Аналитика как интеллектуальное оружие Курносов Юрий

Однако по мере развития методологического и понятийного аппарата на первый план стали выдвигаться проблемы, связанные с происхождением всего сущего — так называемый основной вопрос философии, в упрощенной формулировке известный, как вопрос «Что первично?». Относительно ответа на этот вопрос философские школы разделились на два лагеря: идеалистический и материалистический. В рамках этих крупнейших школ возникло множество течений, различающихся как степенью последовательности при ответе на основной вопрос, так и спецификой методологического аппарата, использующегося при построении аргументации.

Поскольку одной из древнейших традиций философии является ее демократизм, постольку искусство ведения дискуссий между приверженцами различных философских школ и течений естественным образом привело к зарождению таких наук, как логика (как искусство анализа аргументации) и риторика (как искусство использования языковых средств для построения аргументации). При этом риторические приемы, используемые для синтеза аргументации нередко строились с учетом психологических особенностей восприятия аргументов.

Оба научных направления в конце XIX — начале XX вв. получили мощное развитие. Развитие логики, на протяжении многих веков своего развития тесно связанной с математическими дисциплинами, привело к зарождению комплекса наук о знаковых системах, в первую очередь — семиотики. Риторика же стала фундаментом для зарождения психолингвистики, нейролингвистического программирования и ряда других научных направлений, исследующих специфику воздействия языковых средств на потребителей сообщений. Научные направления, обязанные своим происхождением риторике, представляют собой комплексный инструментарий управления моделями мира субъекта целеполагания. Именно аналитики оказываются в числе тех, кто первыми испытывает на себе действенность манипулятивных стратегий, разработанных в рамках этих дисциплин (речь здесь не идет о тех исследованиях, которые ведутся в интересах изыскания путей решения задач, связанных с излечением различных психических нарушений, снятием стрессов и т. п.). В рамках этих дисциплин широко используются методы рефлексивного анализа, контент-анализа — по существу те же методы исследования, которыми достаточно широко пользуются профессиональные аналитики, однако с рядом нюансов, знание которых способно принести пользу при поиске признаков запуска манипулятивных сценариев в потоке анализируемых сообщений. Сам факт выявления таких сценариев весьма информативен, поскольку этап манипуляции или дезинформации обычно предшествует крупномасштабным акциям, направленным на изменение приоритетов в политической, экономической сферах жизни общества и/или в сфере социального обеспечения.

Таким образом, три базовых научных дисциплины, вошедших в данный модуль — философия, логика и семиотика (наука о закономерностях построения и использования знаковых систем) — образуют органическое единство и их изолированное рассмотрение едва ли целесообразно. Использование методологического базиса первых двух из перечисленных научных дисциплин является основой и традицией ИАР, третья же — семиотика — в ее современном понимании сформировалась относительно недавно — в середине XIX в., хотя многие из ее основ были заложены еще в средневековье.

Философия

Однозначно утверждать, что вопросы, связанные с методологией ведения ИАР, наибольшее развитие и освещение получили в той или иной философской школе или течении, нельзя. Более того, общепризнанно, что многие основополагающие методы и принципы ИАР были сформулированы представителями различных философских школ от древности до современности. В ряду выдающихся философов, чей вклад в развитие методологии ИАР нельзя не упомянуть — Сократ, Аристотель, Р. Декарт, И. Кант, Г. Гегель, К. Маркс, В.И. Ленин, А.А. Богданов, Б. Рассел и многие другие. Завершая этот перечень, невольно испытываешь чувство вины перед множеством ученых, государственных и военных деятелей, писателей, инженеров и представителей иных отраслей деятельности — здесь не упомянутых, но также внесших весомый вклад в развитие аналитики. Но даже этого перечня достаточно для того, чтобы понять, насколько неоднородны в философском плане истоки аналитики.

Следует упомянуть и особое философское течение, выделившееся в философии (вне зависимости от их принадлежности к материалистической или идеалистической школе) — агностицизм. Основой для единения представителей этого философского течения является постулат о непознаваемости мира. Влияние этого философского течения на развитие аналитики выразилось в том, что в результате противостояния его идеям было сформулировано немалое количество продуктивных идей, связанных с учетом влияния случайных факторов, сказывающихся на качестве аналитических выводов.

Современный период в развитии философии, начавшийся в XIX веке и продолжающийся по настоящее время, оказался чрезвычайно продуктивен. Бурное развитие философии было спровоцировано целым рядом масштабных перемен как в науке, так и в общественной жизни. Начиная с этого времени, на фоне ломки многих естественнонаучных постулатов и острого противостояния мировоззренческих и социальных систем, стали активно развиваться философские теории, непосредственно связанные с аналитикой. Именно в этот период были сформулированы философские теории, определяющие современный облик аналитики.

Так, например, работы философов различных школ и течений в области теории познания выступили в качестве той теоретической основы, закономерным результатом развития которой стало формирование практически всего комплекса наук об информации.

Сильный импульс к развитию и становлению информационных наук дали работы философов, придерживавшихся традиции логического позитивизма в философии. Принципы логического позитивизма в ряде отраслей информатики превалируют и по сей день (по крайней мере, в большинстве классических подходов к построению аналитических информационных систем). Практически, в рамках этого подхода реализовано абсолютное большинство современных экспертных систем.

Мощнейший пласт аналитики был разработан К. Марксом и Ф. Энгельсом в рамках диалектического материализма и материалистической теории познания. Безусловно, диалектика не была изобретением последних — как большинство фундаментальных теорий, идея диалектики долго зрела в научных кругах. Платон, Аристотель, Декарт, Кант, Гегель — все они оказали мощное влияние на развитие диалектической логики и диалектики как науки о наиболее общих закономерностях развития природы, общества и мышления.

Несмотря на то, что о диалектическом методе (ДМ) говорится практически в каждом учебнике по философии, их авторы избегают детального описания принципов ДМ, ограничиваясь указанием лишь наиболее общих — принцип материального единства мира, принцип развития, принцип всеобщей взаимосвязи явлений действительности.

Аналитическая же практика требует детализации принципов диалектического метода. В результате сравнительного анализа различных источников, в которых рассматривается ДМ, авторы книги остановились на следующем перечне принципов ДМ:

— принцип активности субъекта познания;

— принцип всесторонности рассмотрения объекта;

— принцип объективности;

— принцип взаимосвязи данного объекта с другими объектами и явлениями;

— принцип системности (элементность, динамичность и взаимодействие, гиперкомплексность, структурность, эмергентность, иерархичность);

— принцип детерминизма (причинно-следственные взаимосвязи);

— принцип рассмотрения объекта в развитии;

— принцип единства формы и содержания;

— принцип единства анализа и синтеза;

— принцип сравнения и аналогии;

— принцип единства дедукции и индукции;

— принцип восхождения от абстрактного к конкретному;

— принцип единства рассмотрения количественных и качественных характеристик;

— принцип познания сущности явления через выявление противоречий;

— принцип обнаружения новых тенденций (через закон отрицания отрицания);

— принцип конкретно-исторического рассмотрения (единство исторического и логического);

— принцип идеализации;

— принцип единства рассмотрения объектов через категории общего, единичного и особенного;

— принцип единства теории и практики в процессе познания.

Данные принципы ДМ вытекают из содержания диалектики как научной системы, включающей гносеологию (теорию познания), теорию развития и диалектическую логику, а также из законов, основополагающих принципов диалектики и ее категорий.

Отсутствие такой детализации не позволяло обучаемым увидеть практическую значимость ДМ и философии в целом, в то время как во всем мире ДМ широко используется различными аналитическими школами. Даже на простейший вопрос: «Что значит мыслить диалектически?» абсолютное большинство окончивших вузы не могло дать вразумительного ответа. Из этого можно сделать вывод, что преподавание философии было (и часто остается) схоластическим и оторванным от реальности.

Методы диалектики нашли широкое применение при анализе отношений в предметной области, выявлении центров неформализуемых аналитическими методами (эвристических) зависимостей, а также при построении моделей системной динамики в базисе анализа противоречий. Материалистические традиции в философии отразились в тенденции включения в рассмотрение лишь тех сущностей, которые проявлены в материальной сфере (основание — материальная природа процессов, подлежащих измерению и управлению). Бихевиоризм привнес в информационные науки принцип «черного ящика», давший толчок таким плодотворным подходам, как использование эвристических правил при построении экспертных систем, синтез нейроподобных сетей и применение методов имитационного моделирования при решении задач оптимизации. Принцип индетерминизма выступил в качестве основы для построения систем, управляемых потоками событий и систем гибридного интеллекта. Общая теория систем выступила в качестве платформы для развития методологии системного анализа, ныне повсеместно применяемой при построении сложных аналитических систем, а также на этапе анализа предметной области.

Здесь перечислена лишь часть тех направлений философской мысли, которые обеспечили развитие информационно-аналитических технологий. Однако уже этот — неполный — перечень позволяет составить впечатление о том, сколь противоречивые походы образуют фундамент аналитики.

Логика

В одной из своих статей авторитетный отечественный ученый А.А. Зенкин, известный своими работами в области логики и теории систем искусственного интеллекта, заявил: «Лет тридцать тому назад ради спортивного интереса я начал коллекционировать различные «логики», используемые в современных логико-математических трактатах. Когда их количество перешагнуло вторую сотню, стало ясно: если логику можно выбирать «по вкусу» (или даже конструировать «по потребности»), то такое понятие, как «наука», становится здесь просто неуместным».

Возможно, что в качестве предисловия к подразделу, посвященному логике, как одному из основных методологических компонентов аналитики, эта фраза покажется не слишком уместной, но такой своеобразный старт позволяет взглянуть на логику несколько шире, нежели мы привыкли. Дело в том, что современная логика чрезвычайно многообразна и очень часто логические системы строятся в соответствии с конкретными задачами исследования. Соответственно, следует разделять классическую (аристотелеву) логику и, так называемые, неклассические или нетрадиционные логики. И, прежде, чем начать оперировать формальным аппаратом логики, необходимо определиться с тем, в рамках какого именно логического аппарата будут строиться рассуждения.

Долгое время логика развивалась в рамках философской науки и рассматривалась в качестве одного из ее разделов. Лишь позже, в связи с развитием математики и естественных наук, логика приобрела относительную самостоятельность.

В современной логике — как в ее философской ветви, так и в формально — математической — наблюдается все большая ориентация на прикладные проблемы, сопряженные с конкретными отраслями информационных технологий. Множество работ посвящено вопросам представления знаний в системах искусственного интеллекта, построения систем поиска данных, поиска логического вывода и т. п. Это свидетельствует о том, что по сложности решаемых логических задач практика (в первую очередь, благодаря активизации исследований в области прикладной математики, лингвистики, информатики и теории искусственного интеллекта) наконец-то «нагнала» долгое время опережавшую потребности практики теоретическую логику. Если аристотелева логика до конца XIX — начала XX века в целом отвечала потребностям практики, то, начиная с этого периода, исследования в области логики стали приобретать специфический характер, становясь откликом на потребности практической деятельности.

Памятуя классическое деление этапов решения задач: анализ и синтез (восходящее еще к Паппу Александрийскому), попытаемся определить, что именно понимается под аналитическим методом в логике. Классический подход состоит в том, что логика рассматривает аналитический способ как способ решения «снизу вверх»: от формулы к аксиомам, а синтетический способ — как решение задачи «сверху вниз»: от аксиом к выводимой формуле. Это позволяет рассматривать классификацию логических исчислений по степени привлечения в их рамках аналитического и синтетического подходов. Соответственно, все логические системы можно условно разделить на: «аналитические» системы — системы секвенциального исчисления, «синтетические» — аксиоматические системы, а также «смешанные» — системы натурального вывода.

Практика решения прикладных задач в области искусственного интеллекта показала ряд преимуществ аналитических и смешанных систем логических исчислений для задач представления знаний и построения выводов. Такая тенденция в сфере разработки и создания систем искусственного интеллекта наблюдается со времени опубликования работ С.Ю. Маслова — его идеи получили свое практическое воплощение и развитие в работах отечественных ученых В.К. Финна и Д.А. Поспелова, дополнивших и развивших положения его работ. В частности, было введено понятие квази-аксиоматических систем, система аксиом в которых обладает локальной областью определения и может подвергаться коррекции без переопределения всей системы аксиом, значимых для производства вывода в рамках целостной системы искусственного интеллекта. В настоящее время это направление интенсивно разрабатывается американскими специалистами в области построения искусственного интеллекта в рамках проектов министерства обороны, направленных на создание систем поддержки информационноаналитической работы.

Рассмотрим, какие именно практические потребности аналитики призвана решать логика. Здесь следует выделять два класса задач:

— задачи анализа рассуждений;

— задачи технологического обеспечения.

При решении задач анализа рассуждений логика выступает в качестве инструмента, с помощью которого устанавливается не «истина», как адекватность (т. е. соответствие) содержания рассуждений реальному миру, а факт их логической непротиворечивости (верификации рассуждений). Если построенная логическая система непротиворечива, то она для одной реальности или математической модели может быть адекватна и уже в силу этого истинна, а для некоторой другой — нет. Если же логическая система изначально противоречива, то разговора о ее адекватности чему бы то ни было (и истинности) в любом случае не может быть. Если говорить о естественнонаучных знаниях, то критерием их истинности является практика. Однако для того, чтобы логические методы могли быть применены для вывода истинных суждений о некой предметной области, она должна быть предварительно формализована и описана в виде некоторого набора суждений, поддающихся логическому анализу (эталонной модели фрагмента реальности). Методы логики могут быть также использованы для выявления противоречий в системе рассуждений и относительно этого эталона.

Задачи технологического обеспечения информационно-аналитической работы затрагивают проблемы использования логического аппарата для синтеза эталонных моделей предметной области и инструментария хранения и поиска данных. В том числе — для тех предметных отраслей, формализация в которых затруднена из-за действия комплекса ограничений объективного характера (например, естественно-языковых суждений, для которых характерны размытость границ состояний, полисемия /многозначность/ и иные явления).

К числу проблем, активно разрабатываемых в логике в настоящее время, относятся такие, как проблема построения логических систем, пригодных для решения задач формализации рассуждений на естественных языках, решения задач представления логики суждений или событий в условиях использования многозначных шкал, отображающих различную степень уверенности эксперта в достоверности факта, стадию изменения состояния между некими полярными исходами и т. п., для задач отображения развертки процесса во времени, отображения отношений не столько причинно-следственного, сколько временного плана (строгое предшествование, нестрогое предшествование и т. п.). Эти задачи, нетрадиционные для классической логики попали в центр внимания современной логики благодаря необходимости анализа больших массивов данных при моделировании рассуждений экспертов в рамках синтеза экспертных систем, систем искусственного интеллекта и иных приложений.

Как видим, направления исследований в логике продиктованы именно необходимостью построения средств, обеспечивающих возможность синтеза технологической базы для ведения информационно-аналитической работы. Классическая логика связана с формализацией строго корректных суждений, но такие суждения в практике человеческих коммуникаций и аналитической деятельности — большая редкость. Как следствие, основное внимание специалистов, решающих теоретические и прикладные задачи, связанные с технологическим обеспечением ИАР, нацелено на синтез специфических логических систем, компенсирующих специфику предметной области. Такие логические системы отвечают потребностям некоторой узкой области деятельности и неуниверсальны. К числу таких систем могут быть отнесены модальные и семантические логики:

— логика высказываний;

— временная логика;

— динамическая логика;

— логики веры и знания;

— логика предикатов;

— типизированная экстенсиональная логика;

— интенсиональная логика;

— логика модифицируемых рассуждений и другие.

Каждая из перечисленных выше логик отвечают решению специфических задач и имеют ограниченную сферу применимости. Например, временная логика нашла широкое применение при описании процессов, развернутых во времени (классический пример — линейное программирование, описание алгоритмов и сценариев); логика веры и знания — при анализе неполных систем высказываний или высказываний потенциально противоречивых (анализ полноты системы аргументов при рассмотрении сведений о предметной области, собранных методом экспертного опроса); логика предикатов используется при формализации рассуждений и синтезе гипотез; экстенсиональная и интенсиональная логики, предложенные Р. Монтегю, широко используются при представлении естественно-языковых суждений (системы искусственного интеллекта, предназначенные для автоматического перевода) и так далее.

Интересный подход к анализу естественно-языковых рассуждений предложен нашим соотечественником Б.А. Куликом в предложенной им логике естественных рассуждений, явное приложение которой в аналитике — анализ полноты и непротиворечивости системы аргументов для построения выводов.

Кроме того, существует обширный класс многозначных логик (отображающих суждения не на двухкомпонентное множество исходов «Истинно/Ложно», а на множество большей мощности); начало развитию этого класса было положено польским логиком Яном Лукасевичем в 1921 году. Интересно, что трехзначная логика Лукасевича была предвосхищена еще в работах таких философов как Уильям из Оккама и Георг Гегель. Благодаря дальнейшим исследованиям трехзначной логики, было введено понятие класса многозначных логик, включающего и бесконечнозначную логику, отображающую высказывания на континуум от 0 до 1. Свойства многозначных множеств позволяют использовать их при описании вероятностных процессов.

Чрезвычайно интересно для решения задач аналитики направление нечетких логик (fuzzy logic), предложенных Л. Заде. Они также применяются для решения задач, связанных с формализацией описаний процессов, носящих нечеткий, лингвистический характер. Это направление взято за основу при разработке систем поддержки информационно-аналитической работы в интересах информационно-аналитических подразделений органов государственного управления США.

Как явствует из приведенных сведений, современная логика предлагает множество инструментальных логических систем, комбинирование которых позволяет отчасти решать сложные проблемы, сопряженные с информационно-аналитической работой. Это требует от аналитиков (особенно тех, кто по долгу службы выступает в роли постановщика задач перед разработчиками специализированных инструментальных средств поддержки ИАР) хотя бы минимальных познаний в этой сфере, обеспечивающих ему возможность оценить применимость тех или иных методов для решения конкретных задач.

Семиотика

Семиотика как наука зародилась на стыке двух научных дисциплин — логики и лингвистики. Родоначальником этой науки принято считать американского логика и философа Ч. Пирса, основателя прагматизма. Попытки очистить язык науки от ненаучных терминов, характерные для конца XIX века, не могли не отразиться на его деятельности. Работы Пирса по теории значения стимулировали развитие и становление семиотики. Идеи Пирса в последствии были развиты Ч. Моррисом и сформулированы в работе «Основы теории знаков» (1938 г.). Дальнейшее развитие семиотики привело к проникновению ее методов в различные сферы научного знания, где существовала потребность в формализации и систематизации тезауруса.

Семиотикаэто наука о наиболее общих закономерностях построения и функционирования знаковых систем, в качестве своих разделов рассматривающая: синтактику, семантику и прагматику.

Трактовка понятия «знаковая система» для приверженцев различных течений в семиотике существенно варьируется: от формальных знаковых систем, ориентированных на представление научных теорий, до литературной стилистики и моды, оперирующих знаками-символами и жестами.

Может быть дано и иное определение семиотики. Это определение семиотики дано относительно методов, используемых семиотикой, а именно: Семиотика — это приложение логико-лингвистических методов при исследовании различных объектов и систем, в том числе — и отличных от знаков в традиционном представлении. То есть, семиотика — это совокупность методов рассмотрения сущностей и отношений некоторой предметной области как системы, функционирующей подобно языку.

Здесь часто используется такое понятие, как знаковая ситуация, то есть такая ситуация, в которой некоторая сущность, процесс или их проявление может рассматриваться в качестве знака. При подобном подходе в качестве знаков могут рассматриваться объекты, их признаки, проявляющиеся как в функционировании объектов, так в их стационарном состоянии. В этом случае текст, как совокупность знаков любого рода, мыслится как иерархия уровней, где формальные (структурные) компоненты служат для передачи значения, выявление которого — задача аналитика.

Рассмотрим область компетенции разделов семиотики.

Синтактика — это раздел семиотики, изучающий те аспекты построения и функционирования знаковых систем, которые связаны с представлением формально корректных высказываний в рамках некоторой знаковой системы. Синтактика описывает структуру знаковых систем, правила сочетания, начертания, синтеза новых знаков, требования к их различимости — в ходе изучения знаковых систем синтактика не затрагивает смысловыражающих функций знаков. Предмет изучения синтактики — знак, совокупность знаков, алгоритмы синтеза и анализа формально-корректных цепочек знаков.

Семантика — это раздел семиотики, изучающий те аспекты построения и функционирования знаковых систем, которые связаны с передачей смысла. Семантика описывает связь между знаками и теми сущностями, которые они выражают, то есть рассматривает смысловыражающие функции знаков.

Прагматика — это раздел семиотики, рассматривающий отношение истинности и полезности высказываний с точки зрения говорящего или слушающего (пишущего или читающего). Иначе говоря, если семантика рассматривает проекцию знаков на некоторую модель мира, то прагматика рассматривает соотношение некоторой модели мира, выраженной средствами знаковой системы, к реальному миру, который ей представлен, и источнику/потребителю этих высказываний.

Методы семиотики широко применяются в других науках для разработки и анализа правильности построения их формально-описательного аппарата. В частности, семиотика оказала большое влияние на логику, математическую лингвистику и теорию искусственных языков, лингвистическую семантику, информатику, кибернетику, теорию систем искусственного интеллекта, общую теорию систем и системный анализ, а также многие другие отрасли науки. В семиотике широко используются методы декомпозиции знаковых систем на синтактическую, семантическую и прагматическую страты (слои, уровни), что позволяет выделить в них компоненты более высокого уровня абстракции (метакомпоненты), образующие аксиоматику знаковой системы (классическим примером метаязыкового компонента может служить грамматика русского языка, для описания которой может быть синтезирован лаконичный формальный язык). Выделение метакомпонентов обеспечивает возможность более строгого анализа тех отношений, которые существуют между знаком, моделью и реальностью. А систематическое применение этого метода удерживает исследователя, манипулирующего знаковыми системами для выражения различных сущностей и отношений предметной области, в рамках системы строгих, формальных процедур, что крайне ценно для дальнейшего использования полученных результатов при синтезе средств автоматизации.

Так, применение семиотических методов в лингвистике позволило специалистам в области лингвистической семантики перейти от примитивных описательных методов раскрытия содержания терминов к системному представлению тезаурусов, способных учитывать в том числе и контекст употребления терминов (по существу — знаков). Отчасти, эти достижения были использованы для создания систем автоматического перевода. Правда, чувствительность к контексту для большинства непрофессиональных систем не характерна и обеспечивается она лишь в профессиональных системах, на рынок либо не поставляемых, либо стоящих значительно дороже, нежели «настольная» система, ограничивающаяся лишь синтактическим уровнем рассмотрения знаковых систем.

Длительное сопротивление и неприятие методологии семиотических исследований специалистами отечественной лингвистической школы привело к тому, что в российской лингвистике произошло более резкое разграничение между традиционной (описательной) и семиотической лингвистикой, сказавшееся на замедленном развитии технологий информационно-аналитической работы, традиционно связанных с анализом естественноязыковых конструкций. Специалисты в области технических наук интенсивно работали в области математической лингвистики, теории искусственных языков, не будучи при этом лингвистами по образованию — следствием стало возникновение терминологической несовместимости, а также ориентация на разбор англоязычных примеров, рассмотрению которых уделялось внимание в переводных изданиях.

Однако отечественная семиотическая школа отнюдь не является калькой с зарубежных образцов: начиная с шестидесятых годов, в СССР семиотика заняла достойное место в ряду других, официально признанных, наук. В крупнейших университетских и академических центрах были созданы научные семинары, в рамках которых велись теоретические и прикладные исследования в области семиотики, постепенно сформировались научные школы со своими традициями. В период 1960 — 1980-х годов методология семиотических исследований прочно вошла в методологический инструментарий отечественной науки, была востребована специалистами в области искусственного интеллекта и моделирования сложных систем, системного анализа и общественных наук, завоевала признание у лингвистов и искусствоведов. В эти годы были созданы специализированные издания, посвященные проблемам семиотики[23]. Опыт российской прикладной семиотики востребован за рубежом.

Чем семиотические подходы близки аналитике? Что дает их использование аналитику?

Семиотический подход в аналитике находит массу приложений. Одним из наиболее очевидных приложений семиотики может быть ее использование в сочетании с методами лингвистической семантики для анализа текстовых массивов в их традиционном понимании. Однако, в той же мере семиотический подход может быть применен и к анализу ситуаций, где статус знака присваивается объективным признакам тех или иных ситуаций, процессов, объектов — такая трактовка позволяет рассматривать пространство признаков в качестве алфавита ситуационного языка, а допустимые комбинации знаков в качестве текстов, порождаемых в базисе такого своеобразного алфавита. В качестве интерпретанты (значения) высказываний такого языка может рассматриваться описание события, объекта, поставленного в соответствие допустимому высказыванию в результате апостериорного анализа. Соответственно, те или иные ситуации (исходы процессов) могут быть кратко описаны на таком языке и использоваться для последующего их распознавания.

Кроме того, при анализе текстов в традиционном их понимании может быть использовано специфическое дополнение традиционной семиотической триады неким промежуточным компонентом, соответствующим субъективной модели интерпретации знаков (и текстов, из них порождаемых), характерной для некоторого индивида или группы (например, приверженцев некоторой научной школы, религии, идеологической или мировоззренческой системы). Привнесение в иерархию слоев рассмотрения текста такого компонента (слоя) могло бы способствовать решению задачи приведения текстов к нормализованному тезаурусу, что весьма важно при компьютеризированной обработке текстовых массивов.

1.2 Естественнонаучные концепции

Общеизвестным является тот факт, что на протяжении обозримой истории человечества крупные естественнонаучные открытия не единожды революционизирующе влияли на общественные процессы, коренным образом изменяя мировоззрение людей. Следом за такими крупными мировоззренческими прорывами серьезные изменения происходили в идеологической, политической, экономической и социальной сфере.

В качестве примеров таких открытий принято приводить ссылку на открытие Н. Коперника, приведшее к замене геоцентрической модели мира на гелиоцентрическую, вступившую в противоречие с христианской космогонией. После осознания последствий этого открытия информация о нем была закрыта (декрет инквизиции от 1616 г.), а книги, посвященные этой теории, оставались запрещенными вплоть до 1828 года. Аналогичным по масштабам мировоззренческих перемен открытием стала механика И. Ньютона, способная объяснять и описывать подавляющее большинство наблюдаемых физических явлений. Механика Ньютона оставила еще меньше места для «божьего промысла» и спровоцировала бурное развитие физикалистских концепций, легших в основу последующих преобразований в экономике и общественной жизни. К числу таких открытий относят также эволюционную теорию Ч. Дарвина, теорию относительности А. Эйнштейна, хотя их последствия были менее чувствительны для общества. Тем не менее, эти открытия обусловили значимые процессы в науке, а отклик научной деятельности А. Эйнштейна, Э. Ферми догнал человечество в августе 1945 года, когда японские города Хиросима и Нагасаки поверглись атомной бомбардировке, а человечество было вынуждено решать проблему сдерживания гонки ядерных вооружений.

На рубеже XIX–XX веков физики первыми столкнулись с неспособностью механики Ньютона разрешить все проблемы и противоречия, а принципы детерминизма (однозначности и непреложности действия причинно-следственных отношений) и редукционизма (сведения целого к совокупности частей) зачастую противоречат реально наблюдаемым процессам. По мере увеличения степени дробления (декомпозиции) объектов и процессов на компоненты происходило лавинообразное нарастание сложности уравнений, описывающих их взаимодействие, но точность научных предсказаний не росла. В то же время, перед наукой ставились все более масштабные задачи, для решения которых она не располагала рецептами, — анализ биологических, экологических, экономических и социальных систем средствами детерминистской науки оказался невозможен. Началось постепенное вытеснение физикализма с позиций универсальной мировоззренческой системы. Этот процесс, инициированный физиками, затронул и общественные науки. Естественнонаучные подходы, утратив довлеющий характер, вновь стали исключительной принадлежностью тех отраслей деятельности, для которых, собственно, и разрабатывались.

Однако роль естественных наук в информационно-аналитической работе не исчерпывается той ролью, которые они сыграли, продемонстрировав несводимость целого к механистичной композиции частей и спровоцировав тем самым развитие комплекса системных наук. Естественные науки привнесли в аналитику методологию научных исследований, что крайне важно, поскольку благодаря этому аналитика перешла из разряда искусств в разряд научных дисциплин. Это позволило аналитике получить общественное признание и приобрести статус ремесла, что было очень важно в период, когда Европу охватил научный ажиотаж[24]. Учитывая то, что на протяжении многих веков аналитика являлась предметом эзотерических манипуляций, те изменения, которые она претерпела в XIX веке благодаря влиянию естественнонаучных концепций, стали действительно революционными.

Аналитика унаследовала от естественных наук способность к научному обоснованию аналитических выводов на основе операций не только и не столько с качественными, но и с количественными данными, возможность формального представления рассуждений и описания методов (а значит, и накопления знаний в этой сфере). По мере развития методологии научных исследований естественнонаучные методы начали перекочевывать в науки об обществе и общественном производстве, чем спровоцировали зарождение социологии, экономической статистики и других наук, требовавших интенсификации процессов обмена информацией. Зарождение этих наук расширило информационную базу принятия решений в управлении, так как операции с данными, получаемыми в ходе статистических исследований в экономической и социальной сфере, позволяли повысить объективность аналитических выводов, экспериментально проверить их и оценить степень точности прогнозов.

Аналитика, ранее не имевшая столь мощного доказательного аппарата, стала быстро пополнять свой методологический инструментарий новыми научными методами, развивать инфраструктуру информационного обеспечения аналитической деятельности. Органы государственного управления стали усиленно развивать аналитику, а заодно — систему разведывательноинформационного обеспечения процессов принятия решений в политической, экономической, социальной и технологической сферах. На XIX — начало XX веков приходится всплеск активности в сфере разведывательной деятельности — государства вкладывают все большие ассигнования в финансирование разведывательных служб. Параллельно, благодаря достижениям в области освоения технологий связи и телекоммуникаций, создается информационная инфраструктура общества.

В этот период естественнонаучные дисциплины, способствуя развитию математики, стали основным поставщиком идей для аналитики. В аналитику приходят методы математического анализа, теории множеств, математической статистики, теории вероятностей, методы отображения результатов наблюдений и активизации сознания (наглядное представление аналитических рассуждений и выводов является признанным способом активизации интеллектуальной деятельности). Развитие численных методов стимулирует развитие отрасли аналитики, связанной с анализом погрешностей и оцениванием точности прогнозов.

Происходит процесс сегментации аналитики по области приложения результатов. Мощная ветвь аналитики формируется в области экономического и финансового анализа, социологии, политологии; аналогичный процесс наблюдается и внутри этих ветвей — возникает анализ микро- и макроэкономических показателей. Зарождается анализ социальной динамики, динамики демографических процессов, миграции населения. Рост массивов накапливаемой информации постепенно позволяет перейти к решению задач прогнозирования и планирования.

Однако помимо тех видов данных, в качестве поставщиков которых выступают перечисленные выше отрасли анализа, специалисты в области анализа (особенно в военно-политической и экономической сфере) всегда стремились к получению данных более высокой степени объективности, использование которых позволило бы проверять (верифицировать) гипотезы, данные и, соответственно, — аналитические выводы. Возникает необходимость создания технических средств (не способных к целенаправленному искажению данных) сбора информации. При крупных экономически самостоятельных организационных системах (государства, корпорации и т. д.) начинают создаваться службы сбора данных, использующие для их добывания технические средства. Данным, собранным с помощью таких средств, присваивается особый статус.

В конце XIX — начале XX веков в особое направление разведывательно-информационного обеспечения органов управления различного уровня выделяется технологическая разведка, призванная не допустить технологического прорыва в той или иной сфере. Это приводит к обострению противостояния разведывательных и контрразведывательных служб. Этот период характеризуется напряженной борьбой за обладание технологическими секретами противника (конкурента) — начало века сопровождается целой серией крупных разоблачений, эхо которых отдалось в произведениях А. Конан-Дойла, А. Кристи и Г. Честертона и других известных писателей. И тут аналитика столкнулась с проблемой технической и технологической экспертизы, поскольку добываемые технологической разведкой образцы техники, чертежи и документация редко были полнофункциональными либо образовывали полный комплект — требовалось восстановление массы деталей, без которых процесс создания аналогичных образцов техники, не уступающих или превосходящих по своим качествам прототипы, был бы невозможен.

Аналитика интегрирует результаты, получаемые в самых разнообразных научных отраслях: от математики до синоптики и метеорологии. Однако, по мере увеличения массивов информации, в обработке которых возникает потребность, аналитика сталкивается с теми же ограничениями, что и естественные науки: количество математических операций растет, а точность по-прежнему оставляет желать лучшего. В результате, правда с некоторым запозданием, аналитику настигает волна того же кризиса, что ранее потряс физику. Это запаздывание было вызвано тем, что в сфере управления единожды установившиеся подходы замещаются несколько медленнее, нежели в других сферах, где стоимость последствий эксперимента существенно ниже (хотя сам эксперимент может стоить очень дорого), а также тем, что возраст специалистов в сфере управления существенно выше. Между тем, известно, что по мере взросления человека происходит ухудшение динамических показателей процесса обновления и пополнения знаний.

Следует отметить, что со времен И. Ньютона естественные науки неоднократно вторгались в область компетенции аналитики. В период 1910— 1930-х годов — А.А. Богдановым и Л. фон Берталанфи были выдвинуты концепции системных наук, пришедшие из медицины и биологии (где может быть более наглядно продемонстрирован принцип несводимости частей к целому?). Позже (в начале 1950-х) в эту отрасль вторглись физики, вернее — физико-химик, один из основоположников термодинамики бельгийский ученый И.Р. Пригожин, открывший явления самоорганизации в термодинамических системах, проявлявшиеся в открытых неравновесных системах в условиях, препятствующих установлению равновесия (позже эти явления были обнаружены и в других сложных системах, в том числе — социальных).

Представляет интерес теория циклов, основы которой были заложены отечественными учеными Н.Д. Кондратьевым (1920-е годы) и А.Л. Чижевским (1930—1940-е годы) — заметим, что исследования последнего из упомянутых носили междисциплинарный характер, увязывая циклы в развитии общественных систем и с циклическим характером солнечной активности. Теория циклов была взята на вооружение западными экономистами (именно Н.Д. Кондратьевым в 1920-х была выдвинута теория длинных экономических волн, согласно которой экономика капиталистических стран каждые 50–55 лет испытывает подъемы и спады).

Однако, аналитика, вернее, специалисты, активно практикующие в этой области, и сами проявляли методологическую активность. Несмотря на разразившийся в науке методологический кризис, специалисты в области аналитики остались верными основным методологическим принципам естественных наук. Критическое переосмысление ошибок, вызванных слепым следованием физикалистским концепциям, привело к тому, что в недрах аналитики начали зарождаться новые — комплексные методы обработки и анализа информации.

Интеллектуальные усилия лучших ученых того времени не могли не принести результата — вскоре естественные науки вновь мощно заявили о себе благодаря ученым, работавшим в тех отраслях, которые ранее не привлекали особого внимания — в медицине и биологии. В России таким ученым был петербургский медик А.А. Богданов, с 1912 по 1928 год разрабатывавший основы новой системной науки — тектологии[25], незаслуженно забытой соотечественниками благодаря критике со стороны В.И. Ленина (критика, кстати, была направлена не столько против тектологии, сколько на довольно эклектичную и непоследовательную философскую теорию, которую развивал Богданов). Позже, в 1937 году, когда рассуждения о кризисе физикализма в научных кругах стали считаться банальными, другой ученый — биолог Л. фон Берталанфи выступил на философском семинаре в Чикагском университете с идеей «Общей теории систем». Оба ученых (Богданов и Берталанфи), исходя из постулата о несводимости частей системы к целому, указывали на нечто сходное, общее для всех сложных систем, привносимое системными связями и приводящее к проявлению специфических свойств системы.

Несмотря на то, что А.А. Богдановым была издана трехтомная монография, посвященная тектологии, его работы не получили широкой известности (даже после перевода на немецкий язык, сделанного в конце двадцатых годов). А вот всего одно, но сделанное вовремя и в политически стабильной обстановке, выступление Л. фон Берталанфи сразу же вызвало резонанс в научных кругах США — ему-то и досталась слава основателя системных наук. А.А. Богданов изначально позиционировал свою тектологию в двух ипостасях: как общую методологию научной деятельности и как теорию эффективного управления. Похожие взгляды на общую теорию систем были характерны и для Л. фон Берталанфи. Дальнейшее же развитие положений общей теории систем, позволило учитывать при анализе сложных систем и их способность к реализации функции целеполагания.

Предложенная Л. фон Берталанфи общая теория систем, в результате дальнейшего развития породившая целое семейство системных наук (системный анализ, системотехнику и иные), была задумана как инструмент объединения различных исследовательских программ — в конце 1930-х годов необходимость этого стала остро ощущаться уже и в сфере практической деятельности. Физика же, со свойственной ей в тот период ориентацией на все более углубляющуюся декомпозицию объектов и систем, к этому времени утратила свои интегрирующие свойства (хотя в термодинамике уже формировались подходы, впоследствии востребованные большинством научных отраслей). Оказалось, что междисциплинарные исследования протекают более эффективно, если за основу при изучении систем различной природы принимается иной подход, а именно — поиск общих закономерностей поведения. Возможность описания таких систем с применением сходного формального аппарата навела на мысль о существовании общих закономерностей, в равной степени проявленных в функционировании систем разной природы.

По существу проблема, поставленная Л. фон Берталанфи, — это проблема объединения в рамках общей теории систем теоретической биологии, кибернетики, теории информации, теории иерархии и термодинамики[26]. До того времени, пока эта проблема не будет решена, общая теория систем будет оставаться теорией аналогической, то есть — лишенной практической значимости из-за отсутствия параметрического аппарата, который был бы способен связать различные уровни абстракции и сделать реалистичными описания этих связей. Подобная теория должна опираться на единичные инвариантные элементарные структуры и построенные на них более высокие — иерархические. Только в таком виде общая теория систем способна стать реальным инструментом исследования сложных систем (от техногенных до социальных).

Отсутствием на настоящее время такого комплексного подхода обусловлен рост числа различных направлений, «отпочковавшихся» от общей теории систем и приспособленных к решению некоторого числа специфических проблем в конкретных отраслях деятельности человека. Попыткам приведения общей теории систем в состояние, когда она действительно сможет стать интегрирующей научной дисциплиной, посвящено множество работ различных авторов. Характерной чертой всех этих работ является их ориентированность на привлечение к решению этой проблемы достижений термодинамики, кибернетики, теории самоорганизующихся систем и биологии (этот перечень остается достаточно стабильным — в остальном же авторы таких теорий не столь единодушны).

Изначально Л. фон Берталанфи определил систему как «совокупность элементов, находящихся в определенных отношениях друг с другом и со средой». Однако это определение позже неоднократно подвергалось корректировке.

Рассмотрим принципы, на которых строится общая теория систем:

1. Принцип системности: возникновение и существование любой системы обусловлено силами, действие которых обеспечивает возникновение и существование связей между ее элементами.

2. Принцип существования: всякая система, чтобы обеспечить свое существование, должна уравновешивать в себе все воздействия на нее со стороны полной совокупности существующих систем.

3. Принцип эволюции: возникновение и существование всех систем обусловлено эволюцией.

4. Принцип разнообразия: разнообразие объектов обусловлено историей их возникновения и развития.

Характерно, что все большее внимание по мере продвижения исследований в области теории систем уделяется проблеме структуры и структурной стабильности. Так, отечественный ученый-биолог и специалист в области общей теории систем А.А. Малиновский[27] считает роль структуры определяющей для установления типа и характеристик системы в целом — в качестве аргумента он ссылается, в том числе, и на существование принципиального сходства структуры млекопитающих, обитающих в разных средах и отличающихся по массе.

Соответственно, отечественный ученый М.И. Штеренберг[28] предлагает дополнить определение системы, данное Л. фон Берталанфи, указанием на необходимость сохранения системой структурной стабильности. В результате чего может быть сформулировано следующее определение: Системаесть сохраняющая в процессе эволюции свои структурные свойства совокупность элементов, проявляющая себя как единое целое. Функциональный же аспект не является показательным — он может быть обеспечен и без структурного сходства. В кибернетике «черный ящик» — это как раз и есть пример абстрактной системы, реализующую некоторую функцию[29].

На более поздних этапах развития общей теории систем были предложены концепции кибернетических систем высших порядков (второго и третьего), включающих в себя в качестве компонента и самого наблюдателя-аналитика.

Как известно, там, где есть цель (даже примитивная), должно быть и управление. Соответственно, эти теории не могли не привлечь внимания специалистов по управлению. Эксперты-аналитики, чрезвычайно чувствительные к новшествам в научной сфере, в числе первых приступили к экспериментальной апробации методов системных исследований. При этом частнонаучные методы стали использоваться для обработки и анализа данных, получаемых теми средствами и на основе тех моделей обработки и интерпретации, которые были адаптированы к той предметной области, в которой осуществлялся первичный анализ, а процессы интеграции данных и синтеза аналитических выводов приобрели специфику, близкую к специфике системного подхода.

Как показала практика, не беспредельно углубляющийся процесс декомпозиции, а именно интегральный подход, ориентированный на выявление наиболее общих закономерностей функционирования сложных систем, позволил решить многие проблемы, возникающие при анализе функционирования сложных систем.

Аналитика начала постепенно создавать собственную методологию, опираясь на достижения естественных наук. Все больший вес в аналитических исследованиях стали приобретать частные и комплексные модели различного назначения. Эта методологическая установка аналитики, унаследованная от естественных наук, чрезвычайно важна по причинам уже упоминавшимся (масштабы последствий натурного эксперимента). Особо широкое распространение в аналитике получили исследования, проводимые на основе многомодельного метода, при использовании которого модели различной семантики, построенные на основе данных различного происхождения, объединялись в сложные иерархические структуры. Создание таких сложных моделей систем, состояние которых определялось действием множества факторов, потребовало развития методологии многомодельных исследований, создания методологического инструментария, позволяющего реализовать функции временной синхронизации моделей, управления их параметрами, оценивания адекватности моделей, учета действия случайных факторов и согласования входных и выходных данных.

Далее в книге будут приведены более детальные описания наиболее распространенных способов моделирования.

Отдельную проблему составили вопросы, связанные с оцениванием эффективности целенаправленного функционирования систем и прогнозированием потенциального эффекта от использования полученных в ходе моделирования результатов. Причем методы априорного установления ожидаемого эффекта от использования информации, полученной в ходе анализа, потребовали разработки целостной теории эффективности целенаправленно функционирующих систем. Наиболее последовательно и системно к ее разработке подошел в 1970—1980-е годы отечественный ученый Г.Б. Петухов, чьи работы в области теории эффективности целенаправленно функционирующих систем являются уникальными[30] (разработанные им методы позволяют априори определить эффективность системы, относительно которой сформулирован некоторый набор гипотез вероятностного или статистического характера).

Заметим, что наиболее значимые методологические принципы аналитики были инициированы открытиями ученых, сталкивавшихся в ходе своей научной деятельности с проблемами анализа сложных систем, не достигших уровня развития, характеризующегося способностью к активному целеполаганию. Так было с общей теорией систем, обобщившей закономерности, выявленные в системах меньшей сложности и в качестве индуктивного шага распространившей эти закономерности на все типы сложных систем. Так случилось и с теорией самоорганизации сложных систем — в результате индуктивной процедуры была высказана гипотеза о существовании подобных явлений и в сложных системах любого происхождения. Так случилось и с кибернетикой, начавшей с проблем управления техногенными комплексами и распространившей свои подходы на общественные системы. В этом смысле традиция редукционизма в науке не прерывается, несмотря на пережитый наукой методологический кризис, вызванный именно склонностью к редукционизму.

Теория самоорганизации сложных систем, получившая наименование синергетика, рассматривает процессы самоорганизации, самоструктурирования, самосинхронизации, самоподстройки систем, происходящие под действием обмена со средой веществом, энергией или информацией. Основоположниками этой теории следует считать И.Р. Пригожина, Г. Хакена. Рассмотрим определение синергетики, данное в Большом энциклопедическом словаре[31]: «Синергетика (от греч. synergetikos совместный, согласованно действующий), научное направление, изучающее связи между элементами структуры (подсистемами), которые образуются в открытых системах (биологической, физико-химической и др.) благодаря интенсивному (потоковому) обмену веществом и энергией с окружающей средой в неравновесных условиях. В таких системах наблюдается согласованное поведение подсистем, в результате чего возрастает степень ее упорядоченности, т. е. уменьшается энтропия (т. н. самоорганизация). Основа синергетики — термодинамика неравновесных процессов, теории случайных процессов, нелинейных колебаний и волн». Впервые феномены такого рода были обнаружены в ходе химических реакций в условиях, когда некие возмущающие воздействия препятствовали достижению равновесного состояния. В результате этого возникают колебательные процессы взаимного превращения веществ, рассматриваемые как частный случай пространственно-временной самоорганизации неравновесных систем.

Синергетика заняла сильные позиции в западной социологии, психологии, экономической науке, в медицине и многих других отраслях. Эта теория часто используется для доказательства рациональности принципов рыночной экономики, поскольку в демократической системе государственного устройства, где номинально отсутствует жесткая система управления, аналогия с термодинамической системой вполне уместна. Такая аналогия кажется уместной в силу того, что индивид в демократическом обществе может быть охарактеризован подобно пребывающим в некоторой среде молекулам газа с их физико-химическими свойствами. Сделано это может быть с тем лишь отличием, что в качестве аналогов массы, энергии и иных характеристик рассматриваются финансовый и интеллектуальный потенциал, его коммуникативные характеристики и иные свойства.

Рядом экспериментов справедливость подобного подхода была подтверждена для социальных сред, однако следует учитывать, что подобная схема функционирует при сохранении некоторого стационарного состояния системы и воздействий на нее. В условиях резких изменений интенсивности воздействий система вновь переходит в состояние хаоса, что едва ли можно считать удачным вариантом решения проблем управления в обществе. Но в стационарных условиях на стадии становления некоторой организационной структуры подобный подход вполне может быть применен (правда, при наличии некоторых стимулов к самоорганизации — аналогов тех самых слабых воздействий, которые препятствуют переходу системы в равновесное состояние). В медицине примеров торжества синергетических принципов масса — подобные явления широко распространены там, где по каким-то причинам происходит угнетение тех или иных функций организма. В этих случаях у больного помимовольно, в результате функционирования тех уровней нервной системы, которые не подлежат сознательному регулированию, происходит компенсация дисбаланса, то есть — самоорганизация.

Однако, как уже было указано, процессы самоорганизации возникают лишь при наличии специфических условий. А это означает, что синергетика не может рассматриваться как универсальный подход к решению различных проблем. Должны существовать некие периоды стабильности параметров внешних воздействий, достаточные для установления состояния, близкого к равновесному. В противном случае — система может перейти в автоколебательный режим (рассмотрению условий возникновения которого вынуждена была уделить серьезное внимание кибернетика) — а это явления, предшествующие распаду системы.

Следует заметить, что идеи синергетики также неновы. Мы уже указывали на существование довольно интересного научного направления — теории циклов, основателем которого по праву считается Н.Д. Кондратьев (это не значит, что до него никто из экономистов не отмечал цикличности развития капиталистической экономики, но до него эти циклические процессы не рассматривались в качестве универсального принципа развития систем различного рода). Тогда эти исследования, противоречившие марксистскому взгляду на развитие общества, согласно которому в качестве движителя прогресса выступает классовая борьба, не получили официального признания, а ученый, получивший мировое признание, был расстрелян в 1938 году. До середины 1980-х последователи его учения не имели возможности для пропаганды своих идей. В конце 1980-х годов в советской науке начинают возрождаться идеи А.Л. Чижевского и Н.Д. Кондратьева. В Москве создается Международный Фонд Н.Д. Кондратьева. Фондом проводится большая организаторская и научно-исследовательскую работа в области экономических циклов. Приблизительно в это же время в Москве создается другая научная организация — Ассоциация «Прогнозы и циклы». В г. Санкт-Петербурге создается научная общественная организация «Циклы и управление». И вот, по прошествии нескольких десятилетий теория циклов получает развитие в виде общей теории циклов, разработанной Ю.Н. Соколовым. По существу его теория представляет собой своеобразный вариант синергетики, обогащенной идеями кибернетики и гомеостатики. В данной теории рассматривается весь процесс эволюции как некий колебательный процесс, аналогичный процессу, происходящему в гомеостате при компенсации воздействия среды. Большое влияние на развитие общей теории циклов оказали воззрения Чижевского, Вернадского, увязывавших человечество в единую систему вселенских масштабов, где все компоненты охвачены сложными связями и взаимообусловливают процессы протекающие в них. Многие положения, разрабатываемые в рамках общей теории циклов заслуживают серьезного внимания аналитиков, особенно в той части, которая рассматривает социальные и экономические процессы, а также реакции экосистем на нарушение экологического равновесия.

Формальный аппарат, разработанный в рамках теории циклов, оказывается достаточно удобным для моделирования поведения систем, в которых уместно рассматривать колебательные (циклические) процессы. Данное научное направление активно развивается НИИ «Циклы природы и общества»[32], созданным Ю.Н. Соколовым при поддержке Северо-Кавказского Государственного технического университета. В 2001 году в издательстве СевКавГТУ вышла в свет монография «Циклы как основа мироздания», содержащая результаты фундаментальных исследований, сделанные на основе общей теории циклов; также существует возможность ознакомления с ее электронной версией с использованием глобальной телекоммуникационной сети Интернет на сайте http://www.nbs.stv.runnet.ru.

Анализ большинства попыток российских ученых выдвинуть новую оригинальную концепцию показывает, что наиболее пагубное влияние на судьбы этих учений оказывает не столько конкретные руководители или система государственного устройства, сколько стремление авторов этих теорий одним махом заместить все основополагающие принципы официальной науки. Вставая на этот путь, авторы не считают возможным установление даже временного компромисса: вступают в бой не столько с существующими теориями, сколько с мощной научной организацией, располагающей собственной и не менее хищной, чем в других отраслях, бюрократией. При этом создатель новой теории не ищет сходства позиций — он подчеркивает различия. Эта своеобразная форма научного мученичества встречается в нашей стране сплошь и рядом. Именно поэтому в России родилось и благополучно скончалось такое великое множество идей, какого, вероятно, нигде не сыщешь. Идей разных, но сходных в одном — им так и не удалось восторжествовать. Пытались ли такие ученые как Берталанфи, Винер, Пригожин или Хакен в одночасье спихнуть с научного Олимпа активно действующих авторитетов науки? — Нет, не пытались (по крайней мере, в тех формах, в которых это пытались делать наши научные мученики). Борьба была, но это была уважительная и бесстрастная борьба между равными. Попытка «срезать угол» в научной «гонке» почти всегда приводила к научной гибели «пилота» (если воспользоваться терминологией ныне популярной Формулы-1).

Таким образом, в результате развития естественных наук аналитика обогатилась целым рядом методологических принципов и инструментов исследования, включая и формальный аппарат, характерный для них. В число таких инструментов вошли:

— принципы декомпозиции и агрегирования;

— принцип многомодельности;

— аппарат теории множеств, графов и формальной логики и методы структурного и причинно-следственного анализа;

— аппарат дифференциального, интегрального и вариационного исчисления и методы математического анализа;

— аппарат матричного представления, векторного исчисления и методы векторного анализа;

— аппарат теории вероятностей и математической статистики и методы вероятностного и статистического анализа и иные.

Со времени доминирования физикалистских концепций сохранилось достаточно удобная система метафорических терминов, отражающих сущность понятий, ими обозначаемых. В число таких терминов могут быть включены «импульс», «скорость», «ускорение», «мощность», «энергия», а из более поздних заимствований — термины «спектр», «амплитуда», «фаза», «цепная реакция», «квант» и ряд других. Подобные метафоры существенно упрощают процесс синтеза концептуальных моделей и их последующую формализацию в интересах моделирования.

1.3 Кибернетика и системный анализ

Кибернетика и системный анализ составляют некое гармоническое единство — настолько тесное, что сложно установить, где же пролегает линия раздела. Можно встретить утверждения о том, что кибернетика — это раздел теории систем, или о том, что теория систем — это раздел кибернетики. Однако предмет изучения этих наук различен: одна наука (кибернетика) исследует процессы управления, протекающие в различных системах, другая (системный анализ и теория систем) ориентировано в большей степени на методологические вопросы изучения и описания систем разного происхождения. Но поскольку речь идет именно о сложных системах, постольку имеет место взаимное обогащение этих наук методами и технологическими достижениями. Сходство это неслучайно, поскольку на их формирование оказал воздействие общий блок идей — философская концепция позитивизма и господствовавшая в нейрофизиологии и психологии в конце 1930-х годов концепция бихевиоризма. Оговоримся, что по мере развития этих наук исходные идеи претерпели достаточно серьезные трансформации. Таковы курьезы эволюции научного знания: идеи, на которых строилась исходная гипотеза, оказались несовершенны, но гипотеза в целом — полезной и правильной. Бревна нижних венцов заменили — и дом стоит, давая кров и тепло своим обитателям.

Обе эти научные дисциплины по праву могут считаться основными компонентами методологического ядра аналитики. Это вызвано тем, что обе научные дисциплины рассматривают объекты и системы, прежде всего, с точки зрения решения задач управления. А, как мы установили ранее, целью информационно-аналитической работы является информационное обеспечение процессов управления. Следующий аргумент в пользу такого утверждения — это то, что эти науки предоставляют в распоряжение аналитика развитый формальный аппарат и комплекс отработанных и прошедших апробацию методик моделирования. Объединение же этих наук в рамках методологического ядра аналитики обусловлено тем, что на этапе применения их для решения практических задач управления (анализа информации и синтеза управленческого воздействия) искусственное разделение их является нецелесообразным. Такое разграничение может быть признано обоснованным в качестве тактического шага на этапе создания новой научной школы, но на этапе их применения — излишне, поскольку методы этих наук вполне совместимы, дополняют и взаимно обогащают друг друга, и, что самое важное — результаты их применения используются в едином цикле потребления информации.

Какие бы аргументы не предлагались в опровержение этой точки зрения, но отправной точкой в развитии кибернетики стала идея «черного ящика» — идея, согласно которой любой объект или система с точки зрения процессов управления предстает перед исследователем в качестве непознанного объекта (черного ящика с неизвестной начинкой), внутренне устройство которого не столь принципиально для достижения целей управления. Существенным же для управления состоянием этого ящика является то, каким образом реализуется управление им. Внимание кибернетики сосредоточено на том, каким образом построен контур управления объектом и каким образом объект реагирует на некоторые входные воздействия. То есть, представление объекта или системы в терминах вход-выход, что соответствует бихевиористскому подходу «стимул-реакция». Безусловно, важнейшим положением кибернетики является тезис о необходимости введения в контур управления объекта или системы регулирующей обратной связи, используемой для реализации автоматного (простейшего интеллектуального) поведения, однако кибернетикой рассматривается поведение автоматов как с замкнутым, так и с разомкнутым контурами управления.

Интересное влияние на общество оказало внедрение кибернетических подходов. С этого времени научная фантастика населяется роботами, сперва — наделенными интеллектом, позже — разумом, а далее — и эмоциями. Фантастика переходит к проблемам общефилософского, социального и этического плана. Утрачиваются ценнейшие традиции научной фантастики, заложенные Ж. Верном, Г. Уэллсом, И.А. Ефремовым, А.Р. Беляевым и другими авторами, сделавшими этот жанр столь популярным в начале — середине XX века. Эти традиции, связанные с познавательной функцией, быстро вытесняются из фантастики (техника в своих подробностях становится заумно сложной — да и какой в ней смысл, если автомат так же чувствует, мыслит и переживает, как человек) — фантастика соскальзывает к описаниям внешнего вида устройств, использует псевдо-термины и закономерно превращается в фэнтези. Где теперь встретишь вундеркинда-конструктора с портфелем, набитым проволочками и магнитами? Техника стала для них набором «черных ящиков».

Для системного анализа и иных системных дисциплин такой отправной точкой служит общая теория систем (ОТС) Л. фон Берталанфи. Существенно уточненная, оснащенная специфическим формальным аппаратом, допускающим сочетание различных способов описания сущностей и процессов реального мира, общая теория систем претерпела процесс, обратный первоначальному замыслу автора теории: если на первом этапе (этапе выдвижения идеи) ОТС выступала в качестве средства интеграции и обобщения знаний о системах различного происхождения, то позже в рамках теории систем выделились системотехника (с уклоном к изучению техногенных систем), системный анализ (характерный для систем с целеполаганием), исследование операций (сфера военного приложения теории систем, впоследствии получившая распространение и других отраслях) и иные научные направления, основанные на системной платформе.

Однако, если всмотреться в сущность подходов, предлагаемых кибернетикой и теорией систем, и абстрагироваться от ряда несущественных методологических отличий, то становится очевидным, что и системный анализ, и кибернетика при рассмотрении систем и объектов оперируют одними и теми же подходами. Для этих наук объекты и системы, суть — те же «черные ящики», характеризующиеся примерно одинаковым набором параметров, о содержимом которых на этапе анализа «забывают» вплоть до особых обстоятельств.

Кибернетика

Основателем современной кибернетики по праву считается американский ученый Н. Винер, в период с 1938 по 1948 год интенсивно работавший над созданием новой теории. В 1948 году им была выпущена книга «Кибернетика», одновременно опубликованная в США и во Франции. Выход книги стал заметным событием в научной жизни: с этого момента во многих странах начинают формироваться научные школы, избравшие в качестве методологии своих исследований кибернетический подход. Активное участие в пропаганде и разработке идей кибернетики принял Дж. фон Нейман, при содействии которого в начале 1944 года было проведено совещание группы ведущих ученых США, работавших над проблемами создания вычислительной техники и систем автоматизированного управления. Позже, только в 1947 году, было впервые употреблено название новой науки «кибернетика», происходящее от греческого слова, соответствующего русским словам «рулевой, кормчий». Это название, поначалу казавшееся новым, позже вызвало споры — оказалось, что термин не нов и уже использовался для обозначения наук об управлении. Так, Платон использовал его в значении современного термина «навигация», а известный французский физик А. Ампер (тот самый, чьим именем названа единица измерения силы тока) — в значении «наука об управлении государством».

Несмотря на то, что в своих работах Винер неоднократно обращался к результатам исследований русского физиолога И.П. Павлова, еще в 1954 году в нашей стране для кибернетики использовалось следующее определение:

«Кибернетика — реакционная лженаука, возникшая в США после второй мировой войны и получившая широкое распространение и в других капиталистических странах; форма современного механицизма. Приверженцы кибернетики определяют ее как универсальную науку о связях и коммуникациях в технике, в живых существах и общественной жизни, о «всеобщей организации» и управлении всеми процессами в природе и обществе. По существу своему кибернетика направлена против материалистической диалектики, современной научной физиологии, обоснованной И.П. Павловым, и марксистского, научного понимания законов общественной жизни. Эта механистическая метафизическая лженаука отлично уживается с идеализмом в философии, психологии, социологии. Под прикрытием пропаганды кибернетики в странах империализма происходит привлечение ученых самых различных специальностей для разработки новых приемов массового истребления людей — электронного, телемеханического, автоматического оружия, конструирование и производство которого превратилось в крупную отрасль военной промышленности капиталистических стран».

Однако уже в 1959 году (правда, спустя 11 лет после выхода книги Н. Винера) в СССР был создан Научный совет по комплексной проблеме «Кибернетика» АН СССР — активно работавший до середины 90-х годов научно — организационный центр, осуществлявший координацию научноисследовательских работ в стране в области кибернетики и ее приложений. Совет поочередно возглавляли академики А.И. Берг (инициатор и первый руководитель Совета), Е.П. Велихов, О.М. Белоцерковский, А.П. Ершов. Совет осуществлял анализ состояния кибернетических исследований в СССР и за рубежом, определял содержание и основные направления научноисследовательских работ по кибернетике и содействовал их развитию, осуществлял контроль за ходом выполнения работ и разработку предложений по внедрению их результатов, организовывал процессы информационного обеспечения работ и координации международных научных связей. В состав Совета входили секции: математические проблемы кибернетики; вычислительные системы; общие и математические вопросы теории информации; техническая кибернетика; кибернетика энергетических систем; системотехники строительства, бионика; биологическая и медицинская кибернетика; математическая теория эксперимента; философские проблемы кибернетики; применение кибернетики в психологии; экономическая кибернетика; семиотика; кибернетика и право и иные. В рамках работы секций проводились международные конференции, научные семинары, издавались сборники «Вопросы кибернетики», «Информационные материалы», «Проблемы кибернетики» и «Кибернетический сборник».

В 1961 году академик АН СССР А.И. Берг охарактеризовал кибернетику следующим образом: «Кибернетикаэто наука об управлении сложными динамическими системами. Термин «сложность» здесь применяется как философская категория. Динамические системы на производстве, в природе и в человеческом обществе — это системы, способные к развитию, к изменению своего состояния. Сложные динамические системы образуются множеством более простых или элементарных систем или элементов, взаимосвязанных и взаимодействующих. Целью советской кибернетики является разработка и реализация научных методов управления сложными процессами для повышения эффективности человеческого труда»[33]. Изменения, произошедшие в общественной жизни с 1961 года по настоящее время не понизили актуальности приведенных слов.

В 1959 г. академик АН СССР А.Н. Колмогоров писал: «Кибернетика занимается изучением систем любой природы, способных воспринимать, хранить и перерабатывать информацию и использовать ее для управления и регулирования. При этом кибернетика широко пользуется математическим методом и стремится к получению конкретных специальных результатов, позволяющих как анализировать такого рода системы (восстанавливать их устройство на основании опыта обращения с ними), так и синтезировать их (рассчитывать схемы систем, способных осуществлять заданные действия). Благодаря этому своему конкретному характеру кибернетика ни в какой мере не сводится к философскому обсуждению природы «целесообразности» в машинах и философскому анализу изучаемого ею круга явлений»[34].

С самого зарождения идеи кибернетики Н. Винер указывает на информационный характер процессов управления. Более того, уже в 1943 году в своих работах он вплотную подходит к теории информации, активно разрабатывавшейся в то время К. Шенноном, (интересно, что оба ученых находились под сильным влиянием идей Б. Рассела). Благодаря тесному сотрудничеству с ученым-медиком А. Розенблютом, исследования Винера носили комплексный характер (еще раз вспомним о влиянии естественных наук на развитие и становление аналитики). Совместно изучая особенности поведения больных с нарушением деятельности мозжечка или спинного мозга, они обнаружили подтверждение идеи о необходимости введения в контур управления объектами и системами обратной связи. Таким образом, кибернетика изначально связана с междисциплинарными проблемами, а идеи Винера нашли применение и в нейрофизиологии. Как следствие, естественным обобщением непознанного объекта типа «мозг» стала метафора «черного ящика», познание механизмов функционирования которого на тот момент было возможно лишь в результате наблюдения за его реакциями на конкретные раздражители.

Заметим, что кибернетика, как наука о функционировании систем управления, нашла массу приложений в самых различных отраслях деятельности человека. Однако первые прикладные результаты были получены в сфере управления техногенными объектами (например, в системах наведения вооружений, управления механизмами и приводами в авиации, автоматической подстройки частоты в радиоприемных устройствах и многих других системах, функционирующих в условиях изменяющейся обстановки).

Широкое применение в кибернетике получили математические методы, связанные с определением экстремумов функций, отражающих закономерности поведения физических объектов. Активно используются методы решения систем линейных и нелинейных уравнений, методы интегрального и дифференциального исчисления и многие другие. В сочетании с этими методами широко используется матричный аппарат. Большой интерес представляет кибернетическое направление, связанное с управлением термодинамическими системами — многие идеи, связанные со стохастическими, вероятностными свойствами процессов управления, были почерпнуты Винером именно из этой отрасли, тогда стремительно завоевывавшей позиции в физической науке.

К числу важнейших понятий кибернетики следует отнести понятия «система (подсистема)» и «состояние».

Термину «система» в соответствие ставится некоторый материальный объект, состоящий из других объектов, называемых его подсистемами. По существу, когда речь идет о сложных системах, речь идет не только о физических объектах, но и об отражении в сознании некоторых фрагментов реального мира и условном разделении его на подсистемы в соответствии с задачами управления или иными задачами. Данное понятие адресовано, скорее, к пространственному воображению исследователя (аналитика), поскольку связано с понятием иерархии, обычно мыслимой в виде пирамиды.

Термину «состояние» в соответствие ставится некоторое протяженное во времени сочетание значений атрибутов (неотъемлемых свойств) системы, характеризующее ее с точки зрения применимости к ней некоторого управляющего воздействия (или их неизменной совокупности) для достижения заданного результата. Такое определение дано специально, дабы подчеркнуть специфику кибернетического подхода, связанного с решением задач управления и указывающего на общность подходов кибернетики и аналитики. Это понятие сложно (или невозможно) определить иначе, как со ссылкой на опыт в какой-либо из отраслей деятельности.

Оба рассмотренных понятия неявным образом связаны с понятием «отношение»: в одном случае — между системой и системой (подсистемой), в другом — между системой в предшествовавший изменению момент времени и в последовавший за ним (момент).

Соответственно, состояние системы определяется через совокупность состояний всех ее подсистем, в конечном счете — ее элементарных подсистем. При этом по числу возможных состояний различают элементарные подсистемы двух типов: дискретные подсистемы (с конечным числом состояний) и подсистемы с непрерывными состояниями или аналоговые подсистемы (при бесконечном числе состояний). Дискретность/непрерывность может проявляться как во временной области, так и в пространстве признаков (например, напряжения нуля и единицы в интегральных логических схемах).

Тут оказывается уместным упомянуть определение предмета исследования кибернетики, данное бывшим нашим соотечественником, блестящим ученым В.Ф. Турчиным: «Кибернетика изучает организацию систем в пространстве и времени, то есть то, каким образом связаны подсистемы в систему и как влияет изменение состояния одних подсистем на состояние других подсистем. Основной упор делается…на организацию во времени, которая в случае, когда она целенаправленна, называется управлением»[35]. Для описания процессов изменения состояния системы используются такие термины, как «динамика системы» и «организация системы во времени», однако, по замечанию В.Ф. Турчина, более уместным здесь является именно «организация во времени». Это вызвано тем, что термины «динамическое» и «статическое» принято использовать по отношению к вариантам описания системы (ее моделям, учитывающим либо и пространство и время, либо только пространственную компоненту); будучи же примененным к системе слово «динамика» невольно вызывает представление об однородности устройства системы.

Как уже было отмечено, в кибернетике широко используются различные методы моделирования. Весьма показателен подход к моделированию, используемый этой наукой — детализация моделей осуществляется в той степени, которая способна обеспечить заданное качество управления системой. Подсистемы наиболее низкого уровня детализации дальнейшей декомпозиции не подвергаются и рассматриваются как элементарные, неразложимые на составные части. Следствием этого может стать такая ситуация, когда объекты, считающиеся элементарными в некоторых моделях, будут иметь принципиально различную природу, а кибернетические модели, отражающие их взаимодействие, будут одинаковы. Соответственно, с кибернетической точки зрения эти системы будут тождественны, несмотря на те различия, которые заложены на нижнем уровне — уровне элементов. В этом-то и заключена красота исходной идеи, заложенной в основу кибернетики, этим и была оскорблена идеологическая верхушка советской науки в начале 1950-х годов. Хотя механицизмом это назвать было нелогично и недальновидно — ведь физики не возмущались, когда одинаковыми математическими уравнениями описывались различные процессы и явления.

Однако, вернемся к автоматному поведению, контуру управления, информационному циклу управления и обратной связи. Что подразумевается под автоматным поведением? Под автоматным поведением понимается такое поведение, при котором некоторое изменение состояния среды функционирования (существования) объекта приводит к осуществлению им действий, направленных на адаптацию к изменившимся условиям — ситуация на входе подсистемы сбора информации приводит к осуществлению системой того или иного действия.

Автоматное поведение свойственно, например, живым организмам, способным к реализации простых рефлексов. Для таких организмов справедлив подход, представляющий подсистему управления жизнедеятельностью организма в виде некоторым образом организованной системы нервных клеток (нейронов) чувствительных к изменению условий (рецепторов, образующих подсистему сбора информации) и исполнительных (эффекторов, образующих подсистему доведения управляющих воздействий). Состояние всех рецепторов системы в некоторый момент времени в кибернетике принято называть ситуацией, а состояние всех эффекторов — действием. В этом случае можно утверждать, что роль, которую исполняет подсистема управления, сводится к преобразованию ситуации в действие.

В кибернетике принято выделять два вида обратных связей между подсистемой сбора информации, образованной совокупностью некоторым образом организованных датчиков (или рецепторов), и — подсистемой доведения управляющих воздействий, представленной совокупностью исполнительных компонентов (или эффекторов). В живых организмах эти связи представлены синапсами (местами близкого размещения или контакта нервных клеток):

— положительную обратную связь, при наличии которой возбуждение рецептора вызывает возбуждение эффектора, а покой — состояние покоя;

— отрицательную обратную связь, при наличии которой возбуждение рецептора вызывает переход эффектора в состояние покоя, а покой — возбуждение.

Благодаря наличию обратной связи контур управления приобретает замкнутый вид, за счет чего появляется возможность дозирования управляющих воздействий и анализа их результатов.

Число рецепторов и эффекторов в сложных системах бывает весьма велико (а в живых организмах — и подавно), что требует эффективных механизмов обработки поступающей от них информации и управления ими. Практика исследований как в нейрофизиологии, так и в социальных и технических дисциплин указывает на то, что в этих условиях наиболее эффективными являются механизмы обработки информации и управления, построенные по иерархическому принципу. В такой системе информация о состоянии обрабатывается наиболее быстро, а разнообразие различаемых состояний для единичного рецептора или эффектора в иерархической системе сводится к минимуму. Соответственно, для каждого элемента иерархии достаточно располагать информацией, необходимой для выполнения лишь того набора элементарных операций, который входит в его компетенцию.

Наибольший интерес с точки зрения процессов управления представляет категория цели. В кибернетике под целью принято понимать то желаемое состояние, на достижение которого направлена управленческая деятельность. Для систем с примитивным автоматным поведением (не обладающих способностью к целеполаганию) в качестве цели управления рассматривается поддержание гомеостаза (функционального состояния системы, при котором благодаря действию специальных систем управления, именуемых гомеостатами, обеспечивается динамическое постоянство жизненно важных функций и параметров системы при различных изменениях внутренней и внешней среды). Следует обратить внимание на то, что гомеостаз — это не есть покой или просто постоянство, гомеостаз — это состояние, обеспечиваемое динамическим процессом. При этом наравне с термином «гомеостаз», часто пользуются и другим термином — «гомеокинез». Так, если интегральные показатели системы при отсутствии изменений внешней среды остаются постоянными, мы имеем состояние гомеостаза, а если они колеблются около некоего среднего положения, оставаясь в определенных рамках, это — состояние гомеокинеза.

В 1952 году У.Р. Эшби[36] было сформулировано понятие целеполагающего гомеостата. В качестве такого целеполагающего гомеостата им рассматривался человеческий мозг, способный через субъективно идеализированную абстракцию (модель мира субъекта целеполагания) прогнозировать возможные опасности собственному существованию и принимать превентивные меры для обеспечения собственной безопасности за счет интенсификации вещественно-энергетического потока из внешней для гомеостаза среды — среды его обитания.

Наиболее распространенным вариантом построения гомеостатов в природе и техники является иерархическая организация его компонентов. Такая конфигурация вполне объяснима с учетом приведенных одним абзацем выше рассуждений. Позже американским ученым С. Биром применительно к производству было сформулировано понятие иерархического гомеостата[37], применение которого позволяло упростить процессы управления предприятием, построить рациональную организационно-штатную структуру, оптимально распределить должностные обязанности, а также выполнять массу иных процедур, связанных с управлением производством.

В принципе, присмотревшись к такой модели, можно уловить черты сходства с муравейником. Более того, несколько идей, относимых к разряду социальных утопий, основывались именно на таком идеале. В качестве примера кибернетического подхода к общественному устройству могут рассматриваться конфуцианство с его кодексами, «Город Солнца» Т. Кампанеллы и представления ряда авторов социальных утопий прошлого и современности. Крайней формой кибернетизированного подхода к рассмотрению рациональной организации человеческого общества является так называемая «теория золотого миллиарда» — реакционная теория элитарного общества, построенная на основе неомальтузианства.

Характерно, что такой принцип устройства системы соответствует максимальной экономии расходуемых ресурсов, характеризуется высочайшей эффективностью и быстродействием, но при этом существенно возрастает уровень специализации элементов. Последствия роста специализации можно проиллюстрировать на следующем примере: простейшие живые организмы, не располагающие центральной нервной системой и обладающие малой специализацией клеток, их образующих, демонстрируют более высокую живучесть, а способность к регенерации утраченных органов у них распространена шире, нежели чем у более сложных организмов. Некоторые параллели могут быть проведены и при сопоставлении тоталитарной и демократической моделей государственного устройства, хотя здесь следует помнить, что кибернетика, как и многие другие науки, останавливается в своих абстракциях на некотором конечном уровне декомпозиции, отбрасывая своеобразие тех компонентов, которые оказываются ниже используемого уровня абстракции.

Кибернетические подходы к управлению обществом и производством на самом деле не содержат в себе ничего такого, о чем следовало бы говорить как об источнике угрозы обществу — просто любая крайность в управлении целеполагающими системами опасна и ведет либо к гипертрофированному индивидуализму или к чрезмерной централизации управления. И в том и в другом случае (хотя и по разным причинам) неминуемо происходит истончение интеллектуального слоя общества, его деградация. Однако при разумном сочетании централизованного и децентрализованного управления результаты могут быть получены весьма значительные преимущества, что отнюдь не противоречит кибернетике (техническая кибернетика наглядно продемонстрировала необходимость наличия люфтов в системах управления).

Польза люфтов в системах управления может быть продемонстрирована хотя бы на примере знакомой всем автомобилистам системы рулевого управления. На заре автомобилестроения соединение деталей в системе рулевого управления было жестким, лишенным люфтов (цепным или шестеренчатым). В результате такого конструктивного исполнения каждая выбоина на дороге (а дороги в то время были чаще всего брусчатыми) моментально отдавалась в рулевом колесе, вызывая у водителя автоматную реакцию — попытку сопротивления действию силы, вращающей колесо. Однако время задержки реакции оказывалось велико по сравнению с длительностью воздействия ударной нагрузки, и водитель прилагал компенсационное усилие уже на другом участке дороги, где направления компенсационного усилия и силы, вращающей рулевое колесо в результате следующего соударения, могли совпасть, что часто и случалось на практике. Управление автомобилем в то время требовало значительной физической силы и хороших навыков. Многие обращали внимание на то, как странно (по нынешним понятиям) вели себя на дороге старинные автомобили в кадрах кинохроники — они непрерывно совершали какие-то бессмысленные резкие зигзагообразные маневры на дороге, но мы-то знаем, в чем тут дело. Лишь в результате ряда усовершенствований (применение остроумно реализованных автоматов удержания прямолинейного направления движения за счет наличия углов развала и схождения) задача удержания рулевого колеса автомобиля существенно упростилась. Но главным здесь было изобретение рулевой трапеции, устроенной так, чтобы в ней обеспечивался люфт, позволяющий гасить незначительные удары и вибрации, возникающие при езде по дороге. Сейчас в правилах дорожного движения записано, в каких пределах должен обеспечиваться люфт в системе рулевого управления автомобиля.

Однако вернемся от проблем социальных и автомобильных к проблемам, рассматриваемым современной кибернетикой. Естественным продолжением исследований в области кибернетики стало возникновение таких теорий как теория распознавания образов, теория информации, теория искусственного интеллекта, кибернетической (математической) лингвистики и иных направлений, в основу которых заложено рассмотрение информационных процессов, связанных с управлением, целеполаганием, процессами возникновения и управления знаниями. В створе кибернетических наук зародилось весьма популярная в настоящее время технология нейросетевой обработки и анализа данных. Таким образом, мы приходим к утверждению, что на сегодня большая часть технологически реализованного аналитического инструментария базируется на принципах, сформулированных в рамках кибернетического подхода. Однако, как будет показано далее, человечество постепенно входит в эпоху, когда кибернетические подходы перестают быть единственным поставщиком технологий для аналитики — уровень развития кибернетических технологий завершает процесс создания платформы для начала внедрения технологий, основанных на теории систем и системного анализа, построения кибернетических систем высших порядков.

К числу разделов кибернетики, представляющих особый интерес для аналитики, несомненно, относится теория распознавания образов. Это направление получило развитие на самых ранних этапах развития кибернетики — без этого было невозможно решить задачи обеспечения реакции автомата на изменение ситуации (как некоторой специфической совокупности сигналов, поступающих от рецепторов). Так, уже на этом этапе теория распознавания образов, пусть пока формально, но оказалась связана с распознаванием ситуаций. Вначале распознавание было наиболее тесно связано с распознаванием графических образов в технических системах, но при наличии устойчивой тенденции к кибернетическому рассмотрению общества это не могло не привести к возникновению специфического направления — распознавания ситуаций и в сфере управления организационно-техническими и социальными системами.

Наиболее интенсивно методы распознавания образов используются на этапе, когда данные, собранные и прошедшие первичную обработку, приводятся к единому формату представления, что позволяет использовать для их отображения и анализа нормализованное метрическое пространство признаков (это означает, что в таком пространстве признаков введены метрики, обеспечивающие возможность измерения степени близости полученных результатов к неким эталонам). В этом случае близость к заданным эталонам указывает на возникновение ситуации, полностью или в некоторых деталях сходной с эталонной, по тем или иным причинам выделенной из числа прочих возможных. В настоящее время все чаще для решения таких задач используются методы, ранее использовавшиеся для распознавания изображений, однако применяемые не после отображения, а на этапе работы с внутренним представлением данных в системах автоматизированной обработки.

Как видим, кибернетические методы широко используются для анализа данных, построения моделей объектов и систем, распознавания ситуаций, синтеза организационной структуры информационно-аналитических подразделений и для многих других аналитических приложений. Ранее мы указывали, что методы кибернетических исследований тесно связаны с методологией системного анализа и границу раздела между ними определить крайне сложно. Тем не менее, в рамках нашего повествования такую границу мы проведем здесь.

Системный анализ

При объяснении феномена общности, приведшего к зарождению общей теории систем и системного анализа, можно сослаться на то, что исследователи чрезвычайно ограничены в средствах формализации и вынуждены выбирать сходный математический аппарат для обозначения природных явлений и процессов совершенно разного происхождения. Однако, это не совсем так (конечно, многое зависит от математического кругозора ученого) — дело в том, что современная математика достаточно богата разнообразными абстрактными объектами и инструментами формализации и способна предоставить исследователям все то, что может им потребоваться для представления результатов научных изысканий. Но, тем не менее, одни и те же зависимости, обратные квадрату расстояния, описывают изменение напряженности электромагнитного поля на некотором удалении от точечного носителя заряда, силу ударной волны на удалении от эпицентра взрыва, одинаковые дифференциальные уравнения описывают движение жидкостей, тока, переноса тепла в электро- и теплопроводных средах, иначе говоря, слишком много «случайных» совпадений. Даже наоборот, по мере развития специальных разделов математики, возникших в результате развития кибернетики, информатики, теории игр, управления, аксиоматической теории принятия решений, факторного анализа, «нечеткой» математики, становится очевидным наличие объективных закономерностей, определяющих сходство многих внешне различающихся феноменов.

Использование этого знания давало гипотетическую возможность на некоторых этапах исследований, проводимых в междисциплинарных областях, абстрагироваться от тех особенностей исследуемых систем, которые были несущественны с точки зрения решаемой задачи. Преимущества, которые могло дать использование подобного подхода, были очевидны. Однако от догадки до знания дистанция достаточно велика. Предположение Л. фон Берталанфи было лишь первым шагом на пути к созданию стройной научной теории, способной принести реальную пользу при решении конкретных задач теоретических и прикладных исследований. Отсутствие единой теоретической платформы, роль которой ранее исполняла механика Ньютона, тормозило развитие науки, а потребности практической деятельности стали наталкиваться на ограничения методологического плана (в этом-то и проявляется кризис науки). Поскольку общей концепции устройства мира синтезировано так и не было, а заключения о природе всего сущего наука дать была неспособна, постоянно наталкиваясь на технологические ограничения, ученые во многих отраслях вынужденно перешли на макроуровень. Этот подход оказался весьма продуктивным — все чаще в системах различной природы стали обнаруживаться закономерности, указывавшие на наличие чего-то общего, судя по всему, вызванного общностью фундаментальных принципов организации всех систем от самого нижнего уровня агрегации до самого высшего.

По мере углубления исследований росла убежденность в том, что структурный подход к анализу систем чрезвычайно эффективен и позволяет, отказавшись от детального изучения конкретных физических механизмов реализации той или иной конструкции, успешно решать многие задачи как теоретического, так и практического плана. Установка А.А.Богданова, настаивавшего на том, что «структурные отношения могут быть обобщены до такой же степени формальной чистоты схем, как в математике отношения величин» в результате чего многие «задачи могут решаться способами, аналогичными математическим» находила все больше подтверждений. В науке начался переход от изучения динамики элементов к изучению динамики структур, где отношения были более наблюдаемы и предметны.

Однако поскольку предметные области, в которых осуществлялись исследования в рамках методологии общей теории систем, традиционно различались (именно типом элементов систем), постольку в рамках общей теории систем сформировалось несколько направлений, прижившихся в различных отраслях: в экономике, политике, военном деле, экологии, социологии, демографии, ряде разделов медицины, и многих других.

На первых этапах общая теория систем, развивавшаяся в створе философских наук, оставалась предметом отвлеченных дискуссий, но по мере ознакомления специалистов-практиков с ее методологией, преимущества новых подходов стали очевидны. Там, где возникала потребность в создании и изучении сложных систем (в том числе — организационных и организационно-технических), использование методов системного анализа приносило ощутимую пользу. Особенно ценным было то, что методы общей теории систем позволяли выявить потенциальные источники противоречий, способных привести к снижению эффективности функционирования или самопроизвольному распаду системы. В ходе работ, связанных с проектированием больших человеко-машинных систем (что на тот момент было особенно востребовано при проектировании систем военного назначения) постепенно сформировалось специфическое направление общей теории систем, получившее наименование системный анализ.

Прежде, чем продолжить разговор о системном анализе, следует определиться с терминологией. Определение любой научной дисциплине может быть дано различными способами: по цели исследования, по объекту (предмету) исследования, по методу исследования и по субъекту исследования.

Определение по цели исследования. Системный анализэто вид целенаправленной исследовательской деятельности, осуществляемой с целью создания оптимального по форме, содержанию, а также уровню детализации и формализации представления имеющихся знаний о сложных системах, являющихся предметом интересов исследователя.

— Определение по предмету исследования. Системный анализэто отрасль научного знания, предметом изучения которой являются наиболее общие закономерности процессов возникновения (создания), существования (функционирования), распада (разрушения) сложных систем, процессов зарождения, развития и разрешения противоречий, а также закономерности синтеза целей в сложных системах, определяемые структурой, характером и динамикой связей между их компонентами.

Определение по методу исследования. Системный анализэто вид комплексного исследования, использующего в интересах достижения цели методы структурной и функциональной декомпозиции сложных систем, опирающиеся на достижения философии, естественных и гуманитарных наук, а также математики и математической логики.

— Определение по субъекту исследования. Системный анализэто вид исследовательской деятельности, осуществляемой специалистами в области системного анализа, системотехники и системологии, применительно к некоторой сфере деятельности.

Чтобы понять сущность системного анализа, на начальном этапе лучше прибегнуть к нестрогим определениям, например, системный анализ — это: «предпроектная стадия в разработках и предмодельная стадия в научных исследованиях», «дематематизированная кибернетика», «формализованный здравый смысл», «когда сначала думают, а потом делают» и тому подобные афористичные фразы. Все эти определения тем или иным образом указывают на связь системного анализа с принятием управленческого решения — неважно в какой отрасли.

Системный анализ может рассматривать в принципе любые типы систем и объектов, представляя объект исследования в качестве системы (в этом сущность его метода), в том числе и сложной. Однако оптимизация процесса исследования не есть главная задача системного анализа, первой и главной задачей системного анализа является получение модели предельно адекватной объекту исследования. А уж далее — на последующих этапах исследования — с применением методик системного анализа могут быть спланированы модельные, полунатурные и натурные эксперименты, исследованы поведенческие реакции исследуемой системы (методом задания изменений внешних воздействий), получены искомые модели поведения и перенесены на реальный объект исследования.

В предыдущем подразделе мы указывали, что исследования в области общей теории систем и кибернетики в СССР в первые годы после их зарождения по идеологическим соображениям были запрещены. Однако, по мере роста сложности создаваемых человеком систем, использование методов системного анализа стало объективной необходимостью, что по прошествии времени было признано и идеологическим руководством СССР. Со второй половины 1950-х методология системного анализа получила свое развитие и в советской науке. Характерно, что отечественные ученые быстро наверстали накопившееся в методологической области отставание, что было обусловлено высоким уровнем их теоретической подготовки и спецификой образовательной системы государства. Быстрому развитию и внедрению системного подхода в практику теоретических и прикладных исследований способствовали также сильные традиции междисциплинарных исследований, характерные для русской науки начиная с времен Д.И. Менделеева, В.В. Докучаева, В.И. Вернадского, А.Л.Чижевского и многих других. Уже в 1970-х-80-х годах специалисты в области системных исследований готовятся в большинстве ведущих вузов СССР (таких, как Московский и Ленинградский Государственный университеты, Московский физико-технический институт, Ленинградский политехнический институт и многих других). Выпускники этих вузов — инженеры-системотехники — становятся одной из наиболее востребованных категорий специалистов — это не удивительно, ведь в стране шло повсеместное внедрение электронно-вычислительной техники, автоматизированных систем управления производством (в том числе — и таких сложных, как единая система энергоснабжения страны), то есть — те самые сложные человеко-машинные системы, большие социально-экономические и экологические системы. Ведущие научные коллективы объединяются во Всесоюзный институт системных исследований АН СССР (ВНИИСИ АН СССР), а ныне — Институт системного анализа РАН (ИСА РАН).

В этот период развитие системного анализа фактически привело к формированию иной научной дисциплины — некоего «обогащенного» системного анализа, в котором нашли отражение не только комплекс исходных идей, но и аппарат синтезированный в рамках смежных отраслей науки. В числе научных теорий, пополнивших своими методами методологический арсенал системного анализа, следует упомянуть теорию исследования операций, теорию рефлексивного управления и ряд других. Особенно примечательным в этом отношении является использование в системном анализе теории выбора и принятия решений, включающей в качестве своей основной составной части теорию предпочтений и полезности. Теория выбора и принятия решений прошла большой путь от концепции полезности в античной философии до современных методов многокритериальной оптимизации и оценки эффективности, существенно опирающихся на положения системного анализа, связанные с понятием цели. Следует отдать дань уважения классикам и основателям теории выбора — итальянскому экономисту В. Парето (в начале XX в. сформулировавшего «принцип наименьшего из зол») и выдающемуся математику фон Нейману (в 1930-40-е гг. разработавшему основы теории игр). Большой вклад в развитие системной концепции и системного анализа в их современном виде внесли академики В.Г. Афанасьев, Д.М. Гвишиани, С.В. Емельянов, Н.Н. Моисеев, Г.С. Поспелов и другие советские ученые.

Системный анализ интенсивно заимствует и адаптирует к решению прикладных задач математические методы, разработанные в рамках исследований в области кибернетики, теории массового обслуживания, термодинамики, статистической радиотехники и других научных отраслей (в том числе и общественных наук). Появление вычислительных машин также способствовало реализации методологии системного анализа, ибо подавляющее большинство математических задач, решаемых в рамках исследований системного характера, не имеют аналитических решений и разрешимы только численными методами. Наиболее распространенным классом задач системного анализа являются задачи оптимизационного типа, связанные с определением экстремумов, решением систем линейных и нелинейных дифференциальных уравнений, задачи вариационного исчисления. Особенно часто эти методы используются при построении систем, обеспечивающих рациональное распределение ресурсов между группами взаимосвязанных процессов-потребителей для решения некоторого комплекса задач. При этом использование вычислительной техники позволяет осуществлять не только решение расчетных задач, но и осуществлять синтез имитационных моделей с применением специальных языков моделирования процессов и явлений. Речь идет о развитии особого раздела математики — дискретной математики, адаптированной дискретному характеру систем и наблюдений. Однако однозначной взаимосвязи между методологией системного анализа и конкретным типом математического формализма не существует. Выбор конкретных методов — это отдельный вопрос, решение которого в большей степени связано со спецификой предметной области. Характерно, что системные методы оказываются эффективными и на этапе выбора формальной системы для представления модели и тех численных методов, которые будут использоваться при реализации вычислений.

Чтобы проиллюстрировать последнее утверждение, обратимся к опыту проектирования и создания сложных программных и программно-технических комплексов, связанных с моделированием систем и процессов. Здесь на первом этапе работают аналитики, изучающие объект моделирования и разрабатывающие по результатам исследований его модель. Модель может содержать описания закономерностей поведения элементов и подсистем моделируемой системы в ответ на возмущающие и управляющие воздействия, состав атрибутов модельных объектов и топологию связей и т. д. Программисты же разрабатывают программы, реализующие предложенную модель, в том числе — осуществляют выбор конкретных алгоритмических решений и приемов дискретной математики в интересах создания программной реализации модели.

Здесь может быть проведена аналогия с управленческой деятельностью. Например, группа аналитиков разработала модель ситуации, выявила наиболее вероятные варианты ее развития, разработала совокупность методов управления ситуацией и оценила величину рисков для каждой из рассмотренных стратегий поведения. Руководитель же, на основе субъективных критериев предпочтения, определяемых его моделью мира и иерархией целей, выбирает или конструирует конкретные сценарии действий и определяет конкретные параметры для дальнейшей работы подчиненных. К числу прочих важнейших задач системного анализа следует выделить задачу экспертизы и оценивания проектно-технических и организационно-управленческих решений.

Как видно из приведенных рассуждений, системный анализ может претендовать на роль стержневой методологической системы для аналитики как комплексной научной дисциплины, поскольку располагает:

— наиболее развитым формальным аппаратом для описания систем различного происхождения;

— мощным арсеналом методов исследования систем;

— совокупностью методов анализа разнородных данных и компенсации неполноты знаний.

Это позволяет решать задачи анализа сложных междисциплинарных проблем в условиях высокой неопределенности знаний об исследуемых системах, планировать деятельность, направленную на компенсацию неполноты данных. То есть, системный анализ по своему потенциалу наиболее близок к роли интегрирующей научной дисциплины, обеспечивающей высокую эффективность применения различных научных методов в интересах решения управленческих задач.

В рамках системного анализа разработано множество методик аналитической деятельности, позволяющих сочетать логико-интуитивные подходы со строгими научными методами, в равной степенью эффективности использовать субъективные экспертные оценки и объективные результаты статистических наблюдений, гармонично сочетать динамические и статические модели при ведении многомодельных исследований.

Для того, чтобы убедиться в этом, рассмотрим те этапы, из которых состоит системное исследование, и сопоставим их с этапами управленческой деятельности. Итак, рассмотрим этапы системного исследования.

1. Определение целей исследуемого процесса, операции и, собственно, исследования. Целевой подход занимает центральное место как в системном анализе, так и в управленческой деятельности. Целевой анализ начинается с формулировки глобальной цели. В дальнейшем она конкретизируется за счет указания подчиненных ей главных целей. В сложных задачах системного анализа, решение которых зависит от многих взаимосвязанных элементов, целесообразным является дальнейшее развертывание главных целей в многоуровневое дерево целей и задач. Как видим, налицо явная ориентация системного анализа на формализацию и приданию явной формы системе целей, что позволяет на раннем этапе выявить внутреннюю противоречивость глобальной цели, что очень важно для выявления формальной предпосылок достижимости цели.

2. Анализ ограничений, связанных с ресурсами и условиями реализации решения, направленного на достижение поставленных целей управления. Задачи системного анализа решаются в условиях различного рода ограничений, накладываемых обстановкой, в которой должно быть реализовано принимаемое решение. Важнейшими видами ограничений являются ресурсные ограничения, в том числе — в сфере финансового, материально-технического, методологического и организационного обеспечения, а также ограничений фундаментального характера, связанных с наличием принципиальной возможности реализации решения (отсутствием противоречий с фундаментальными принципами организации природы и общества). Целесообразно также рассматривать класс субъективных ограничений, обусловленных постановкой задачи и характером предпочтений аналитика (например, когда поле исследований сознательно ограничивается определенными рамками).

3. Анализ пространства альтернатив. Пространство альтернатив — это совокупность вариантов достижения поставленных целей и условий их реализации. Наличие максимально полной информации о возможных вариантах достижения цели позволяет принимать решение не только на основе интуитивных методов, но и с учетом всех возможных вариантов достижения целей и рисков, связанных с запуском тех или иных стратегий.

4. Выбор критериев эффективности. Наличие строгих, сопоставимых критериев, свидетельствующих об успешности решения поставленных задач, позволяет объективировать процесс выбора предпочтительной стратегии. В качестве критерия эффективности как правило выбирается некоторое значение или диапазон значений параметра, позволяющего судить о том, что успешное решение задачи получено с приемлемым уровнем затрат некоторого ресурса или группы ресурсов.

5. Синтез адекватной модели. В силу рискованности подходов, при которых для определения приемлемости той или иной стратегии требуется ее апробация в практической деятельности, исследование альтернативных стратегий производится на моделях (ведь результат апробации в ряде случаев может быть и необратимым). Поскольку различные стратегии для достижения цели могут использовать различные методы и привлекать различные ресурсы, требуется, чтобы модели, на которых проводится исследования, позволяли получить однородные показатели эффективности и были в равной степени адаптированы для моделирования различных стратегий.

6. Планирование и проведение модельного эксперимента. На этом этапе с применением различных методик планируется и проводится всесторонне исследование предлагаемых методов, исследуется устойчивость полученных решений к изменениям условий функционирования системы.

7. Выработка рекомендаций. Это заключительная часть системного анализа, содержащая выводы из проведенного исследования и указания по реализации его результатов.

По существу нами получен перечень, соответствующий схеме рациональной управленческой деятельности, при которой субъективизм в принятии решений снижен благодаря возможности анализа объективных критериев и логически построенной системы аргументов в пользу той или иной стратегии, но в то же время не игнорируется творческая активность руководителя. Последний тезис чрезвычайно важен, поскольку психологические особенности человека нередко приводят к попыткам принятия решения по методу «от противного», когда решение, предложенное экспертом, под действием неосознанных мотивов игнорируется. В случае же, когда сам волевой акт решения остается полностью в компетенции руководителя, риск принятия таких решений существенно снижается.

Страницы: «« 12345678 ... »»

Читать бесплатно другие книги:

Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с от...
Книга о новых приключениях жителей Дедморозовки. Если вы еще не знаете, то Дедморозовка – это невиди...
Ранней осенью 2004 года в Петербурге случайно встречаются двое. Вчерашняя студентка Катя мечтает отк...
Это роман о детстве и отрочестве, взрослении и становлении Ричарда Йорка, будущего герцога Глостера ...
Воспитание ребенка – это в первую очередь развитие его мозга, в том числе во внутриутробном периоде....
Для чего вы заходите в «Инстаграм»? Посмотреть, как дела у знакомых? Выложить фотографии со вчерашне...