Нейрологика: Чем объясняются странные поступки, которые мы совершаем неожиданно для себя Штернберг Элиэзер
Значит ли это, что во сне слепые могут видеть? Не спешите с выводами. Способность зарисовать сон не означает, что он был визуальным. Представьте, что я даю вам деталь пазла. Закрыв глаза, вы чувствуете ее углы, изгибы, выступы. Разве не смогли бы вы изобразить ее, даже если бы никогда не видели?
Очень может быть, что рисунки ничего не доказывают, как бы они ни впечатляли. Напомню, что эксперимент, организованный учеными, был не только поведенческим – в их распоряжении были и энцефалограммы. То, что исследователи искали, вглядываясь в мозговые волны, называется блокадой альфа-ритма. Альфа-волны видны на энцефалограмме, когда человек расслаблен, глаза его закрыты, но активного восприятия зрительной информации нет. Если вы «выбросите из своей головы все мысли», на ЭЭГ будет заметно преобладание альфа-волн. Их, например, фиксируют в мозгу у людей во время медитации. Блокада альфа-ритма – это исчезновение альфа-волн, которое, как считается, происходит, когда в сознании человека возникает некий образ. Он необязательно связан с тем, что мы в данный момент видим вокруг себя. Он может быть и «внутренним», возникшим у нас в голове, когда мы, скажем, представляем себе что-нибудь. Исследования показали, что если задать человеку вопрос, не ассоциирующийся со зрительными образами, например «Какой город является столицей штата Массачусетс?», то аппарат ЭЭГ не покажет блокады альфа-ритма. Однако, если спросить что-нибудь вроде «Как ваш дом выглядит изнутри?», снимки продемонстрируют альфа-блокаду в зрительной коре. Причина такой блокады, как предполагается, в том, что при ответах на подобные вопросы в сознании человека возникают образы. Судя по всему, эта связь поддерживается и в фазе быстрого сна, когда сны наиболее кинематографичны, – именно тогда блокада альфа-ритма достигает пика.
Что же говорят результаты ЭЭГ слепых участников о визуальном содержании их снов? Здесь так же, как и у зрячих испытуемых, проявилась четкая связь между блокадой альфа-ритма и зрительными образами сновидений. Чем детальнее были рисунки, тем меньше альфа-волн обнаруживал в зрительной коре аппарат ЭЭГ (что говорит о более мощной блокаде альфа-ритма), а значит, во сне мозг слепых обрабатывал большее количество зрительных образов. В своей жизни они ничего и никогда не видели, однако результаты эксперимента Бертоло позволяют предположить, что сны им все-таки снились.
Как так? Каким образом тот, кто был слеп всю свою жизнь, может видеть во сне? Трудно понять, как же такое возможно. Результаты эксперимента Бертоло крайне противоречивы, что можно было ожидать. Джордж Уильям Домхофф, психолог и специалист по сну из Калифорнийского университета в Санта-Крузе, выступил с резкой критикой исследования Бертоло. Доподлинно известно, что слепые от рождения люди так же хорошо, как и зрячие, выполняют задания, связанные со зрительными образами, – например, рисуют. Их мозг блестяще компенсирует потерю зрения, а потому неудивительно, что они могут изобразить фигуру человека или сцену на пляже. Здесь вспоминается пример с деталью пазла. Умение зарисовать образы не обязательно означает, что слепые и правда видят во сне.
Но как же результаты ЭЭГ? Интерпретировать мозговые волны трудно, поскольку никогда точно не знаешь, что именно они отображают. Остается только найти связь между тем, что наблюдается в данный момент и предыдущими показаниями. Альфа-волны появляются при расслабленном состоянии и понижении активности. Таким образом, когда мы обнаруживаем исчезновение альфа-волн в зрительной коре, подразумевается, что человек видит зрительные образы; по крайней мере такое наблюдалось ранее у людей зрячих. Однако нам известно, что зрительная кора слепого человека не бездействует. Со временем она подсоединяется к другим сенсорным путям и присваивает себе роль центра пространственного восприятия и навигации. Поэтому в тех случаях, когда мы видим блокаду альфа-ритма у слепых от рождения испытуемых, весьма вероятно, это вовсе не значит, что они и впрямь видят, во всяком случае так же, как зрячие. Они, скорее, видят образ, заменяющий зрительный, образ, который получается при активном содействии других чувств, нечто, напоминающее «звуковой коридор» Амелии.
Подсознание – талантливый рассказчик. В фазе быстрого сна оно соединяет случайные «вспышки» мозгового ствола и сплетает их в фантастическое повествование. Подсознание слепых способно реконструировать пространственное восприятие с помощью других чувств и даже методом эхолокации. Однако многие незрячие снов не видят. В ходе опросов те, кто ослеп до пятилетнего возраста, сообщили о том, что не видят зрительных образов ни во сне, ни наяву. Однако, если слепота приходит позже, особенно после семи лет, у человека сохраняется память о том, что такое зрение, и он нередко может представлять визуальные образы и даже наблюдать их во сне. То есть люди, ослепшие после семи лет, во сне видят.
Те же, кто родился слепым, обладают опытом другого рода. Я общался со многими людьми с подобной историей, но лишь Амелия рассказывала, что видит визуальные сны. Подозреваю, что здесь сработал тот же принцип, как в случае со «звуковым коридором». Амелия видела чувственный сон (о сексе на пляже), который сплел ее эмоции и интимные физические ощущения в единую фантазию.
Важнейшая деталь, разграничивающая сны и реальность, – это деактивация префронтальной коры. Освободившись от постоянного контроля лобной доли, система сна получает полную свободу. Она может создать фантазию, причем настолько яркую, детальную и увлекательную, что сновидцу может даже показаться, будто он выходит за грани своего сенсорного восприятия. И только проснувшись, он в этом усомнится, как в случае Амелии.
Подсознание подчиняется иному своду правил, нежели сознание. Внутри каждой из этих систем работают разные процессы, благодаря которым днем возможны осмотрительность и здравомыслие, а ночью – безграничная свобода ощущений. Мы лишь едва приоткрыли завесу над взаимодействием этих систем. Галлюцинации при синдроме Шарля Бонне, синдром Алисы в Стране чудес, педункулярный галлюциноз – это все примеры того, как работа систем нарушается, из-за чего они накладываются одна на другую, и тогда сны, порожденные подсознанием, просачиваются в явь. Однако сознание и подсознание взаимодействуют не только во время галлюцинаций, это происходит гораздо чаще.
Говоря о том, что функционирование мозга строится на работе двух систем – подсознания и сознания, нужно не только вдаваться в тонкости всех наших повседневных мыслей и решений, но и рассматривать нарушения и искажения этой работы. В основе взаимодействия систем лежит логика, которая определяет, как именно исправить дефекты восприятия. При слепоте мозг может компенсировать нехватку зрительной информации галлюцинациями или попытаться восполнить потерю зрения за счет других чувств. Когда мы спим, подсознание соединяет беспорядочные вспышки активности мозгового ствола в единое повествование, во всеобъемлющую фантазию, которая заполняет все наше сознание.
2. Доедут ли зомби до офиса?
О привычке, самоконтроле и автоматизме
Если привычка в самом деле вторая натура, то лишенная не только безжалостности, но и очарования первой, она мешает нам разгадать ее[13].
Марсель Пруст
Власти города Хантсвилл (штат Алабама) не знали, что и думать. Всего за две недели в городе произошло восемь ДТП и все на одном и том же месте – на пересечении бульвара Адвентистов и Уинн-Драйв. Что не менее странно, все аварии происходили по одному и тому же сценарию: автомобили сворачивали с бульвара налево, на Уинн-Драйв, и сталкивались со встречным потоком. На этом, казалось бы, ничем не примечательном перекрестке, который ежедневно пересекает множество спешащих на работу людей, никогда не случалось ничего подобного. А теперь он вдруг превратился в опасную зону. Что же стало причиной внезапной серии аварий? Власти Хантсвилла обратились к местным инженерам-транспортникам.
Выяснилось, что ДТП начали происходить после небольшого усовершенствования светофоров на перекрестке. Ранее повернуть налево можно было только по зеленой стрелке. Чтобы немного разгрузить бульвар, инженеры перенастроили светофор: теперь поворот налево разрешался не только по сигналу зеленой стрелки, но и просто на зеленый свет. Здесь, как и на множестве других перекрестков, зеленая стрелка давала право немедленного поворота, а вот при включении зеленого света нужно было сперва дождаться, пока дорога освободится, и только потом поворачивать. Судя по всему, водители так привыкли поворачивать под стрелку, что при виде зеленого света уходили налево инстинктивно, не оценивая загруженность дороги. Перемены в светофоре они не заметили. Как сказал один инженер-транспортник, «езда на автомате – занятие очень опасное».
Как часто бывает такое, что вы, приехав на работу, вообще не помните, как добирались, хотя дорога занимает с полчаса и более? По пути вы погружаетесь в собственные мысли, особенно если есть о чем думать: например, о том, что в девять часов вам предстоит выступить с презентацией. Процесс вождения не отпечатывается у вас в сознании. Предположим, какой-то из рабочих дней вам нужно будет начать с поездки на другой конец города на деловую встречу. Очень может быть, что вместо этого вы по привычке направитесь к офису, напрочь позабыв о встрече, и осознаете свою ошибку в самый последний момент, как если бы вели машину в бессознательном состоянии, всеми мыслями уйдя в другие заботы.
Удивляет здесь и другое. Управление машиной – достаточно сложный процесс. Водитель постоянно жмет ногой то на газ, то на тормоз, причем обе педали чувствительны к малейшим изменениям силы нажатия. Движения ноги координируются с движениями рук, управляющих рулем, – благодаря всему этому девятисоткилограммовый автомобиль и перемещается в пространстве. На дороге надо подчиняться определенным правилам: обращать внимание на то, нужно ли кого-то пропустить, на пешеходные переходы, на ограничение скорости. Там висят знаки, например «Стоп» или «Уступи дорогу», там надо следить за светофорами, там есть бесчисленное множество машин, которые могут перемещаться неорганизованно. Всякий раз, когда вы меняете полосу, прибавляете скорость или притормаживаете, нужно учитывать положение и скорость других автомобилей, а также намерения их водителей, о которых можно судить по включенному стоп-сигналу или поворотнику. Несмотря на все эти сложности, опытные водители перемещаются по привычному маршруту, не обращая на дорогу особого внимания, – порой кажется даже, что они ведут автомобиль на автопилоте.
В Хантсвилле такая езда имела жуткие последствия. Автомобилисты не заметили новый сигнал светофора. Они поворачивали по привычке и врезались в машины, едущие навстречу.
Если водитель поглощен своими мыслями, не обращает внимания на дорожные знаки и другие нюансы, связанные с управлением автомобилем, и даже не помнит, как вел машину, тогда кто (или что) ей управляло? Если мы можем добираться до места работы без помощи сознания, значит, отдельно от него существует другая система мозга, которая и управляет автомобилем. И если этот подсознательный механизм справляется с такой сложной задачей, возможно, он способен и на большее. Как работает эта система и насколько она значима?
Зомби среди нас
Вообразите: в заброшенном склепе восстала семья зомби. Они выбрались наружу, добрели до ближайшего города и начали разгуливать по улицам, пугая встречных чуть не до смерти. Задетые реакцией горожан, зомби отправились в городской центр пластической хирургии, желая измениться до неузнаваемости. Хирург – специалист с мировым именем – берется за дело, и в итоге из-под его скальпеля выходят настоящие шедевры пластического искусства. По окончании операции зомби выглядят замечательно, совершенно как живые люди. Разлагающуюся плоть заменила красивая нежная кожа. Аппетитные формы скрыли торчавшие прежде ребра. Хирург постарался на славу, и теперь зомби могут вполне спокойно перемещаться по городу – их не отличить от обычных горожан. Однако одно отличие все-таки осталось. У зомби нет сознания.
И люди, и термометры могут определять температуру, но только человек способен чувствовать тепло и холод. В этом смысле зомби после операции напоминают термометры, только в отношении не только к температуре, но и к человеческому опыту вообще. Как пишет австралийский философ, специалист по вопросам сознания Дэвид Чалмерс, такое существо – «это просто нечто физически идентичное мне, но лишенное сознательного опыта, где всё темно внутри»[14]. Чалмерс, как и другие ученые, поднимает вопрос о том, изменилось бы наше поведение или нет, не будь у нас сознания, чувств или воображения. Так ли уж необходимо сознание человеку или можно успешно обойтись без него?
Если летчик покинет кабину самолета, полет продолжится в режиме автопилота. И тогда никто не станет решать сознательно, стоит ли повернуть или изменить высоту. Все эти действия будут автоматически регулироваться компьютерной системой.
Зомби напоминают самолет в режиме автопилота: функционируют так же, но ничего не испытывают. А могут ли люди, подобно зомби, действовать машинально? Или же так: способны ли зомби после операции успешно слиться с человеческим обществом и жить точно так же, как люди, несмотря на отсутствие человеческого сознания?
Начнем с восприятия. Бльшая часть нашего сознательного опыта основывается на том, как мозг интерпретирует информацию, получаемую от наших пяти чувств. Как мы видели в предыдущей главе, мозг существенно перекраивает нашу картину мира, если мы слепнем. Самым важным элементом зрения является не столько восприятие объектов глазами, сколько осознание того, что мы восприняли. Что такое восприятие без сознания? Наши ощущения и сознательный опыт, связанный с ними, находятся в интенсивном взаимодействии. Но можно ли их разделить? Можно ли, например, видеть что-нибудь, не осознавая этого?
Смотреть и не видеть
Водитель, увлеченный своими мыслями, не помнит, как добирался до места, не помнит, как решил остановиться на красный свет или включить поворотник. Он действует на автопилоте. Представьте ситуацию, когда водитель, едва не попав в аварию, внезапно пробуждается от своих грез и резко жмет на тормоза. Автомобиль с визгом останавливается в паре сантиметров от почтового фургона. Немного успокоившись, водитель обдумывает произошедшее. У него нет ощущения, что он отвлекся лишь на секунду. Кажется, все намного серьезнее. У него возникает чувство, будто его сознание не принимало в процессе вождения ровным счетом никакого участия. Уйдя в свои мысли, он будто ослеп.
Эти ощущения подтверждаются научными исследованиями. В ходе одного из экспериментов испытуемых посадили за автосимулятор и надели на них гарнитуру. Они должны были управлять автомобилем и одновременно говорить по телефону. Симулятор был снабжен объемной картой небольшого города со спальными, офисными и деловыми районами (более 80 кварталов). Вдоль городских дорог стояло немало рекламных щитов с крупными и выразительными надписями. Немного потренировавшись в управлении виртуальным автомобилем, испытуемые отправлялись в путешествие по заранее обозначенным маршрутам, соблюдая все дорожные правила. Во время езды они говорили по телефону при помощи гарнитуры. Далее испытуемые прошли тест: нужно было отметить, какие из рекламных щитов встречались им на пути. Их ответы сравнили с ответами тех участников эксперимента, которые ехали по тому же маршруту, но без телефона. Нетрудно догадаться, что участники, чье внимание было занято разговором по мобильнику, справились с тестом хуже, чем те, кто был всецело сосредоточен на вождении. И хотя рекламные щиты стояли на самых видных местах, испытуемые, разговаривавшие по телефону, попросту не заметили их.
Как такое могло произойти? Неужели участники не смотрели на рекламные щиты? Чтобы найти ответ, ученые надели на испытуемых айтрекеры[15]. С помощью этих приборов удалось выяснить, что, даже увлекшись разговором по мобильнику, водители не переставали активно замечать все, что появлялось на пути. Их взгляд перемещался и фокусировался на всех важных объектах, включая дорожные знаки, другие автомобили и даже рекламные щиты. Странно. Водители с гарнитурой видят те же объекты, что и водители без телефонов, но не могут вспомнить, что же они видели. Как это объяснить? Теория такова: глаза испытуемых действительно смотрят на объекты, однако водители настолько поглощены общением, что не в полной мере осознают увиденное.
Но если такие крупные и заметные дорожные объекты, как рекламные щиты, можно пропустить из-за какого-то разговора, почему же не растет число аварий? Ведь люди постоянно говорят за рулем – либо с пассажирами, либо по телефону. Как же у нас получается вести машину и разговаривать одновременно, если разговоры влияют на нашу способность видеть? Очевидно, что осознавать увиденное необходимо, чтобы соблюдать дистанцию между машинами, ехать в своем ряду, поворачивать и вообще выполнять все те действия, благодаря которым можно добраться до дома, не уничтожив собственную машину по пути. Тем не менее эксперименты демонстрируют, что, хотя наш взгляд и переключается с одного дорожного объекта на другой, мы зачастую не обдумываем увиденное.
Но если сознательное зрительное восприятие отключается, то что же контролирует наш взгляд? Мозг заботится об этом подсознательно. Подсознание инициирует движения глаз, необходимые для того, чтобы следить за машинами, дорожными знаками и уберегать водителя и пассажиров от повреждений. Вот почему аварий не становится больше. Вот почему занятые своими мыслями водители добираются до нужной им точки невредимыми. Хотя увиденное и не осознается в полной мере, мозговые подсознательные процессы берут зрительную систему под контроль и ведут нас к месту назначения. Этот пример показывает, как нарушается связь между сознанием и зрением. Зрительная система работает, поскольку автомобиль не выходит из повиновения, но водитель не осознает, что видит объекты.
Определенные неврологические отклонения подтверждают тот факт, что зрительная фиксация и осмысление увиденного – это разные процессы. Например, люди с синдромом одностороннего пространственного игнорирования обладают прекрасным зрением, однако осознают только половину увиденного, а остальное, как кажется, не воспринимают. Ученые провели тест на выявление такого игнорирования: они попросили пациентов скопировать рисунки. Вот что получилось:
Рисунки справа выполнены пациентами, которые не жаловались на зрение, однако почему-то у них возникли трудности с копированием левой части изображения. Синдром одностороннего пространственного игнорирования возникает из-за повреждений правого сегмента теменной доли (располагающейся в верхней части мозга), которая отвечает за фокусировку нашего внимания. И хотя зрение продолжает работать, мозг не обращает внимания на левую часть картинки, она не осознается, но это совершенно не значит, что подсознание ее не замечает.
В ходе другого задания, называемого «тестом на зачеркивание», испытуемым дали маркерную доску, испещренную короткими линиями. Они должны были перечеркнуть каждую из линий, чтобы получилась буква «X». Как видно на фотографии справа (части B и C), пациент с синдромом одностороннего пространственного игнорирования зачеркнул линии лишь на правой стороне доски, линии же слева оставил без внимания. В модифицированной версии этого теста пациентов попросили не зачеркивать линии, а стирать их (части D и E на фотографии). В этом случае испытуемые с синдромом одностороннего пространственного игнорирования порой стирали все линии. Неврологи объясняют это так: когда испытуемые стирают линии с правой части доски, их внимание переключается на левую (справа смотреть уже не на что); там они замечают еще одну колонку линий, которые надо стереть, и так продолжается, пока все линии не исчезнут.
Хотя пациенты и не видят левую часть страницы, зрительная информация все же попадает в мозг. Зрительная система работает исправно, и ничто не мешает мозгу фиксировать, что же находится перед ним. Только сознание остается в полном неведении.
При синдроме одностороннего пространственного игнорирования сознание не замечает левую часть мира, однако подсознание ее видит. Схожим образом занятый своими мыслями водитель не следит за ситуацией на дороге осознанно, однако не попадает в аварию, из чего можно сделать вывод, что автомобиль за него ведет подсознание. Получается, подсознание действительно может видеть без нашего ведома?
Это верно: наш мозг способен видеть объекты, даже если мы не осознаем, что видим их. Самый удивительный пример – загадочный феномен слепозрения.
Рассмотрим историю Даррена, 34-летнего мужчины, который в течение 20 лет страдал от изнурительных головных болей. В результате обследования у него выявили деформацию кровеносных сосудов в правой части затылочной доли, и стало ясно, что без хирургического вмешательства состояние пациента не улучшится. Нейрохирург удалил поврежденный участок, а вместе с ним и большой фрагмент правой части затылочной доли мозга Даррена.
Спустя несколько недель Даррен с радостью сообщил, что головные боли прошли, но пожаловался, что никак не может привыкнуть к неприятному последствию операции: он перстал видеть то, что расположено слева от него. Правая сторона затылочной доли контролирует «левостороннее» зрение, поэтому частичная слепота Даррена не стала сюрпризом. Однако среди зрительных симптомов нашелся такой, которого никто не ожидал.
В темной комнате Даррена попросили сесть на стул и опереться подбородком на специальную подставку. Даррен смотрел прямо перед собой, а ученые направили свет в левую часть его поля зрения. Несмотря на то, что в этой области Даррен ничего не видел, он заметил свет и начал искать глазами его источник. Ученые спросили пациента, видит ли он свет. Даррен уверенно сказал, что не видит. Тогда они вновь направили свет в «слепую» часть поля зрения и попросили Даррена наугад указать источник этого света. Пожав плечами, Даррен выполнил их просьбу. И указал в точности на источник света. «Догадка» оказалась верной, но, возможно, дело было лишь в везении. Неврологи повторили тест еще… и еще. Каждый раз они немного сдвигали источник света, не выходя при этом за грани «слепого поля» Даррена, и каждый раз он верно угадывал его местоположение.
Ученые в недоумении продолжили свой эксперимент. Теперь Даррен должен был определить, вертикальный или горизонтальный луч направлен в «слепую зону». Раз за разом он отвечал абсолютно верно. В ходе третьего эксперимента он даже смог определить цвет лучей. Эта удивительная способность, продемонстрированная Дарреном, и называется слепозрением.
Исследования слепозрения демонстрируют, что пациенты с изолированным повреждением первичной зрительной коры могут верно определять местоположение предмета, его цвет и даже распознавать, движется ли он. По словам ученых, точность доходит до 100 %. Более того, анализ движений глаз показывает, что взгляд испытуемых свободно перемещается на объекты и фокусируется на них. Пациенты слепы, однако следят глазами за предметами и могут точно их описывать.
В 2008 году внимание ученых привлек пожилой господин по имени Тэд, перенесший два инсульта подряд. Инсульты разрушили зрительную кору пациента, и он ослеп. Тэд привык ходить с тростью, но в день эксперимента его попросили явиться без нее. Ученый подвел Тэда к началу длинного коридора, напоминавшего полосу препятствий. Он был заставлен самыми разными предметами: двумя корзинами для мусора, штативом, стопкой бумаг, подносом и коробкой. Однако ученый сказал Тэду, что коридор абсолютно свободен, и попросил пройти по нему. Тэд шагнул в коридор. Подойдя к первой мусорной корзине, он обошел ее, чтобы не врезаться… и сделал то же самое, когда оказался у второй корзины. Далее он миновал штатив, прошел, ловко лавируя, между стопкой бумаг и подносом и умело обогнул коробку. Когда Тэда спросили, как же ему удалось так искусно обойти все преграды, он не нашел, что ответить. Ему как-то удалось сориентироваться в лабиринте, несмотря на слепоту.
Очевидно, что и Даррен, и Тэд все же обладают некоторой формой зрительного восприятия, пусть и неосознанного. Их мозг ощущает свет, в нем сохранились нейронные цепи, обрабатывающие зрительную информацию. Слепозрение становится возможным при повреждении скорее финального участка сенсорного пути, нежели самих органов зрения. В этом случае мозг реагирует на свет, но сознание в процессе не участвует. Тогда-то и проявляется слепозрение, форма подсознательного зрения. По нейронным цепям информация перемещается от глаз в затылочную долю, где и анализируется. Затем она отправляется в соответствующие моторные области, которые координируют движения глаз и вызывают нужные поведенческие реакции, и все это – без ведома сознания.
Нечто похожее происходит и с водителем, погруженным в свои мысли. Мозг обрабатывает сведения о дорожной обстановке, полученные от глаз и ушей, и отдает команду крутить руль, нажимать на газ или тормоз. В этот момент занятое мыслями сознание не принимает никаких водительских решений, и именно слепозрение помогает мозгу руководить перемещениями в пространстве. Вот почему водители в Хантсвилле не заметили, что сигналы светофора изменились. Слепозрение помогает ориентироваться, но его возможностей не хватает на обнаружение тонкостей – и потому оно не отличает зеленую стрелку от зеленого сигнала светофора.
Этот эффект наблюдается только при перемещении по знакомому маршруту. Если же вы едете по незнакомой дороге и пункт назначения для вас тоже нов, вы будете крайне внимательны. Вы будете обращать внимание на каждый дорожный сигнал. И только после того, как вы проделаете такое путешествие 20–30 раз, маршрут сделается знакомым и вы начнете отвлекаться. Что же изменилось? Маршрут стал привычным. Для поддержания привычки не требуется столько же умственных усилий, сколько нужно на выполнение нового, непривычного действия. Повторение – это не просто «мать учения», а еще и «автоматизатор» наших действий. Мы довольно часто сталкиваемся с этим феноменом, подчас даже не замечая его. Что интересно, испытать этот эффект на себе могут не только люди.
Мыши в крестообразном лабиринте
Давайте вернемся к злосчастному перекрестку города Хантсвилл в штате Алабама. Представьте, что для того, чтобы добраться до работы, вам нужно проехать по бульвару Адвентистов, а потом свернуть на Уинн-Драйв. Повторив этот маршрут несколько раз, вы, вероятно, усвоите его и сможете перемещаться по нему машинально, не обращая особого внимания на дорогу. Маршрут сделается привычным, но что при этом произойдет в вашем мозге? Как повторение действий, скажем езда на работу по одному и тому же пути, помогает довести эти самые действия до автоматизма? Неврологи изучили этот вопрос. Они разработали эксперимент с участием мышей: те должны были ориентироваться в крестообразном лабиринте – по сути, «перекрестке» из двух «улиц». В ходе эксперимента мышь сажают в южную часть креста, а вкусную награду помещают в западный отсек, как показано на рисунке ниже.
Попав в лабиринт, мышь осторожно движется вперед до перекрестка. На перекрестке она начинает вертеть головой в раздумьях, куда идти дальше, и часто выбирает не тот путь. Но в конце концов находит угощение в западной части лабиринта. На второй и третий раз мышь все равно задерживается на перекрестке, но гораздо чаще выбирает поворот налево и достигает цели. Неврологи повторяли эксперимент снова и снова, неизменно сажая мышь в южный отсек и помещая угощение в западный. В итоге поведение мыши изменилось: она перестала останавливаться на перекрестке – без всяких сомнений бежала вперед, а потом поворачивала налево. Этот маршрут стал привычным, как это бывает у всех тех, кто изо дня в день добирается до работы одним и тем же путем.
Светофор в Хантсвилле усовершенствовали в расчете на то, что водители заметят изменения и тут же приспособятся к ним. Но этого не произошло. Многие автовладельцы не заметили перемен из-за многолетней привычки поворачивать на этом перекрестке. Аналогичный эффект можно наблюдать и тогда, когда рабочий день предстоит начать не в офисе, а в другой точке города.
Что же происходит с мышами, когда им приходится приспосабливаться к новым условиям, скажем менять привычный маршрут?
После того как мышь научилась продвигаться от южного сектора к западному, условия поменялись: теперь мышь начинала свой путь с северной части лабиринта. Угощение ученые так и оставили в западном отсеке. Однако для того, чтобы до него добраться, мыши требовался новый маршрут, с поворотом направо, а не налево. Здесь есть два варианта развития событий. В том случае, если привычка полностью захватила контроль над ориентированием, мышь повернет налево и обнаружит, что забрела в тупик, где совсем нечем полакомиться. Она будет следовать привычным маршрутом, как поглощенный своими мыслями водитель. Если же привычка не скажется на поведении мыши, то испытуемая остановится на перекрестке, оценит обстановку и повернет направо, к угощению. Вот с чего все началось:
Оказавшись в северной части лабиринта, мышь, привыкшая начинать свой путь с южного сектора, идет до перекрестка, сворачивает налево и движется прямиком в тупик. Она совершает ту же ошибку, что и занятый своими мыслями водитель, потому что привычка полностью контролирует ее поведение. Мышь приучилась бездумно сворачивать налево и следует своей привычке.
Далее ученые повторили эксперимент: на этот раз они посадили в лабиринт мышь, которая не привыкла перемещаться из южного сектора. Теоретически такая мышь не должна повернуть налево на перекрестке – ведь у нее нет соответствующей привычки. Нетренированная мышь перебежала от северной части к центру, остановилась, покрутила головой, безошибочно выбрала поворот направо и устремилась на запад к желанному лакомству.
Судя по всему, поведение испытуемых грызунов обуславливается либо наличием привычки, либо ее отсутствием. Но как нам убедиться, что все дело именно в привычке?
Неврологи выяснили, что центр привычек базируется в глубине мозга, в области, называемой стриатум или полосатое тело. Чем больше мышь тренируется, тем сильнее становится активность на внешней стороне стриатума. В то же время ослабевает активность внутри стриатума и в гиппокампе (в центре формирования памяти), что, как считают ученые, существенно влияет на необусловленное привычкой поведение. Если мы достоверно знаем, в какой части мозга рождаются наши привычки, то мы теоретически можем приостановить работу этой области, тем самым помешав привычке закрепиться.
В нейробиологии существует особая техника исследования, при которой испытуемому при помощи особого химического вещества или электрического тока ненадолго деактивируют одну из областей мозга. Что будет, если приостановить работу внешней стороны стриатума мышиного мозга, тем самым выключив центр привычек, а затем посадить грызуна в северный угол? Ответ: мышь выберет верный поворот! При деактивации центра привычек мышь не может больше перемещаться по лабиринту на автопилоте и свернуть налево, в тупик. Ей приходится останавливаться на перекрестке, смотреть по сторонам и идти к западному углу, где она в итоге обнаруживает лакомство.
Система привычки срабатывает быстрее системы непривычки. Мышь не останавливается на перекрестке, она машинально сворачивает налево. Путь на работу укорачивается, когда не приходится напряженно следить за дорожными ориентирами. Однако эта система порой допускает ошибки, например в случае, когда мышь начинает движение с северного угла или когда вам нужно выступать с презентацией в непривычном месте. Система непривычки же дает мыши возможность обдумать новые условия и приспособиться к ним.
Две эти параллельные системы совместно контролируют наши действия. В зависимости от того, какая из систем более активна, меняется наше поведение. В теории возможна и одновременная работа: пока система привычки руководит нашими маневрами на дороге, система непривычки говорит по телефону.
Сосредоточиться не сосредотачиваясь
Что, если в случаях, когда мы пытаемся совершать несколько действий одновременно, например говорить по телефону и вести машину, за работу берутся не обе системы, а всего одна, которая и распределяет свои усилия между двумя задачами? При таком раскладе наша успешность зависит от того, сколько внимания мы уделяем каждому из действий. Чем больше внимания, тем лучше получается. Но данная схема не применима к работе системы привычки. Если какое-нибудь действие доведено у нас до автоматизма, в большинстве случаев лучше не уделять ему существенного внимания.
10 февраля 2011 года баскетболист Рэй Аллен, в то время член команды Boston Celtics, совершил 2561-й точный трехочковый бросок, побив рекорд, который до него установил Реджи Миллер. Все те годы, что Аллен состоял в НБА, он славился своим отношением к работе. Рэй часто приезжал на стадион часа за три до начала игры, чтобы потренироваться. В одном интервью у Аллена спросили, как ему удалось достичь такого успеха и что происходит у него в голове, когда он бросает мяч. Баскетболист ответил так: «Как только начнешь целиться – непременно промахнешься. Во время игры нельзя забывать об этом. Надо найти на поле такую точку, с которой уже не нужно прицеливаться – достаточно только подпрыгнуть и точным движением рук отправить мяч прямиком в корзину».
Для Рэя Аллена броски стали привычкой. Возможно, именно это спортсмены имеют в виду, когда говорят о мышечной памяти. Метод, с помощью которого Аллен сосредотачивается на важном броске, состоит в том, чтобы не сосредотачиваться на нем. Если же он слишком много думает о том, как бросить мяч, он промахивается. Лучше всего он играет тогда, когда поручает системе привычки выполнять все то, в чем он натренировался.
То же самое применимо и к другим спортсменам. В ходе эксперимента с участием талантливых гольфистов испытуемые ударяли по мячу дважды. В первом случае они намеренно сосредотачивались на механике движения клюшки, внимательно отслеживали, с какой силой бьют по мячу, тщательно прицеливались. Во втором случае гольфисты не думали об ударе вообще. Как только они вставали с клюшкой перед мячом, их отвлекали другим заданием: просили слушать записи звуков и ждать определенного сигнала, опознать его и сообщить об этом. Затем ученые сравнили результаты. Как правило, мяч оказывался ближе к лунке в тех случаях, когда игроки не думали об ударе. Гольфисты, как и Рэй Аллен, играли лучше, если не задумывались о том, что делают.
Выявленная зависимость успеха спортсменов от того, что ими руководит – привычка или сознание, подтверждает идею о существовании в мозге двух параллельных систем, контролирующих поведение. Повторяя одно и то же действие, мы можем довести его до автоматизма, и тогда система привычек возьмет верх. Наше сознание освободится и с помощью системы непривычки сможет сконцентрироваться еще на чем-нибудь.
Разделение труда между двумя системами мозга не ограничивается лишь баскетболом или гольфом. Самые тонкие нюансы поведения могут регулироваться привычкой или ее отсутствием, и порой разница очень заметна.
Как распознать фальшивую улыбку
Как мы определяем неискренность улыбок? Почему подделать улыбку так сложно? В 1862 году французский невролог Гийом Дюшен поделился с миром своим открытием: оказывается, настоящая и фальшивая улыбки возникают благодаря работе разных мышц. Мышцы, расположенные вокруг рта, задействуются при любой улыбке, но все дело в том, что происходит с мышцами, находящимися выше, – с так называемыми круговыми мышцами глаз. Когда мы улыбаемся от души, они сокращаются, и вокруг глаз появляются морщинки, как у этого симпатяги на фотографии:
Несмотря на отсутствие зубов, вид у него очень радостный (и ни капельки не пугающий). Обратите внимание на морщинки вокруг его глаз. Они возникают только тогда, когда человек улыбается искренне. И напротив – когда мы улыбаемся фальшивой улыбкой, эти мышцы не работают. Вместо этого сокращаются так называемые мышцы смеха, расположенные у рта. Чтобы доказать это, Дюшен пропустил электрический ток через лицевые мышцы своего беззубого приятеля. Вот какой стала его улыбка:
Мы видим морщинки у него на щеках, но не вокруг глаз. Круговые глазные мышцы не работают. Кожа вокруг глаз не натянута, как на первой фотографии. Это признаки фальшивой улыбки.
Разница в работе мышц при искренней и фальшивой улыбке показывает, что системы привычки и непривычки в нашем мозгу действуют отдельно друг от друга. Когда мы улыбаемся естественно, функционирует один набор мышц. Когда же заставляем себя улыбнуться, особенность мышечной активности меняется – и окружающие вполне могут это заметить.
Вот еще пример. Однажды в больнице, где я работаю, я встретил коллегу. Он шел по коридору, увлеченно глядя в смартфон. Поравнявшись с ним, я спросил, как состояние одного из наших пациентов. «У меня все хорошо. А ты как?» – услышал я в ответ. Очевидно, так мой коллега среагировал бы на вопрос «Привет, как дела?» – но я спрашивал совсем о другом. Внимание врача поглотил телефон, поэтому он ответил по привычке. Когда я впоследствии напомнил ему об этом недоразумении, оказалось, что он напрочь о нем забыл. Тогда я проделал небольшой эксперимент: стал задавать похожие вопросы чем-нибудь занятым людям и обнаружил, что подобное происходит довольно часто (в том числе и со мной, знаю). Что интересно, большинство участников моего эксперимента, ответивших, подобно моему коллеге, невпопад, тут же об этом забывали.
Биполярная система контроля работает с разными областями нашего мозга и ощутимо воздействует на наши успехи как в спорте, так и в социальном взаимодействии. Но случай с моим коллегой дает повод говорить, что они различаются еще в одном аспекте: они связаны с разными типами памяти.
Почему мы забываем купить молоко
Вторник. Близится вечер. Я собираюсь с работы домой. Жена звонит и просит купить по пути бутылку молока. Никаких проблем. В лифте и по пути к машине я в уме повторяю задание, чтобы не забыть. Сажусь в машину, еще раз напоминаю себе о молоке, поправляя зеркала и поворачивая ключ зажигания. Домой я еду привычным маршрутом. Но лишь добравшись до места, уже у самой двери внезапно вспоминаю, что забыл купить молоко… в очередной раз. Но я не слишком расстроен: во-первых, у меня очень понимающая жена, а во-вторых, у меня есть веский нейробиологический повод забыть о молоке.
Говоря о том, как наш мозг хранит и использует информацию, ученые выделяют несколько различных типов памяти. Среди них есть такие, как процедурная и эпизодическая память. Процедурная память связана с выполнением некоторых действий. Благодаря ей мы помним, как ездить на велосипеде, завязывать узел, печатать на клавиатуре, вести машину. Чем чаще повторяется действие, тем лучше оно запоминается. Эпизодическая память хранит в себе автобиографические события – это память о наших ощущениях, чувствах, местах, где нам доводилось бывать, мыслях (например, мыслях о том, что по пути домой надо купить бутылку молока). С ее помощью мы не забываем то, что с нами происходит.
Эти виды памяти не только хранят неодинаковую по своей сути информацию, но и действуют в разных областях мозга. Центр эпизодической памяти располагается в глубине мозга, в гиппокампе, рядом с височной долей. Активность в этой области возникает тогда, когда мы действуем не по привычке, и, как мы видели на примере мыши в лабиринте, уменьшается при «привычном» поведении. Центр процедурной памяти находится на внешней стороне стриатума, в той области, что отвечает за формирование привычек. И это не случайно.
Когда электрический заряд на время деактивирует мышиный гиппокамп, нетренированная мышь вообще не может пересечь лабиринт. Она не помнит, где она, куда хочет попасть, зачем ее посадили в лабиринт. Без помощи гиппокампа, который хранит и подает нужные сведения, дезориентированная мышь бегает по лабиринту совершенно хаотично. Однако, если отключить работу гиппокампа после того, как мышь успешно научится перемещаться по лабиринту, она по своему обыкновению побежит прямо и повернет налево. А все потому, что за привычки отвечает внешняя часть стриатума. Гиппокамп же никак не связан с этим процессом, поэтому его деактивация не влияет на мышь и ее маршрут.
Как же все это связано с тем, что я забыл купить молока? Вспомните: когда занятый своими мыслями водитель приезжает на работу, он вообще не помнит, как до нее добирался, потому что ехал по привычке. Привычка реализуется исключительно благодаря процедурной памяти. Всякий раз, когда действие осуществляется посредством системы привычки, оно не фиксируется в эпизодической памяти. Если же фрагмент нашей жизни не отпечатывается в эпизодической памяти, мы не можем припомнить ничего из связанных с этим фрагментом изображений (например, на рекламных щитах), звуков или ощущений. Мы просто приучаемся выполнять некое действие – только и всего.
Но привычка не только не фиксируется эпизодической памятью, она еще и блокирует доступ к ней. С этой проблемой я и сталкиваюсь, когда еду домой и пытаюсь не забыть просьбу жены. По пути я думаю о своем, а процедурная память помогает мне вести машину. В итоге я теряю доступ к эпизодической памяти и потому забываю тот важный факт, который хотел бы запомнить. Системе привычек о молоке ничего не известно, и, отдав ей контроль за движением, я оказываюсь в ситуации, когда вспомнить о дополнительной задаче нет возможности. И все же это не до конца меня оправдывает: ведь, если подумать, я мог бы приложить все усилия и не дать привычке меня одолеть.
Почему мы едим, когда не голодны?
Если система привычки захватывает над нами контроль, нам становится сложнее добраться до сведений, хранящихся в эпизодической памяти, то есть до контекстуальной информации, которая помогает принимать решения, осознавать, где мы находимся, или не забывать о том, что надо выполнить какое-то задание. А еще эта память помогает отказываться от еды, когда мы не голодны. Причин для отказа может быть множество: страх набрать вес, переживания о здоровье или просто ощущение сытости. Тем не менее очень многие из нас едят, когда совсем не голодны. Такое поведение чаще всего называют «плохой привычкой», при этом и не думая о науке. Однако исследования подтверждают, что дело тут именно в привычке.
Ученые отобрали 32 здоровых добровольца, попросили их сесть за компьютеры и нажимать на кнопку всякий раз, когда на экране появится определенная картинка. После нажатия на кнопку автомат выдавал испытуемым либо чипсы, либо конфетки M&M's. Испытуемые съедали угощение. Задание выполнялось в несколько этапов, каждый по 8 минут, но половина участников прошли лишь два этапа, а остальные – 12, то есть в сумме у второй группы оказалось в шесть раз больше тренировочного времени, а значит, у ее членов должна была выработаться привычка нажимать на кнопку. Ученые внимательно следили за мозговой активностью всех испытуемых. Значительное повышение активности стриатума (области, где закрепляются привычки), которое было отмечено у членов второй группы на последних этапах, подтвердило, что привычка сформировалась. Так что будем теперь называть эти группы «группой без привычки» и «группой с привычкой».
Чтобы определить, как появление привычки влияет на наше пищевое поведение, ученые обратили особое внимание на активность определенной области мозга – вентромедиальной префронтальной коры, находящейся в нижней части лобной доли. Основная функция этой области – прогнозирование ожидаемых событий. В зависимости от этого прогноза мозг активирует те или иные механизмы поведения. Например, когда мы голодны и сидим в ресторане, а официант приближается к нашему столу с тарелками, полными еды, у нас в мозгу буквально вспыхивают нейронные фейерверки – мозг чувствует, что сейчас начнется ужин. Подобная мозговая активность происходит во многом благодаря работе вентромедиальной префронтальной коры. Мозг прогнозирует положительное событие и отдает команду вести себя соответствующим образом. Поэтому, когда мы с нетерпением ждем, пока перед нами расставят тарелки с едой, вентромедиальная префронтальная кора активно включается в работу: она чувствует приближение трапезы. Однако, когда мы наедаемся, эта реакция подавляется. Если официант принесет еще одну тарелку, вентромедиальная префронтальная кора будет вести себя гораздо спокойнее. Отклик окажется очень слабым, перспектива поесть обесценится, поэтому нам уже не захочется жевать дальше. Ученые полагают, что в таком случае соседние области префронтальной коры подавляют чувство голода, инициируемое гипоталамусом. Таким образом вентромедиальная префронтальная кора обеспечивает обратную связь. Когда мы голодны, она призывает нас поесть, но, когда мы насыщаемся, она убеждает нас остановиться.
Ученые решили сравнить активность вентромедиальной префронтальной коры у испытуемых из группы с привычкой и группы без привычки. Вентромедиальная префронтальная кора у членов второй группы включалась в работу каждый раз перед тем, как они нажимали на кнопку, – она прогнозировала появление угощения и давала сигнал к началу трапезы. Но так происходило, пока испытуемые были голодны. Что же случилось, когда они наелись? Ученые накормили членов группы без привычки полноценным обедом. Далее испытуемые вернулись к заданию. Теперь уже вентромедиальная префронтальная кора не реагировала на нажатие кнопки столь бурно. Испытуемые насытились и уже не так ждали конфет M&M's или чипсов. Вентромедиальная префронтальная кора понижала ценность угощения, и испытуемым не хотелось есть.
Далее проверку прошли члены группы с привычкой. Когда они были голодны, их вентромедиальная префронтальная кора активно реагировала на нажатие кнопки, предчувствуя появление угощения. После этого испытуемых досыта накормили, и они вернулись к заданию: продолжили нажимать на кнопку под пристальным вниманием ученых. Однако на этот раз аппарат МРТ показал, что активность вентромедиальной префронтальной коры нисколько не ослабела. Перспектива трапезы не обесценилась, несмотря на сытость испытуемых. Обратная связь нарушилась. Очевидно, из-за того, что участники по привычке нажимали кнопку и ели после этого, мозг не смог разубедить их отказаться от еды. Реакция вентромедиальной префронтальной коры только укореняла привычку есть, не чувствуя голода, из-за чего потребление пищи стало машинальным.
Это объясняет, почему мы нередко продолжаем есть, несмотря на сытость. Когда привычка побеждает нас, процесс питания становится машинальным. Но как она это делает? Можем ли мы ей помешать? Взглянем вот с какой стороны: есть две системы, управляющие нашим поведением, – автоматизированная система привычки и «задумчивая» система сознания. Они могут работать как самостоятельно, так и в паре, но ни одна из систем не способна выполнять две задачи сразу. Система сознания может и вести машину, и размышлять о дневных событиях, но только не одновременно. Если система сознания занята, система привычки получает задание выполнять водительские обязанности. Когда сознание наше наполняется мыслями (иными словами, когда мы начинаем «витать в облаках»), оно отстраняется от реальных дел. Мы теряем доступ к эпизодической памяти и забываем о некоторых насущных задачах. Система привычки побеждает нас при выполнении любого – даже самого рутинного – действия.
Такое часто происходит, когда нас что-то отвлекает, например телевизор. Врачи настоятельно рекомендуют не есть перед телевизором, поскольку это может привести к ожирению. Когда мы пассивно смотрим на экран, телевизор в определенном смысле монополизирует наше сознание. Поэтому, если во время просмотра мы выполняем какое-нибудь повторяющееся действие, например едим картофельные чипсы, его будет контролировать система привычки. Ушедший в раздумья водитель способен перемещаться на автопилоте, а едок-телезритель – незаметно для себя съесть пять упаковок чипсов, пока сознание поглощено повтором «Сайнфелда»[16]. К сожалению, поскольку доступа к эпизодической памяти в это время нет, не вспоминается ни о боли в животе, ни о наборе веса и сердечных заболеваниях, ни даже о банальном принципе умеренности.
Когда наши головы полны мыслей, возможность сознательно контролировать поведение теряется, и тогда наши действия начинают определяться некой программой. А что случилось бы с нами, потеряй мы возможность самоконтроля навсегда? Стабильная потеря самоконтроля может возникнуть при повреждении лобной доли, в которую входит вентромедиальная префронтальная кора. Когда мозг перестает быть центром управления нашими действиями, мы теряем возможность принимать разумные решения. Мозг переходит в режим привычки, и тогда в поведении появляется автоматизм.
Исполнительная дисфункция
В когнитивной неврологии термин «исполнительная функция» используется в связи с высокоуровневыми процессами мозга, такими как планирование, принятие решений, контроль за вниманием и собой. Исполнительная функция мозга сродни функциям генерального директора компании. Благодаря ей мы контролируем собственные мысли и поведение.
Повреждения лобной доли могут негативно сказаться на исполнительной функции, и тогда человек рискует разучиться планировать, принимать здравые решения и даже контролировать соответствие собственного поведения социальным нормам. Он начнет действовать словно по привычке. Владимира, русского студента примерно 20 лет, обучавшегося на инженера, сбил поезд, когда молодой человек выскочил на рельсы за футбольным мячом. Удар пришелся на лобную долю. Увы, Владимир потерял способность к мыслительным процессам высокого уровня, в частности способность принимать решения. Обыкновенно он сидел без движения и смотрел прямо перед собой. Когда медсестры пытались с ним заговорить, он либо игнорировал их, либо начинал ругаться. Ему было сложно следовать даже простейшим инструкциям. Когда один из врачей дал Владимиру лист бумаги и попросил нарисовать круг, пациент ответил ему безучастным взглядом и полным бездействием. Тогда врач взял его руку и помог нарисовать круг. В итоге Владимир и сам смог нарисовать круг, но не остановился на достигнутом. Он все рисовал новые и новые круги до тех пор, пока врач не убрал его руку от листа. Судя по всему, рисовать круги у пациента получалось благодаря работе процедурной памяти. Однако из-за повреждения лобной доли он не мог остановиться.
Другой, еще более яркий пример дисфункции лобной доли – состояние, называемое «синдромом чужой руки», при котором рука пациента может, например, спонтанно схватить лежащий неподалеку предмет. Это движение происходит не осознанно, а совершенно автоматически. Порой пациент даже не в силах отпустить предмет – и ему приходится высвобождать его второй рукой. Бывали случаи, когда для того, чтобы «чужая» рука разжалась, ее обладателю приходилось кричать на нее, а одна из пациенток рассказывала, как ее чуть не задушила собственная рука. «Чужие» руки, как правило, мешают остальному телу выполнять некоторые действия: например, расстегивают рубашку в то время, как нормальная, «своя» рука пытается ее застегнуть. По рассказам пациентов, «чужая» рука нередко забирает предметы из «своей» руки и вообще всячески вредит. Абсолютно невольные движения руки в данном случае обусловлены именно дисфункцией лобной доли.
Французский невролог Франсуа Лермитт описал, как пациенты с повреждениями лобной доли порой используют окружающие их предметы – нередко нарушая тем самым социальные нормы. В ходе одного из экспериментов Лермитт пригласил пациента с повреждением лобной доли к себе в кабинет. На столе у двери Лермитт оставил картину в раме, молоток и гвоздь. Войдя в комнату и увидев лежащие на столе предметы, пациент без промедлений забил гвоздь в стену и повесил картину. Никто его, разумеется, об этом не просил. Очевидно, заметив молоток и гвоздь, он инстинктивно поступил с ними так, как привык поступать, – совсем как занятый своими мыслями водитель, который по привычке едет на работу, даже когда ему туда не нужно. Если разум не вмешивается и не включает исполнительные функции, то система привычки одерживает верх и руководит действиями.
В ходе еще одного эксперимента двух пациентов с повреждением лобной доли, многодетную мать и работающего холостяка, по очереди ввели в комнату с незаправленной кроватью. Мать зашла первой. Первым делом она подошла к кровати, подоткнула простыни, взбила подушку и заботливо накрыла постель покрывалом. Потом один из ассистентов снова разворошил кровать, и в комнату позвали второго пациента, холостяка. Он тут же подошел к постели, завалился в нее и заснул. Как и в первом эксперименте, исполнительная дисфункция заставила обоих пациентов вести себя так, как они привыкли, и в данном случае их поведение соответствовало гендерным стереотипам.
Лермитт доказал, что эффект, который он назвал «утилизационным поведением», можно наблюдать только у людей, привыкших использовать предмет, задействованный в эксперименте. Когда он в качестве эксперимента положил сигарету с зажигалкой напротив курильщика и некурильщика (у обоих испытуемых была повреждена лобная доля), закурил лишь первый. Некурильщик же не стал вообще ничего делать. У него не было соответствующей привычки, потому и не возникло автоматической реакции.
Можно ли сказать, что при повреждении лобной доли срабатывает тот же автоматизм, что и при действии по привычке? Не совсем так. Повреждение лобной доли может иметь самые разные последствия, и абсолютно одинаковых случаев не бывает. Однако элементы поведения пациентов с данными травмами очень напоминают автоматизм при работе системы привычки. Стриатум, область, ответственная за эту работу, при изолированном повреждении лобной доли оказывается незадетой. При исполнительной дисфункции мозг начинает опираться на систему привычки, и тогда в поведении возникают определенные стереотипические нюансы.
При исполнительной дисфункции, в результате травмы или же по причине увлеченности мыслями, мозг, управляя нашим поведением, обращается к иным ресурсам, что и ведет к автоматизму. В течение какого-то времени мы даже можем действовать на автопилоте, сами того не осознавая, – совсем как зомби. Но вопрос вот в чем: если автоматические процессы в мозге могут за нас вести машину, вешать картины, заправлять кровать, на что еще они способны?
Убийство на автопилоте
Кеннет Паркс, молодой человек 23 лет, жил в Торонто. У него была стабильная работа в компании, занимающейся продажей электроники. Он жил вместе с женой, их браку было уже два года, и они воспитывали пятимесячную дочку. Отношения с тещей и тестем складывались замечательно, Парксу даже казалось, что эти люди ему ближе, чем родители. Теща звала его своим «ласковым великаном».
Весной 1987 года жизнь Паркса значительно осложнили последствия некоторых жизненных ошибок. Он увлекся азартными играми, стал часто посещать скачки, где делал ставки на довольно слабых лошадей. Проиграв несколько раз, Паркс начал тратить деньги компании, чтобы жена ничего не заметила. Походы на работу превратились в кошмар, ведь там Кеннет должен был изо всех сил скрывать растраты. Когда же все раскрылось, Паркса уволили и подали на него в суд. Ему было невероятно трудно признаваться жене в своем пристрастии, особенно учитывая, что из-за него пришлось выставлять дом на продажу.
Нередко мысли об огромном долге мешали Парксу уснуть. Если же он все-таки засыпал, сон часто прерывался приступами сильнейшей тревоги. Сходив на встречу анонимных любителей азартных игр, Паркс решил, что настало время открыто обсудить свои финансовые сложности с семьей, в том числе с родителями жены. Накануне этого разговора он и глаз не сомкнул. Утром он был уставшим и разбитым и попросил жену отложить семейную встречу до следующего дня. В 1:30 ночи в воскресенье, 23 мая, Паркс наконец заснул.
А потом он вдруг увидел перекошенное от ужаса лицо тещи, падающей на пол. Он побежал к машине, сел за руль и обнаружил у себя в руках нож, перепачканный кровью. Он бросил нож и поехал прямиком в отделение полиции. «Кажется, я кого-то убил», – сказал он полицейским.
После множества допросов кусочки истории Паркса наконец сложились воедино. Он напрочь позабыл все, что происходило между мгновением, когда он заснул, и той секундой, когда он увидел лицо тещи. Однако, как выяснили следователи, за это время он многое успел. Он встал с дивана, обулся, надел куртку, вышел на улицу, отъехал от дома примерно на 23 километра, по пути остановившись минимум на трех светофорах, зашел в дом к родителям своей жены, попытался задушить тестя и зарезал тещу. Однако ничего из этого он вспомнить не мог.
Медицинская диагностика не выявила ни болезни, ни признаков употребления наркотиков, и тогда за дело взялась группа из четырех психиатров. Было очевидно, что Паркса изрядно напугало произошедшее и что у него отсутствовал злой умысел. Не было и четкого мотива, ведь убийство не несло Парксу никакой выгоды. Кроме того, у Паркса не было особых сложностей с контролем агрессии. Он обладал средним интеллектом и не страдал от галлюцинаций и психозов. Пораженные психиатры не нашли никаких медицинских зацепок и не внесли ясности в дело.
В итоге благодаря неврологу появилось предположение, что причина произошедшего может крыться в дефиците сна. У Паркса, как и у многих членов его семьи, сон часто был фрагментарным, бывали у него и приступы лунатизма, особенно в детстве. Однажды братья даже поймали его, когда он в состоянии глубокого сна пытался вылезти в окно, и вместе уложили его в постель. Он писался и разговаривал во сне, ему нередко снились кошмары – все эти симптомы связаны с лунатизмом. Невролог решил провести полное исследование сна с помощью полисомнографа, аппарата, который фиксирует мозговые и дыхательные волны, движения глаз и мышц, а также пульс человека, когда тот спит. Диагностика выявила у Паркса хронический лунатизм. В конце концов удалось собрать все доказательства и передать дело в суд, вердикт которого был таким: Паркс напал на своего тестя и убил тещу во время приступа лунатизма. Его оправдали по обоим пунктам обвинения. Вот что сказал судья:
Слово «автоматизм» вошло в юридический язык совсем недавно, однако один из главных принципов правосудия уже несколько веков состоит в том, что отсутствие злого умысла при совершении преступления всегда говорит в пользу обвиняемого. Обвиняемый совершил рассматриваемое нами злодеяние невольно, а потому должен быть полностью оправдан… Ранее человек, уличенный в чем-либо преступном, признавался невиновным в том случае, если нарушал закон в бессознательном или полусознательном состоянии. Не отвечал он за свои деяния и тогда, когда не мог в полной мере осмыслить содеянное из-за расстройства ума. Основа нашего уголовного права такова: человек должен отвечать только за предумышленные, осознанные поступки.
Чтобы лучше понять, что же происходило в мозгу Кеннета в ту жуткую ночь, нам надо рассмотреть стадии сна. Сначала вы погружаетесь в дрему. На этой ступени вас легко разбудить, и, проснувшись, вы можете даже не понять, что спали. Далее ваши мышцы расслабляются, хотя иногда и продолжают непроизвольно сокращаться. Пульс замедляется, температура падает, и организм готовится вступить в глубокий сон. Затем начинается стадия глубокого сна – именно в это время люди могут видеть кошмары или не сдержать мочеиспускание. И именно в этой фазе и случаются приступы лунатизма. И наконец, в фазу быстрого сна мышцы полностью парализуются. В это время можно увидеть самые яркие, реалистичные сны. Благодаря временному параличу мышц мы смотрим сны, пребывая в неподвижности. Чего, однако, не скажешь про лунатика Кеннета.
Лунатизм – загадочный пример того, как автоматические неконтролируемые процессы руководят поведением человека, что, как мы убедились, может привести к жутким последствиям. Ученые из Американской академии медицины сна выделили следующие характеристики лунатизма.
1. Во время приступа человека трудно разбудить.
2. При пробуждении его сознание спутано.
3. Наблюдается полная или частичная амнезия (человек не помнит самого приступа).
4. В ходе приступа человек ведет себя потенциально опасным образом.
Судя по наблюдениям, в ходе приступов лунатизма может произойти все что угодно. Люди кидают тяжелые предметы, прыгают из окон и даже пытаются заняться сексом. Такое проявление сексуальности во сне получило в научной литературе название «сексомния». И это еще один пугающий пример того, на что человек способен во сне.
Лунатики, совершающие во сне потенциально опасные поступки, зачастую не могут потом о них вспомнить. Люди узнают о своих приступах от других – например, от жены (мужа). Некоторые догадываются о своем лунатизме, когда обнаруживают себя не там, где засыпали. Но почему поголовно все лунатики не помнят своих приступов? Может показаться, причина амнезии в том, что мозг не активен и, значит, не осознает происходящего. Ведь люди спят. Однако на самом деле во время медленного сна сознание довольно активно. Мышцы у лунатиков в этот период не расслабляются полностью, поэтому во сне они совершают различные действия.
Возможно, лунатики забывают о своих приступах по той причине, что мозг не заносит произошедшее в эпизодическую память. В этом случае они похожи на тех водителей, которые не запоминают, как добирались до работы, потому что думают о предстоящей презентации. Но что же занимает мысли лунатиков? Их сны.
Иногда мы запоминаем сны, но чаще забываем. Исследования показывают, что это зависит от стадии сна. Если нам что-нибудь снится в фазу быстрого сна, мы запоминаем увиденное в 75 % случаев. Если же в фазу медленного сна – менее чем в 60 %. Причины такого различия неизвестны. Во время медленного сна наши видения короче, чем в фазу быстрого сна, и больше напоминают связные истории. Но если они столь фрагментарны и непоследовательны и если мы запоминаем их немногим чаще, чем в половине случаев, как же лунатизм влияет на наши сны и память о них? В 2009 году группа ученых задалась этим вопросом и провела соответствующее исследование.
46 испытуемых, находящихся под наблюдением специалистов по сну минимум два года, попросили описать все впечатления и детали, связанные с их личным опытом лунатизма, какие они только могут вспомнить. Затем ученые систематизировали все эти данные. Они обнаружили, что 71 % испытуемых хотя бы частично помнят те сны, что были связаны с приступами лунатизма. Из тех, кто помнил свои сны, большинство (84 %) описывали эти видения как малоприятные, страшные. В таблице ниже приводятся некоторые из снов, рассказанных испытуемыми. Сюжет сна сопоставляется с тем, как человек повел себя в реальности.
Люди часто запоминают сны, которые видели незадолго до приступа, но сам приступ и свои действия они не помнят. Они могут только проанализировать то, что случилось после приступа. Когда мы не контролируем свое поведение сознательно – в случае, если мозг поврежден или ум занят другими проблемами, – система автоматизма берет над нами верх. В приведенной выше таблице наблюдаются четкие параллели между содержанием сна и поведением во время приступов лунатизма. При приступах сознание порабощается видениями, и тогда тело действует на автопилоте. Лунатики напоминают автоматонов[17], повторяющих действия из своих снов в реальности.
Кеннет Паркс спал плохо. Он находился в состоянии сильного психологического напряжения, поскольку готовился встретиться с родителями своей жены и признаться в собственной лжи и безалаберности, навлекших беды на его семью. Если учитывать нестабильность его психического состояния, не исключено, что в ту ночь ему приснился способ избежать конфронтации. Возможно, во сне он понял, что для этого нужно, чтобы теща и тесть умерли до семейной встречи. Если бы Паркс не спал и отдавал себе отчет в происходящем, скорее всего, он не стал бы никого убивать. Но во сне человек может представить все что угодно.
Очень возможно, что в ту ночь в сознание Кеннета Паркса просочился кошмар. Будучи не в состоянии контролировать свои действия, Паркс сдался системе автоматизма. Он сел за руль и, преисполненный жутчайших мыслей, проехал более 20 километров, а потом совершил убийство – и все это на автопилоте. Очевидно, зомби все-таки существуют и они и впрямь способны на зверские поступки.
Мы во власти у системы, которая способна контролировать наше поведение. Она может действовать и вопреки нашим же насущным интересам, как в случаях, когда из-за нее мышь идет не в ту часть лабиринта или мужчина совершает преступление. Возникает очевидный вопрос: почему же эта система существует? Судя по всему, естественный отбор оставил ее человеку не просто так. Так что же нам дает эта система?
Две системы многозадачности
Исполняя свою классическую песню «Piano Man» (1973), Билли Джоэл играет на двух инструментах одновременно: на фортепиано и губной гармошке. Играть двумя руками само по себе довольно трудно, но при этом еще и аккомпанировать себе на втором инструменте – трюк, который не каждому под силу. Как же Билли Джоэл это делает? Возникает соблазн сказать, что он обладает сверхспособностями, которых больше ни у кого нет. Однако сам музыкант с этим не согласен. В интервью Алеку Болдуину, которое Джоэл давал в 2012 году, он сказал о своем умении играть на фортепиано так:
Билли Джоэл. Я знаю, что такое хорошая игра на фортепиано. Я играю плохо. Левая рука у меня просто ужасная. Двупалая, я бы даже сказал.
Алек Болдуин. В сравнении с кем?
Билли Джоэл. В сравнении с пианистом, который знает, как работать левой рукой. Мне не хватает практики, чтобы играть всеми пальцами левой руки, поэтому я беру ею только октавы и басовые ноты. Правой рукой я пытаюсь компенсировать неуклюжесть левой, поэтому правая, пожалуй, даже «переигрывает». У меня ужасная техника.
Несмотря на скромность Билли Джоэла, в его словах о том, что ему трудно играть сложные басовые партии левой рукой, потому что ему не хватает практики, чувствуется искренность. Так как же он смог играть еще и на губной гармошке? На фортепиано он наигрывал простые мелодии, которые легко было довести до автоматизма. Пока пальцы бегали по клавишам, Джоэл мог сосредоточиться на втором инструменте.
В интервью Джоэл также признался, что ему трудно читать ноты.
Алек Болдуин. Если бы я взял музыкальный фрагмент, который вы не знаете, достал ноты, поставил перед вами и попросил: «Сыграйте вот это…»
Билли Джоэл. О, ноты для меня – китайская грамота.
Представьте, что было бы, попытайся Джоэл сыграть фрагмент фортепианной партии с листа, одновременно аккомпанируя себе на губной гармошке. Ничего бы не вышло. Играть на двух инструментах в его случае возможно лишь тогда, когда одна из партий максимально упрощена и исполняется на автопилоте.
Привыкнув вести машину, играть на музыкальном инструменте или даже подниматься пешком по лестнице, мы начинаем выполнять эти действия быстрее, особо не задумываясь. Чем меньше мы о них думаем, тем лучше получается. Одно из главных преимуществ, которое дарит нам доведение некоторых действий до автоматизма, – это возможность решать несколько задач одновременно. Занятый своими мыслями водитель может поразмышлять о том, как улучшить предстоящую презентацию, потому что система привычки ведет машину за него. Билли Джоэл играет на губной гармошке и фортепиано одновременно, потому что его пальцы сами бегают по клавишам. Даже ходим мы машинально – и это умение тоже в определенной мере требует практики. Причина, по которой мы можем одновременно говорить по мобильнику и идти не падая, в том, что нам не надо сосредотачивать внимание на каждом шаге.
Как доказать, что при решении нескольких задач все происходит именно так, как описано выше? Для этого нужно убедиться, что человек, усердно повторяющий некое действие (благодаря чему формируется соответствующая привычка), сможет при этом приняться и за иное действие, не потеряв эффективности или потеряв ее незначительно. Группа специалистов Иллинойсского университета провела именно такой эксперимент. Они обучили 39 добровольцев играть в компьютерную игру «Космическая крепость», в которой игроки должны с помощью джойстика управлять космическим кораблем и стрелять по крепости, находящейся в центре экрана. Цель игры – разрушить эту самую крепость и уберечь корабль от мин. Очки начисляются за попадание в крепость, а при столкновении с минами вычитаются. Управлять кораблем так же непросто, как и автомобилем на дороге, полной машин.
Играть в «Космическую крепость» – было первым заданием. А второе было звуковым. Участники должны были прослушать несколько звуков подряд и определить, какой из них отличается от остальных. Порой звуки оказывались очень похожими, и тогда задание становилось особенно трудным и требовало от участников особой внимательности.
Испытуемым объяснили, что нужно делать, и эксперимент начался. При сосредоточенном прослушивании добровольцы верно определяли непохожие звуки в 97 % случаев. Затем их попросили выполнить задание еще раз, только теперь нужно было параллельно играть в «Космическую крепость». Результаты ухудшились. Из-за отсутствия у испытуемых сноровки очки ушли в минус, то есть столкновений с минами было больше, чем метких попаданий в крепость. Более того, поскольку участники уделяли внимание сразу двум задачам, им удалось верно определить лишь 82 % непохожих звуков.
На следующем этапе эксперимента участников попросили просто играть в «Космическую крепость». Они играли в нее снова и снова – в общей сложности на это ушло 20 часов. По окончании тренировки их вновь попросили сыграть в игру, при этом прослушивая звуки. На этот раз испытуемые стреляли в крепость как профессионалы, угадав при этом 91 % звуков. Как это объяснить? В отсутствие привычки им приходилось уделять внимание сразу двум действиям, что негативно сказалось на результате. Но тренировка помогла научиться играть более-менее машинально. И тогда высвободилось внимание для звукового задания, которое удалось выполнить лишь немногим хуже, чем в самом начале эксперимента. Если начальник когда-нибудь застанет вас за игрой в «Сапера» на рабочем месте, можете этим оправдаться.
Ученые также следили за происходящим в мозге испытуемых с помощью электроэнцефалографа. Они наблюдали за нейронной активностью до и после тренировки – особенности этой активности могли пролить свет на то, как работает мозг при выполнении двух заданий одновременно. Каждый раз, когда испытуемые успешно попадали по крепости, на электроэнцефалограмме появлялась одна и та же волна. Похожее усиление нейронной активности наблюдалось и тогда, когда испытуемые слышали непохожий на остальные звук. До тренировки активность нейронов и при попадании в крепость, и при определении неправильного звука была примерно одинаковой. Однако после 20 часов за компьютерной игрой мозг стал значительно спокойнее реагировать на попадание по крепости, возможно, потому, что для выполнения этого действия стало требоваться меньше нейронных ресурсов. Но зато во время выполнения звукового задания нейронная активность значительно возросла. Когда испытуемые более-менее привыкли стрелять по крепости, они смогли внимательнее вслушиваться в звуки. Итоги экспериментов, как поведенческие, так и электрофизиологические, показывают, что доведение до автоматизма одного из действий помогло уделить второму больше внимания. Благодаря чему и возникла возможность успешно выполнить несколько задач одновременно.
Распределить ресурсы между несколькими сложными задачами непросто, но мозг помогает нам в этом. У нас есть две параллельные системы, которые контролируют наши действия. Они функционируют с разной силой и обращаются к разным видам памяти. Система привычки методично и быстро действует на основе заложенной программы. Благодаря ей можно справиться с рутинной работой, например добраться до офиса привычным маршрутом или повернуть налево в лабиринте. Благодаря автоматизму мы можем обратиться ко второй системе, отвечающей за глубокий, сознательный анализ. Возможно, работает эта система медленнее, нежели система привычки, но зато она более пластична. Она учитывает контекстуальные изменения, например необходимость найти новый маршрут на работу, если дорога ремонтируется. Мозг при помощи логики отыскивает действия, которые можно довести до автоматизма, давая нам возможность сосредоточиться на новых задачах.
Секрет многозадачности кроется в автоматическом выполнении одного из действий. Например, совсем не сложно почистить апельсин во время увлеченного разговора с другом по телефону или просмотра любимого телешоу. Но вникнуть в материал из учебника по физике в таких условиях будет крайне трудно. Это действие нельзя довести до автоматизма, оно требует внимания и осознания. Однако читать учебник и чистить апельсин одновременно можно: система сознания будет воспринимать информацию, а система привычки – снимать кожуру с фрукта. Вот как работают системы поведенческого контроля.
Можно еще спросить мнение Барака Обамы. В конце своего первого срока в интервью изданию Vanity Fair он рассказал, как поступает в быту, чтобы хватало времени и сил на действительно важные решения. «Я ношу только серые или синие костюмы, – признался он. – Стараюсь свести количество решений к минимуму. Не хочу каждый раз выбирать, что мне есть или носить. Мне и так есть о чем подумать. Нужно беречь энергию. Нужно упростить свой быт. Нельзя допустить, чтобы мелочи отвлекали нас от насущных проблем».
Внутренняя логика мозга создает платформу для многозадачности. Именно этого-то и лишены зомби. Им доступна лишь одна из систем: они могут действовать исключительно на автопилоте, сознания же у них нет. Зомби могут доехать до места работы, но, к сожалению для них, они не способны выполнять сразу несколько задач, по крайней мере так, как это делаем мы. Наш мозг предоставляет нам огромное преимущество, если только система не повреждается (как, например, при исполнительной дисфункции) или если мы сами не перестаем ей пользоваться (как во время приступов лунатизма).
Кажется, нейрологическое основание важности практики найдено – как мы убедились, повторение действия помогает довести его до автоматизма. Чем больше мы тренируемся, тем машинальнее становится действие и тем проще его выполнять параллельно с чем-нибудь еще. Однако история Кеннета Паркса вызывает вопросы. Он никогда не практиковался в удушении или нанесении ран ножом. У него не было опыта убийств. Однако же во сне он оказался способен на чудовищное преступление. Он совершил его на автомате. Вероятно, физическое повторение действия – не единственный способ набраться опыта. Возможно, мозг реально натренировать и при помощи сознания.
3. Улучшает ли воображение спортивную форму?
О двигательном контроле, тренировках и важности мысленного имитирования
Гольф – игра, в которую играют на 12-сантиметровом поле, находящемся между вашими ушами.
Бобби Джонс[18]
Эрл Вудс как-то сказал о своем сыне, знаменитом гольфисте, вот что: «Больше всего на свете Тайгер любит готовиться к решающей игре. Он человек аналитического склада ума, он всегда ориентируется на систему, в том числе и в гольфе».
С юных лет Тайгер Вудс тренировался очень интенсивно и продуманно. Почти 8 часов в день он играет в гольф, 1,5 часа занимается тяжелой атлетикой и еще час посвящает упражнениям, укрепляющим сердечно-сосудистую систему. Однако, рассказывая о том, как сын готовится к важнейшему гольф-турниру, отец с гордостью вспоминает еще об одной детали, которая отсутствует в расписании тренировок: «Каждый год последнюю неделю перед турниром он посвящает умственной и физической настройке. Сначала мы едем на поле и играем там, а когда возвращаемся домой, Тайгер ложится на кровать и закрывает глаза. Говорит, что тренирует в голове нужные удары».
Спортсменам, которые хотят достичь профессиональных высот, совершенно необходима умственная готовность. Быть в хорошей физической форме мало. Вудс был не просто морально готов к важному турниру. Он тренировал удары у себя в сознании.
Сейчас Тайгер Вудс стал победителем уже 14 ежегодных турниров. Впереди него лишь один гольфист – Джек Никлаус, который в период между 1962 и 1986 годами одержал победу в 18 турнирах. Никлаус, легендарная фигура в мире гольфа, в своей книге «Играйте в гольф лучше» (Play Better Golf) рассказывал о той же стратегии:
Перед каждым ударом я смотрю фильмы у себя в голове. Сначала я вижу точку, в которую хочу отправить мяч, вижу, как он лежит в изумрудной траве, белый и блестящий. Потом вижу, как он движется к нужному мне месту: вижу его траекторию, весь его путь, вижу даже, как он приземляется. Следующая сцена показывает мне, как именно ударить по мячу, чтобы предыдущие кадры стали реальностью. Вот такие любительские короткометражки и помогают мне сконцентрироваться на ударе и успешно его выполнить.
Сразу два величайших гольфиста говорят о том, что тренировки в уме улучшают результаты, – всем любителям гольфа стоит сделать выводы.
Подобного рода тренировки полезны не только гольфистам. Рассмотрим случай британского легкоатлета Стива Бакли, который завоевал на Олимпийских играх 1992 года в Барселоне бронзу в метании копья. Через 3,5 года, буквально за несколько месяцев до игр 1996 года в Атланте, Бакли растянул лодыжку. Последующие 6 недель он не мог передвигаться без костылей и тренироваться – по крайней мере физически. Не желая расставаться с надеждой поучаствовать в соревнованиях в Атланте, Бакли приступил к изнурительным тренировкам в уме. Прислонив костыли к стене, Бакли садился на стул и закрывал глаза. Он мысленно обхватывал пальцами холодную металлическую рукоять копья и сжимал его в руке. Он представлял, как напрягает мышцы для идеального броска и отправляет копье в полет. Смотрел, как оно летит и становится маленьким, как булавка, как постепенно снижается и вонзается в землю.
Бакли успел проделать свыше 1000 таких воображаемых бросков. И когда травма прошла, спортсмен с удивлением обнаружил, что нисколько не потерял форму. Он метал копье так же хорошо, как и до травмы. На Олимпийских играх в Атланте Бакли завоевал серебряную медаль.
Трудно поверить, что тренировки в воображении и в самом деле улучшают спортивную форму, однако величайшие спортсмены в истории, такие, например, как баскетболист Майкл Джордан или теннисист Роджер Федерер, рассказывали, что пользуются подобной техникой. Однако есть у спортсменов и такие ритуалы, которые едва ли в самом деле влияют на результат. Например, Брайан Урлахер, бывший игрок футбольного клуба Chicago Bears, перед каждым матчем съедал по два печенья фирмы Girl Scout – никакие другие не годились. Криштиану Роналду, ставший футболистом года в 2008-м, стрижется перед каждым матчем. Серена Уильямс во время теннисных турниров предпочитает не менять носки всю игру.
Какое же место в мире суеверий и ритуалов спорта отведено воображению? Действительно ли оно улучшает результат или же тренироваться в уме – все равно что носить грязные носки?
Внутренний имитатор
Представьте, что вы уютно устроились напротив телевизора и вдруг вам захотелось взять что-нибудь из холодильника. Как быстро вы до него доберетесь? Вообразите, как встаете, выходите из гостиной, проходите мимо спящего кота, обходите кухонную стойку, оказываетесь наконец у холодильника и берете миску с остатками обеда. Как вы думаете, сколько времени заняло бы ваше передвижение?
Представляя поход к холодильнику, мы воссоздаем его у себя в сознании, имитируем его посредством образов. Хотите верьте, хотите нет, но эта имитация очень точна. В ходе экспериментов ученые сравнивали время, необходимое для реального перемещения испытуемых из одной точки в другую, со временем, потребовавшимся, чтобы представить тот же путь. Результаты раз за разом показывали, что длительность физического и мысленного путешествия примерно одинакова. Если речь идет о коротких прогулках, то разница составляет всего секунду. Та же связь обнаруживается и когда испытуемые представляют себе любое другое движение. Например, человек рисует треугольник в своем воображении ровно с такой же скоростью, что и в реальности.
Неожиданное открытие! Как правило, мы не связываем воображение с действительностью. Мысленные действия, они ведь… воображаемые. Ненастоящие. Однако не случайно, что на них уходит ровно столько же времени, сколько и на реальные действия. Видимо, воображение и движение каким-то образом связаны в мозге, благодаря чему внутренние образы не столько помогают нам развить фантазию, сколько качественно имитируют настоящие тренировки.
Неврологи из Калифорнии провели эксперимент, в ходе которого сравнили мозговую активность испытуемых во время реальных и воображаемых движений. Участников посадили перед четырьмя пронумерованными кнопками и попросили нажимать на них в такой последовательности: 4, 2, 3, 1, 3, 4, 2. Как только они нажимали на кнопку, аппарат МРТ фиксировал их мозговую активность. Далее участники, положив руки на колени, закрывали глаза и представляли, как нажимают кнопки в той же последовательности. Как это повлияло на показания томографа? Активность вновь обнаружилась по большей части в области, называемой моторным кортексом или двигательной областью коры головного мозга, – в зоне, контролирующей движения пальцев. Воображаемые движения спровоцировали практически такой же сигнал, какой фиксировался томографом при реальном движении пальцев.
Судя по всему, воображаемые образы и физические движения активируют одни и те же области мозга. Когда мы представляем, как совершаем некое действие, мозг имитирует его, опираясь на модель, взятую из реального опыта. Чем богаче этот опыт, тем точнее модель. Поскольку нам довольно часто доводилось прогуливаться до холодильника и рисовать треугольники, мозг безупречно имитирует эти движения. Люди, практикующие другие формы активности, например греблю на каноэ или катание на коньках, тоже могут не менее точно имитировать в уме все совершаемые при этом действия.
Однако имитация сама по себе не сделает из вас высококлассного спортсмена. Вопрос в том, смогут ли воображаемые тренировки по гольфу, теннису или любому другому виду спорта улучшить вашу форму вкупе с физической отработкой ударов и подач?
Напрягая мысленную мышцу
Группа французских нейробиологов набрала 40 волонтеров для исследования, в ходе которого намеревалась выяснить, влияет ли мысленное представление какого-либо действия на его реальное выполнение. Испытуемых по очереди сажали напротив двух полок, закрепленных на небольшом столбе. На полках стояли пронумерованные карточки. Выглядело все это примерно так:
Испытуемые должны были как можно быстрее указывать на карточки с цифрами в порядке возрастания. При этом нельзя было просто один раз поднять руку и потом использовать только указательный палец. Требовалось более сложное движение: руку нужно было каждый раз опускать и поднимать заново.
Ученые разделили испытуемых на три группы. Первая выполняла задание, следуя инструкции, максимально быстро и точно. Перед второй группой стояла такая же задача, только нельзя было напрячь ни единой мышцы. Испытуемые вновь и вновь представляли, как указывают пальцем нужные карточки, акцентируя мысленное внимание на том, как при этом напрягаются плечи и вытягиваются пальцы. Третья группа была контрольной. Испытуемые не поднимали рук и ничего не воображали. Они просто переводили глаза с одной цифры на другую.
Все три группы выполнили задание единожды, затем потренировались и вновь повторили все то же самое, чтобы ученые могли зафиксировать изменения. Результаты показали, что первая группа после тренировки стала выполнять задание значительно быстрее. Контрольная группа (участники которой лишь переводили взгляд) вообще не продемонстрировала никакого прогресса. А что же с испытуемыми, которые представляли, что указывают на карточки? Их результаты улучшились почти так же существенно, как и у первой группы.
Мысленные тренировки не только повышают эффективность реальных действий, но и укрепляют участвующие в их выполнении мышцы. В ходе одного исследования, проведенного доктором Гуаном Юэ из Кливлендской клиники, участники 5 дней в неделю по 15 минут в день представляли, как сгибают локоть или мизинец. Спустя 12 недель ученые обнаружили, что сила сокращений их мышц в локтях увеличилась на 13,5 %, а в мизинцах – на 35 %. Для сравнения: физические тренировки в течение такого же периода увеличили силу сокращений примерно на 50 %. У тех же участников, которые не тренировались вовсе, не обнаружилось никаких изменений.
Исследования Гуана Юэ продемонстрировали, что мысленная тренировка не только повышает производительность, но и укрепляет мышцы, которыми мы пользуемся в воображении. Но как воображение может сделать нас физически сильнее?
При помощи электроэнцефалографа Гуан Юэ исследовал мозговые волны, которые возникали в моторном кортексе (области, контролирующей мышцы) до, во время и после тренировочных сессий. Амплитуда (высота) мозговых волн показывает их электрический потенциал, силу сигнала, поступающего от мозга к мышцам. Ученый выдвинул гипотезу, согласно которой мысленные тренировки моторного действия должны повысить этот электрический потенциал, то есть усилить сигнал, поступающий в клетки мышц, в результате чего они начнут сокращаться интенсивнее.
Как и ожидалось, у контрольной группы не обнаружилось никакой разницы в амплитудах волн. Что не менее предсказуемо, физические тренировки повысили амплитуду. А мысленные? Благодаря им мозговые волны тоже возросли – почти так же значительно, как и после реальных движений. Это открытие только подтверждает, что мысленные образы усиливают мозговую стимуляцию мышц, благодаря чему наши движения становятся быстрее и четче. Поэтому, даже если вы не видите и не чувствуете, как работают ваши мышцы, они все равно сжимаются, повинуясь нервным импульсам.
Наши мысли не инертны, не заперты в вакууме сознания. В основе воображения лежит поток электрической информации, который оказывает непосредственное влияние на нейронные клетки, несущие его. Мысленная имитация – средство, с помощью которого сознание действует на подсознание. Тренируя у себя в уме несложное движение, мы улучшаем работу нервно-мышечной цепи, ориентированную на привычку. А как обстоят дела с более сложными движениями? Каким образом воображение совершенствует спортивную форму Стива Бакли или удар Тайгера Вудса?
PETTLEP
В 2001 году Пол Холмс и Дэвид Коллинз, занимающиеся спортивными исследованиями, предложили программу мысленных тренировок для спортсменов, названную PETTLEP, состоящую из семи пунктов. Вот ее расшифровка с кратким описанием того, как программа помогает спортсмену, например бейсболисту.
P (англ. physical – физический аспект) – тренируйте в уме каждое движение, необходимое для идеального удара.
E (environment – обстановка) – представьте подсветку поля, газон, крики толпы.
T (task – задача) – ощутите приближение мяча, представьте не только замах, но и удар по нему.
T (timing – временной фактор) – прикиньте, сколько времени у вас займет выполнение действия в реальности.
L (learning – обучение) – дополняйте воображаемую картинку по мере улучшения ваших навыков, чтобы отследить прогресс.
E (emotion – эмоция) – почувствуйте приближение решающего момента, приступы волнения, частое сердцебиение.
P (perspective – перспектива) – представляйте все от первого лица.
Каждый компонент программы нацелен на то, чтобы сделать мысленные образы спортсменов максимально точными, максимально близкими физическому опыту. По теории Холмса и Коллинза, чем точнее образ в голове у спортсмена, тем эффективнее мозговая активность воздействует на те области, которые нужны для выполнения действий в реальности.
PETTLEP и его вариации – стандартный метод оттачивания навыков мысленной тренировки. Возникает очевидный вопрос: действен ли он?
В ходе эксперимента, участниками которого стали 34 гольфиста как минимум с 10-летней практикой, ученые опробовали метод PETTLEP, чтобы проверить, возможно ли с его помощью улучшить показатели спортсменов. Задача испытуемых состояла в том, чтобы выбить мячик из песчаной зоны в центре поля в зеленую зону, так чтобы он приземлился как можно ближе к флажку. Ученые выставляли за удары баллы – от 0 до 10 – в зависимости от того, насколько точным был удар.
Средний балл высчитывался после 15 таких попыток. После нескольких первых ударов гольфистов определяли в одну из четырех групп: группу физической тренировки, мысленной тренировки, физической и мысленной тренировки или в контрольную группу, которая вовсе не тренировалась, а вместо этого читала фрагменты из биографии Джека Никлауса. Группа физической тренировки оттачивала свое мастерство дважды в неделю, делая по 15 ударов в день, и так в течение 1,5 месяца. Группа мысленной тренировки улучшала свои показатели с помощью метода PETTLEP, в течение 1,5 месяца представляя те же самые 15 ударов в день дважды в неделю. Чтобы лучше погрузиться в обстановку – этот критерий упоминается в рекомендациях PETTLEP, – испытуемые мысленно имитировали удары, стоя на земле или песке у себя в саду.
Спустя 6 недель тренировок гольфисты вернулись на поле. Они снова сделали по 15 ударов из песчаной зоны. Ученые вновь высчитали средний балл, а затем проследили изменения показателей в каждой из групп.
Мысленные тренировки полезны. Может, в меньшей степени, чем физические, однако же прогресс налицо. Более того, воображение – замечательное дополнение к физической активности, помогающее достичь лучших результатов.
Положительный эффект от мысленных тренировок аналогичным образом проявляется и в других видах спорта. В ходе эксперимента с участием опытных теннисистов было обнаружено, что мысленные тренировки улучшают точность ударов, повышают скорость реакции и даже положительно сказываются на результатах настоящих теннисных матчей. Футболисты с их помощью подают мяч гораздо точнее. А баскетболисты чаще попадают в корзину. Помогают они и лучникам, и гимнастам, и тяжело– и легкоатлетам, и пловцам.
Успешность мысленных тренировок в области спорта навела ученых на мысль о других возможностях их применения. Представьте, например, пианистку, которая едет на поезде на собственный концерт. Что если ей захочется немного «разогреться»? Она сможет порепетировать мысленно и, представляя в уме движения пальцев, улучшить технику. Исследования показали, что результаты мысленных тренировок у музыкантов практически так же высоки, как и у спортсменов. Пианисты, участвовавшие в соответствующих экспериментах, играли гораздо быстрее, ровнее и точнее после того, как представляли движения пальцев, скользящих по клавишам, и таким образом доводили исполнение до совершенства.
Мы рассмотрели множество примеров того, как мысленная репетиция влияет на работу подсознательных механизмов. В спорте, музыке и в иных сферах имитация действия в уме совершенствует наши физические возможности и может даже повлиять на области мозга, помогающие выполнить его в реальности. Тем не менее сила мысленных тренировок небеспредельна, и границы ее существуют именно благодаря неотъемлемой связи между воображением и теми областями мозга, которые вовлечены в выполнение действия в реальности.
Наука инсульта
В 1996 году Джилл Болти Тейлор пережила сильнейший инсульт, из-за которого лишилась трудоспособности и стала чувствовать себя «младенцем в теле взрослого человека». Она моментально потеряла возможность ходить, говорить, читать, писать. Однако в течение последующих 8 лет благодаря интенсивным тренировкам и неослабевающему желанию поправиться, Джилл смогла вернуть себе все функции, отнятые болезнью.
В своей замечательной книге «Мой инсульт был мне наукой» (My Stroke of Insight)[19], Тейлор рассказывает об одной технике, которая, как она считает, способствовала ее выздоровлению.
Мысленные образы очень помогали мне восстанавливать физические функции. Я убеждена, что благодаря концентрации на ощущениях, вызываемых выполнением тех или иных заданий, мне быстрее удавалось учиться. Каждый день после инсульта я мечтала о том, что могу подниматься по лестнице, шагая через ступеньку. У меня сохранились воспоминания о том, каково это – бежать вверх по лестнице, ни на что не обращая внимания. Снова и снова прокручивая эту сцену в сознании, я поддерживала жизнь в соответствующих нейронных сетях до тех пор, пока мой мозг и мое тело не скоординировались настолько, что я смогла осуществить мечту.
Техника мысленных образов помогла достичь положительных результатов и восстановить двигательные функции, и этот успех вселил надежду на то, что данный метод можно использовать при множестве разных диагнозов, включая инсульт. Тейлор считает, что мысленные тренировки спасли ее, но так ли это?
Инсульт – это острое нарушение мозгового кровообращения, вследствие которого в мозге возникает нехватка кислорода. Он возникает при закупорке или разрыве сосудов и ведет к быстрому, необратимому разрушению мозга. Без немедленного врачебного вмешательства пораженная мозговая ткань отмирает. Если инсульт происходит в моторном кортексе, развивается паралич. К счастью, при интенсивной физиотерапии благодаря нейропластичности на пораженном участке могут возникнуть новые нейроны, которые восстановят утраченные функции.
Техника мысленной тренировки уже признана успешным методом реабилитации при спортивных травмах. Тренеры часто пользуются этой техникой, помогая спортсменам реабилитироваться. Было даже доказано, что эта методика повышает темпы восстановления. Так можно ли применить ее и к пострадавшим от инсульта? Нам известно, что, представляя физическое движение, мы активируем ту же область мозга, что используется для выполнения этого движения в реальности; значит, мысленные образы в теории должны стимулировать и даже оживлять пораженные участки мозга.
Однако результаты экспериментов противоречивы. Некоторые ограниченные по масштабу исследования свидетельствуют о том, что мысленные тренировки в самом деле помогают восстановиться после инсульта. Но в 2011 году по результатам одного крупного, серьезного эксперимента с участием 121 пациента после инсульта выяснилось, что мысленные образы не оказывают никакого воздействия на поврежденный мозг.
Имеющиеся сведения ставят под сомнение позицию Джилл Тейлор, которая считает, что мысленные образы способствуют реабилитации после инсульта. Почему же от них нет пользы? Мышечная слабость бывает и у спортсменов после травмы, и у пациентов, перенесших инсульт, так почему мысленные тренировки помогают восстановиться лишь первым? Что ж, давайте подумаем, как мысленные образы влияют на двигательную систему: они активируют те же области мозга, что и физические движения. Для того чтобы техника приносила положительные результаты, нервные пути, ведущие от моторного кортекса к мышцам, должны быть невредимыми. Если та область мозга, к которой вы обращаетесь, разрушена, мысленные тренировки бесполезны.
