Ингредиенты: Химия и алхимия гастрономического творчества Бузари Али
Переводчик М. Кульнева
Редактор К. Бычкова
Фотограф Д. Джекс
Иллюстратор Д. Дельер
Дизайнер С. И. Чонг
Руководитель проекта А. Василенко
Корректоры Е. Аксёнова, Е. Чудинова
Компьютерная верстка А. Абрамов
© Ali Bouzari, 2016
Публикуется по соглашению с STRAUS LITERARY (США) при содействии Агентства Александра Корженевского (Россия)
© Издание на русском языке, перевод, оформление. ООО «Альпина Паблишер», 2017
Все права защищены. Произведение предназначено исключительно для частного использования. Никакая часть электронного экземпляра данной книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, включая размещение в сети Интернет и в корпоративных сетях, для публичного или коллективного использования без письменного разрешения владельца авторских прав. За нарушение авторских прав законодательством предусмотрена выплата компенсации правообладателя в размере до 5 млн. рублей (ст. 49 ЗОАП), а также уголовная ответственность в виде лишения свободы на срок до 6 лет (ст. 146 УК РФ).
Посвящается моему отцу
Введение
Когда мне было всего лишь двадцать с небольшим, я устроился на работу в Кулинарный институт Америки. Передо мной оказалась толпа перепуганных студентов. Некоторые из них ни разу в жизни не включали плиту, а теперь им предстояло научиться готовить шесть разных блюд одновременно. Идеально. Последовательно. И быстро.
В тот же самый период жизни я внимательно наблюдал за своими любимыми поварами. Я старался познакомиться с некоторыми из лучших – с такими людьми, как Томас Келлер, Даниэль Хамм, Кори Ли, Кристофер Костоу. Они-то ничего не боялись и могли приготовить все, что только можно вообразить. Они делали то, чего еще никто не делал, и интересовались совершенно новаторскими блюдами.
Кроме того, я обсуждал кулинарию со своими друзьями, младшей сестрой, мамой, бабушкой и случайными попутчиками. Одни спрашивали меня о рецептах, которые нашли в журналах, увидели по телевизору или узнали от друзей. Другие хотели полностью отойти от канонов и импровизировать, используя все, что найдется в холодильнике.
В общем, все (от шеф-поваров до моей мамы) постоянно расспрашивали меня о еде. Иногда их интересовали странные вещи типа: «Когда я выкладываю идеальную сферу из тонюсеньких ломтиков картофеля вокруг расплавленного фондю, жарю все это в утином жире и покрываю икрой, как мне добиться того, чтобы картофель был хрустящим?» А иногда – совершенно нормальные: «Почему у меня всегда слипаются спагетти?»
Вопросы были очень разными, но все мои ответы касались одной и той же очень важной темы: разницы между ингредиентами блюд и их составом.
Картофель, сыр, икра, утиный жир, макароны – это все ингредиенты. Но любой ингредиент, каким бы сложным он ни был, состоит из определенных веществ, основных строительных блоков пищи. Их можно разделить на семь категорий – вода, белки, углеводы, минералы, газы, сахара, жиры (или липиды); восьмая категория – это температура. Первые семь – это шестеренки, работающие внутри всей еды, которую мы употребляем в пищу, а температура – энергия, заставляющая их вращаться. У каждого вещества есть свой характер, то, что он умеет или не умеет делать, свой modus operandi, так сказать. Я знаком со всеми этими особенностями: от них зависит, какое влияние оказывает на нас пища, и они помогают мне разбираться в кулинарии. Прочитав эту книгу, вы поймете их сами и сможете отвечать на все возникающие вопросы.
Эта книга – не набор формул, которые вы должны выучить, и точно так же ее не следует рассматривать как исчерпывающее руководство по кулинарной науке. Существуют тонны замечательных изданий и статей о точной физике, химии и биологии пищи. Я создал для вас наглядный вариант изложения этих знаний – использовал метафоры, картинки и фото, чтобы познакомить вас с основополагающими принципами работы еды. Вы услышите голоса в своей голове и начнете видеть разные вещи… в хорошем смысле. В процессе приготовления и потребления пищи вы воспринимаете все с человеческой точки зрения – вы видите, чувствуете вкусы и запахи, осязаете и слышите. Прочитав эту книгу, вы сможете разглядеть невидимое – то, что происходит на микроскопическом уровне и скрывается за текстурой, вкусом, ароматом и внешним видом ваших блюд. Вы приобретете кулинарное рентгеновское зрение.
Принципы построения пищи из разных элементов ее состава демонстрируют нам, что существует всего лишь пара основных подходов к решению любых кулинарных проблем. Вот пример: когда вас постигнет неудача с рецептом клецек, колбасок или печенья (к примеру, они будут рассыпаться), вы вспомните, что лучше всего склеиваются углеводы и белки. Вы сможете представить себе длинные нити этих веществ, сплетающиеся в единую сеть, позволяющую пище поддерживать определенную форму. И вы будете знать, где их искать – в корнеплодах, мясе, фруктах или пакете с мукой. Вы также поймете, что нужно делать с этими ингредиентами, чтобы разъединить длинные и перепутанные цепочки веществ внутри них, – яростно мять картошку, мелко рубить мясо, долго кипятить кожуру фруктов или тщательно просеивать муку. Все эти действия – вариации одних и тех же базовых принципов, основанных на персональных качествах углеводов и белков, и вы сможете выбрать из них те, что наилучшим образом соответствуют вашим вкусам.
Но эти принципы применимы не только при кулинарных неудачах: если все идет как задумано, вы осознаете, почему у вас все получается и как добиться такого же результата впоследствии. А если вы готовили что-то уже тысячу раз и хотите, чтобы на тысячу первый у вас получилось еще лучше, вы догадаетесь, как это сделать. Вы узнаете, что хрустящая корочка обеспечивается правильным соотношением воды и других ингредиентов, поэтому в поиске оптимального рецепта пиццы нужно исходить именно из этого. Если вам потребуется заменить что-то в рецепте из-за аллергии, нелюбви к определенным продуктам, диеты или нежелания идти в магазин, вы будете понимать, какие у вас есть варианты. Если к вам на ужин придет подружка с непереносимостью глютена, вы с легкостью замените муку в качестве загустителя для подливки любой другой смесью углеводов и белков – всем, чем угодно, от бамии и протертого пастернака до молотых лесных орехов и крошек от кукурузной тортильи. Если вы захотите поделиться своими кулинарными секретами с кем-то из друзей, родных или коллег, вы сможете говорить на языке, который будет им понятен. Ваш дядя легче добьется успеха с вашим рецептом жареной моркови, если вы упомянете о том, что масло фигурирует в нем для создания аппетитной корочки, а не потому, что вы добавляете его во все блюда. Если у вас родилась безумная идея приготовить что-то новаторское, приобретенные вами знания избавят вас от массы лишних хлопот. Дынное мороженое, которое можно будет тонко нарезать, получится у вас куда быстрее, если вы вспомните о том, что углеводы и белки создают подходящую структуру, сахар помогает кристалликам воды оставаться мелкими, а смеси – однородной, жиры сохраняют аромат дыни, а удаление пузырьков газа сделает лакомство достаточно плотным.
Вы многое узнаете из этой книги, но вам не придется запоминать кучу фактов и цифр – я просто познакомлю вас с важнейшими чертами характера основных составляющих пищи, чтобы вам было проще «общаться» с ними. Каждой группе элементов посвящена отдельная глава, где эти черты попадают в фокус. Все изложено совершенно доступно – вы разберетесь в материале и без специальной научной подготовки. А чтобы особенности всех элементов пищи стали для вас более понятными и закрепились в вашем сознании, чудесный художник-новатор Джефф Дельер дополнил мою книгу прекрасными наглядными иллюстрациями. Джефф оформил каждую главу по-разному, в соответствии с особенностями всех групп элементов: главу о воде – акварелью, главу о жирах – маслом и так далее.
Знакомство с основными идеями завершают развороты с фотографиями Джейсона Джекса, моего хорошего друга, сотрудника National Geografic и одного из самых талантливых мастеров визуального повествования. На его снимках представлены необычные сочетания блюд и продуктов – например, морские ежи c жареным картофелем и пурпурным артишоком, – которые подчеркивают универсальность изложенных здесь принципов и демонстрируют их применение в кулинарии и питании.
Эту книгу можно рассматривать как справочник, но скорее это краткий курс по общим закономерностям приготовления и потребления пищи. Прочитайте ее от начала до конца, и вы обретете суперсилу Шерлока Холмса, позволяющую избавиться от всех трудностей, с которыми вы столкнетесь на кухне в дальнейшем.
Вода
Вода очень важна – это сцена, на которой действуют все остальные составляющие пищи. Она может влиять на то, как они ведут себя. Вода – ключ к пониманию большинства идей этой книги, и, к счастью, она полностью подчиняется пяти простым универсальным правилам:
• Она может быть твердой, жидкой или газообразной.
• Она растворяет вещества.
• Она течет.
• Она может быть кислой, нейтральной или щелочной.
• Она обеспечивает рост.
Твердая, жидкая и газообразная
Вода может переходить из твердого в жидкое и газообразное состояние. В этом нет ничего удивительного – любое вещество при определенных температурах ведет себя так же. Например, твердая (кристаллическая) соль может становиться жидкостью, а затем и испаряться – но только при невероятно высокой температуре. Особенность воды состоит в том, что все три ее состояния существуют в пределах температур, более близких к привычным для нас с вами. Контроль за переходом воды из твердого в жидкое и газообразное состояние и обратно очень важен как в приготовлении суфле, так и при размораживании блинчиков в микроволновке.
Любая пища – это в основном жидкая вода. Присмотритесь внимательнее, и вы увидите, что большинство продуктов представляют собой масштабное скопление маленьких капелек. И в нем плавают кусочки, шарики, ниточки и пузырьки разных веществ – сахаров, жиров, углеводов, минералов, газов и белков. Бурлящее море воды дает прочим веществам возможность перемешиваться, а энергию для этого предоставляет температура. Это движение создает основу практически всех кулинарных процессов.
Жидкая вода управляет всем как в жидкой, так и в твердой пище. Молоко, мед и бульон подчиняются тем же «водным правилам», что и малина, морковь или куриные крылышки. Твердая пища, если только она не полностью заморожена или высушена, лишь выглядит твердой. Но на самом деле она преимущественно состоит из жидкой воды, заключенной в камеры со стенками из белков, жиров и углеводов. Без этих стенок, которые удерживают воду на месте, стебель сельдерея стал бы бесформенной лужей.
В самых сочных продуктах есть камеры, наполненные водой и готовые разорваться.
Когда вы откусываете кусочек стейка, яблока или свежей моцареллы, вы разрываете стенки этих камер и выпускаете из них сок. В самых сочных продуктах есть камеры, наполненные водой и готовые разорваться. В сыром мясе или недозрелых персиках в камерах содержится очень много сока, но их стенки достаточно прочны и не так легко разрушаются. При приготовлении или при созревании они ослабевают, и малейшее давление приводит к их разрыву, а мы наслаждаемся слабо прожаренным стейком или спелым персиком. Если стейк пережарен или персик слишком долго пролежал на полке, содержимое камер высыхает, и сколько бы вы ни жевали, вы не почувствуете никакой сочности.
Когда жидкая вода замерзает, случайные течения моря капель становятся твердым и неподвижным айсбергом. Объяснение этому превращению – в организации частиц. Вначале пара молекул воды цепляется за какую-нибудь «точку сборки» – пылинку, пузырек газа или неровность в стенке сосуда. Вокруг этой точки начинает формироваться маленький кристаллик льда. Постепенно все больше молекул воды присоединяется к кристаллу, который растет, сохраняя идеальную геометрическую форму.
Когда вода замерзает, пища становится тверже. Мы можем воспользоваться этим, чтобы удержать на месте любые мягкие, текучие или скользкие продукты и нарезать, натереть или придать им желаемую форму. Заморозка помогает нам нарезть карпаччо ломтиками толщиной в лист бумаги так, чтобы они не распадались, снять похожий на снег наружный слой с фруктового льда, не превращая его в кашу, перемолоть стручки перца чили в порошок без комочков, порезать хрупкий кекс так, чтобы он не раскрошился или поместить в тесто бульон, когда мы готовим китайские пельмени.
Такие продукты, как, например, замороженные рыбные палочки или кусочки манго, могут казаться на ощупь очень твердыми, но в реальности вся замороженная пища – это смесь кристалликов льда и жидкой воды. Чистая вода – единственное вещество на кухне, которое способно замерзнуть, сформировав единую кристаллическую массу вне зависимости от того, какая форма и поверхность будет у вашей морозилки. Для того чтобы замерзнуть, вода должна организовать идеальные ряды и колонны частиц, но достичь такой структуры сложно, когда вокруг разбросаны частицы других веществ. Все, что мы едим, содержит множество молекул сахаров, белков, жиров, газов и минералов, которые мешают воде формировать правильные кристаллы. И вместо гигантской глыбы льда мы получаем тысячи мелких кристалликов, окруженных концентрированным сиропом. Этот сироп состоит из молекул воды, которые слишком тесно перепутались с другими веществами и не могут совершить путешествие к образующемуся кристаллу. Это естественно для любых продуктов, но при приготовлении мороженого, сорбета или замороженной «Маргариты» мы намеренно усиливаем этот эффект, добавляя дополнительные ингредиенты, чтобы создать желаемую текстуру – от киселеобразной или зернистой до мягкой или однородной.
Вместо гигантской глыбы льда мы получаем тысячи мелких кристал– ликов, окруженных концентрированным сиропом.
В жидкой воде молекулы могут двигаться куда угодно и перемешиваться друг с другом, подобно людям на танцплощадке. В кристалле льда жесткая структура рядов и колонн удерживает все молекулы на определенном расстоянии от своих соседей. Из-за этого при замерзании вода расширяется, что может привести к неприятностям. Те, кому приходилось забывать пиво в морозильнике на достаточно долгое время, прекрасно знают, что происходит при расширении воды в ограниченном пространстве. А теперь представьте тысячи кристаллов, растущих внутри каждого кусочка пищи. Растущие кристаллы ведут себя как айсберги, разрывающие корпус «Титаника», разламывая и кроша пищу изнутри. Когда пища размораживается, эти кристаллы уменьшаются, образуя дыры в камерах с водой и выпуская жидкость. Из-за этого креветки становятся мокрыми и кашеобразными, что плохо, но благодаря тому же процессу мы можем получить больше сока из голубики, что хорошо.
Соотношение между замерзшей и жидкой водой определяет текстуру и качество замороженных продуктов. Температура предоставляет нам еще один способ контроля этого соотношения (см. главу о температуре). Нагрев придает молекулам воды дополнительную энергию для движения, не давая им держаться вместе и превращаться в кристаллы льда. Когда лед тает, кристаллы уменьшаются, и молекулы вырываются из четко структурированных рядов, возвращаясь к существованию в жидкой форме.
Логично, что снижение температуры способствует замерзанию продуктов, но при этом очень большое значение имеет скорость охлаждения и его степень. Если температура падает быстро, у ледяных кристаллов оказывается не так много времени на то, чтобы вырасти (также см. главу о температуре), и мелкие кристаллы легче помещаются в промежутках между клетками. Эти мелкие кристаллы не так сильн повреждают окружающие их структуры, и именно поэтому некоторые дорогие продукты, например трюфели, омары или высококачественный тунец, подвергаются быстрой заморозке для сохранения своих свойств. Однако преимущества у такого варианта все равно ограничены, потому что даже мелкие кристаллы продолжают медленно расти, так как оставшиеся молекулы жидкой воды продолжают присоединяться к ним в течение дней и недель, проведенных в морозильной камере. Чтобы кристаллы вообще не росли при хранении замороженной еды, температуру нужно понизить настолько, чтобы движение частиц полностью прекратилось. Когда пища охлаждается достаточно, жидкость, оставшаяся между кристаллами льда, затвердевает без кристаллизации. Продукты, хранящиеся в таком состоянии (см. также раздел о текучести воды), заморожены в почти максимальной степени – и в таком случае их можно хранить практически бесконечно. И хотя морозильное оборудование, которое способно поддерживать температуру –40 °С и ниже, стоит недешево, использование его для хранения филе тунца, купленного по цене автомобиля, вполне оправдывает расходы.
В состоянии пара молекулы воды находятся так далеко друг от друга, что практически не соприкасаются. Если жидкая вода – переполненная танцплощадка, то пар – пустынная улица за дверями клуба. В том, что мы едим, количество пара минимально – обычно он улетучивается еще до того, как мы доносим пищу до рта, – но при этом он играет важнейшую роль в приготовлении самых разных блюд – от круассанов до свиных шкварок.
Когда жидкая вода превращается в пар, молекулы с высокой скоростью разлетаются в пространстве во всех направлениях. Они занимают в тысячу раз больше места, чем жидкая вода. Движущиеся молекулы воды врезаются во все на своем пути и улетают прочь. Одна-две вырвавшиеся на свободу молекулы не способны как-то повлиять на нас с вами, но миллионы испаряющихся молекул воды создают эффект небольшого вулкана. Давление, возникающее внутри зернышка попкорна, кожицы поджариваемых овощей или куриной ножки или под поверхностью суфле, заставляет эти продукты подпрыгивать, разрываться, надуваться и подниматься. Вода – топливо, подпитывающее эти взрывные изменения, и чтобы получить желаемую текстуру, необходимо поддерживать ее правильный баланс. Если в продуктах будет недостаточно воды, им не хватит силы, чтобы взорваться, а если слишком много – они останутся слишком влажными и после приготовления. При выпекании, жарении на масле или на гриле от добавления определенного количества воды зависит, получится ли блюдо легким и хрустящим или плотным и тягучим.
При нормальных условиях вода создает лимит температуры пищи.
Чтобы запустить молекулы воды на орбиту, требуется много энергии, и, покидая приготавливаемый продукт, они забирают с собой тепло. Поэтому температура пищи не может подняться выше температуры кипения воды. При нормальных условиях вода создает лимит температуры пищи. При отсутствии воды температура растет без ограничений, и пища быстро становится золотисто-коричневой. Любое блюдо – от хлеба и грибов до жареной картошки и стейка – начинает темнеть быстрее после того, как его поверхность высыхает. Так, повара специально убирают влагу полотенцем, прежде чем начать готовить морские гребешки, чтобы они могли аппетитно подрумяниться в сковородке и при этом не пережариться.
Помимо удаления воды с поверхности пищи, единственный способ заставить температуру подняться выше точки кипения – приложить давление. Скороварки не дают молекулам воды убежать из пространства кастрюли, поэтому температура пищи поднимается выше точки кипения даже внутри нее. Благодаря этому использование скороварки является одним из самых быстрых способов приготовления пищи, изобретенных на сегодняшний день.
Растворение
Размешайте немного сахара в стакане воды, и кристаллы исчезнут. Этот процесс кажется вполне безобидным, как будто сахар просто исчезает. На самом деле это не так. Вода набрасывается на каждый кристаллик, словно разъяренная толпа, разрывая его на части. Каждая молекула сахара отрывается от кристалла и уносится прочь группой молекул воды. Вода способна совершить это практически с любым веществом: она вырывает углеводы из фруктов и овощей, варящихся в соусе, разрушает белки в тушеном мясе, вытаскивает сахара и минералы из чайных листьев и ловит газы в газированных напитках. Однако отличительной особенностью жиров является их ненависть к воде. Благодаря нападению воды на прочие вещества мы получаем вкус, возможность хранения и изменение текстуры пищи.
Растворение – это двусторонний процесс: вода захватывает вещества, а они полностью завладевают ее вниманием. Вода и растворяющееся в ней вещество держатся вместе, пойманные в силовой «кокон». Это не традиционный парный танец; каждая молекула вещества окружена молекулами воды со всех сторон. Вокруг одной такой молекулы могут толпиться тысячи молекул воды. Это означает, что в определенный момент все молекулы воды становятся заняты и раствор превращается в насыщенный.
Растворение – это двусторонний процесс: вода захватывает вещества, а они полностью завладевают ее вниманием.
В насыщенном сахарном сиропе больше не может раствориться никакое количество сахара, если только мы не добавим еще воды или не увеличим температуру. При повышении температуры молекулы воды начинают двигаться быстрее и занимают большее пространство (см. главу о температуре). Благодаря такой повышенной подвижности горячие молекулы могут «бегать» кругами вокруг своих узников. Поэтому для контроля над ними требуется меньше молекул воды и в воде растворяется больше вещества. На кухне мы можем использовать температуру для того, чтобы поместить много веществ в небольшое количество воды, получая концентрированные сиропы, соусы, подливки, бульоны, экстракты и напитки вроде кофе или чая. Исключение из этого правила – газы. При повышении температуры они становятся еще более прыткими, чем молекулы воды, ускользают от них и вырываются в воздух. Поэтому мы и стараемся держать газированную воду, пиво или шампанское в холоде: так газы остаются растворенными и пузырьки сохраняются дольше.
Погружая кусочки пищи в воду, мы выделяем из них смесь разнообразных веществ. Точное количество веществ, которое мы можем извлечь из продукта, зависит от того, насколько хорошо он растворяется в воде при данной температуре, поэтому изменение температуры дает нам возможность создавать разные сочетания вкусов, запахов, цветов и текстур даже при использовании одних и тех же исходных ингредиентов. Почти всем нам знакома разница между холодными и горячими кофейными напитками, и мы можем применять тот же самый подход для приготовления всего, что связано с растворением продуктов в воде (а также для растворения не любящих воду веществ в жирах – см. соответствующую главу). Мы можем настаивать чай, делать глинтвейн и даже готовить бульон при разных температурах – от замерзания до кипения, получая бесчисленные вариации основной вкусовой темы.
Вода / РастворениеВода растворяет другие вещества, окружая их молекулы. Вода и растворенное в ней вещество связаны вместе.
Текучесть
Когда вы встряхиваете, перемешиваете или наливаете любую жидкость, молекулы содержащихся в ней веществ перемещаются туда-сюда. Мелкие молекулы делают это легче, так что состоящие из них вещества являются более жидкими. Молекулы воды очень маленькие и подвижные по сравнению с другими веществами, так что чистая вода – одна из самых текучих жидкостей у вас на кухне. Если добавить в воду другие вещества, они создадут препятствия и барьеры на пути молекул воды. По сравнению с чистой водой хумус – это сильно пересеченная местность.
Любые вещества, мешающие молекулам воды перемещаться, делают раствор более густым.
Любые вещества, мешающие молекулам воды перемещаться, делают раствор более густым. Чем равномернее распределены препятствия, тем плотнее жидкость. Яичный соус получится гуще, если белки в нем будут размешаны равномерно, а не сбиты в комочки. Хорошо взбитая заправка для салата становится жиже, когда жиры отделяются, образуя масляную пленку. Углеводы делают лимонное повидло более густым, если выделяются из фруктов при долгом кипячении. Пенка на эспрессо тем гуще, чем мельче пузырьки, а сахарный сироп станет максимально вязким, когда весь сахар растворится в воде. Минеральные вещества, например соль, тоже способны делать жидкость более густой, но, чтобы вы заметили эффект, вам понадобится такое количество соли, что раствор станет совершенно отвратительным на вкус.
Молекулы встают настолько плотно, что в растворе больше ничто не может двигаться – даже вода.
Если чистая вода – одна из самых текучих жидкостей на кухне, то что же наблюдается на другом конце спектра? При изменении баланса между водой и другими веществами в растворе (или уменьшении температуры – см. раздел «Твердая, жидкая и газообразная»), он становится все гуще… и гуще… пока процесс не прекращается. Молекулы встают настолько плотно, что в растворе больше ничто не может двигаться – даже вода. Именно из-за этого еда становится хрустящей. Картофельные чипсы, фрукты сухой заморозки, пахлава, леденцы, утка по-пекински, корочка на хлебе, жареный лук – все эти продукты мы любим как раз за это. Когда вы откусываете кусочек такой пищи, молекулы никуда не могут ускользнуть от ваших зубов, поэтому сопротивляются, пока корочка не ломается. Тогда вся структура нарушается, и возникает тот самый восхитительный хруст. Вода – враг хруста; она позволяет прочим веществам скользить и перемещаться, так что кусок пищи не ломается, а лишь сгибается. Жаря во фритюре куриные крылышки или картофель, выпекая вафли или пиццу и кипятя сироп для леденцов, мы удаляем воду и/или добавляем другие ингредиенты. Любой способ приготовления чего-либо хрустящего предполагает, что баланс сместится в сторону уменьшения количества воды и увеличения количества других веществ. Все, что позволяет воде проникнуть обратно в пищу, – это шаг в противоположном направлении, поэтому хрустящие продукты становятся мягкими, если их оставить во влажной среде.
Вода / ТекучестьЛюбое вещество, оказывающееся на пути воды, делает раствор более густым. Создайте воде побольше препятствий, и она сможет полностью прекратить свое движение.
Кислоты и основания
Молекулы воды состоят из двух частей – кислотной и основной. В любом продукте содержатся миллионы молекул воды и, следовательно, огромное количество таких половинок. В чистой воде одинаковые количества обеих половинок соединяются вместе и уравновешивают друг друга, поэтому вода абсолютно нейтральна. Но в большинстве продуктов баланс между кислотными и щелочными половинками сдвинут в ту или иную сторону. При преобладании кислотных частей пища получается кислой, при преобладании основных – щелочной. Мы измеряем соотношение между кислотными и основными частями в единицах pH. Эта величина может быть от нуля до четырнадцати. Нейтральная вода имеет показатель pH, равный семи; более низкие значения означают повышение кислотности, более высокие – щелочности. Все, что мы добавляем к пище для понижения pH, – это кислота, для повышения – основание.
Вкус пищи зависит от ее pH. Кислоты придают ей кислый вкус, основания – мыльный или слегка горьковатый. Каждая из кислот имеет собственные оттенки вкуса, однако все равно все они кислые – и молочная кислота сливочного масла, и уксусная кислота, и яблочная кислота, содержащаяся в вишне. Вкус оснований описать сложнее, потому что мы практически не едим продуктов с pH выше семи. Среди немногих исключений – белок старых яиц и некоторые сорта голландского какао-порошка. Скользкие и горькие продукты с высоким pH похожи на многие природные яды, поэтому они вызывают у нас скорее отторжение, чем желание распробовать оттенки вкуса.
Кислоты и основания влияют на структуру других веществ. Крайние значения pH приводят к весьма серьезным изменениям. Кислая среда с низким pH заставляет белки в сметане или маринованной рыбе слипаться и формировать плотную сеть, придающую продуктам жесткость, а щелочная среда с высоким pH оказывает сходное воздействие на лапшу рамен или «столетние яйца». Кислоты и основания вызывают распад углеводов: этим объясняется эффект, который как пищевая сода (основание), так и кислота (уксус) оказывают на любые продукты – от маринованных огурчиков до бланшированной брокколи. Они также влияют на процесс соединения сахаров с белками при реакции Майяра: высокий pH делает их более хрупкими и хрустящими, так что тесто для крендельков традиционно смазывают раствором соды, чтобы придать им характерный темно-коричневый цвет и нужную текстуру. Тот же самый трюк можно проделывать и с другими продуктами: корнеплоды, бекон, сыр и все, что содержит сахара и белки, будет поджариваться и покрываться темной корочкой быстрее, если мы сделаем их более щелочными. Даже небольшие колебания pH влияют на то, как разлагаются и начинают пахнуть жиры, а сильные изменения способны превратить их в мыло. Изменяя pH, легко изменить растворимость минералов, что может повлиять на цвет красного мяса и зеленых овощей. При нейтрализации определенных кислот определенными основаниями выделяется газ: именно так ведут себя пищевая сода и уксус в тесте для пончиков или в модели вулкана на школьной научной ярмарке.
Молекулы воды состоят из двух частей – кислотной и основной.
Вода / Кислоты и основанияЧистая вода состоит из двух частей: кислоты и основания.
Когда баланс между двумя частями смещается, мы получаем кислую или щелочную пищу, которая меняет свой вкус, текстуру, запах и цвет из-за воздействия на другие вещества.
Рост
На всем, везде и всегда есть микробы, бактерии, дрожжи, плесень и прочие живые существа, не видимые невооруженным глазом. Думать об этом не слишком приятно. Но для того, чтобы жить, микробам нужна вода – и мы можем лишить их ее различными способами. Не считая уничтожения микробов при помощи температуры (см. посвященную ей главу), консервация пищи всецело связана с водой.
Еще наши древние предки выяснили, что высушивание пищи – замечательный способ сохранить ее надолго. Объяснение этому явлению очень простое: в сухой пище меньше воды. Когда мы удаляем из продуктов воду, страдающие от жажды микробы теряют способность расти и размножаться. На любой достаточно сухой поверхности – персиках, сушеном мясе, грибах, креветках, розмарине или чечевице – микробы выглядят словно увядшие цветы, склонившиеся над растрескавшейся иссохшей почвой.
Удаление из продуктов воды – не единственный способ защитить их от микробов. Замораживание оказывает на них сходное воздействие, даже если в процессе заморозки в пище сохраняется вода. Микробы обитают на поверхности, высасывая воду изнутри продуктов. Они не могут жить в замороженной груше или сорбете, потому что вода внутри них заперта в твердой структуре льда, она неподвижна и недоступна для питья.
Чтобы жить, микробам нужна вода – и мы можем лишить их ее различными способами.
Вода в засахаренных или засоленных продуктах хоть и остается жидкой, но слишком занята растворением сахаров и минералов, чтобы обращать внимание на микробы. На принципе связывания воды с минералами и сахарами основана консервация продуктов: поэтому моряки и изобрели соленую рыбу и каперсы, поэтому мы можем без риска для жизни есть мед, которым Клеопатра поливала свой завтрак, и поэтому цукаты не превращаются в рассадник разноцветной плесени.
Если вы не можете их победить, отравите их. Микробы любят нейтральную воду, и изменение pH – в любую сторону – разрушает белки, нужные микробам для того, чтобы двигаться, питаться и размножаться. Крайние значения pH убивают микробов, останавливая механизмы их существования. Так как продукты с очень высоким pH часто невыносимы на вкус, обычно мы используем другой конец спектра, добавляя кислоту. Кислота доступна нам из двух источников: мы можем применить кислые продукты, такие как фруктовые соки и уксус, либо получить ее благодаря производящим кислоты микробам, которых мы призываем на помощь в процессе ферментации. Такая химическая стратегия позволяет кислым пикулям, йогурту, кимчи, маринованной рыбе и мясным закускам сохраняться гораздо дольше, чем их нейтральным собратьям.
Вода / РостДля роста микробам нужна вода, которой очень много в большинстве сырых продуктов. Заморозка, засахаривание или засаливание, сушка и изменения pH не дают микробам расти, так что пища сохраняется дольше.
Сахара
Фактически сахара – это одна из разновидностей углеводов (см. главу о них), но они играют такую значительную роль в кулинарии и ведут себя настолько иначе, что заслужили отдельного упоминания. Скажите «сахар», и большинство представит себе мороженое, мед, конфеты, торт или фрукты. Эти ассоциации проистекают из самого знаменитого свойства сахара – сладости. Но сахара не просто сладки на вкус: для хорошего жареного цыпленка или квашеной капусты они не менее важны, чем для булочек с корицей или кленового сиропа. Включая сладость, у сахаров есть шесть основных функций в кулинарии:
• Они сладкие.
• Из-за них пища темнеет.
• Они кристаллизуются.
• Они растворяются.
• Они делают жидкости более густыми.
• Они ферментируются.
Сладость
В пищевых продуктах можно обнаружить не один десяток различных сахаров, но в наибольших количествах встречаются пять из них: глюкоза, фруктоза, сахароза, мальтоза и лактоза. Все они сладкие, но в разной степени. Если расставить их по степени сладости, получится такая картина:
Колебания степени сладости определяются тем, как каждый из сахаров взаимодействует с нашими вкусовыми сосочками на языке, которые работают словно маленькие ручки. Они изучают мир через прикосновения – хватают сахар, ощущают его форму и посылают сигналы в мозг. Сладость, заключенная в этом послании, отчасти зависит от различий в форме молекул сахаров. Сообщения от фруктозы и сахарозы звучат для мозга громче, чем от других сахаров.
Это открывает для нас целый ряд удивительных возможностей. Если вам не нужно, чтобы блюдо было сладким, однако вы хотите воспользоваться другими пятью полезными свойствами сахаров, используйте, например, мальтозу. Если вы стремитесь максимально увеличить сладость, добавив минимум сахара, возьмите фруктозу. Спросите у любого производителя газировки.
Наши вкусовые сосочки хватаются за содержащиеся в пище сахара и передают информацию о сладости, которая различна для разных типов сахаров.
Потемнение
Поджаренная пища с темной корочкой очень вкусная. Поэтому нам так нравятся сосиски гриль, крем-брюле, кофе, жареный лук и прочие лакомства. И все это было бы невозможно без сахаров. Потемнение происходит, когда сахара разогреваются настолько, что начинают переполняться энергией. При достаточно большом ее количестве они взрываются. Каждый микроскопический кусочек сахарной шрапнели затем разрывается снова, и осколки врезаются друг в друга, формируя новые соединения. Этот каскад реакций преобразует сладкий, бесцветный и ничем не пахнущий сахар в более глубокое и сложное сочетание вкуса, цвета и аромата. Потемнение – это взрыв сахарной сверхновой.
При приготовлении пищи может возникать потемнение двух типов – карамелизация и реакция Майяра. Для их запуска требуются немного разные условия. Карамелизация происходит с чистыми сахарами, а для реакции Майяра необходимо наличие белков. Но поскольку практически во всех продуктах содержится хотя бы небольшое количество белка, карамелизация происходит редко, за исключением тех случаев, когда мы намеренно нагреваем чистый сахар, чтобы получить карамель. Как только вы захотите сделать тянучки вместо карамели и добавите какой-нибудь простой продукт, например сливочное масло, его молочные белки запустят каскад несколько иных взрывов – реакцию Майяра.
При реакции Майяра белки (и аминокислоты, звенья белковой цепи, – см. главу о белках) ведут себя как более летучая жидкость, способствуя скорейшему воспламенению сахаров. Дополнительный толчок от белков позволяет реакции происходить при меньшем количестве тепла, чем требуется для карамелизации. Однако, вопреки традиционному мнению кондитеров, ни тот ни другой способ потемнения не имеет конкретной температуры запуска. Как и все процессы, описанные в этой книге, реакции потемнения зависят и от времени, и от температуры (см. посвященную ей главу). Потемнение ассоциируется у нас с грилем, фритюром и прочими высокоградусными приспособлениями, но такая температура требуется только для того, чтобы потемнение происходило быстро. Однако оно возможно и при более низких температурах, просто процесс будет медленнее. Вероятно, вы не захотите ждать потемнения при низкой температуре, когда станете готовить обед, однако это прекрасный способ получения более глубокого вкуса. Помидоры, изюм и инжир, сушащиеся на солнце, темнеют за несколько дней. Для потемнения бальзамического уксуса, мисо и рыбного соуса в более прохладных условиях требуются месяцы. Некоторые из сахаров в нашем собственном организме прямо сейчас темнеют, но настолько медленно, что мы даже не способны этого заметить.
Карамелизация происходит с чистыми сахарами, а для реакции Майяра необходимо наличие белков.
Другое важное отличие между двумя типами потемнения состоит в том, что карамелизации подвержены все сахара, а реакция Майяра не может проходить с сахарозой. Из-за своей структуры сахарозе с трудом удается связываться с белками, для этого ей нужно разложиться на глюкозу и фруктозу. Это значит, что сахарный песок, который мы добавляем в маринады, тесто или соусы, темнеет не так охотно, как кукурузный сироп, меласса, мед, фруктовый сок, молоко или другие продукты, содержащие бессахарозные сахара.
Сахара / ПотемнениеПри карамелизации молекулы сахара распадаются на различные фрагменты, создавая сложный коктейль вкуса, запаха и цвета.
Кристаллизация
У кулинаров сложные отношения с кристаллизацией сахаров. Получение кристаллов в помадке и леденцах становится целью, а вот в ирисках и мороженом они совсем не нужны. К счастью, правила кристаллизации просты.
Как и кристаллизация воды, кристаллизация сахара связана с организацией молекул. Кристаллизация преобразует неорганизованную толпу растворенных сахаров в равномерные ряды, составляющие совершенный кристалл. Каждый из типов сахаров кристаллизуется отдельно, вытесняя все остальные молекулы на периферию. Если в сахаре слишком много примесей, они мешают молекулам сахара формировать ровные ряды, и кристалл не образовывается.
Использование примесей для предотвращения кристаллизации сахара лежит в основе большинства удачных рецептов сладостей. Для изготовления карамели, ирисок и конфет на палочке требуется кипячение сахара с водой до формирования густого концентрированного сиропа. Когда воды остается слишком мало для растворения сахаров, смесь становится идеальной средой для роста кристаллов, которые разрушают текстуру и гладкий внешний вид конфет. При добавлении различных типов сахаров возникает хаотичная смесь не подходящих друг к другу кусочков, нарушающих порядок, необходимый для кристаллизации. Поэтому для большинства рецептов конфет требуется смесь сахаров, например, сахарный песок (сахароза) и кукурузный сироп (глюкоза) или мед (фруктоза и глюкоза). Другие вещества – углеводы, белки и жиры – также могут мешать кристаллизации сахаров, поэтому мы добавляем в соусы, конфеты, повидло или начинку для пирогов сливки, масло, фруктовое пюре или крахмал, чтобы наши блюда имели равномерную, лишенную кристаллов структуру.
Как и кристаллизация воды, кристаллизация сахара связана с организацией молекул.
Создание препятствий на пути сахарных кристаллов – не единственный способ помешать их формированию. Мы также можем контролировать зарождение мельчайших кристалликов. Каждый кристалл начинает расти от центра, которым может быть все, что угодно, – от стенки кастрюли до проволоки венчика или какой-то нерастворенной частицы. Кристалл сахара начинает нарастать вокруг такого центра кристаллизации, как жемчужина в раковине моллюска. Если вы не хотите, чтобы сахар кристаллизовался, используйте чистую посуду, равномерно растворяйте все ингредиенты и не перемешивайте блюдо без надобности. Размер, форма и материал посуды имеют не меньшее значение, так как неравномерный нагрев также способен инициировать процесс кристаллизации. Горячие участки могут поджарить сироп, так что образуется корка со множеством центров формирования кристаллов, а более холодные – создать тихую гавань для их роста. Даже лучшие повара испытывают трудности с приготовлением карамели, если емкость не соответствует конфорке по размеру.
Сочетание температуры и активности перемешивания позволяет нам контролировать размер кристаллов – от больших и грубых до маленьких и тонких.
После зарождения кристаллов характер их роста зависит от температуры и перемешивания. В горячем растворе кристаллам сложно формироваться: молекулы сахаров очень быстро перемещаются в нем во всех направлениях, постоянно сталкиваясь и отскакивая друг от друга. По мере остывания сахара успокаиваются достаточно для того, чтобы начать объединяться в кристаллы. Медленное остывание дает кристаллам время для роста, а при скором остывании их рост минимален. Перемешивая пищу, мы разбиваем формирующиеся кристаллы. Сочетание температуры и активности перемешивания позволяет нам контролировать размер кристаллов – от больших и грубых до маленьких и тонких. Когда мы оставляем леденцы в покое или, наоборот, перемешиваем и растягиваем помадку, карамель или ирис, пока они остывают, мы добиваемся того, чтобы кристаллы получились именно той величины, что нам нужна. Для леденцов нужны большие и красивые кристаллы, медленно растворяющиеся во рту, а в сливочной помадке, карамели или ирисках они должны быть очень мелкими.
Сахара / КристаллизацияКонцентрированные сахара одного типа формируют кристаллы вокруг центрального «зародыша», но если мы добавляем другие сахара, организованная структура нарушается и смесь остается однородной.
Растворение
При растворении сахара в воде каждую молекулу сахара окружают несколько молекул воды. Они взаимно притягиваются друг к другу и остаются вместе, можно сказать, пойманные в единое силовое поле. Находящаяся в этом поле вода оказывается занята – вся ее энергия уходит на поддержание связи с сахаром, и она не склонна вступать во взаимоотношения с другими молекулами.
Свободная, несвязанная вода способствует процессам, которые часто являются нежелательными в кулинарии. Она позволяет расти и процветать микробам, из-за чего пища портится и может стать опасной для нашего здоровья. Кроме того, она содействует формированию плотных сетей из молекул белка, создавая грубую и жесткую текстуру. Сахара помогают положить всему этому конец. Растворенный сахар ревностно опекает воду, не подпуская ее к микробам, таким образом консервируя пищу. Также сахара мешают объединению белков за счет воды, так что именно им мы должны быть благодарны за то, что наши меренги не становятся зернистыми, в заварном креме не образуется комочков, а бисквит остается мягким.
Присоединяясь к воде, сахара не только мешают ей интересоваться другими веществами, но и помогают поддерживать ее физическую форму. В присутствии сахаров вода хуже кристаллизуется. Связанная с сахарами вода замерзает при более низкой температуре и образует более мелкие, медленнее растущие кристаллы льда. Благодаря этому мы можем регулировать текстуру мороженого, сорбета и других подобных блюд. Если сахара слишком мало, текстура оказывается более грубой, с отдельными льдинками, а если его слишком много – возникает густая жижа, неспособная нормально замерзнуть. Сахар также мешает воде испаряться. Добавленный в тесто, рассол или какую-то другую смесь веществ, он не дает воде «убегать» во время приготовления или хранения. Использование сахара для связывания воды – один из секретов сохранения влажности продуктов, будь то печенье с патокой, праздничный торт, сушеные финики или куриные ножки. С той же целью применяются и минеральные вещества (см. соответствующую главу). Однако концентрация соли в пище, превышающая приблизительно 2 %, неприятна на вкус, так что, если нужно занять чем-то большое количество воды, почти всегда мы полагаемся на сахара.
Свободная, несвязанная вода способствует процессам, которые часто являются нежелательными в кулинарии.
Сахара / РастворениеСахара связывают воду, не давая ей испаряться, замерзать, взаимодействовать с другими веществами и способствовать росту микробов.
Загустение
Молекулы сахара не очень велики, так что одна молекула не может создать достаточного препятствия для воды, особенно по сравнению с углеводами и белками. Однако мы нередко едим пищу, состоящую примерно наполовину из сахаров, так что молекул сахара в ней вполне достаточно. В больших количествах сахар замедляет все процессы.
Загустение раствора благодаря сахарам полезно не только для приготовления вязких сиропов. Во многих рецептах густой сахарный раствор действует подобно цементу, залепляющему трещины и поддерживающему хрупкие структуры. В меренгах, зефире и пивной пене мельчайшие пузырьки газа, заключенные в оболочку из воды, создают тонкие строительные леса. Но чистая вода – это слишком жидкая основа, поэтому она быстро просачивается вниз и скапливается на дне кружки или миски. Но вода, содержащая достаточно сахара, будет утекать медленно, подобно меду из банки, и поэтому пена может сохраняться дольше. Ту же роль сахар играет и в желе. Он не имеет такой протяженной нитчатой структуры, как белки или углеводы, но помогает заделывать разрывы и трещины в желе. Сахарный «цемент» не дает воде утекать из самых разнообразных продуктов – от заварного крема и повидла до сыра и жевательного мармелада.
Во многих рецептах густой сахарный раствор действует подобно цементу.
При достаточном количестве сахара водный раствор может превратиться в такой густой сироп, что всякое движение в нем полностью прекратится. Молекулы будут толпиться так тесно, что ни вода, ни сахар не смогут образовывать кристаллы, так как они не дадут друг другу переместиться и сформировать кристаллическую решетку. Эта масса хрупкая, как настоящее стекло, и добавляет изюминку крем-брюле, леденцам, глазированному окороку, пекинской утке и глазури на самых разных продуктах – от дорогих конфет до M&M's.
Сахара / ЗагустениеСмешиваясь с водой, сахара делают растворы более густыми, но, так как их молекулы невелики, нужно много сахара, чтобы заметить разницу. При достаточно большой концентрации сахара, если не дать ему кристаллизоваться, образуется глазурь.
Ферментация
Сахара оказывают на человека такое же воздействие, как и на микробов: они необходимы нам, но в умеренных количествах. Для выживания нам нужна определенная доза сахара, но двухлитровая бутылка сладкой газировки однозначно не полезна для здоровья. Слишком большое количество сахара замедляет рост микробов, так как лишает их доступной воды, но его малое количество все же требуется для их существования. Во многих случаях он служит их главным источником питания.
Микробы потребляют сахар… не очень эстетично. У них нет ртов, поэтому они питаются, оборачиваясь вокруг молекул сахаров и продавливая их через мембраны своих клеток. Внутри клеток сахара распадаются на фрагменты. Часть этих фрагментов служит микробам топливом для движения, роста и размножения; все, что не используется, выбрасывается обратно, в нашу пищу. Микробы – неаккуратные едоки, но, к счастью для нас, неизрасходованные кусочки сахарных молекул могут быть весьма вкусными.
Слишком большое количество сахара замедляет рост микробов, так как лишает их доступной воды, но его малое количество все же требуется для их существования.
Сахар может показаться скучным – он просто сладкий и не имеет ни цвета, ни аромата. Но «огрызки» сахаров, которые оставляют нам питающиеся ими микробы, – это нечто гораздо более интересное. В зависимости от типа микробов и их аппетита, который, в свою очередь, обусловлен температурой, конкуренцией и другими условиями среды, эти обломки сахаров могут принимать разнообразные формы. Многие микробы преобразуют сахар в кислоту, добавляя вкуса ферментированным молочным продуктам, мясным закускам, маринованным огурчикам и уксусу. Другие работают как самогонщики, тайком получая спирт под покровом темноты. Некоторые превращают сахар в газ, благодаря чему мы получаем воздушное тесто, игристое вино, пиво и даже особенные соления, пощипывающие язык. Иногда сахар служит для микробов главным блюдом в разнообразной трапезе, где присутствуют также и другие вещества – белки, углеводы и жиры. Когда молекулы других веществ попадают в смесь, процесс ферментации дает более терпкий и ароматный результат. Такие молекулы накапливаются со временем, превращая такие простые вещи, как виноградный сок и молоко, в вино и сыр, обладающие сложным и неповторимым вкусом.
Иногда сахар служит для микробов главным блюдом в разнообразной трапезе, где присутствуют также и другие вещества – белки, углеводы и жиры.
Сахара / ФерментацияВ ходе большинства типов ферментации микробы абсорбируют сахара, разлагают их, получая энергию и строительный материал для своих клеток, а неиспользованные остатки, которые могут быть весьма вкусны, выбрасывают обратно в окружающую среду – то есть в нашу пищу.
Углеводы
Углеводы состоят из сахаров (фактически являющихся углеводами с маленькими молекулами), множество молекул которых соединены в длинные цепочки. В одной молекуле сложного углевода содержится от нескольких десятков до нескольких тысяч молекул простых сахаров. Углеводы могут иметь разнообразную форму и запутывать в себе молекулы других веществ, в результате чего мы получаем хрустящие картофельные чипсы и густой томатный соус. Их сложная, причудливая структура помогает им выполнять пять основных функций:
• Они растворяются.
• Они делают растворы более густыми.
• Они образуют желе.
• Они связывают вкусовые и ароматические компоненты пищи.
• Они распадаются на простые сахара.
Растворение
Чем крупнее молекулы вещества, тем труднее его растворить. Вода с легкостью расщепляет такие мелкие вещества, как минералы и сахара, но распутать узлы, в которые свернуты гигантские цепочки углеводов, ей сложно. На самом деле вода может лишь ухудшить положение, расползаясь по наружной части комков углеводов, застревая там и запечатывая окончательно те молекулы, что находятся внутри.
Чтобы заставить углеводы делать что-то полезное, например помогать в приготовлении густых соусов или желе, мы должны помочь воде разрушить комки, прежде чем все пойдет не так, как мы хотим. Поэтому перед тем, как добавлять крахмал в бульон для густоты, сначала требуется его взбить в холодной воде. При использовании холодной воды все процессы замедляются, и это дает нам дополнительное время для того, чтобы разделить углеводы, не дав им сбиться в комки. Другой способ – заранее смешать углеводы с другими веществами, например жирами и сахарами, чтобы цепочки молекул отделились друг от друга и были распределены равномерно. На этом основано смешивание муки с маслом для получения более густых соусов или пектина с сахаром при приготовлении повидла.
Когда все цепочки оказываются отделены друг от друга, для полного растворения углеводов обычно требуется еще и тепло. Углеводные цепочки настолько длинны и закручены, что воде нужна дополнительная энергия для того, чтобы проникнуть во все их завитки и закоулки. Поэтому, чтобы растворить муку, пектин или агар-агар, после перемешивания потребуется их активное кипячение. Из этого правила бывают исключения: такие углеводы, как, например, ксантановая камедь и модифицированный крахмал, специально обработаны для облегчения поступления воды ко всем участкам молекул, поэтому они легко гидрируются, как только цепочки оказываются отделены друг от друга. Для каждого типа углеводов существуют особые условия, при которых они растворяются, и, зная эти условия, мы можем успешно использовать любые из них.
Вода с легкостью расщепляет такие мелкие вещества, как минералы и сахара, но распутать узлы, в которые свернуты гигантские цепочки углеводов, ей сложно.
Подобно сахарам и минералам, растворенные углеводы полностью завладевают вниманием воды, не давая ей связываться с микробами, образовывать кристаллы льда или испаряться. Однако углеводы все же менее привлекательны для воды, чем простые сахара и минералы, поэтому эффект оказывается не таким сильным. Толпы захваченных молекул воды окружают сахар со всех сторон под разнообразными углами, так что одна молекула сахара связывает множество молекул воды. Но сахарные звенья в углеводной цепочке плотно упакованы, и молекулы воды не могут пробраться между ними, так что такие цепи плохо связывают воду. Крахмал в багете захватывает некоторое количество воды, однако хлеб высыхает быстрее, чем сладкий кекс. Соусы, в которые добавлен крахмал, замерзают хуже и в виде более грубых кристаллов, чем сладкое мороженое. Макароны, крекеры и прочие богатые углеводами продукты, не содержащие большого количества сахара, требуют высушивания, чтобы на них не развивались микробы, в то время как сладкие джемы долго хранятся, несмотря на то, что они могут наполовину состоять из воды.
Углеводы / РастворениеПри нормальном растворении углеводов каждая молекула окружена своей свитой молекул воды. Но так как вода не может проникнуть между звеньями углеводной цепи, углеводы хуже связывают воду, чем простые сахара.
Загустение
В бассейне плавать легко. Вы можете беспрепятственно двигаться вперед. Плавание же через заросли водорослей – весьма трудоемкий процесс. Длинные, перепутанные стебли превращают прямой путь в пытку. Именно так углеводы делают растворы более густыми: они мешают воде течь.
Одиночную группу водорослей легко обогнуть, и одиночный комок углеводов не сильно поможет загустению жидкости. Как мы уже говорили в главе о воде, чем больше вещества в растворе, тем больше препятствий оно создает. Взбивание, тщательное перемешивание с измельчением или любой другой способ равномерного распределения углеводных цепочек помогает максимально увеличить их действие как загустителей.
Искать углеводы лучше всего в растениях. У них нет ни костей, ни мышц, так что такие углеводы, как крахмал, пектин, целлюлоза и другие, служат фруктам, овощам, бобовым, зерновым, специям и травам для поддержания формы, движения и получения энергии.
Процесс загустения различных блюд с помощью углеводов начинался с грубых силовых методов, но мы прошли долгий путь от раздавливания фруктов кулаками и приготовления картофельного пюре с помощью камня. Секрет загустения с помощью растительных компонентов состоит в том, чтобы раскрыть природную упаковку, в которой эти углеводы спрятаны. Углеводы, содержащиеся в зубчике чеснока, горошинке нута, инжире или тыкве, не способны сами по себе сгустить раствор, но при тушении или приготовлении пюре мы можем высвободить их потенциал. Иногда приходится потратить очень много тепла или долго мучить блендер, чтобы получить абсолютно однородный свекольный суп или баклажанное пюре. В других случаях мы хотим добиться загустения, не уничтожая загуститель полностью. Приготовление удачного ризотто, пудинга из тапиоки или необработанной овсянки зависит от баланса: нам нужно выпустить часть углеводов в жидкость, чтобы она стала более густой, но при этом оставить достаточное их количество на месте, дабы сохранить структуру и текстуру твердых кусочков.
Углеводы – лучшие загустители, и поэтому они же и создают идеальную корочку.
Углеводы из цельных продуктов обладают большой загустительной способностью, но они несут с собой вкус, запах, цвет и другие свойства и вещества, которые не во всех случаях нам подходят. Когда нам нужно только загустение, используются рафинированные углеводы. Крахмал, корень маранты и другие порошковые углеводы, такие как агар-агар, ксантановая камедь и пектин, – это чистые углеводные цепочки, выделенные из зерен, корней, фруктов, водорослей и даже некоторых микробов. У очищенных углеводов разных типов отличается длина и форма цепочек, поэтому они в разной степени способны работать как загустители.
При наивысшей степени загустения образуется хрустящая корочка. Углеводы – лучшие загустители, и поэтому они же и создают идеальную корочку. Картошка, лук, зеленые бананы и остальные ингредиенты, где имеется много углеводных цепочек, при обжарке, запекании или высушивании становятся глазированными и хрустящими. Природные углеводы – не единственный путь к хрустящему успеху: продукты, не содержащие достаточного количества углеводов, можно обвалять в любой богатой углеводами субстанции – от крахмала и муки до зерновых хлопьев, молотых специй, сушеных овощей или крошек от тортильи – и получить такую же великолепную корочку.
Углеводы / ЗагустениеУглеводы встают на пути текущей воды и эффективно загущают растворы благодаря своей удлиненной структуре. При достаточном количестве углеводов вода совершенно прекращает движение и образует хрустящую корочку, но, если углеводные цепочки перекрещиваются, можно получить желе.
Желирование
Когда мы используем углеводы в качестве загустителей, их можно сравнить с препятствиями, мешающими воде свободно течь. Для того, чтобы получилось желе, отдельные цепочки углеводов должны слиться друг с другом, заключив воду в замкнутую «клетку» и полностью блокировав ее передвижения.
Так же, как при растворении и загустении, главное при приготовлении желе – равномерно распределить углеводы, чтобы не допустить образования комков. После того, как цепочки раскрутятся, нужно, чтобы они выстроились определенным образом, сформировав клетку. Какой бы ни была концентрация углеводов, желе не образуется, если цепочки не будут перекрещиваться и соединяться между собой, образуя трехмерную сеть. Для каждого типа углеводов существуют свои условия образования такой сети. Пектину для джема, желейных конфет и мармелада требуется помощь пониженного pH и сахара. Некоторым углеводам, например альгинату, каррагинану и геллановой камеди, нужны минеральные вещества, которые укрепляют соединения отдельных цепочек в сеть, благодаря чему современным поварам удается создать поразительное многообразие инновационных форм для своих блюд. Большинство разновидностей крахмала желируются при простом нагревании и последующем остывании: так мы получаем пекановые пироги, блины, клецки и стеклянную лапшу.
Какой бы ни была концентрация углеводов, желе не образуется, если цепочки не будут перекрещиваться и соединяться между собой, образуя трехмерную сеть.
Путь от густого киселя до желе не всегда оказывается односторонним. Некоторые продукты зависают где-то между густым раствором и желе, и их можно временно разжижить активным перемешиванием или давлением. При перемешивании хрупкие желейные клетки раскрываются, и все, что было в них заключено, вытекает, пока они не будут выстроены заново.
Самые яркие примеры такого переходного состояния – заправка для салатов и кетчуп, которые продаются в бутылках. Перепутанные углеводы упрямо держатся в емкости, пока не наступит переломный момент, когда клетка наконец откроется. Тогда содержимое внезапно вырвется из плена, магическим образом превращаясь из почти твердого в жидкое. Но, как только оно коснется тарелки, вашей одежды или пола, это «жидкое желе» снова застынет, потому что углеводные клетки захлопнутся. Нечто подобное происходит с йогуртом и десертом панакота, но в этом случае загустителем выступают белки (см. посвященную им главу), обладающие некоторыми сходными с углеводами чертами, в частности цепочечным строением.
Углеводы / ЖелированиеУглеводы лучше всего работают как загустители, когда их отдельные цепочки начинают перекрещиваться. Благодаря этому формируется клетка, которая полностью блокирует воду, и получается желе.
Связывание вкусов и запахов
Непроходимый лес углеводов не только изменяет текстуру вашей пищи – он так же может влиять на ее вкус и запах. Вкусоароматические вещества запутываются в углеводных цепочках и застревают там. Попав к вам в рот, они не могут вырваться и оказаться у вас на языке или в носу, поэтому вкус кажется более пресным. Углеводы могут оказаться черными дырами для вкусов и запахов.
Агрессивнее всего крадет у нас вкус и запах крахмал, поэтому крахмалистая пища часто бывает скучной. Отчасти именно по этой причине многие ресторанные повара в последнее время предпочитают для игры с текстурой использовать другие углеводы – пектин, агар-агар, ксантановую и геллановую камедь. Эти альтернативные загустители и желирующие агенты в меньшей степени связывают вкусоароматические вещества и не меняют цвета продуктов, позволяя тонким вкусам достигать вашего языка и обоняния. Клубничный соус с крахмалом может быть почти безвкусным, зато тот же соус с ксантановой камедью будет обладать насыщенным ягодным ароматом.
Углеводы / Связывание вкусов и запаховВкус и запах могут «заблудиться» в углеводных цепочках, которые мешают им попасть к вам на язык или в нос, забивая истинный вкус блюд.
Распад
Углеводы – это цепочки, состоящие из простых сахаров. Когда такие цепи рвутся, их поведение становится похоже на поведение отдельных сахаров.
При достаточном времени и определенной температуре соединения между цепочками могут разрушаться, и сами цепочки способны начать распадаться на более мелкие участки. Именно благодаря этому большинство растительных продуктов размягчаются при приготовлении. «Хребет», поддерживающий каждую клетку моркови или листа капусты, начинает разваливаться, и хрустящие и жесткие ткани становятся податливыми и мягкими. Тепловой обработки достаточно, чтобы цепочки разошлись и овощи стали мягкими, но чтобы они развалились на отдельные сахара, обычно требуется помощь ферментов.
Ферменты – это крошечные белковые молекулы (см. соответствующую главу), которые работают как маленькие ножички, крошащие углеводы на сахарные кусочки. Ферменты, расщепляющие углеводы, можно найти везде: в растительных клетках, микробах, кишечнике животных. Это значит, что у сладкого картофеля, грибка кодзи (используется для приготовления соевого соуса и мисо) и кишечника пчелы есть нечто общее: все они содержат ферменты, способные превращать углеводные цепочки в кучку простых сахаров.
В отличие от углеводных цепей, из которых они получаются, свободные сахара сладкие. Чтобы вы почувствовали вкус чего-либо, оно должно подходить по размеру к вашим вкусовым сосочкам. Цепь из миллионов сахаров, сшитых вместе, слишком велика и тяжела. Вкусовые сосочки не могут ее захватить, поэтому для нас она не имеет собственного вкуса. При созревании фруктов, старении сладкого картофеля, ферментировании мисо и осолаживании ячменя все эти продукты становятся более сладкими. Одно из странных исключений из этого правила – зеленый горошек: в нем есть ферменты, которые действуют наоборот, сшивая сахара в углеводные цепочки. После сбора урожая эти ферменты включаются и превращают сладкие зеленые зерна в крахмалистые безвкусные жесткие шарики.
Чтобы вы почувствовали вкус чего-либо, оно должно подходить по размеру к вашим вкусовым сосочкам.
Распад углеводов влияет не только на сладость. Разрушающиеся цепочки лучше буреют, связывают больше воды, быстрее ферментируются, легче кристаллизуются и теряют способность к загустению и желированию. Очень важно найти баланс между двумя состояниями. Хлеб, который дольше ферментировался, сильнее темнеет в печи, а жареные зрелые бананы лучше карамелизуются, но в обоих случаях продукты становятся более мягкими и их структуру сложнее сохранить. Старый картофель лучше покрывается корочкой, но из-за меньшей способности отдельных сахаров к загустению он не получается таким же хрустящим, как молодой. Зрелый инжир прекрасно подходит для подслащивания десертов, но для густой начинки или твердой глазури лучше использовать недозревшие фрукты. Сладкий зрелый виноград нужно немедленно пустить на вино, а крахмалистое зерно ячменя может лежать сколько угодно, пока пивовар не решит сделать из него солод. Путь от длинных углеводных цепей к отдельным сахарам непрерывен, и нахождение верного баланса между ними – ключевой момент в приготовлении пищи желаемой текстуры, вкуса и цвета.
Углеводы / РаспадУглеводные цепочки могут распадаться на отдельные сахара, которые обладают всеми характерными для этой группы веществ свойствами, в том числе способностью к потемнению, связыванию воды, ферментации и кристаллизации, а также сладким вкусом.
Жиры
Характерной особенностью жиров является то, что они не очень ладят с водой. Они не только скользкие и масляные, но еще и пахучие. А также весьма чувствительны к жестким условиям – высокой температуре, свету и воздуху, из-за которых их запах в мгновение ока может превратиться из цветочного в рыбный. Вот основные свойства жиров:
• Они образуют эмульсии.
• Они действуют как эмульгаторы.
• Они накапливают вещества, которые не любят воду.
• Они кристаллизуются.
• Они нагреваются до высокой температуры, не испаряясь.
• Они распадаются и начинают пахнуть.
Эмульсии
Жиры и вода ненавидят друг друга, и первые делают все возможное, чтобы держаться от воды подальше. Если их силой заставить контактировать с водой и они никак не смогут этого избежать, единственное, что им останется, – сбиться в кучку. Как пингвины в Антарктике, спасающиеся от холода, жиры собираются вместе, так что неприятные ощущения испытывают только те, кто оказался снаружи. Вода и жиры сосуществуют практически во всем, что мы едим, так что им приходится как-то приспосабливаться к нахождению в общем пространстве. Это удается им благодаря образованию эмульсий – мелких капелек масла в воде (или наоборот).
Основная цель получения эмульсии – хорошо перемешать и отделить масляные капли друг от друга, что не так-то просто. Жиры не хотят разделяться, так как вместе они могут держаться подальше от воды. Первый шаг к тому, чтобы эмульсия существовала достаточно долго, – делать капельки как можно меньше. Это продлевает жизнь эмульсии, потому что всем кусочкам жира требуется время, чтобы снова собраться вместе. Все эмульсии со временем разрушаются, однако для нас важно сохранить ее структуру, пока мы не накроем на стол. Салатную заправку для семейного обеда можно смешать прямо перед подачей, но в ресторане ее приходится хранить дольше. Чтобы она не расслоилась за несколько часов, нужно мешать как можно лучше и активнее – требуется разделить все жировые капли на самые мелкие части. Эмульсия, приготовленная с помощью мощного электрического миксера, получается лучше, чем та, которую смешивали ручным, который, в свою очередь, все же лучше венчика, который лучше вилки, которая лучше ложки, которая лучше пальца.
Мелкие капли – первое условие долгого существования эмульсии. Но помимо этого, большое значение имеют взаимодействия между каплями. Чтобы они как можно дольше не собирались вместе, мы используем стабилизаторы, эмульгаторы и контроль температуры. Стабилизаторы – любые вещества, которые загущают растворы: углеводы, белки и все остальное, что мешает воде течь. С точки зрения жиров стабилизаторы затрудняют им путь к ближайшим каплям-союзникам. Кроме того, жиры имеют меньшую плотность, чем вода, и стабилизаторы мешают им всплывать и собираться вместе на поверхности эмульсии. Эмульгаторы – вещества, не дающие каплям объединяться. Большинство пищевых эмульгаторов – белки и родственные жирам вещества. Они покрывают поверхность липидных капель, так что, если двум каплям повезет встретиться, они не объединятся, а отскочат. Последняя хитрость в сохранении эмульсий – это уменьшение температуры (см. главу, посвященную ей). При низкой температуре движение всех молекул замедляется, и эмульсия будет существовать дольше, если липидные капли смогут лишь еле-еле ползти друг к другу.
В воде может быть так много липидных капель, что они волей-неволей сталкиваются друг с другом.
Хотя жиры обычно не растворяются в воде, они все равно могут создавать препятствия для нее. Эмульсии загущают жидкости, потому что воде приходится обходить все липидные капельки. Именно это происходит, когда мы взбиваем сливочное масло в соусе, чтобы придать ему бархатистую густоту, или делаем майонез таким плотным, что в нем может стоять ложка. Как и другие вещества, жиры лучше выполняют роль загустителей, когда их частицы равномерно распределены. Воде гораздо проще обойти небольшое число крупных капель, чем протиснуться между тысячами маленьких, так что хорошо смешанные эмульсии не только более стабильны, но и гуще.
Однако эффект загустения имеет свои пределы. В воде может быть так много липидных капель, что они волей-неволей сталкиваются друг с другом. При этом эмульсия становится более неустойчивой и легче распадается. Тогда мы можем видеть, как на поверхности формируются небольшие масляные озерца, возвещающие о неминуемой гибели эмульсии. При добавлении воды у липидных капель появляется больше пространства для маневра. Несколько капель лимонного сока, бульона, молока или еще чего-то, содержащего воду, помогает вернуть перенасыщенные соусы, лимонное повидло и майонез в исходное состояние эмульсии.
Жиры / ЭмульсииЧтобы получить эмульсию, мы заставляем жиры вступать в контакт с водой, образуя капли, но они всегда стремятся объединиться, чтобы отделиться от воды.
Липидные капельки могут мешать воде, делая жидкость более густой, до тех пор, пока существует эмульсия.
Эмульгаторы
Липидные капли стремятся объединиться, чтобы избавиться от воды. Критическая точка их плана – тот момент, когда две капли сливаются, становясь одной. Эмульгаторы мешают этому слиянию. Они выступают для липидных капель в роли бдительных компаньонок, не дающих им подойти неприлично близко друг к другу.
Эмульгаторы – это молекулы, одна часть которых любит воду, а другая – ненавидит. Их действие основано на этой двойственности: тяготеющая к воде часть старается остаться в ней, а предпочитающая жир – погрузиться в него. В результате на поверхности каждой липидной капли образуется буферная зона. Благодаря ей капли при столкновении не объединяются, а отскакивают друг от друга. Некоторые специализированные вещества, например лецитин и холестерин, – это широко распространенные эмульгаторы, которые можно найти в чесноке, яичных желтках, молочных продуктах, овощных соках и многих других продуктах. Также эмульгаторы могут образовываться при распаде обычных растительных и животных жиров на фрагменты, различные части которых демонстрируют любовь к воде и к жирам, что позволяет им оставаться на границе между миром воды и миром липидов. В использованном масле из фритюрницы содержится большое количество эмульгаторов, которые образовались из жиров, распавшихся за несколько минут сильного нагревания. Эти эмульгаторы помогают оставшимся в масле целым жирам держаться ближе к богатой водой пище, которая в них готовится; поэтому в таком «разрушенном» масле она темнеет и готовится лучше, чем в свежем. Помимо липидов, есть множество белковых продуктов, которые также работают, как эмульгаторы (см. главу о белках).
Эмульгаторы выступают для липидных капель в роли бдительных компаньонок, не дающих им подойти неприлично близко друг к другу.
В общем можно сказать, что прежде, чем пытаться сделать эмульсию, имеет смысл добавить эмульгатор. Благодаря этому каждая капля жира, только образовавшись, уже будет окружена персональной свитой компаньонок-эмульгаторов. Именно поэтому майонез обычно начинают готовить с яичных желтков, салатную заправку – с горчицы, а традиционный испанский айоли – с тертого чеснока. Однако в экстренных случаях можно добавить эмульгатор и в уже готовую эмульсию, главное – хорошо перемешать смесь, чтобы он попал во все ее части.
Жиры / ЭмульгаторыЭмульгаторы – это любые вещества, в молекулах которых одна часть любит воду, а другая – ненавидит.
Липидные капли, покрытые эмульгаторами, отскакивают друг от друга и не могут объединиться, чтобы разделить эмульсию.
Хранилище противников воды
Многие цветные и ароматные вещества ненавидят воду. Подавляющая часть наших блюд содержит большое количество воды, так что эти вещества оказываются в щекотливой ситуации, и зачастую им приходится из-за этого покидать нашу пищу. Липиды служат безопасной гаванью для цвета и запаха, сохраняя их достаточно долго для того, чтобы мы успели насладиться ими.
У поваров есть старинная поговорка: «У жира есть вкус». На самом деле вкусовые вещества обычно предпочитают не жир, а воду, так что более точной версией этой фразы будет: «У жира есть запах». Большинство ароматных веществ любят купаться в жирах. Вот почему масло с карри – это нечто, а вода с карри – ничто. Пища без липидов обычно пресная и лишенная запаха, потому что он не может задерживаться в ней. Обезжиренный сливочный сыр – это просто ужасно. Будущие повара, которых обучают французскому методу удаления жира из бульонов, но при этом также учат добавлять во всё ароматические ингредиенты вроде петрушки или тимьяна, получают весьма противоречивые знания. В то же самое время японские мастера лапши делают бульон очень жирным, благодаря чему он прекрасно сохраняет ароматы жареного чеснока и специй.
Однако при работе с жирами и запахами необходимо проявлять осмотрительность. Чрезмерное количество жиров в пище может слишком хорошо впитать в себя все ароматы – и не пустить их к нам. Возникает примерно тот же эффект, что и в случае со связыванием вкусов и запахов углеводами: пища проходит через ваш рот и глотку прежде, чем у запаха возникает шанс вырваться из нее и достичь вашего носа. Здесь, как и везде, важен баланс. Некоторые жиры помогут вам обогатить ваши блюда ароматами, но добавьте их слишком много – и они начнут красть запахи из воздуха (а следовательно, у вашего обоняния).
Жиры / ХРАНИЛИЩЕ противников водыЖиры могут служить хранилищем для всего, что ненавидит воду, включая многие вещества, которые дают нам запах, цвет и питательную ценность.
Топление и кристаллизация
