить, что вечная мерзлота лежит довольно глубоко, чтобы добраться до нее, требовалось сильное столкновение. Выброс энергии от такого столкновения должен был при контакте расплавить лед под поверхностью, и грязь выплеснулась наружу. Кратеры с такими особенностями чаще встречаются в холодных приполярных широтах, именно там, где можно ожидать, что слой вечной мерзлоты пролегает ближе к поверхности. По некоторым оценкам, если бы вся вода, которая, как мы подозреваем, затаилась в толще вечной мерзлоты на Марсе и, как мы точно знаем, заключена в ледниках на полюсах, расплавилась и равномерно распределилась по его поверхности, Марс превратился бы в сплошной океан в десятки метров глубиной. В план поиска жизни на Марсе, как современной, так и ископаемой, должен входить осмотр самых разных мест, особенно под поверхностью Марса.

Когда астрофизики начали задумываться о том, где можно найти жидкую воду, а по ассоциации, и жизнь, они сначала были склонны принимать в расчет планеты, которые вращаются по орбите на определенном расстоянии от своей звезды, – на таком, чтобы на их поверхности вода оставалась жидкой, не слишком далеко и не слишком близко. Эту зону принято называть обитаемой зоной, или зоной Златовласки (см. предыдущую главу), и для начала это была вполне приемлемая оценка. Однако она не учитывала возможность возникновения жизни в таких местах, где имелись другие источники энергии, благодаря которым вода там, где ей полагалось бы обращаться в лед, оставалась в жидком состоянии. Это мог бы обеспечить легкий парниковый эффект. А также внутренний источник энергии, например остаточный жар после формирования планеты или радиоактивный распад нестабильных тяжелых элементов, каждый из которых вносит свой вклад во внутренний подогрев Земли и, следовательно, в ее геологическую активность. Кроме того, источником энергии служат и планетные приливы – это более общее понятие, чем просто танцы вздымающегося океана с Луной. Как мы уже видели, Ио, спутник Юпитера, подвергается постоянным нагрузкам из-за переменчивых приливных сил, поскольку ее орбита не совсем круглая и Ио то приближается, то удаляется от Юпитера. Ио находится на таком расстоянии от Солнца, что при других условиях должна была бы промерзнуть на веки вечные, но из-за постоянных приливных перепадов заслужила титул небесного тела с самой бурной геологической активностью во всей Солнечной системе – там есть все: и вулканы, изрыгающие лаву, и огненные расщелины, и тектонические сдвиги. Иногда современную Ио уподобляют юной Земле, когда наша планета еще не остыла после рождения.

Не менее интересна и Европа – другой спутник Юпитера, тоже черпающий тепло из приливных сил. Ученые уже давно подозревали, а недавно подтвердили (на основании снимков с космического зонда «Галилео»), что Европа покрыта толстыми мигрирующими пластами льда, под которыми раскинулся океан из снеговой жижи или жидкой воды. Целый океан воды! Только представьте себе, какая там подледная рыбалка. И в самом деле, инженеры и ученые из Лаборатории реактивного движения уже подумывают, не послать ли на Европу космический зонд, который совершит посадку на лед, найдет в нем полынью (или прорубит либо протопит ее сам), опустит в нее глубоководную видеокамеру, и мы посмотрим, что там и как. Поскольку жизнь на Земле, скорее всего, зародилась именно в океане, существование жизни в океанах Европы – отнюдь не пустая фантазия, такое вполне может быть.

На мой взгляд, самое удивительное качество воды – это не заслуженный ярлык «универсального растворителя», о котором мы все узнали на уроках химии в школе, и не необычайно широкий диапазон температур, в котором вода остается жидкой. Самая удивительная черта воды – то, что хотя почти все вещества, в том числе и сама вода, при охлаждении становятся плотнее, вода, охладившись ниже 4 °C, становится все менее и менее плотной. Когда она замерзает при нуле градусов, то становится менее плотной, чем в жидком состоянии при любой температуре, и это досадно для водопроводных труб, зато очень удачно для рыб. Зимой, когда температура воздуха падает ниже нуля, вода температурой в 4 градуса опускается на дно и остается там, а на поверхности очень медленно нарастает плавучий слой льда и изолирует более теплую воду от холодного воздуха.

Если бы с водой не происходила эта инверсия плотности при температуре ниже 4 градусов, то при температуре воздуха ниже точки замерзания внешняя поверхность водоема остужалась бы и опускалась на дно, а более теплая вода поднималась бы наверх. Такая вынужденная конвекция быстро охладила бы всю массу воды до нуля, после чего поверхность начала бы замерзать. Более плотный лед тонул бы – и вся толща воды промерзала бы со дна к поверхности. В подобном мире не было бы никакой подледной рыбалки, поскольку вся рыба замерзла бы – заморозилась заживо. А любители подледного лова сидели бы либо под толщей еще не замерзшей воды, либо на глыбе полностью замерзшего водоема. Чтобы путешествовать по замерзшей Арктике, не нужны были бы ледоколы: Северный Ледовитый океан либо промерзал бы до дна, либо оставался бы открытым для обычного судоходства, поскольку слой льда пролегал бы внизу. И по льду можно было бы гулять сколько хочешь и не бояться провалиться. В таком параллельном мире льдины и айсберги тонули бы, и в 1912 году «Титаник» преспокойно доплыл бы до места назначения – до Нью-Йорка.

Существование воды в галактике не ограничивается планетами и их спутниками. Молекулы воды, а также нескольких других знакомых домашних химических веществ, например аммиака, метана и этилового спирта, то и дело регистрируют в межзвездных газовых облаках. При определенных условиях – низкой температуре и высокой плотности – группа молекул воды может переизлучать в пространство энергию ближайшей звезды в виде усиленного высокоинтенсивного направленного микроволнового излучения. Физика этого явления сильно напоминает все то, что происходит с видимым светом в лазере. Но в этом случае лучше говорить не о лазере, а о мазере – так сокращается словосочетание «Microwave amplification by the stimulated emission of radiation» («Усиление микроволн с помощью вынужденного излучения»). Так что вода не просто всюду и везде в галактике – иногда она еще и лучезарно улыбается вам из космических глубин.

Мы знаем, что вода необходима для жизни на Земле, но можем лишь предполагать, что она – необходимое условие возникновения жизни в любом уголке галактики. Однако химически безграмотные люди сплошь и рядом считают, что вода – это смертоносная субстанция, с которой лучше не сталкиваться. В 1997 году Натан Зонер, четырнадцатилетний ученик средней школы в городе Игл-Рок в штате Айдахо, провел объективное исследование антитехнологических предрассудков и связанной с ними «химиофобии», стяжавшее заслуженную славу. Натан предлагал прохожим на улице подписать петицию с требованием строго контролировать либо вообще запретить применение монооксида дигидрогена. Юный экспериментатор приводил перечень кошмарных свойств этого вещества, лишенного вкуса и запаха:

– монооксид дигидрогена – главная составляющая кислотных дождей;

– рано или поздно это вещество растворяет все, с чем соприкасается;

– если случайно вдохнуть его, это может быть смертельно;

– в газообразном состоянии оно оставляет тяжелые ожоги;

– оно обнаружено в опухолях больных раком в терминальной стадии.

Сорок три человека из пятидесяти, к которым обратился Зонер, подписали петицию, шестеро колебались, а один оказался горячим сторонником монооксида дигидрогена и отказался ставить свою подпись. Да-да, 86 % прохожих проголосовали за запрет воды (H2O), за то, чтобы ее не было в окружающей среде.

Может быть, именно такая судьба и постигла всю воду на Марсе.

Глава двадцать пятая

Жизненное пространство

Если спросить человека, откуда он, в ответ обычно услышишь название города, где он родился, или какого-то места на земной поверхности, где он провел детство. И это совершенно правильно. Однако астрохимически точный ответ должен звучать иначе: «Я происхожу из остатков после взрывов множества массивных звезд, которые погибли больше пяти миллиардов лет назад».

Космическое пространство – это главная химическая фабрика. Запустил ее Большой Взрыв, снабдивший Вселенную водородом, гелием и капелькой лития – тремя самыми легкими элементами. Остальные девяносто два элемента, встречающиеся в природе, создали звезды, в том числе весь без исключения углерод, кальций и фосфор во всех до единого живых организмах на Земле, и в людях, и в прочих. Кому был бы нужен весь этот богатейший ассортимент сырья, если бы он остался заперт в звездах? Но когда звезды умирают, они возвращают космосу львиную долю своей массы и приправляют ближайшие газовые облака всем набором атомов, которые впоследствии обогащают следующее поколение звезд.

Если складываются подходящие условия – нужная температура и нужное давление, – многие атомы объединяются и возникают простые молекулы. После чего многие молекулы становятся больше и сложнее, причем механизмы для этого одновременно и затейливы, и изобретательны. В конце концов сложные молекулы самоорганизуются в те или иные живые организмы, и это наверняка происходит в миллиардах уголков Вселенной. По крайней мере в одном из них молекулы стали так сложны, что у них возник разум, а затем и способность формулировать и передавать друг другу идеи, изложенные при помощи значков на этой странице.

Да-да, не только люди, но и все остальные живые организмы в космосе, а также планеты и луны, на которых они обитают, не существовали бы, если бы не останки израсходованных звезд. В общем, вы состоите из отбросов. С этим придется смириться. А лучше порадоваться. В конце концов, что может быть благороднее, чем мысль о том, что во всех нас живет Вселенная?

* * *

Чтобы состряпать жизнь, редкие ингредиенты не нужны. Вспомним, какие элементы занимают пять первых мест по распространенности в космосе: водород, гелий, кислород, углерод и азот. За исключением химически инертного гелия, который ни с кем не любит создавать молекулы, получаем четыре главных составляющих жизни на Земле. Они ждут своего часа в массивных облаках, которые обволакивают звезды в галактике, и начинают создавать молекулы, стоит температуре упасть ниже пары тысяч градусов Кельвина. Молекулы из двух атомов формируются сразу: это угарный газ и молекула водорода (два связанных друг с другом атома водорода). Стоит снизить температуру еще немного, и получатся стабильные трех– или четырехатомные молекулы вроде воды (H2O), углекислого газа (CO2) и аммиака (NH3) – простые, но высококачественные продукты биологической кухни. Если температура упадет еще немного, возникнет целый сонм молекул из пяти и шести атомов. А поскольку углерод не только широко распространен, но еще и весьма деятелен с химической точки зрения, то входит в большинство молекул, – по сути дела, в три четверти всех «видов» молекул, наблюдаемых в межзвездной среде, входит хотя бы один атом углерода.

Многообещающе. Однако космос для молекул – место довольно опасное. Если их не разрушает энергия взрывов сверхновых, то дело довершает ультрафиолетовое излучение от ближайших ультраярких звезд. Чем больше молекула, тем хуже она выдерживает атаки. Если молекулам повезло и они обитают в относительно спокойных или укрытых от посторонних воздействий областях, они могут дожить до того, что войдут в состав крупиц космической пыли, а в конце концов и в астероиды, кометы, планеты и людей. Но даже если звездный натиск не оставит в живых ни одну из первоначальных молекул, останется вдоволь атомов и времени, чтобы создать сложные молекулы – не только во время формирования той или иной планеты, но и на податливой поверхности планеты и под ней. Среди самых распространенных сложных молекул особенно выделяются аденин (это такой нуклеотид, или «основание», составная часть ДНК), глицин (предшественник белка) и гликоальдегид (углеводород). Все эти и им подобные ингредиенты необходимы для возникновения жизни в привычном для нас виде и, несомненно, встречаются отнюдь не только на Земле.

* * *

Однако вся эта вакханалия органических молекул – это еще не жизнь, точно так же как мука, вода, дрожжи и соль – еще не хлеб. Хотя сам переход от сырья к живому существу остается загадкой, очевидно, что для этого нужно несколько условий. Окружающая среда должна подталкивать молекулы к экспериментам друг с другом и при этом оберегать от излишнего травматизма. Особенно хороши для этого жидкости, поскольку они обеспечивают и тесный контакт, и большую подвижность. Чем больше возможностей для химических реакций дает среда, тем изобретательнее эксперименты ее обитателей. Важно учитывать и другой фактор, о котором говорят законы физики: для химических реакций необходим бесперебойный источник энергии.

Если учесть широкий диапазон температур, давления, кислотности и излучений, при которых способна процветать жизнь на Земле, и помнить, что то, что для одного микроба уютный уголок, для другого – камера пыток, становится понятно, почему ученые больше не имеют права выдвигать дополнительные условия существования жизни в других местах. Прекрасная иллюстрация ограниченности подобных умозаключений приведена в прелестной книжке «Cosmotheoros» голландского астронома XVII века Христиана Гюйгенса: автор убежден, что на других планетах должны культивировать коноплю – иначе из чего делать корабельные канаты, чтобы управлять судами и плавать по морям?

Прошло триста лет, и мы довольствуемся всего лишь горсткой молекул. Если их хорошенько перемешать и поставить в теплое место, можно рассчитывать, что пройдет всего несколько сотен миллионов лет – и у нас будут процветающие колонии микроорганизмов.

* * *

Жизнь на земле необычайно плодовита, тут сомневаться не приходится. А как обстоят дела в остальной Вселенной? Если еще где-нибудь найдется небесное тело, хоть сколько-нибудь похожее на нашу планету, возможно, оно проделывало похожие опыты с похожими химическими реактивами и эти опыты были срежиссированы теми же физическими законами, которые одинаковы во всей Вселенной.

Возьмем, к примеру, углерод. Он умеет создавать самые разные связи и с самим собой, и с другими элементами и поэтому входит в неимоверное количество химических соединений – в этому ему нет равных во всей таблице Менделеева. Углерод создает больше молекул, чем все остальные элементы вместе взятые (10 миллионов – как вам?). Обычно, чтобы создать молекулу, атомы делятся одним или несколькими внешними электронами, захватывают друг друга наподобие кулачковых соединений между грузовыми вагонами. Каждый атом углерода способен создавать такие связи с одним, двумя, тремя или четырьмя другими атомами – а вот атом водорода, скажем, только с одним, кислорода – с одним или двумя, азота – с тремя.

Когда углерод объединяется сам с собой, то создает множество молекул из всевозможных сочетаний длинных цепочек, замкнутых колец или разветвленных структур. Эти сложные органические молекулы способны на подвиги, о которых маленькие молекулы могут только мечтать. Например, им по силам выполнять одну задачу на одном конце и другую на другом, скручиваться, сворачиваться, переплетаться с другими молекулами, создавать вещества со все новыми и новыми свойствами и качествами – им нет преград. Пожалуй, самая поразительная молекула на основе углерода – это ДНК, двойная спираль, в которой зашифрован индивидуальный облик каждого живого организма.

А как же вода? Если речь идет об обеспечении жизни, вода обладает очень полезным качеством – она остается жидкой при очень широком, по мнению большинства биологов, диапазоне температур. К сожалению, большинство биологов рассматривают только Землю, где вода остается жидкой в пределах 100 градусов по шкале Цельсия. Между тем кое-где на Марсе атмосферное давление так низко, что вода вообще не бывает жидкой – стоит налить себе стакан H2O, как вся вода одновременно и вскипит, и замерзнет! Однако, каким бы прискорбным ни было нынешнее положение атмосферы Марса, в прошлом она позволяла существовать огромным запасам жидкой воды. Если когда-то на поверхности красной планеты и существовала жизнь, то только в ту пору.

Что касается Земли, то у нее на поверхности с водой очень хорошо поставлено, иногда даже слишком хорошо и даже смертельно опасно. Откуда она взялась? Как мы уже видели, логично предположить, что отчасти ее доставили сюда кометы: они, можно сказать, пропитаны водой (замерзшей, конечно), в Солнечной системе их миллиарды, среди них встречаются довольно крупные, а когда Солнечная система только формировалась, они постоянно бомбардировали юную Землю. Вулканы извергаются не только из-за того, что магма очень горячая, а еще и потому, что вздымающаяся горячая магма обращает подземные воды в пар, а пар стремительно расширяется, что приводит к взрыву. Пар перестает помещаться в подземные пустоты, и с вулкана срывает крышку, отчего H2O выходит на поверхность. С учетом всего этого не стоит удивляться, что на поверхности нашей планеты полным-полно воды.

* * *

При всем многообразии живых организмов на Земле у всех у них есть общие участки ДНК. Биолог, который в жизни не видел ничего кроме Земли, только радуется многогранности жизни, однако астробиолог мечтает о разнообразии в более крупном масштабе: о жизни, основанной на совершенно чуждой нам ДНК или вообще на чем-то другом. К сожалению, пока что наша планета – единственный биологический образец. Тем не менее астробиолог может позволить себе коллекционировать гипотезы о живых организмах, которые обитают где-то в глубинах космоса, изучая организмы, которые обитают в экстремальных средах здесь, на Земле.

Стоит начать искать этих экстремофилов, и окажется, что живут они практически повсеместно: и на свалках ядерных отходов, и в кислотных гейзерах, и в насыщенных железом кислотных реках, и в глубоководных источниках, изрыгающих химические взвеси, и возле подводных вулканов, в вечной мерзлоте, в грудах окалины, в промышленных соляных прудах и в самых разных местах, куда вы наверняка не поехали бы на медовый месяц, но которые, вероятно, вполне типичны для большинства других планет и спутников. Когда-то биологи считали, что жизнь зародилась в какой-то «теплой лужице», как писал Дарвин (Darwin 1959, p. 202); однако накопившиеся за последнее время свидетельства заставляют склониться к представлению о том, что первыми живыми организмами на Земле были именно экстремофилы.

Как мы увидим в следующей части, первые полмиллиарда лет своего существования Солнечная система больше всего напоминала стрельбище. На поверхность Земли постоянно падали большие и маленькие глыбы, которые оставляли после себя кратеры и измельчали в пыль горные породы. Любая попытка запустить проект «Жизнь» была бы тут же пресечена. Однако примерно четыре миллиарда лет назад бомбардировка ослабела, а температура земной поверхности начала опускаться, что позволило результатам сложных химических опытов выживать и процветать. В старых учебниках отсчет времени ведется от рождения Солнечной системы, а их авторы обычно утверждают, что Земле на формирование потребовалось 700–800 миллионов лет. Но это не так: эксперименты в химической лаборатории планеты могли начаться не раньше, чем стихнет небесная бомбежка. Смело вычтите 600 миллионов лет «военных действий» – и получится, что одноклеточные механизмы выбрались из первобытной жижи всего за 200 миллионов лет. Хотя ученые по-прежнему не могут понять, как именно зародилась жизнь, у природы, похоже, не возникло с этим никаких сложностей.

* * *

Астрохимики проделали колоссальный путь всего за несколько десятков лет: еще недавно они вообще ничего не знали о молекулах в космосе, а к сегодняшнему дню уже обнаружили практически повсюду множество различных соединений. Более того, в последние десять лет астрофизики подтвердили, что планеты вращаются и вокруг других звезд и что каждая звездная система, а не только Солнечная, полным-полна тех же четырех главных ингредиентов жизни, что и наш собственный космический дом. Конечно, обнаружить жизнь на звезде никто не ожидает, даже на «холодной», где всего-то тысяча градусов, однако жизнь на Земле часто встречается и в тех местах, где температура доходит до нескольких сотен градусов. Все эти открытия в совокупности заставляют сделать вывод, что на самом деле Вселенная нам отнюдь не чужда и неведома – на самом деле мы с ней уже знакомы на фундаментальном уровне.

Но насколько близко мы знакомы? Какова вероятность, что любые живые организмы похожи на земные – основаны на углероде и предпочитают воду всем другим жидкостям?

Рассмотрим, к примеру, кремний – один из самых распространенных элементов во Вселенной. В таблице Менделеева кремний находится прямо под углеродом, а это значит, что у них одинаковая конфигурация электронов на внешнем уровне. Кремний, как и углерод, может создавать связи с одним, двумя, тремя или четырьмя другими атомами. При нужных условиях он тоже может формировать молекулы-цепочки. Поскольку возможности для создания химических соединений у кремния примерно такие же, как и у углерода, резонно предположить, что жизнь может возникнуть и на его основе.

Однако с кремнием есть одна сложность: кроме того, что он встречается в десять раз реже углерода, он еще и создает очень прочные связи. В частности, если связать кремний и водород, то получатся не зачатки органической химии, а камни. На Земле эти химические соединения отличаются длительным сроком хранения. А чтобы химическое соединение было благоприятно для живого организма, нужны связи, достаточно прочные, чтобы выдержать не слишком сильные атаки окружающей среды, но не настолько нерушимые, чтобы отсечь возможность для дальнейших экспериментов.

А насколько необходима вода в жидком состоянии? Неужели это единственная среда, подходящая для химических экспериментов, единственная среда, способная доставлять питательные вещества из одних частей живого организма к другим? Может быть, живым организмам нужна просто любая жидкость. В природе довольно часто встречается, например, аммиак. И этиловый спирт. Оба получаются из самых распространенных во Вселенной элементов. Аммиак, смешанный с водой, замерзает при температуре гораздо ниже, чем просто вода (–73 °C, а не 0 °C), что расширяет температурный диапазон, при котором есть шансы обнаружить живые организмы, которые любят жидкость. Есть и другой вариант: на планете, где мало источников внутреннего тепла, например она вращается далеко от своей звезды и промерзла до костей, роль необходимой жидкости может сыграть и метан, который обычно пребывает в газообразном состоянии.

* * *

В 2005 году космический зонд «Гюйгенс» (названный в честь сами-знаете-кого) совершил посадку на Титан, самый большой спутник Сатурна, где много органических соединений и атмосфера в десять раз толще земной. Не считая планет – Юпитера, Сатурна, Урана и Нептуна, – каждая из которых состоит целиком из газа и не обладает твердой поверхностью, – достойной упоминания атмосферой обладают лишь четыре небесных тела в нашей Солнечной системе: это Венера, Земля, Марс и Титан. Титан – отнюдь не случайный объект исследования. Перечень молекул, которые можно там обнаружить, внушает уважение: это и вода, и аммиак, и метан, и этан, а также так называемые полициклические ароматические углеводороды – молекулы из множества колец. Водяной лед на Титане такой холодный, что стал твердым, как цемент. Однако сочетание температуры и давления приводит метан в жидкое состояние, и на первых изображениях, полученных с помощью «Гюйгенса», видны ручьи, реки и озера жидкого метана. Химическая обстановка на поверхности Титана в некотором смысле напоминает обстановку на юной Земле, вот почему очень многие астробиологии считают Титан «живой» лабораторией для изучения далекого прошлого Земли. И в самом деле, проведенные два десятка лет назад эксперименты показали, что если добавить воду и немного кислоты в органическую взвесь, которая получается, если облучить газы, из которых состоит мутная атмосфера Титана, это даст нам шестнадцать аминокислот.

Не так давно биологи узнали, что совокупная биомасса под поверхностью планеты Земля, возможно, больше, чем на поверхности. Нынешние исследования особо выносливых живых организмов раз за разом показывают, что жизнь не знает преград и границ. Исследователи, изучающие условия для возникновения жизни, больше не «чокнутые профессора», которые ищут на ближайших планетах маленьких зеленых человечков, – это ученые-универсалы, владеющие самым разным инструментарием: они должны быть специалистами не только в астрофизике, химии и биологии, но и в геологии и планетологии, поскольку жизнь им приходится высматривать где угодно.

Глава двадцать шестая

Есть ли жизнь во Вселенной

Когда ученые открыли сотни планет вокруг других звезд, это вызвало колоссальный общественный интерес. Причем в основном этот интерес был вызван не столько открытием планет в других системах, кроме Солнечной, сколько перспективой обнаружить на них разумную жизнь. Так или иначе, шумиха, которую поднимают по этому поводу СМИ, до сих пор несколько не соответствует важности события. Почему? Потому что если у Солнца, ничем не примечательной звезды, целых восемь планет, не может такого быть, чтобы во всей остальной Вселенной они были редкостью. К тому же все недавно открытые планеты – это огромные газовые гиганты, похожие на Юпитер, а значит, у них нет удобной поверхности, на которой могла бы обитать жизнь в привычном для нас виде. И даже если бы на этих планетах кишмя кишели веселые инопланетяне, вероятность, что эти живые организмы разумны, очень и очень мала.

Как правило, для ученого (да и для кого угодно, если уж на то пошло) нет более рискованного шага, чем делать масштабные обобщения на одном-единственном примере. На сегодня мы знаем только один случай возникновения жизни во Вселенной – это здесь, на Земле, – однако у нас есть все основания полагать, что мы не одиноки. Более того, астрофизики в большинстве своем согласны, что жизнь, весьма вероятно, есть еще где-нибудь. Обосновать это очень просто: если наша Солнечная система – не исключение, то во Вселенной столько планет, что они, в частности, превосходят числом сумму всех звуков и слов, произнесенных всеми людьми, жившими на Земле с начала времен. Если бы мы объявили, что Земля – единственная планета во Вселенной, где есть жизнь, это было бы с нашей стороны большое зазнайство.

Антропоцентрические заблуждения сбили с пути истинного много поколений мыслителей, и научных, и религиозных, – правда, были и такие, кто заблуждался просто по невежеству. В отсутствие данных и догм лучше руководствоваться идеей, что в нас нет ничего особенного, – это принято называть принципом Коперника, само собой, в честь Николая Коперника, который еще в середине XVI века вернул Солнце на причитающееся ему место в центр Солнечной системы. Несмотря на то, что древнегреческий философ Аристарх предложил гелиоцентрическую модель Вселенной еще в III веке до н. э., представление о том, что в центре Вселенной находится Земля, в последние 2000 лет без малого было гораздо популярнее. Опираясь на учение Аристотеля и Птолемея, а затем – на догматы католической церкви, люди обычно считали, что Земля – центр всякого движения и всей известной Вселенной. Это было самоочевидно. Ведь Вселенная именно так и выглядит, и такой ее наверняка создал Бог.

Хотя к принципу Коперника не прилагается никаких гарантий, что он веки вечные будет вести нас к космическим истинам, пока что он вполне себя оправдывает: мало того что Земля – не центр Солнечной системы, но и Солнечная система – не центр Млечного Пути, галактика Млечный Путь – не центр Вселенной, и вообще очень может быть, что наша Вселенная – всего лишь одна из множества Вселенных в составе множественной Вселенной, или мультиверса. Если вы из тех, кто считает, что место на краю чего-нибудь тоже особое, подчеркну, что и ни на каком краю мы тоже не находимся.

* * *

В наши дни разумно встать на ту точку зрения, что жизнь на Земле тоже подчиняется принципу Коперника. Тогда мы сможем задаться вопросом, позволяет ли наличие биохимии на Земле делать выводы о том, какой может быть жизнь в других уголках Вселенной.

Не знаю, каждый ли день биологи замирают в благоговении при мысли о многообразии жизни. Я – замираю. На одной-единственной планетке под названием Земля сосуществуют (помимо бесчисленных других форм жизни) водоросли, жуки, губки, медузы, змеи, кондоры и гигантские секвойи. Представьте себе, что эти семь живых организмов выстроились по росту. Если бы вы не знали, что они из одной Вселенной, более того, с одной планеты, вам было бы трудно в это поверить. Попробуйте описать змею тому, кто никогда ее не видел: «Поверь мне на слово. На Земле есть животное, способное (1) находить добычу при помощи инфракрасных датчиков, (2) целиком заглатывать заживо животных размером в пять раз больше собственной головы, (3) не иметь ни рук, ни ног, ни прочих конечностей, но при этом (4) скользить по ровной земле со скоростью полметра в секунду!»

Если учесть подобное разнообразие жизни на Земле, можно ожидать, что и голливудские инопланетяне будут очень разные. Однако меня не устает поражать скудное воображение кинематографистов. За несколькими существенными исключениями – это инопланетяне в фильмах «Капля» (1958), «2001 год: космическая одиссея» (1968) и «Контакт» (1997), голливудские инопланетяне очень уж похожи на гуманоидов. Они могут быть и уродами, и красавцами, но у них всегда два глаза, нос, рот, два уха, голова, шея, плечи, руки, ладони, кисти, торс, две ноги, две ступни, и они умеют ходить. С анатомической точки зрения эти создания практически неотличимы от людей, однако предполагается, что они с какой-то другой планеты. Между тем несомненно, что живые организмы из других уголков Вселенной, и разумные, и нет, должны выглядеть так же непривычно, как и представители некоторых местных, земных биологических видов.

Химический состав живых организмов на Земле основан на нескольких особых составляющих. 95 % атомов в человеческом организме и во всех известных живых организмах составляют элементы водород, кислород и углерод. Особое место в этой троице занимает углерод, чья химическая структура позволяет ему легко создавать достаточно прочные связи с самим собой и со многими другими элементами и образовывать разнообразные молекулы, именно поэтому мы считаемся углеродной жизнью – и именно поэтому изучение углеродосодержащих молекул принято называть органической химией. Любопытно, что изучение жизни на других планетах называют экзобиологией, и это одна из немногих научных дисциплин, которая пытается функционировать при полном отсутствии непосредственных данных.

Можно ли сказать, что жизнь – это какое-то особое явление с точки зрения химии? Принцип Коперника предполагает, что, скорее всего, нет. Инопланетянам не обязательно быть на нас похожими внешне – они наверняка напоминают нас на куда более фундаментальном уровне. Вспомним, что четыре самых распространенных элемента во Вселенной – это водород, гелий, углерод и кислород. Гелий инертен. Так что три самых распространенных и химически активных ингредиента в космосе – это одновременно еще и три ингредиента жизни на Земле. По этой причине вполне можно ручаться, что если когда-нибудь будет обнаружена жизнь на другой планете, окажется, что она состоит из похожей смеси элементов. Наоборот, если бы жизнь на Земле основывалась, скажем, на молибдене, висмуте и плутонии, у нас были бы самые веские основания полагать, что мы во Вселенной занимаем особое место.

Далее, если мы обратимся к принципу Коперника, то сможем предположить, что инопланетный организм едва ли должен быть очень большим по сравнению с известными нам живыми организмами. По дальним планетам не разгуливают живые существа размером с Эмпайр-Стейт-Билдинг, это ясно из соображений устойчивости конструкции. Даже если не принимать в расчет инженерные ограничения прочности биологической материи, мы столкнемся с другими, более фундаментальными ограничениями. Если предположить, что инопланетянин контролирует движения собственных конечностей – или сделать обобщение и предположить, что организм должен функционировать согласованно, как единая система, – его размеры тут же окажутся ограничены способностью передавать внутри себя сигналы со скоростью света, поскольку это предел допустимой скорости во Вселенной. Если взять предельный случай – организм размером со всю Солнечную систему (то есть примерно 10 световых часов в диаметре), – и представить себе, что ему захотелось почесать в затылке, на это простое действие уйдет не меньше 10 часов. К тому же такие менее чем улиточьи темпы противоречат идее эволюции, поскольку всего времени с самого зарождения Вселенной не хватило бы, чтобы существо подобных габаритов эволюционировало из живых организмов меньшего размера за много поколений.

* * *

А как же разум? Поскольку голливудские пришельцы худо-бедно добрались до Земли, мы вправе ожидать, что они необычайно умны. Однако знаю я и таких, которым должно быть стыдно за собственную тупость. Как-то раз я ехал на машине из Бостона в Нью-Йорк – дорога занимает часа четыре, – искал, что бы послушать в FM-диапазоне, и наткнулся на какую-то радиопостановку, где, насколько я мог судить (я же пропустил начало), шла речь о злых инопланетянах, которые терроризировали землян. Очевидно, их жизнедеятельность была основана на атомах водорода, поэтому они шастали по Земле, высасывали океаны и добывали водород из всех молекул H2O.

Отменно глупые попались инопланетяне. Похоже, по пути к Земле они не обратили внимания на другие планеты, – ведь на Юпитере, например, масса чистого водорода примерно в двести раз больше, чем вся масса Земли. К тому же им, наверное, никто не говорил, что водород составляет примерно 90 % всех атомов во Вселенной.

А как же все те инопланетяне, которые сумели преодолеть тысячи световых лет межзвездного пространства – и потерпели крушение при посадке на Землю, загубив на корню свое эффектное появление?

А были и такие пришельцы – в фильме «Близкие контакты третьей степени» 1977 года, – которые перед прибытием передали на Землю загадочную последовательность повторяющихся цифр, которую специалисты по криптографии в конце концов расшифровали и поняли, что это широта и долгота точки предстоящей посадки корабля пришельцев. Однако у земной долготы совершенно произвольная точка отсчета – нулевой меридиан, который по международной договоренности проходит через английский город Гринвич. К тому же и широта, и долгота измеряются в надуманных, неестественных единицах, которые мы называем градусами и считаем, что их 360 в круге. Если инопланетяне знали так много о человеческой культуре, то, по-моему, с тем же успехом могли выучить английский и передать другое послание: «Мы собираемся совершить посадку сбоку от национального монумента „Башня Дьявола“ в штате Вайоминг. Поскольку у нас летающая тарелка, световые сигналы на взлетно-посадочной полосе можете не включать».

Однако почетное звание самого глупого инопланетянина всех времен и народов по справедливости досталось пришельцу из оригинального фильма «Звездный Путь» 1979 года. Это существо, которое называет себя «Виджер» (V’ger), – древний механический космический аппарат, который должен был изучать космос, совершать открытия и докладывать о том, что обнаружит. Этот аппарат «спасла» из глубин космоса цивилизация механических инопланетян и переконструировала его так, чтобы он мог выполнять то же самое в масштабах всей Вселенной. В конце концов аппарат узнал все на свете и в результате обрел разум. «Энтерпрайз» наталкивается на эту разползшуюся во все стороны чудовищную сокровищницу вселенской мудрости, когда «Виджер» уже погружен в размышления о своем создателе и смысле жизни. На борту древнего зонда видны написанные по трафарету полустертые буквы – «V» и «ger». Вскоре после этого капитан Кирк обнаруживает, что это космический аппарат «Вояджер-6», запущенный людьми с Земли в конце XX века. Судя по всему, буквы «oya» между «V» и «ger» совсем выцвели, и их нельзя было разобрать. Бывает. Но я никогда не мог понять, как это «Виджер» собрал всю сумму знаний во Вселенной и к тому же обрел разум, но так и не догадался, что на самом деле называется «Вояджер».

Страницы: «« 1234567 »»

Читать бесплатно другие книги:

В книге рассматриваются три исторически неодновременных пути модернизации – модернизация Запада, дог...
«От Пушкина до Чехова. Русская литература в вопросах и ответах» продолжает цикл книг, основанных на ...
Что делать существу из другого мира, которое попало не на ту планету на которую планировало? Роман «...
Бог избранных «награждает» несносным характером и в то же время великой ответственностью за судьбы м...
Это мир Дикой Охоты, костров Бельтайна, чумы и грядущего Апокалипсиса. Некромант Грель Ворон — после...
Перед вами третья, заключительная часть красочно иллюстрированной и захватывающей трилогии «Новейшие...